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EVA-MVC: Equitable View-weight Allocation for Generic
Multi-View Clustering

Anonymous Author(s)

ABSTRACT
Contemporary datasets sourced from the web often adopt a multi-

view format, collecting data from diverse sources, domains, or mod-

ules. Existing methodologies employed to analyze such datasets fre-

quently overlook or inaccurately allocate the view-weights, pivotal

metrics reflecting each view’s significance. This work introduces

EVA-MVC, a simple yet effective algorithm designed for Equitable

View-weight Allocation (EVA) seamlessly integrated with arbitrary

Multi-view Clustering (MVC) methods. Within the EVAmodule, we

establish theoretical connections between view supplementarity

and Multi-view Subspace Learning (MSL), leading to the partition

of views into View Communities (VCs) based on these foundational

principles. These VCs exhibit internal supplementarity similari-

ties, facilitating Equitable View-weights Allocation through VC-

specific MSL. The proposed EVA process precedes and operates

independently of traditional or SOTA MVC approaches, requiring

no additional processing or specialized design, making it an ideal

preprocessing step for MVC applications. Through comprehensive

evaluations across diverse multi-view datasets, our findings reveal

that our EVA significantly enhances the effectiveness of mainstream

MVC frameworks, resulting in a notable performance improvement.

CCS CONCEPTS
• Computing methodologies→ Cluster analysis.

KEYWORDS
Multi-view Clustering, Multi-view Subspace Learning, Equitable

View-weight Allocation, Consistency, Supplimentarity
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1 INTRODUCTION
The landscape of data collection and acquisition methods has ex-

perienced significant diversification, leading to the development

of various feature extraction techniques tailored to distinct data

sources [5, 9, 46]. As each technique is typically designed with a

specific data perspective, achieving a comprehensive representation

of the data necessitates the integration of multiple views.
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Figure 1: Illustration of the “Redundant Supplementarity” Is-
sue on a SyntacticMulti-viewDataset: (a) View Supplementar-
ity Graph (VSG), (b) View-weights Allocation via Multi-view
Subspace Learning (MSL), and (c) View Community Weights
Allocation via MSL. The issue is highlighted by a significant
overlap among the final 7 views in the VSG. In (b), this issue
is apparent as these views are assigned notably higher values,
resulting in their dominance in the MSL. In (c), our method
divides the VSG into 4 View Communities, achieving a more
Equitable View-weight Allocation (EVA).

For example, online news articles may contain multiple views,

such as video, text, and images [32]. In the case of images, tech-

niques like local binary patterns (LBP), histograms of oriented gra-

dients (HOG), and Gabor descriptors can extract additional features

for analysis and representation. Thus, effectively fusing diverse

information is paramount in multi-view scenarios.

Multi-view Clustering (MVC) plays a crucial role in revealing

the intrinsic structure across multiple views, finding widespread ac-

ceptance in data mining applications [13, 16, 26]. The effectiveness

of MVC is guided by two fundamental principles: Consistency
and Supplementarity [7, 34, 52]. Consistency aims to maximize

alignment between different views, while supplementarity seeks for

argumenting the unique information carried by each view that is

not captured by others. Nonetheless, current research often exhibits

a tendency to prioritize consistency over supplementarity.

In Multi-view Subspace Learning (MSL) [17, 29, 34], a prevalent

MVC solution, the emphasis typically lies solely on the consis-

tency principle. To achieve robust clustering [24, 45, 58], a lower-

dimensional, more consistent subspace is learned by mapping the

high-dimensional multi-view data into it [49], followed by conduct-

ing subsequent clustering operations within this refined subspace.

Unfortunately, Supplementarity, often lacking a robust theoreti-

cal foundation, tends to be disregarded by existing MVC method-

ologies. In this study, we introduce a formal definition of supple-

mentarity within the MSL framework. This is done to show that,

like Consistency, Supplementarity is quantifiable and compara-

ble. Nevertheless, views with similar levels of supplementarity

frequently dominate the MSL process, resulting in what we re-

fer to as “Redundant Supplementarity”. This phenomenon results

in an over-reliance on specific views, significantly diminishing the

representational capability of the learned subspace.

1
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To illustrate “Redundant Supplementarity”, we craft a synthetic

dataset featuring 10 views derived from YTF100 (initially compris-

ing 4 views) by replicating the final view six times. As illustrated

in Figure 1 (a), these 10 views are depicted as nodes within a View

Supplementarity Graph (VSG), where edges denote supplementar-

ity similarities. Notably, the last seven views exhibit a substantial

degree of supplementarity likeness. Utilizing a conventional MSL

technique, the allocated view-weights (𝛼 (𝑣) ) for the 10 views are
shown in Figure 1 (b). The weights attributed to the final 7 views

significantly outweigh those assigned to the initial 3 distinct views.

This misallocation of weights disregards the contributions of the

initial 3 views. These observations highlight the importance and

urgency of developing an Equitable View-Weight Allocation (EVA)

mechanism in the domain of Multi-view Clustering (MVC).

In summary, this work contributes in the following folds:

(1) Theoretical Foundation: We propose a novel method, Eq-

uitable View-weight Allocation (EVA), theoretically grounded

in the concept of Supplementarity. EVA effectively resolves

the issue of “Redundant Supplementarity”, thereby enhanc-

ing subsequent tasks such as clustering.

(2) General. Our EVA is compatible with arbitrary Multi-view

Clustering (MVC) methods. Experiments show that EVA

enhances the performance of both traditional or cutting-

edge MVC methods, with a remarkable improvement.

(3) Scale and Efficient. Our method operates on minimal

anchor graph, foregoing the need for full pairwise graph.

Theoretical analyses affirm that applying EVA to the anchor

graph yields results equivalent to those achieved with the

full graph, ensuring overall efficiency and scalability.

(4) Fast and Effective. Through experiments on real and syn-

thetic datasets, we demonstrate the performance of our

framework in tackling the challenges of MVC.

