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Abstract
Multi-Modal Entity Alignment (MMEA) is a
critical task that aims to identify equivalent en-
tity pairs across multi-modal knowledge graphs
(MMKGs). However, this task faces challenges
due to the presence of different types of infor-
mation, including neighboring entities, multi-
modal attributes, and entity types. Directly in-
corporating the above information (e.g., con-
catenation or attention) can lead to an unaligned
information space. To address these challenges,
we propose a novel MMEA transformer, called
MoAlign, that hierarchically introduces neigh-
bor features, multi-modal attributes, and en-
tity types to enhance the alignment task. Tak-
ing advantage of the transformer’s ability to
better integrate multiple information, we de-
sign a hierarchical modifiable self-attention
block in a transformer encoder to preserve
the unique semantics of different information.
Furthermore, we design two entity-type prefix
injection methods to integrate entity-type in-
formation using type prefixes, which help to
restrict the global information of entities not
present in the MMKGs. Our extensive experi-
ments on benchmark datasets demonstrate that
our approach outperforms strong competitors
and achieves excellent entity alignment perfor-
mance.

1 Introduction

Multi-modal entity alignment (MMEA) is a chal-
lenging task that aims to identify equivalent entity
pairs across multiple knowledge graphs that fea-
ture different modalities of attributes, such as text
and images. To accomplish this task, sophisticated
models are required to effectively leverage informa-
tion from different modalities and accurately align
entities. This task is essential for various applica-
tions, such as cross-lingual information retrieval,
question answering (Antol et al., 2015; Shih et al.,
2016), and recommendation systems (Sun et al.,
2020; Xu et al., 2021).

∗Corresponding author.

Figure 1: Two examples of the MMEA task, where the
entity pair in MMKG 1 and MMKG 2 is entity seed and
the pair in MMKG 1 and MMKG 3 is not. The blue,
green, and orange circles are entities, textual attributes
and visual attributes.

MMEA (Liu et al., 2019; Li et al., 2023b; Liu
et al., 2021; Lin et al., 2022) is challenging due to
the heterogeneity of MMKGs (e.g., different neigh-
bors, multi-modal attributes, distinct types), which
makes it difficult to learn rich knowledge repre-
sentations. Previous approaches such as PoE (Liu
et al., 2019) concatenated all modality features to
create composite entity representations but failed to
capture interactions among heterogeneous modal-
ities. More recent works (Chen et al., 2020; Guo
et al., 2021) designed multi-modal fusion mod-
ules to better integrate attributes and entities, but
still did not fully exploit the potential interactions
among modalities. These methods also ignored
inter-modality dependencies between entity pairs,
which could lead to incorrect alignment. Gen-
erally speaking, although MMKGs offer rich at-
tributes and neighboring entities that could be use-
ful for multi-mdoal entity alignment, current meth-
ods have limitations in (i) ignoring the differen-
tiation and personalization of the aggregation of
heterogeneous neighbors and modalities leading to
the misalignment of cross-modal semantics, and (ii)
lacking the use of entity heterogeneity resulting in
the non-discriminative representations of different



meaning/types of entities.
Therefore, the major challenge of MMEA task

is how to perform differentiated and personalized
aggregation of heterogeneous information of the
neighbors, modalities, and types. Although such in-
formation is beneficial to entity alignment, directly
fusing will lead to misalignment of the information
space, as illustrated in Figure 1. Firstly, notable
disparities between different modalities make di-
rect alignment a challenging task. For example,
both the visual attribute of entity Ruby in MMKG1
and the neighbor information of the entity Ruby
in MMKG2 contain similar semantics of program-
ming, but data heterogeneity may impede effective
utilization of this information. Secondly, complex
relationships between entities require a thorough
understanding and modeling of contextual informa-
tion and semantic associations. Entities such as the
Ruby, the Perl, and the entity Larry Wall possess
unique attributes, and their inter-relationships are
non-trivial, necessitating accurate modeling based
on contextual information and semantic associa-
tions. Furthermore, the existence of multiple mean-
ings for entities further exacerbates the challenge
of distinguishing between two entities, such as in
the case of the Ruby, which has different mean-
ings in the MMKG1 and MMKG3 where it may be
categorized as a jewelry entity or a programming
language entity, respectively.