2 PRELIMINARIES & RELATEDWORK
Consider a multi-view dataset describing 𝑛 data points in 𝑉 views,

denoted asV = {V (1) , · · · ,V (𝑉 ) }, where the view specific feature

matrices are denoted as 𝑋 = {𝑋 (1) , · · · , 𝑋 (𝑉 ) }. For the feature

matrix of the 𝑣-th view, 𝑋 (𝑣) ∈ R𝑚 (𝑣)×𝑛 , its 𝑖-th row and the 𝑗-th

column of𝑋 (𝑣) are denoted by 𝑥 (𝑣)
𝑖:

and𝑥
(𝑣)
:𝑗

, respectively.𝑇𝑟 (𝑋 (𝑣) )
denotes the trace of 𝑋 (𝑣) , (𝑋 (𝑣) )𝑇 denotes its transpose, and its

Frobenius norm is denoted by

𝑋 (𝑣)
𝐹
. 1 and 𝐼 denote a column

vector of ones and the identity matrix, respectively.

2.1 Multi-view Subspace Learning (MSL)
MSL assumes that high-dimensional multi-view data can be rep-

resented as a combination of multiple low-dimensional subspaces.

These subspaces are discovered by using the original multi-view

data as a reference or dictionary, with the objective of preserving

the inherent structure found in the self-representation matrices.

Mathematically, the overall framework of MSL aims to minimize

the reconstruction loss and can be expressed as follows:

min

𝑈 ,𝑌

𝑉∑︁
𝑣=1

𝛼 (𝑣) ∥𝑋 (𝑣) −𝑈 (𝑣)𝑌 ∥2𝐹 + 𝜔 (𝑌 ),

𝑠 .𝑡 . ∥𝑈:, 𝑗 ∥22 ≤ 1,

(1)

where 𝑈 (𝑣) and 𝑌 represent the mapping models and the con-

sistency (consistent representation). 𝛼 (𝑣) denotes the 𝑣-th view-

weight allocated by MSL. The term 𝜔 represents the consensus

regularization term, which helps in training a global graph across

the views. In the framework described, several MSL methods [31,

37, 48, 56] have been proposed to partition multi-view datasets by

capturing their global structure.

2.2 Non-MSL Methods in MVC
In addition to MSL methods, there are other approaches in MVC

that fall under the category of non-MSL methods. We will briefly

introduce their ideas and representative methods.

Multi-view Kernel Learning (MKL). MKL utilizes multiple

kernel learning techniques [18, 19] for clustering. Liu et al. [27] used

contrastive learning for KML, while ignore the supplementarity

across multiple views.

Multi-view Matrix Factorization Learing (MMFL). MMFL

aims to enhance the learned representation by Non-negative Ma-

trix Factorization (NMF) technology. Zong et al. [61] proposed

a multi-manifold regularized NMF framework for preserving lo-

cally geometrical structure. Li et al. [25] designed a unified NMF

framework to improve the representation quality. Zheng et al. [60]

integrated NMF and 𝑘-means as a unified framework. In MV-Co-

VH [11], NMF is performed on both visible and hidden views. Yang

et al. [53] proposed to fuse multi-view data into a low-dimensional

consensus embedding by NMF directly for efficiency.

Multi-view Graph Learning (MGL). MGL utilizes graphs for

describing multi-view dataset. Zhang et al. [59] introduced a MGL

framework to combine several tasks includingMVC.Wang et al. [41]

proposed to generate a graph for each view and then fuse these

graphs. Liu et al. [28] designed a plug-and-play anchor enhance-

ment strategy to assist the MVC.

The methods discussed offer diverse strategies for fusing multi-

view data, either treating views equally or assigning view-weights

(potentially facing Redundant Supplementarity, as discussed in

Section 3). Table 1 summarizes mainstreamMVCmethods, detailing

their time and space complexities. Furthermore, our EVA module

enhances these methods, marking “NA” where the source code

is unavailable, on five real-world datasets affected by Redundant

Supplementarity. The average improvement in Accuracy (ACC)

is reported, with detailed experimental results accessible in the

Evaluation and Appendix Sections.

3 PROPOSED FRAMEWORK: EVA-MVC
This section presents the EVA-MVC framework, outlining its moti-

vation, methodology, optimization, and complexity analysis. For a

comprehensive understanding of EVA-MVC, please refer to Figure 2,

which comprises two modules: Equivalent View-weight Allocation

(EVA) and Multi-view Clustering (MVC). EVA, the core of the frame-

work, aims to tackle the issue of Redundant Supplementarity.

3.1 Redundant Supplementarity
MSL methodologies are founded on an process integrating multiple

views into a unified low-dimensional subspace, denoted as 𝑆 [38]

and expressed mathematically as:

𝑆 = {𝑋 (𝑣) ∈ 𝑋 : 𝑋 (𝑣) = 𝑈 (𝑣)𝑌 + 𝜇 (𝑣) } (2)

2
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Figure 2: Overview of the EVA-MVC Framework, comprising two modules: (1) Equitable View-weight Allocation (EVA) and (2)
Multi-view Clustering (MVC). In EVA, views are partitioned into distinct View Communities (VCs) based on their supplementar-
ity similarities, denoted asVC. Subsequently, for each VCVC (𝑐 ) ∈ VC, a VC-specific consistency (consistent representation)
𝑌𝑐 is learned. In MVC, these consistencies serve as inputs for an arbitrary MVC method.

Table 1: Overview of Mainstream MVC Methods.

MVC Method

(Year)

MVC

Class

Time & Space

Complexity

EVA-Driven Enhancement

(Avg. ACC on Five Datasets)

BMTMVC [59](2016) MGL 𝑂 (𝑛2 ) :𝑂 (𝑛2 ) N/A

MCLES [6](2020) MSL 𝑂 (𝑛2 ) :𝑂 (𝑛2 ) 5.6%

GMC [41](2022) MGL 𝑂 (𝑛2 ) :𝑂 (𝑛2 ) N/A

FPMVS [44](2021) MSL 𝑂 (𝑛) :𝑂 (𝑛) 5.8%

MSGL [23](2021) MSL 𝑂 (𝑛) :𝑂 (𝑛2 ) 3.5%

SMVSC [35](2021) MSL 𝑂 (𝑛) :𝑂 (𝑛) 10.1%

SDMVC[51](2021) MSL 𝑂 (𝑛) :𝑂 (𝑛) N/A

OMSC [8](2022) MSL 𝑂 (𝑛) :𝑂 (𝑛) 15.3%

MV-Co-VH [11](2022) MMFL 𝑂 (𝑛2 ) :𝑂 (𝑛2 ) N/A

CTMSC [10](2022) MSL 𝑂 (𝑛3 ) :𝑂 (𝑛2 ) N/A

CCNMF [25](2023) MMFL 𝑂 (𝑛2 ) :𝑂 (𝑛2 ) N/A

SMGC [36](2023) MGL 𝑂 (𝑛2 ) :𝑂 (𝑛2 ) N/A

K-MCILSS [54](2023) MKL 𝑂 (𝑛3 ) :𝑂 (𝑛2 ) N/A

LMGEC [14](2023) MGL 𝑂 (𝑛) :𝑂 (𝑛) N/A

MERLIN [55](2023) MSL 𝑂 (𝑛) :𝑂 (𝑛) N/A

MSC
2
D[21](2023) MSL 𝑂 (𝑛2 ) :𝑂 (𝑛2 ) N/A

MFK [60](2023) MMFL 𝑂 (𝑛3 ) :𝑂 (𝑛2 ) N/A

AWMVC [39](2023) MMFL 𝑂 (𝑛) :𝑂 (𝑛) 9.76%

FastMICE [20](2023) MGL 𝑂 (𝑛) :𝑂 (𝑛) 5.36%

CMVC [57](2024) MGL 𝑂 (𝑛) :𝑂 (𝑛) 3.8%

Here, 𝜇 (𝑣) represents the overall loss incurred while mapping the

feature matrix 𝑋 (𝑣) of the 𝑣-th view to the subspace 𝑆 , where 𝑌

symbolizes the corresponding consistent representation, Consis-
tency for short, acting as the low-dimensional embedding shared

across multiple views. The matrix 𝑈 (𝑣) ∈ R𝑚 (𝑣)×𝑑 denotes the

basis of the 𝑣-th view within the subspace 𝑆 .

Drawing inspiration from the principles of consistency and sup-

plementarity in MSL [7], we further break down the overall loss

𝜇 (𝑣) of the 𝑣-th view into two distinct components as follows:

Definition 3.1. Consistency Loss & Supplementarity Loss:
The loss of mapping the feature matrix 𝑋 (𝑣) ∈ 𝑋 of the 𝑣-th view

to the unified space 𝑆 denoted by 𝜇 (𝑣) can be decomposed into the

sum of consistency loss 𝜇
(𝑣)
𝑐 and supplementary loss 𝜇

(𝑣)
𝑠 .

Moreover, supplementarity is formulated as:

Definition 3.2. Supplementarity (supplementary representa-
tion): The supplementarity loss while mapping the feature matrix

𝑋 (𝑣) ∈ 𝑋 of the 𝑣-th view to a unified space 𝑆 , denoted as 𝜇
(𝑣)
𝑠 , is

expressed as 𝜇
(𝑣)
𝑠 = 𝑈 (𝑣)𝑌 (𝑣) , where 𝑌 (𝑣) represents the supple-

mentarity of 𝑋 (𝑣) .

In essence, the subspace 𝑆 is reformulated as:

𝑆 = {𝑋 (𝑣) ∈ 𝑋 : 𝑋 (𝑣) = 𝑈 (𝑣)𝑌 + 𝜇 (𝑣)𝑐 +𝑈 (𝑣)𝑌 (𝑣) } (3)

The term 𝑌 (𝑣) can be interpreted as the unique information from

𝑋 (𝑣) specific to the 𝑣-th view, not shared by other views. It repre-

sents the portion that cannot be uniformly expressed by the basis

matrix𝑈 (𝑣) .
To tackle irrelevant variables, we introduce the following as-

sumption:

Assumption 1. The consistency loss for each view is hypothesized
to be uniform and identical, implying 𝜇 (𝑣)𝑐 ≈ 𝜇 (𝑢 )𝑐 , ∀V (𝑣) ,V (𝑢 ) ∈
V ∧ 𝑣 ≠ 𝑢.

Therefore, our attention can be singularly focused on supple-

mentarity.

Theorem 3.3. SupplementarityDominates theMapping Loss:
In Multi-view Subspace Learning (MSL), the differences in the map-
ping loss of two views to the subspace 𝑆 are primarily driven by their
differences in supplementarity.

Proof. Consider the feature matrix 𝑋 (𝑣) of the 𝑣-th view and

𝑋 (𝑢 ) in the 𝑢-th view, without loss of generality, let | |𝑋 (𝑣) | | repre-
sent the norm of 𝑋 (𝑣). Follow the Definition 3.1, | |𝜇 (𝑣) − 𝜇 (𝑢 ) | | =
| |𝜇 (𝑣)𝑐 + 𝑈 (𝑣)𝑌 (𝑣) − 𝜇 (𝑢 )𝑐 − 𝑈 (𝑢 )𝑌 (𝑢 ) | |. Given that 𝜇

(𝑣)
𝑐 ≈ 𝜇

(𝑢 )
𝑐 ,

∀V (𝑣) ,V (𝑢 ) ∈ V ∧ 𝑣 ≠ 𝑢 based on Assumption 1, then | |𝜇 (𝑣) −
𝜇 (𝑢 ) | | = | |𝑈 (𝑣)𝑌 (𝑣) − 𝑈 (𝑢 )𝑌 (𝑢 ) | |. As 𝑈 (𝑣) and 𝑈 (𝑢 ) are the ba-

sis matrices irrelevant to the loss computation, it follows that

| |𝜇 (𝑣) − 𝜇 (𝑢 ) | | is primarily influenced by | |𝑌 (𝑣) − 𝑌 (𝑢 ) | |. □

It is crucial to note that we can apply any arbitrary norm, such

as the Frobenius norm [3], etc., as long as they satisfy the three

3
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essential properties of a norm: Positivity, Scaling, and Triangle

Inequality [15].

We now introduce themathematical definition of the “Redundant

Supplementarity” dilemma within the MSL.