To overcome the aforementioned challenges, we
propose a novel Multi-Modal Entity Alignment
Transformer named MoAlign1. Our framework
hierarchically introduces neighbor, multimodal at-
tribute, and entity types to enhance the alignment
task. We leverage the transformer architecture,
which is known for its ability to process heteroge-
neous data, to handle this complex task. Moreover,
to enable targeted learning on different modalities,
we design a hierarchical modifiable self-attention
block in the Transformer encoder, which builds
associations of task-related intra-modal features
through the layered introduction. Additionally, we
introduce positional encoding to model entity rep-
resentation from both structure and semantics si-
multaneously. Furthermore, we integrate entity-
type information using an entity-type prefix, which
helps to restrict the global information of entities
that are not present in the multi-modal knowledge
graphs. This prefix enables better filtering out of

1The source code is available at https://github.com/
xiaoqian19940510/MoAlign.

unsuitable candidates and further enriches entity
representations. To comprehensively evaluate the
effectiveness of our proposed approach, we design
training objectives for both entity and context eval-
uation. Our extensive experiments on benchmark
datasets demonstrate that our approach outperforms
strong competitors and achieves excellent entity
alignment performance. Our contributions can be
summarized as follows.

• We propose a novel MMEA framework named
MoAlign, which effectively integrates hetero-
geneous information through the multi-modal
KG Transformer.

• We design a hierarchical modifiable self-
attention block to build associations of task-
related intra-modal features through the lay-
ered introduction and design an entity-type
prefix to further enrich entity representations.

• Experimental results indicate that the frame-
work achieves state-of-the-art performance
on the public multi-modal entity alignment
datasets.

2 Preliminaries

Multi-Modal Knowledge Graph. A multi-
modal knowledge graph (MKG) is represented by
four sets: entities (E), relations (R), multi-modal
attributes (A), and triplets (T ). The size of each set
is denoted by NE , NR, and NA. The multi-modal
attributes are divided into text (AT ) and image
(AI) attributes. The relation setR includes entity
relations (RE), text attribute relations (RT ), and
image attribute relations (RI). The set of triplets
T includes entity triplets, text attribute triplets, and
image attribute triplets.

Multi-Modal Entity Alignment Task. Multi-
modal entity alignment (Chen et al., 2020; Guo
et al., 2021; Liu et al., 2021; Chen et al., 2022) aims
to determine if two entities from different multi-
modal knowledge graphs refer to the same real-
world entity. This involves calculating the similar-
ity between pairs of entities, known as alignment
seeds. The goal is to learn entity representations
from two multi-modal knowledge graphs (MKG1

and MKG2) and calculate the similarity between
a pair of entity alignment seeds (e, e′) taken from
these KGs. The set of entity alignment seeds is
denoted as S = {(e, e′) | e ∈ E , e′ ∈ E ′, e ≡ e′}.

https://github.com/xiaoqian19940510/MoAlign
https://github.com/xiaoqian19940510/MoAlign


Figure 2: The framework of the Multi-Modal KG Transformer, MoAlign. The hierarchical modifiable self-attention
block learns the entity by hierarchically integrating multi-modal attributes and neighbors. The prefix-injected
self-attention mechanism introduces entity type information for alignment.

3 Framework

This section introduces our proposed framework
MoAlign. As shown in Figure 2, we introduce posi-
tional encoding to simultaneously model entity rep-
resentation from both modality and structure. To
hierarchically introduce neighbor and multi-modal
attributes, we design a hierarchical modifiable self-
attention block. This block builds associations
of task-related intra-modal features through the
layered introduction. Furthermore, for integrating
entity-type information, we design a prefix-injected
self-attention mechanism, which helps to restrict
the global information of entities not present in the
MMKGs. Additionally, MoAlign also design train-
ing objectives for both entity and context evaluation
to comprehensively assess the effectiveness.

3.1 Multi-Modal Input Embedding

3.1.1 Multi-Modality Initialization

The textual attribute is initialized by BERT (Devlin
et al., 2019). For the visual attributes, to enable di-
rect processing of images by a standard transformer,
the image is split into a sequence of patches (Doso-
vitskiy et al., 2021). We then perform a flatten oper-
ation to convert the matrix into a one-dimensional
vector similar to word embeddings, which is sim-
ilar to embeddings in BERT (Devlin et al., 2019)
and concatenate them to form the image embedding
vector, denoted as vv. However, the initialization

of word embeddings follows a specific distribu-
tion, whereas the distribution of image embeddings
generated using this method is not consistent with
the pretraining model’s initial distribution. There-
fore, to standardize the distribution of image em-
beddings to be consistent with the distribution of
the vocabulary used by the pretraining model, we
perform the following operation:

vv ← (vv −mean(vv))/std(vv) · λ, (1)

where mean(vv) and std(vv) are the mean and
standard deviation of vv, respectively, and λ is the
standard deviation of truncated normal function.

3.1.2 Positional Encoding
For the transformer input, we additionally input
two types of positional encoding to maintain struc-
ture information of multi-modal KG as follows.

Modality Positional Encoding. To enable the
model to effectively distinguish between entities,
textual attributes, image attributes, and introduced
entity types, we incorporate a unique position code
for each modality. These position codes are then
passed through the encoding layers of the model to
enable it to differentiate between different modali-
ties more accurately and learn their respective fea-
tures more effectively. Specifically, we assign po-
sition codes of 1, 2, 3, and 4 to entities, textual
attributes, image attributes, and introduced entity



types, respectively. By incorporating this modality
positional encoding information into the encoding
process, our proposed model is able to incorporate
modality-specific features into the alignment task.