Definition 3.4. Redundant Supplementarity: Assuming that

𝑋 (𝑣) adheres to Assumption 1, there exists a largest subset of 𝑀

views, denoted as V𝑀
, that exhibit similar supplementarity, i.e.,

𝑌 (𝑢 ) ≈ 𝑌 (𝑤 ) , for anyV (𝑢 ) ,V (𝑤 ) ∈ V𝑀 ∧𝑢 ≠ 𝑤 , where 1 ≤ 𝑀 ≤
𝑉 . The issue of redundant supplementarity arises when the view-

weights 𝛼 (𝑣) allocated by MSL to these𝑀 views are significantly

higher than those allocated to the remaining 𝑉 −𝑀 views.

This scenario results in an excessive focus on these 𝑀 views

with similar supplementarity, denoted as 𝑌𝑀 , thereby biasing the

learned shared representation towards 𝑌 + 𝑌𝑀 . To investigate this

matter, we introduce a function concerning view-weights:

Definition 3.5. View-weightDifference Function 𝑓 (𝑀): 𝑓 (𝑀) =
𝛼 (𝑣) − 𝛼 (𝑢 ) , where V (𝑣) ∈ V𝑀

and V (𝑢 ) ∉ V𝑀
. The value of

𝑓 (𝑀) fluctuates with changes in𝑀 .

Furthermore, we outline several key properties of 𝑓 (𝑀):

Theorem 3.6. For View-weight Difference Function 𝑓 (𝑀), the
following properties hold: (1) Positivity: 𝑓 (𝑀) ≥ 0. (2) Convergence:
As𝑀 → 𝑉 , 𝑓 (𝑀) will steadily converge to 1

𝑉
.

Proof. Typical MSL assumes that all views contribute equally

to consistency and supplementarity, setting 𝛼 (𝑣) to 1

𝑉
[17, 29]. Dur-

ing iterative updates, 𝛼 (𝑣) is adjusted to

1

𝑅 (𝑣)∑𝑉
𝑢=1

1

𝑅 (𝑢)
, where 𝑅 (𝑣) =

∥𝑋 (𝑣) −𝑈 (𝑣)𝑌𝑡=1∥.
The optimization objective function for updating 𝑌 at the first

iteration is:

min

∑︁
V (𝑣) ∈V

𝛼 (𝑣) ∥𝑋 (𝑣) −𝑈 (𝑣)𝑌𝑡=1∥

= min

1

𝑉

∑︁
V (𝑣) ∈V

∥𝑈 (𝑣)𝑌 +𝑈 (𝑣)𝑌 (𝑣) −𝑈 (𝑣)𝑌𝑡=1∥
(4)

Recall the presence of 𝑀 views with similar supplementarity,

denoted as𝑌𝑀 . Consequently, the objective function of the iterative

updating can be expressed as:

min

1

𝑉

∑︁
V (𝑣) ∈V𝑀

∥𝑈 (𝑣)𝑌 +𝑈 (𝑣)𝑌𝑀 −𝑈 (𝑣)𝑌𝑡=1∥

+ 1

𝑉

∑︁
V (𝑢)∉V𝑀

∥𝑈 (𝑢 )𝑌 +𝑈 (𝑢 )𝑌 (𝑢 ) −𝑈 (𝑢 )𝑌𝑡=1∥
(5)

The 𝛼 (𝑣) forV (𝑣) ∈ V is iteratively updated as:

𝛼 (𝑣) =
1

𝑅 (𝑣)∑
V (𝑢) ∈V𝑀

1

𝑅 (𝑢)
+∑V (𝑤)∉V𝑀 1

𝑅 (𝑤)

=

1

∥𝑈 (𝑣)𝑌+𝑈 (𝑣)𝑌 (𝑣)−𝑈 (𝑣)𝑌𝑡=1 ∥

𝑅𝑀 + 𝑅�̄�
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(c) 𝑓 (𝑀 ) = 𝛼𝑀 − 𝛼�̄�

Figure 3: Illustration of 𝛼𝑀 , 𝛼�̄� , and 𝑓 (𝑀). The Convergence
Line ( 1

𝑉
= 1

50
= 0.02) is highlighted as red dashed.

.

by substituting 𝑅 (𝑣) = ∥𝑈 (𝑣)𝑌 +𝑈 (𝑣)𝑌 (𝑣) −𝑈 (𝑣)𝑌𝑡=1∥ and defining
two components, 𝑅𝑀 and 𝑅�̄� , as follows:

𝑅𝑀 =
∑︁

V (𝑣) ∈V𝑀

1

∥𝑈 (𝑣)𝑌 +𝑈 (𝑣)𝑌𝑀 −𝑈 (𝑣)𝑌𝑡=1∥

𝑅�̄� =
∑︁

V (𝑤)∉V𝑀

1

∥𝑈 (𝑤 )𝑌 +𝑈 (𝑤 )𝑌 (𝑤 ) −𝑈 (𝑤 )𝑌𝑡=1∥

. (6)

Moreover, 𝛼 (𝑣) can be rewritten as:

𝛼 (𝑣) =


𝛼𝑀 =

1

∥𝑈 (𝑣)𝑌+𝑈 (𝑣)𝑌𝑀−𝑈 (𝑣)𝑌𝑡=1 ∥

𝑅𝑀 + 𝑅�̄�
, ifV (𝑣) ∈ V𝑀

𝛼�̄� =

1

∥𝑈 (𝑣)𝑌+𝑈 (𝑣)𝑌 (𝑣)−𝑈 (𝑣)𝑌𝑡=1 ∥

𝑅𝑀 + 𝑅�̄�
, otherwise

(7)

Therefore, we further deduce:

𝑓 (𝑀) = 𝛼𝑀 − 𝛼�̄� =
1∑

V (𝑣) ∈V
1

𝑅 (𝑣)

· (𝑅
�̄� − 𝑅𝑀

𝑅�̄�𝑅𝑀
). (8)

The first term
1∑

V(𝑣) ∈V
1

𝑅 (𝑣)
is always positive, and the change of

𝑓 (𝑀) primarily depends on 𝑅�̄� −𝑅𝑀 in the second term. 𝑅�̄� ≥ 𝑅𝑀
since 𝑌𝑀 ≥ 𝑌 (𝑤 ) (as Eq. 6), thereby the Positivity holds.

Regarding the Convergence, according to Eq. 7, when𝑀 → 𝑉 ,

𝑌𝑡 approximates the average of consistency and supplementarity,

𝑌𝑡 → 𝑌 +𝑌𝑀 . Therefore, 𝑅𝑀 →∞ and 𝑅�̄� → 1

| |𝑈 (𝑣)𝑌 (𝑣)−𝑈 (𝑣)𝑌𝑀 | | ,

further we can derive 𝛼𝑀 → 1

𝑉
, 𝛼�̄� → 0 and 𝑓 (𝑀) → 1

𝑉
. □

To examine the evolving pattern of 𝑓 (𝑀), we randomly gener-

ated 50 views and initialized the first𝑀 views as identical. Then,𝑀

was incremented from 1 to 𝑉 . In Figure 3, besides the 𝑓 (𝑀) curve,
the curves of 𝛼𝑀 and 𝛼�̄� are plotted. Observing Figure 3, it becomes

apparent that with increasing𝑀 , the value of 𝛼�̄� consistently re-

mains below the convergence line (
1

𝑉
: indicated by the red dashed

line), whereas the value of 𝛼𝑀 initially reaches a maximum before

gradually decreasing and converging to the same line. The curve of

𝑓 (𝑀) is notably influenced by that of 𝛼𝑀 . This trend underscores

an unequal allocation of view-weights, a characteristic indicative

of Redundant Supplementarity.

3.2 Equitable View-weight Allocation (EVA)
In the pursuit of EVA, our solution is straightforward: since redun-

dant supplementarity emerges from sets of views sharing similar

4



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

EVA-MVC: Equitable View-weight Allocation for Generic Multi-View Clustering Conference’17, July 2017, Washington, DC, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

supplementarity, views are partitioned as View Communities (VCs)

by eliminating less similar links between them. For each VC, a VC-

specific consistent representation, ensuring minimal yet adequate

supplementarity, is created through an individual MSL process,

given that MSL primarily emphasizes consistency in representation

generation. EVA involves four key steps: (1) Compute the view-

specific anchor graph 𝑍 (𝑣) for each view. (2) Construct the View

Supplementarity Graph (VSG). (3) Partition the VSG into View

Communities (VCs). (4) Within each VC, apply MSL to generate a

VC-specific consistency 𝑌𝑐 .

3.2.1 Compute view-specific anchor graph. Traditional MVC meth-

ods often involve constructing a pairwise graph 𝐴(𝑣) ∈ R𝑛×𝑛 for

each view, where 𝑛 represents the number of data points. This

representation typically decomposes into consistency and supple-

mentarity components, expressed as𝐴(𝑣) = (𝑌 +𝑌 (𝑣) ) [12], with 𝑌
denoting the consistency and 𝑌 (𝑣) signifying the supplementarity

of the 𝑣-th view. However, such a pairwise graph poses a significant

computational burden due to its quadratic complexity.

In EVA-MVC, instead of focusing on 𝐴(𝑣) , we employ a more

efficient anchor graph 𝑍 (𝑣) ∈ R𝑝×𝑛 for each view, where 𝑝 (the

number of anchors)≪ 𝑛. When 𝑝 = 𝑛, 𝑍 (𝑣) is equivalent to 𝐴(𝑣) .
Tomitigate the impact ofmisaligned anchors on self-representation

computation, we first concatenate the multi-views into a single ma-

trix, denoted as𝑋𝑡 ∈ R
∑
𝑚 (𝑣)×𝑛

. Subsequently, we perform𝑘-means

on 𝑋𝑡 to generate 𝑝 anchors, denoted as 𝑃 ∈ R
∑
𝑚 (𝑣)×𝑝

. Utilizing

these anchors, the view-specific anchor graph is computed as:

𝑍
(𝑣)
𝑖 𝑗

= exp(−

𝑋 (𝑣)
:𝑗
− 𝑃 (𝑣)

:𝑗

2

2

2𝜎2
), (9)

where 𝑍 (𝑣) ∈ R𝑝×𝑛 , and 𝑃 (𝑣) represents the anchors specific to
each view, derived from 𝑃 .

3.2.2 Construct View Supplementarity Graph (VSG). To quantify

the similarity in supplementarity between any two views, we utilize

the Frobenius norm [3] for evaluation, expressed as follows:

𝐺𝑖 𝑗 =
1

1 + ∥𝑍 (𝑖 ) − 𝑍 ( 𝑗 ) ∥2
𝐹

=
1

1 + ∥𝑌 + 𝑌 (𝑖 ) − (𝑌 + 𝑌 ( 𝑗 ) )∥2
𝐹

=
1

1 + ∥𝑌 (𝑖 ) − 𝑌 ( 𝑗 ) ∥2
𝐹

(10)

Eq. 10 uses a reciprocal kernel based on the Frobenius norm. The

VSG 𝐺 ∈ R𝑉 ×𝑉 is a complete graph, where views act as the nodes

and edges denote the similarity in supplementarity. Eq. 10 also

exemplifies Theorem 3.6, where 𝐺𝑖 𝑗 is primarily influenced by the

Frobenius norm in supplementarity, ∥𝑌 (𝑖 ) − 𝑌 ( 𝑗 ) ∥2
𝐹
. Additionally,

we define 𝑍 (𝑣) = (𝑌 + 𝑌 (𝑣) ) by regarding 𝑍 (𝑣) as a special form
of 𝐴(𝑣) . The proof of equivalence between the anchor graph 𝑍 (𝑣)

and pairwise graph 𝐴(𝑣) in VSG construction is provided in the

Appendix. Further, we acknowledge the existence of other matrix

norms or kernels, which are beyond the scope of this study.

3.2.3 Partition VSG. Following the construction of the VSG, the

subsequent step involves partitioning it into distinct View Commu-

nities (VCs). Drawing on density-based partitioning methods [33],

(a) VSG (b) Decision Map⇒ 4 VCs

Figure 4: View Supplimentarity Graph (VSG) Plot and Deci-
sion Map of Caltech101-7 dataset. The decision boundary is
uniformly set as 𝑦 = 𝜏

𝑥 , where 𝜏 = 1.5 ± 0.3 for all datasets.

we establish the supplementarity-based density and dependent dis-

tance metrics for each view as outlined below:

𝜌𝑖 =
∑︁
𝑗

𝐺𝑖 𝑗 , 𝛿𝑖 = min

𝑗 :𝜌 𝑗>𝜌𝑖
(∥𝑍 (𝑖 ) − 𝑍 ( 𝑗 ) ∥2𝐹 ) . (11)

where 𝜌𝑖 denotes the density of the 𝑖-th view, calculated by aggre-

gating its supplementarity relevance. The dependent distance of

the 𝑖-th view, 𝛿𝑖 , is defined as the Frobenius norm distance from

the 𝑖-th view to its nearest denser view (where 𝜌 𝑗 > 𝜌𝑖 ).