Structure Positional Encoding. To capture the
positional information of neighbor nodes, we intro-
duce a structure positional encoding that assigns a
unique position code to each neighbor. This allows
the model to distinguish between them and effec-
tively incorporate the structure information of the
knowledge graph into alignment process. Specifi-
cally, we assign a position code of 1 to the current
entity and its attributes. For first-order neighbors,
we randomly initialize a reference order and use
it to assign position codes to each neighbor and
its corresponding relation as 2n and 2n + 1, re-
spectively. Additionally, we assign the same struc-
ture positional encoding of attributes to their cor-
responding entities. By doing so, the model can
differentiate between different neighbor nodes and
effectively capture their positional information.

To fully utilize the available information,
we extract relation triplets and multi-modal
attribute triplets for each entity. The entity is
formed by combining multi-modal sequences as
{e,(e1,r1),. . . ,(en, rn),(a1,v1),. . . ,(am,vm), eT },
where (ei, ri) represents the i-th neighbor of
entity e and its relation. (aj ,vj) represents the
j-th attribute of entity e and its value vj , and it
contains textual and visual attributes. n and m are
the numbers of neighbors and attributes. eT is the
type embeddding.

3.2 Hierarchical Modifiable Self-Attention

To better capture the dependencies and relation-
ships of entities and multi-modal attributes, we
incorporate cross-modal alignment knowledge into
the transformer. Specifically, a hierarchical mod-
ifiable self-attention block is proposed to better
capture complex interactions between modalities
and contextual information. The block focuses on
associations of inter-modal (between modalities,
such as textual and visual features) by cross-modal
attention. By doing so, the model can capture more
informative and discriminative features.

3.2.1 Hierarchical Multi-Head Attention
We propose a novel hierarchical block that incor-
porates distinct attention mechanisms for different
inputs, which facilitates selective attention toward
various modalities based on their significance in the

alignment task. The transformer encoder comprises
three separate attention mechanisms, namely neigh-
bor attention, textual attention, and visual attention.
We utilize different sets of queries, keys, and values
to learn diverse types of correlations between the
input entity, its attributes, and neighbors.

Neighbor Multi-Head Attention. More specif-
ically, in the first layer of the hierarchical block
of the l-th transformer layer, we employ the input
entity as queries and its neighbors as keys and val-
ues to learn relations between the entity and its
neighbors:

e(l.1) = MH-Attn(e, ei, ei), (2)

where ei is the neighbor of entity e and e(l.1) is the
representation of entity e in the first layer.

Textual Multi-Head Attention. In the second
layer of the hierarchical block, the input entity
and its textual attributes are used as queries and
keys/values to learn the correlations between the
entity and its textual attributes.

e(l.2) = MH-Attn(e(l.1), [at;vt], [at;vt]), (3)

where (at,vt) represents the textual attribute of
entity e and its value, and e(l.2) is the representation
of entity e in the second layer.

Visual Multi-Head Attention. In the third layer
of the hierarchical block, the input entity and its
visual attributes are used similarly to the second
layer, to learn the correlations between the entity
and its visual attributes.

e(l.3) = MH-Attn(e(l.2), [av;vv], [av;vv]), (4)

where (av,vv) represents the visual attribute of
entity e and its value, and e(l.3) is the representa-
tion of entity e in the third layer. By incorporating
neighbor attention, textual attribute attention, and
visual attribute attention, our model can capture
various correlations between the input entity, its at-
tributes, and neighbors in a more effective manner.

3.2.2 Modifiable Self-Attention
To learn a specific attention matrix for building
correlations among entities and attributes, we de-
sign a modifiable self-attention mechanism. We
manage to automatically and adaptively generate
an information fusion mask matrix based on se-
quence features. The length of the sequence and
the types of information it contains may vary de-
pending on the entity, as some entities may lack
certain attribute information and images.



Modifiable Self-Attention Mechanism. To
adapt to the characteristics of different sequences,
it is necessary to assign "labels" to various
information when generating the sequence, such as
using [E] to represent entities and [R] to represent
relations. This way, the positions of various
information in the sequence can be generated, and
the mask matrix can be generated accordingly.

These labels need to be processed by the model’s
tokenizer after inputting the model and generating
the mask matrix to avoid affecting the subsequent
generation of embeddings. We can still modify
the vocabulary to allow the tokenizer to recognize
these words and remove them. The mask matrix
can be generated based on the positions of various
information, represented by labels, as follows:

Mij=

{
1, if(i, j, ·)∈T orT (i) = T (j)

0, otherwise
, (5)

where T (·) is the type mapping function of entities
and attributes.