Our aim is to find views that exhibit significant influence (high

density 𝜌𝑖 ) and broad coverage (large dependent distance 𝛿𝑖 ) as the

modes of View Communities (VCs). Thus, a view is designated as a

VC mode if:

𝜌𝑖 · 𝛿𝑖 > 𝜏 (12)

where 𝜏 is a predefined threshold. This identification process can

be visually depicted through a decision map, with the axes repre-

senting density and dependent distance. As shown in Figure 4 (b),

views located closer to the top-right corner in this map are more

likely to act as VC modes. The threshold 𝜏 , depicted as a gray re-

gion, functions as the decision boundary, identifying views falling

within its top-right part as the VC modes. The remaining views are

assigned to the closest mode in dependent distance.

The obtained View Communities (VCs) can be expressed as:

VC = {VC (1) ,VC (2) , . . . ,VC (𝐶 ) }, (13)

where ∪𝐶
𝑐=1
VC (𝑐 ) = V , 𝐶 is the number of VCs, 𝐶 (𝑐 ) denotes the

number of views in the 𝑐-th VC,VC (𝑐 ) ∩VC (𝑑 ) = ∅. Meanwhile,

for obtained VCs, their VC-specific Consistencies (consistent rep-

resentation) {𝑌1, · · · , 𝑌𝐶 } are generated. 𝑌𝑐 , the consistency of the

𝑐-th VC is computed as follows [17]:

min

𝛼,𝐻
(𝑣)
𝑐 ,𝑌𝑐

∑︁
V (𝑣) ∈VC (𝑐 )

(𝛼 (𝑣) )2
2

∥𝑋 (𝑣) −𝑈 (𝑣)𝑐 𝑌𝑐 ∥2𝐹 ,

𝑠 .𝑡 . (𝛼 (𝑣) )𝑇 1 = 1, 𝛼 (𝑣) ≥ 0, 𝑌𝑐𝑌
𝑇
𝑐 = 𝐼

(14)

We now prove that EVA can avoid redundant supplementarity.

Theorem 3.7. Assuming the multi-view dataset 𝑋 is governed by
Assumption 1 and views are partitioned into 𝐶 View Communities,
denoted asVC, based on their pairwise supplementarity similarities.
There exists a largest View Community, referenced asVC𝑀 , with a
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Algorithm 1: Pseudocode of EVA-MVC

Input:
{
𝑋 (𝑣) ∈ R𝑚 (𝑣) ×𝑛

}𝑉
𝑣=1

, 𝜏, 𝑟, 𝑙, 𝜆 (10
−5 ), 𝑘 .

/* EVA module: Equitable View-weight Allocation */

1 𝑍 (𝑣) ← For each view 𝑋 (𝑣) , build the anchor graph by Eq. 9 .

2 𝐺 ← Construct the View Supplementarity Graph (VSG) by Eq. 10.

3 VC ← Partition the VSG into View Communities (VCs).

/* A process of MSL is performed within each VC */

4 𝑌𝑐 ← For each VC (𝑐 ) , learn its VC-specific consistency by Eq. 14.

/* Clustering module: Clustering by any MVC method */

5 Perform an arbitrary MVC method on {𝑌1, · · · , 𝑌𝐶 }.

Output: 𝑘 clusters of

{
𝑋 (𝑣) ∈ R𝑚 (𝑣) ×𝑛

}𝑉
𝑣=1

.

size𝑀 , where𝑀 = max(𝐶 (𝑐 ) ). As𝑀 → 𝑉 , the view-weight of the 𝑣-
th view 𝛼 (𝑣) , learned through a standard MSL, will converge towards

1

𝐶 (𝑐 )
, becoming irrelevant to𝑀 , forV (𝑣) ∈ VC (𝑐 ) ∧V (𝑣) ∉ VC𝑀 .

The proof of Theorem 3.7 follows a similar structure to that of

Theorem 3.6, with its detailed exposition available in the Appendix.

Besides, the VSG partition method described above is independent

of EVA and can be replaced by other density-based partition al-

gorithms, if desired. Further details regarding an alternative VSG

partition algorithm can be found in the Appendix.

3.3 Integrate EVA with Arbitrary MVC Method
As outlined in Algorithm 1, our proposed framework is structured

around two modules: EVA and Clustering. Within the EVA module,

the initial step involves partitioning the views into VCsVC (lines

1-3). Subsequently, within each VC, its consistency is computed

through an MSL process [17] (line 4). These consistent representa-

tions, in the clustering module, function as the multi-view feature

matrices and are fused using a standard MVC method (line 5).

Viewed from the Information Fusion [20] aspect, EVA-MVC

embodies a two-stage fusion architecture with EVA representing

Early Fusion and MVC representing Late Fusion. The parameter

𝜏 is instrumental in balancing the interplay between these two

fusion stages. As 𝜏 → 0, each view constitutes a community, ren-

dering EVA inactive, thereby aligning our framework with the

MVC method executed in the clustering module. Conversely, as

𝜏 →∞, all views amalgamate into a singular community, aligning

our framework with Early Fusion MSL [8].

3.4 Complexity & Convergence Analysis
Time complexity. (1) EVAmodule: The time complexity is𝑂 (𝑡𝑘𝑚𝑛+
𝑉 2), where 𝑡 is the number of iterations of 𝑘-means. (2) Clustering

module: The time complexity hinges on the chosen MVC method.

As detailed in Table 1, considering the method OMSC [8], which

requires a computational cost of𝑂 (𝑛). Thus, the time complexity of

our framework is nearly linear to the number of data points 𝑂 (𝑛).
Space complexity. The space complexity primarily revolves

around storing matrices {𝑈 (𝑣)𝑐 ∈ R𝑚 (𝑣)×𝑘 }𝑉
𝑣=1

and {𝑌𝑐 ∈ R𝑘×𝑛}𝐶𝑐=1
.