Subsequently, residual connections and layer
normalization are utilized to merge the output of
hierarchical modifiable self-attention el and apply
a position-wise feed-forward network to each ele-
ment in the output sequence of the self-attention.
The output sequence, residual connections, and
layer normalization are employed as:

e(l) = LayerNorm
(
e(l−1) + FFN(e(l))

)
, (6)

where el is the output of the hierarchical modifiable
self-attention in the l-th layer of the transformer.
The use of residual connections and layer normal-
ization helps stabilize training and improve perfor-
mance. It enables our model to better understand
and attend to different modalities , leading to more
accurate alignment results.

3.3 Entity-Type Prefix Injection

Prefix methods can help improve alignment accu-
racy by providing targeted prompts to the model to
improve generalization, including entity type infor-
mation (Liu et al., 2023). The entity-type injection
introduces a type of information that takes as in-
put a pair of aligned seed entities from different
MMKGs and uses entities as prompts. The goal is
to inject entity-type information into the multi-head
attention and feed-forward neural networks.

Prefix-Injected Self-Attention Mechanism.
Specifically, we create two sets of prefix vectors
for entities, pk,pv ∈ Rnt×d, for keys and values
separately, where nt is the number of entity types.
These prefix vectors are then concatenated with
the original key K and value V . The multi-head
attention in Eq.(2) is performed on the newly
formed prefixed keys and values as follows:

MH-Attn(Q,K,V)=Concat(h1,· · ·,hN)Wo,

hi=Pi-Attn
(
QWq

i ,[KW
k
i ;p

k],[VWv
i ;p

v]
)
,

(7)

where dN is typically set to d/N , and N is number
of head. hi denotes i-th output of self-attention in
l-th layer. Wo ∈ Rd×d,Wq

i ,W
k
i ,W

v
i ∈ Rd×dN

are learnable parameters. In this paper, we use the
type embedding eT as the prefix.

In order to effectively incorporate alignment in-
formation, we utilize the mask token to influence at-
tention weights. The mask token serves as a means
to capture effective neighbors and reduce computa-
tional complexity. To achieve this, we set attention
weights m to a large negative value based on the
mask matrix Mij in the modifiable self-attention
mechanism. Consequently, attention weights for
the mask token are modified as follows:

Pi-Attn(Q,Kt,Vt)=Softmax

(
QKT

t+m√
dk

)
Vt, (8)

where Q,Kt, and Vt represent the query of the
entity, the key containing entity type, and the value
containing entity type matrices, respectively. dk
refers to the dimensionality of key vectors, while
m represents the attention weights.

Prefix-Injected Feed Forward Network. Re-
cent research suggests that the feed-forward layers
within the transformer architecture store factual
knowledge and can be regarded as unnormalized
key-value memories (Yao et al., 2022). Inspired
by this, we attempt to inject entity type into each
feed-forward layer to enhance the model’s ability
to capture the specific information related to the en-
tity type. Similar to prefix injection in attention, we
first repeat the entity type eT to create two sets of
vectors, Φk,Φv ∈ Rnt×d. These vectors are then
concatenated with the original parameter matrices
of the first and second linear layers.

FFN(E) = f
(

E · [Wk
f ;Φ

k]
)
· [Wv

f ;Φ
v], (9)

where f denotes the non-linearity function, E rep-
resents the output of the hierarchical modifiable
self-attention. Wk

f ,Wv
f are the parameters.



3.4 Training Objective
In order to effectively evaluate the MMEA from
multiple perspectives, we propose a training objec-
tive function that incorporates both aligned entity
similarity and context similarity. This objective
function serves to assess the quality of entity align-
ment and takes into consideration both the entities
themselves and their surrounding context.

Aligned Entity Similarity. The aligned entity
similarity constraint loss is designed to measure
similarity between aligned entity pairs and ensure
that embeddings of these entities are close to each
other in the embedding space.

LEA=sim(e, e′)−sim(e, e′)−sim(e, e′), (10)

where (e, e′) represent the final embeddings of
the aligned seed entities (e, e′) from knowledge
graphs KG1 and KG2. e and e′ denote the nega-
tive samples of the seed entities. sim(·, ·) refers to
the cosine distance between the embeddings.

Context Similarity. The context similarity loss is
employed to ensure that the context representations
of aligned entities are close to each other in the
embedding space.

LCon=sim(o,o′)−sim(o,o′)−sim(o,o′), (11)

where (o,o′) denote the final context representa-
tions ([cls] embedding) of the aligned seed entities
(e, e′). o and o′ represent the negative samples of
the seed entities’ context.

The total alignment loss L is computed as:

L = αLEA + βLCon, (12)

where α, β are learnable hyper-parameters.

4 Experiment

4.1 Dataset
We have conducted experiments on two of the
most popular datasets, namely FB15K-DB15K and
FB15K-YAGO15K, as described in (Liu et al.,
2019). The FB15K-DB15K dataset2 is an en-
tity alignment dataset of FB15K and DB15K
MMKGs, while the latter is a dataset of FB15K
and YAGO15K MMKGs. Consistent with prior
works (Chen et al., 2020; Guo et al., 2021), we
split each dataset into training and testing sets in
proportions of 2:8, 5:5, and 8:2, respectively. The
MRR, Hits@1, and Hits@10 are reported for eval-
uation on different proportions of alignment seeds.

2https://github.com/mniepert/mmkb

4.2 Comparision Methods

We compare our method with three EA baselines
(TransE (Bordes et al., 2013), GCN-align (Wang
et al., 2018a), and AttrGNN (Liu et al., 2020b)),
which aggregate text attributes and relation infor-
mation, and introduced image attributes initialized
by VGG16 for entity representation using the same
aggregation method as for text attributes. We fur-
ther use three transformer models (BERT (De-
vlin et al., 2019), ViT (Dosovitskiy et al., 2021),
and CLIP (Radford et al., 2021)) to incorporate
multi-modal information, and three MMEA meth-
ods (PoE (Liu et al., 2019), Chen et al. (Chen
et al., 2020), HEA (Guo et al., 2021), EVA (Liu
et al., 2021), and ACK-MMEA (Li et al., 2023a))
to focusing on utilizing multi-modal attributes. The
detail is given in Appendix B.

4.3 Implementation Details

We utilized the optimal hyperparameters reported
in the literature for all baseline models. Our
model was implemented using PyTorch, an open-
source deep learning framework. We initialized
text and image attributes using bert-base-uncased3

and VGG164, respectively. To ensure fairness, all
baselines were trained on the same data set parti-
tion. The best random dropping rate is 0.35, and
coefficients α, β were set to 5 and 2, respectively.
All hyperparameters were tuned on validation data
using 5 trials. All experiments were performed on
a server with one GPU (Tesla V100).

4.4 Main Results

To verify the effectiveness of MoAlign, we report
overall average results in Table 1. It shows per-
formance comparisons on both two datasets with
different splits on training/testing data of alignment
seeds, i.e., 2:8, 5:5, and 8:2. From the table, we can
observe that: 1) Our model outperforms all base-
lines of both EA, multi-modal Transformer-based,
and MMEA methods, in terms of three metrics on
both datasets. It demonstrates that our model is
robust to different proportions of training resources
and learns a good performance on few-shot data.
2) Compared to EA baselines (1-3), especially for
MRR and Hits@1, our model improves 5% and
9% up on average on FB15K-DB15K and FB15K-
YAGO15K, tending to achieve more significant
improvements. It demonstrates that the effective-

3https://github.com/huggingface/transformers
4https://github.com/machrisaa/tensorflow-vgg



FB15K-DB15K (20%) FB15K-DB15K (50%) FB15K-DB15K (80%)
Methods MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10

TransE (Bordes et al., 2013) 13.4 7.8 24.0 30.6 23.0 44.6 50.7 42.6 65.9
GCN-align (Wang et al., 2018a) 8.7 5.3 17.4 29.3 22.6 43.5 47.2 41.4 63.5
AttrGNN (Liu et al., 2020b) 34.3 25.2 53.5 54.7 47.3 72.1 70.3 67.1 83.9

BERT (Devlin et al., 2019) 32.6 24.3 48.0 49.6 45.2 67.9 65.3 64.5 80.1
ViT (Dosovitskiy et al., 2021) 33.5 25.1 53.9 50.5 45.5 69.0 71.5 66.8 85.7
CLIP (Radford et al., 2021) 35.4 27.0 55.3 54.1 48.7 71.4 73.9 68.3 86.0

PoE (Liu et al., 2019) 17.0 12.6 25.1 53.3 46.4 65.8 72.1 66.6 82.0
Chen et al. (Chen et al., 2020) 35.7 26.5 54.1 51.2 41.7 70.3 68.5 59.0 86.9
HEA (Guo et al., 2021) - 12.7 36.9 - 26.2 58.1 - 41.7 78.6
EVA (Liu et al., 2021) 35.2 28.9 54.5 53.8 45.3 72.9 71.6 63.5 85.1
ACK-MMEA (Li et al., 2023a) 38.7 30.4 54.9 62.4 56.0 73.6 75.2 68.2 87.4

MoAlign (ours) 40.9 (↑2.2) 31.8 (↑1.4) 56.4 (↑1.1) 63.4 (↑1.0) 57.6 (↑1.6) 74.9 (↑1.3) 77.3 (↑2.1) 69.9 (↑1.6) 88.2 (↑0.8)

FB15K-YAGO15K (20%) FB15K-YAGO15K (50%) FB15K-YAGO15K (80%)
Methods MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10