Thus, the space complexity of EVA-MVC is nearly linear to the

number of data points, 𝑂 (𝑛) as well.
Convergence. There is no convergence problem in EVA module,

while regarding the MVC module, it depends on the chosen MVC

Table 2: Dataset statistics

Datasets #Objects #Views #Classes #View Dimensions

uci-digit 2000 3 10 216, 76, 64

3Sources 169 3 6 3560, 3631, 3068

Caltech101-7 1474 6 4 48, 40, 254, 1984, 512, 928

CiteSeer 3312 2 6 3312, 3703

Animal 11673 4 20 2689, 2000, 2001, 2000

CIFAR-10 50000 3 10 512, 2048, 1024

YTF10 38654 4 10 944, 576, 512, 640

YTF20 63896 4 20 944, 576, 512, 640

YTF50 126054 4 50 944, 576, 512, 640

YTF100 195537 4 50 944, 576, 512, 640

method. Given the versatility of EVA, we choose a well-known

MSL method, OMSC [8], as the default of EVA-MVC. Inspired by

work [2] and [44], we present a comprehensive mathematical proof

for the convergence of EVA-MVC in the Appendix.

4 EVALUATION
4.1 Datasets and Baselines
Datasets.Weevaluate the clustering effect on the following datasets:

(1) Uci-digit.1 Ten classes of handwritten digits, with 200 examples

per class. (2) 3Source.2 169 news articles from BBC, Reuters, and

Guardian. (3)Caltech101-7.3 Seven categories from the Caltech101

dataset. (4) CiteSeer. 3,312 scientific publications classified into

six categories. (5) Animal. 50 animal species described by four

features. (6) CIFAR-10. A subset of labeled images including 10

categories. (7) YTF10, YTF20, YTF50, and YTF1004. These are
four versions of the YouTube-Faces (YTF) dataset. The purpose of

testing different versions (of different data sizes) of these large-scale

datasets is to better evaluate the MVC algorithms with different

levels of scalability. Please refer to Table 2 for details.

Baselines. OMSC [8] is used as the default MVC method for

EVA-MVC. For comprehensive evaluation, we selected baselines

from each category of MVC (as in Table 1). Only the methods with

available source code were evaluated: (1) LF-LAM [43]: A late-stage

fusion multi-view clustering method. (2) FPMVS [44]: Constructs

a low-rank graph without hyperparameters. (3) SMVSC [35]: Pro-

poses a unified framework of anchor learning and graph construc-

tion. (4) OMSC [8]: Enhances anchor representation and clustering

by a unified framework. (5) FMVACC [42]: Finds anchor correspon-

dences using feature and structure information. (6) AWMVC [39]:

Merges coefficient matrices from base matrices to form an opti-

mal consensus matrix. (7) FastMICE [20]: Introduces random-view

groups to capture multi-functional view relationships. (8) EMVGC-
LG [47]: An anchor-based framework preserving local and global

structures. (9) CMVC [57]: Proposes an adaptive Cluster-wise An-

chor learning method.

1
http://archive.ics.uci.edu/ml/datasets/Multiple+Features

2
http://mlg.ucd.ie/datasets/3sources.html

3
http://www.vision.caltech.edu/Image_Datasets/Caltech101/

4
https://www.cs.tau.ac.il/~wolf/ytfaces/

6

http://archive.ics.uci.edu/ml/datasets/Multiple+Features
http://mlg.ucd.ie/datasets/3sources.html
http://www.vision.caltech.edu/Image_Datasets/Caltech101/
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Table 3: Comparison results.

Datasets Metric LF-LAM FPMVS MSGL SMVSC OMSC FMVACC AWMVC FastMICE EMVGC-LG CMVC EVA-MVC

uci-digit

ACC 0.9005±0.014 0.8265±0.000 0.7380±0.029 0.8055±0.000 0.7325±0.000 0.7716±0.062 0.7749±0.015 0.8070±0.039 0.8889±0.025 0.9205±0.000 0.9270±0.000

NMI 0.8186±0.017 0.8124±0.000 0.7417±0.016 0.7557±0.000 0.7490±0.000 0.7339±0.030 0.7427±0.009 0.8185±0.028 0.8380±0.017 0.8576±0.000 0.8576±0.000

Purity 0.9005±0.014 0.8270±0.000 0.8120±0.027 0.8055±0.000 0.7395±0.000 0.7933±0.047 0.7935±0.014 0.8603±0.039 0.8932±0.023 0.9205±0.000 0.9270±0.000

Fscore 0.8160±0.022 0.7733±0.000 0.6606±0.022 0.7003±0.000 0.6848±0.000 0.6923±0.043 0.6987±0.013 0.8054±0.040 0.8182±0.026 0.8517±0.000 0.8621±0.000

3Source

ACC 0.5207±0.009 0.4201±0.000 0.3353±0.012 0.3786±0.000 0.3372±0.000 0.4923±0.044 0.6450±0.010 0.5041±0.054 0.5321±0.050 0.7396±0.000 0.7692±0.000

NMI 0.5110±0.010 0.1578±0.000 0.0630±0.013 0.1117±0.000 0.1271±0.000 0.3792±0.051 0.5419±0.007 0.4135±0.053 0.4778±0.048 0.6566±0.000 0.7408±0.000

Purity 0.7337±0.015 0.5325±0.000 0.6331±0.135 0.4378±0.000 0.4378±0.000 0.6047±0.040 0.7343±0.006 0.6177±0.019 0.6608±0.038 0.7870±0.000 0.8579±0.000

Fscore 0.4822±0.015 0.3391±0.000 0.3713±0.026 0.2914±0.000 0.2530±0.000 0.4100±0.043 0.5633±0.009 0.4022±0.054 0.4590±0.047 0.7079±0.000 0.7531±0.000

Caltech101-7

ACC 0.4322±0.027 0.6872±0.000 0.6282±0.088 0.7014±0.000 0.6614±0.000 0.4105±0.017 0.3693±0.008 0.5362±0.011 0.3708±0.017 0.5039±0.000 0.8853±0.000