TransE (Bordes et al., 2013) 11.2 6.4 20.3 26.2 19.7 38.2 46.3 39.2 59.5
GCN-align (Wang et al., 2018a) 15.3 8.1 23.5 29.4 23.5 42.4 47.7 40.6 64.3
AttrGNN (Liu et al., 2020b) 31.8 22.4 39.5 46.2 38.0 63.9 67.1 59.9 78.7

BERT (Devlin et al., 2019) 30.5 23.6 39.0 48.7 43.1 62.4 67.3 60.8 81.2
ViT (Dosovitskiy et al., 2021) 32.4 26.8 44.9 52.0 45.7 67.5 71.3 63.1 82.0
CLIP (Radford et al., 2021) 34.8 29.3 47.1 56.8 49.0 70.2 72.1 65.2 85.2

PoE (Liu et al., 2019) 15.4 11.3 22.9 41.4 34.7 53.6 63.5 57.3 74.6
Chen et al. (Chen et al., 2020) 31.7 23.4 48.0 48.6 40.3 64.5 68.2 59.8 83.9
HEA (Guo et al., 2021) - 10.5 31.3 - 26.5 58.1 - 43.3 80.1
EVA (Liu et al., 2021) 33.5 25.0 46.2 56.1 47.8 68.3 72.5 64.0 84.5
ACK-MMEA (Li et al., 2023a) 36.0 28.9 49.6 59.3 53.5 69.9 74.4 67.6 86.4

MoAlign (ours) 37.8 (↑1.8) 29.6 (↑0.3) 52.5 (↑2.9) 61.7 (↑2.4) 55.0 (↑1.5) 71.3 (↑1.1) 76.9 (↑2.5) 68.9 (↑1.3) 88.4 (↑2.0)

Table 1: Main experiments on FB15K-DB15K (top) (%) and FB15K-YAGO15K (bottom) (%) with different
proportions of MMEA seeds. The best results are highlighted in bold, and underlined values are the second best
result. "↑" means the improvement compared to the second best result, and “-" means that results are not available.

FB15K-DB15K (80%) FB15K-DB15K (80%)
Variants MRR Hits@1 Hits@10 △ Avg MRR Hits@1 Hits@10 △ Avg

MoAlign (ours) 77.3 69.9 88.2 - 76.9 68.9 88.4 -

w/o modifiable layer 75.8 66.4 85.9 ↓2.4 74.2 65.3 85.7 ↓3.0
w/o modifiable self-attention 76.5 67.1 86.4 ↓1.8 74.6 66.7 86.2 ↓2.2
repl. multi-head self-attention 76.0 66.9 87.1 ↓1.8 74.5 65.9 86.0 ↓2.6
w/o type information 76.2 67.8 87.3 ↓1.4 74.1 66.5 86.7 ↓2.3
w/o context loss 76.9 68.2 87.1 ↓1.1 75.4 67.2 86.3 ↓1.8

w/o text attribute 75.1 65.3 85.7 ↓3.1 73.4 65.0 86.4 ↓3.1
w/o image attribute 75.8 65.4 86.0 ↓2.7 74.0 66.8 85.4 ↓2.7

Table 2: Variant experiments on FB15K-DB15K (80%) and FB15K-YOGA15K (80%). “w/o” means removing
corresponding module from complete model. “repl.” means replacing corresponding module with other module.

ness of multi-modal context information benefits
incorporating alignment knowledge. 3) Compared
to multi-modal transformer-based baselines, our
model achieves better results and the transformer-
based baselines perform better than EA baselines.
It demonstrates that transformer-based structures
can learn better MMEA knowledge. 4) Compared
to MMEA baselines, our model designs a Hierarchi-
cal Block and modifiable self-attention mechanism,
the average gains of our model regarding MRR,
Hits@1, and Hits@10 are 2%, 1.4%, and 1.7%,
respectively. The reason is that our method incor-
porates multi-modal attributes and robust context
entity information. All the observations demon-
strate the effectiveness of MoAlign.

4.5 Discussions for Model Variants

To investigate the effectiveness of each module in
MoAlign, we conduct variant experiments, show-
casing the results in Table 2. The "↓" means the
value of performance degradation compared to the
MoAlign. We can observe that: 1) The impact of
the Hierarchical Block tends to be more significant.
We believe the reason is that the adaptive intro-
duction of multi-modal attributes and neighbors
captures more clues. 2) By replacing the modifi-
able self-attention to the multi-head self-attention,
the performance decreased significantly. It demon-
strates that the modifiable self-attention captures
more effective multi-modal attribute and relation
information. 3) When we remove all image at-
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Figure 3: Results of deleting attributes on FB15K-
DB15K (80%). “Del.” means deleting the correspond-
ing attribute.

FB15K-DB15K (80%)
Variants MRR Hits@1 Hits@10 △ Avg

MoAlign (N→ V→ T) 77.3 69.9 88.2 -
MoAlign (N→ T→ V) 76.3 68.0 87.5 ↓1.2
MoAlign (V→ N→ T) 76.0 67.4 86.4 ↓1.9
MoAlign (V→ T→ N) 75.6 67.3 86.1 ↓2.1
MoAlign (T→ N→ V) 75.8 67.7 85.9 ↓2.0
MoAlign (T→ V→ N) 76.0 66.9 86.1 ↓2.1

Table 3: Order Impact on FB15K-DB15K (80%).

tributes as “w/o image attribute", our method drops
2.7% and 2.7% on average on FB15K-DB15K and
FB15K-YAGO15K. It demonstrates that image at-
tributes can improve model performance and our
method utilizes image attributes effectively by cap-
turing more alignment knowledge.

4.6 Impact of Multi-modal Attributes
To further investigate the impact of multi-modal
attributes on all compared methods, we report the
results by deleting different modalities of attributes,
as shown in Figure 3. From the figure, we can ob-
serve that: 1) The variants without the text or im-
age attributes significantly decline on all evaluation
metrics, which demonstrates that the multi-modal
attributes are necessary and effective for MMEA. 2)
Compared to other baselines, our model derives bet-
ter results both in the case of using all multi-modal
attributes or abandoning some of them. It demon-
strates our model makes full use of existing multi-
modal attributes, and multi-modal attributes are
effective for MMEA. All the observations demon-
strate that the effectiveness of the MMKG trans-
former encoder and the type-prompt encoder.

In addition, to investigate the impact of the order
in which multi-modal attributes are introduced to
the model, we conduct experiments with different
orders of introducing neighbor information, tex-
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Figure 4: Results of interference attributes or neighbors
on FB15K-DB15K (80%). “Interf.” means interference
some proportion of attributes or neighbors.

tual attributes, and visual attributes. As shown in
the Table 3, the introduction order has a signifi-
cant impact on our model. Specifically, the best
performance is achieved when textual attributes,
visual attributes, and neighbor information are in-
troduced in that order. This suggests that aggre-
gating attribute information to learn a good entity
representation first, and then incorporating neigh-
bor information, can effectively utilize both the
attributes and neighborhood information of nodes.

4.7 Impact of Interference Data

We investigate the impact of interference data on
our proposed method for MMEA. Specifically, we
randomly replace 5%, 10%, 15%, 20%, 25% and
30% of the neighbor entities and attribute informa-
tion to test the robustness of our method, as shown
in Figure 4. The experimental results demonstrate
that our method exhibits better tolerance to inter-
ference compared to the baseline methods. This
suggests that our approach, which incorporates hi-
erarchical information from different modalities
and introduces type prefix to entity representations,
is capable of handling interference data and im-
proving the robustness of the model.

5 Conclusion

This paper proposes a novel MMEA framework.
It incorporates cross-modal alignment knowledge
using a two-stage transformer encoder to better
capture complex inter-modality dependencies and
semantic relationships. It includes a MMKG trans-
former encoder that uses self-attention mechanisms
to establish associations between intra-modal fea-
tures relevant to the task. Our experiments show
that our approach outperforms competitors.



Limitations

Our work hierarchically introduces neighbor, mul-
timodal attribute, and entity types to enhance the
alignment task. Empirical experiments demon-
strate that our method effectively integrates het-
erogeneous information through the multi-modal
KG Transformer. However, there are still some
limitations of our approach can be summarized as
follows:

• Due to the limitation of the existing MMEA
datasets, we only experiment on entity, text,
and image modalities to explore the influence
of multi-modal features. We will study more
modalities in future work.

• Our approach employs the transformer encoder
architecture, which entails a substantial time over-
head. In forthcoming investigations, we intend
to explore the feasibility of leveraging prompt-
based techniques to mitigate the computational
burden and expedite model training.
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In this work, we propose a new MMEA frame-
work that hierarchically introduces neighbor, multi-
modal attribute, and entity types to benchmark our
architecture with baseline architectures on the two
MNEA datasets.

Data Bias. Our framework is tailored for multi-
modal entity alignment in the general domain.
Nonetheless, its efficacy may be compromised
when confronted with datasets exhibiting dissimilar
distributions or in novel domains, potentially lead-
ing to biased outcomes. The experimental results
presented in the section are predicated on particular
benchmark datasets, which are susceptible to such
biases. As a result, it is imperative to exercise cau-
tion when assessing the model’s generalizability
and fairness.

Computing Cost/Emission. Our study, which in-
volves the utilization of large-scale language mod-
els, entails a substantial computational overhead.
We acknowledge that this computational burden
has a detrimental environmental impact in terms of
carbon emissions. Specifically, our research neces-
sitated a cumulative 588 GPU hours of computation
utilizing Tesla V100 GPUs. The total carbon foot-
print resulting from this computational process is
estimated to be 65.27 kg of CO2 per run, with a
total of two runs being conducted.
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A Related Work

A.1 Multi-Modal Entity Alignment
In the real-world, due to the multi-modal nature
of KGs, there have been several works (Zhu et al.,
2022; Wang et al., 2021; Jiang et al., 2021; Fang
et al., 2022) that have started to focus on MMEA
technology. One popular approach is to use em-
beddings to represent entities and their associated
modalities (Cao et al., 2022; Yang et al., 2022).
These embeddings can then be used to measure the
similarity between entities and align them across
different KGs. Wang et al. (Wang et al., 2018b)
proposed a framework that uses cross-modal em-
beddings to align entities across different modal-
ities, such as text and images. The model maps
entities from different modalities into a shared em-
bedding space, where entities that correspond to
the same real-world object are close to each other.
However, this approach cannot capture the poten-
tial interactions among heterogeneous modalities,
limiting its capacity for performing accurate entity
alignments. To address this limitation, some re-
searchers have proposed multi-modal knowledge
embedding methods that can discriminatively gen-
erate knowledge representations of different types
of knowledge and then integrate them. Chen et al.
(2020) proposed a method that uses a multi-modal
fusion module to integrate knowledge representa-
tions of different types. Similarly, Guo et al. (2021)
proposed a GNN-based model that learns to ag-
gregate information from different modalities and
propagates it across the knowledge graph to align
entities. It developed a hyperbolic multi-modal en-
tity alignment (HEA) approach that combines both
attribute and entity representations in the hyper-
bolic space and uses aggregated embeddings to pre-
dict alignments. EVA (Liu et al., 2021) combines
images, structures, relations, and attributes infor-
mation for the MMEA with a learnable weighted
attention to learn the importance of each modal at-
tributes. Despite these advances, existing methods
often ignore contextual gaps between entity pairs,
which may limit the effectiveness of alignment.

A.2 Knowledge Graph Transformer
The Transformer architecture, originally proposed
for natural language processing tasks, has been ap-
plied to various knowledge graph tasks as well (Liu
et al., 2022; Hu et al., 2022; Howard et al., 2022;
Wang et al., 2023, 2022; Fang et al., 2023b,a). For
example, the KGAT model (Wang et al., 2019)

uses a graph attention mechanism to capture the
complex relations between entities in a knowledge
graph, and a Transformer to learn representations
of the entities for downstream tasks such as link pre-
diction and entity recommendation. The K-BERT
model (Liu et al., 2020a) extends this approach by
pre-training a Transformer on a large corpus of tex-
tual data, and then fine-tuning it on a knowledge
graph to improve entity and relation extraction. The
transformer model has the ability to model long-
range dependencies, where entities and their asso-
ciated modalities can be distant from each other in
the knowledge graph. Furthermore, Transformers
utilize attention mechanisms to weigh the impor-
tance of different inputs and focus on relevant in-
formation, which is particularly useful for aligning
entities across different modalities.

B Comparision Methods

We compared our method with three EA baselines
that aggregate text attributes and relation informa-
tion, and introduced image attributes initialized by
VGG16 for entity representation using the same
aggregation method as for text attributes. The
three EA methods compared are as follows: (1)
TransE (Bordes et al., 2013) assumes that the entity
embedding v should be close to the attribute embed-
ding a plus their relation r. (2) GCN-align (Wang
et al., 2018a) transfers entities and attributes from
each language to a common representation space
through GCN. (3) AttrGNN (Liu et al., 2020b) di-
vides the KG into multiple subgraphs, effectively
modeling various types of attributes.

We also compared our method with three trans-
former models that incorporate multi-modal in-
formation: (4) BERT (Devlin et al., 2019) is a
pre-trained model to generate representations. (5)
ViT (Dosovitskiy et al., 2021) is a visual trans-
former model that partitions an image into patches
and feeds them as input sequences. (6) CLIP (Rad-
ford et al., 2021) is a joint language and vision
model architecture that employs contrastive learn-
ing.

In addition, we compared our method with four
MMEA methods focusing on utilizing multi-modal
attributes: (7) PoE (Liu et al., 2019) utilizes im-
age features and measures credibility by matching
the semantics of entities. (8) Chen et al. (Chen
et al., 2020) designs a fusion module to integrate
multi-modal attributes. (9) HEA (Guo et al., 2021)
characterizes MMKG in hyperbolic space. (10)



EVA (Liu et al., 2021) combines multi-modal at-
tributes and relations with an attention mechanism
to learn the importance of modality. (11) ACK-
MMEA (Liu et al., 2021) designs an attribute-
consistent KG representation framework to com-
pensate contextual gaps.