NMI 0.5091±0.030 0.5055±0.000 0.4448±0.114 0.5633±0.000 0.5567±0.000 0.3939±0.017 0.4957±0.009 0.5778±0.013 0.4870±0.015 0.5647±0.000 0.6983±0.000

Purity 0.8541±0.020 0.8086±0.000 0.7069±0.067 0.8656±0.000 0.8588±0.000 0.7734±0.022 0.8348±0.005 0.6160±0.018 0.8226±0.007 0.8559±0.000 0.9084±0.000

Fscore 0.4529±0.008 0.6728±0.000 0.5956±0.063 0.6809±0.000 0.6503±0.000 0.4114±0.018 0.4364±0.007 0.5714±0.014 0.4135±0.012 0.5485±0.000 0.8615±0.000

CiteSeer

ACC 0.3897±0.022 0.3867±0.000 0.2137±0.005 0.3734±0.000 0.3867±0.000 0.4480±0.074 0.4300±0.055 0.4355±0.023 0.3969±0.091 0.5284±0.000 0.5845±0.000

NMI 0.1604±0.028 0.1439±0.000 0.0109±0.004 0.1486±0.000 0.1472±0.000 0.2280±0.060 0.2332±0.014 0.2195±0.025 0.2272±0.074 0.2607±0.000 0.3331±0.000

Purity 0.4142±0.021 0.4060±0.000 0.2171±0.005 0.4018±0.000 0.4344±0.000 0.4849±0.077 0.4943±0.037 0.4905±0.023 0.4172±0.086 0.5501±0.000 0.6237±0.000

Fscore 0.2869±0.017 0.2908±0.000 0.2965±0.012 0.2853±0.000 0.2916±0.000 0.3340±0.051 0.3403±0.024 0.3237±0.017 0.3240±0.029 0.3769±0.000 0.4451±0.000

Animal

ACC N/A 0.2026±0.000 0.1350±0.005 0.1740±0.000 0.1804±0.000 0.1334±0.002 0.1494±0.004 0.1641±0.003 0.1765±0.008 0.1727±0.000 0.1883±0.000

NMI N/A 0.1596±0.000 0.0935±0.004 0.1444±0.000 0.1434±0.000 0.0896±0.001 0.1246±0.003 0.1299±0.004 0.1413±0.004 0.1541±0.000 0.1503±0.000

Purity N/A 0.2124±0.000 0.1742±0.006 0.2045±0.000 0.2050±0.000 0.1672±0.002 0.1869±0.005 0.1858±0.005 0.2068±0.009 0.2190±0.000 0.2207±0.000

Fscore N/A 0.1466±0.000 0.0978±0.003 0.1045±0.000 0.1314±0.000 0.0825±0.001 0.0975±0.001 0.1020±0.001 0.1139±0.003 0.1099±0.000 0.1117±0.000

CIFAR-10

ACC N/A 0.9898±0.000 0.9314±0.028 0.9882±0.000 0.9885±0.000 0.9535±0.049 0.9282±0.090 0.9500±0.056 0.9154±0.045 0.9931±0.000 0.9944±0.000

NMI N/A 0.9729±0.000 0.8843±0.034 0.9690±0.000 0.9697±0.000 0.9365±0.017 0.9112±0.032 0.9625±0.018 0.9178±0.018 0.9811±0.000 0.9841±0.000

Purity N/A 0.9898±0.000 0.9314±0.027 0.9882±0.000 0.9885±0.000 0.9541±0.048 0.9394±0.064 0.9899±0.001 0.9214±0.037 0.9931±0.000 0.9944±0.000

Fscore N/A 0.9800±0.000 0.8763±0.023 0.9767±0.000 0.9773±0.000 0.9360±0.043 0.9094±0.067 0.9463±0.050 0.8995±0.041 0.9864±0.000 0.9890±0.000

YTF100

ACC N/A 0.5293±0.000 0.4340±0.035 0.5906±0.000 0.6651±0.000 0.6344±0.002 0.6283±0.010 0.6683±0.016 0.6195±0.014 0.6652±0.000 0.7531±0.000

NMI N/A 0.7532±0.000 0.6342±0.046 0.7991±0.000 0.8337±0.000 0.8190±0.004 0.8304±0.002 0.8309±0.069 0.8247±0.005 0.8318±0.000 0.8492±0.000

Purity N/A 0.5446±0.000 0.6100±0.038 0.6103±0.000 0.7141±0.000 0.6659±0.020 0.7212±0.007 0.7359±0.014 0.7163±0.008 0.7375±0.000 0.8000±0.000

Fscore N/A 0.3541±0.000 0.1562±0.033 0.5035±0.000 0.5846±0.000 0.5765±0.026 0.5297±0.007 0.6000±0.022 0.5147±0.006 0.5850±0.000 0.7043±0.000

Experiment Setup. To evaluate the effectiveness of the pro-

posed clustering method, we employed four commonly used per-

formance measures: ACC (Accuracy), NMI (Normalized Mutual

Information), Purity, and F-score [40]. We used open-source meth-

ods and configured their respective parameters according to the

specifications outlined in their papers. For fair comparison, all

methods were run 10 times and and the average results were re-

ported. For EVA-MVC, we varies the following parameters: 𝜏 = 1.5,

𝑟 ∈ {𝑘, 2𝑘, 3𝑘}, 𝑙 ∈ {𝑘, 2𝑘, 3𝑘}, and 𝜆 ∈ 0.00001, where 𝑘 denotes

the number of clusters. The best results by varying these parame-

ters are reported. Only a subset of experiments is presented in this

section; the comprehensive set is available in the Appendix.

4.2 Comparison Results
Clustering Performance. Table 3 compares clustering perfor-

mance on seven benchmark datasets, with some methods show-

ing zero variance due to intentional initialization. (1) Compared

with MSL methods (i.e., FPMVS, SMVSC, OMSC, AWMVC) suf-

fering from Redundant Supplementarity, our algorithm alleviates

the problem of poor subspace quality caused by fusing views with

significantly different anchor graphs. Across nine datasets, our ap-

proach achieves higher ACC by 3.81%, 12.42%, 18.39%,15.45%,0.46%

0.34%, 3.30%, 7.66%, and 8.80%, respectively, demonstrating the

superiority of partitioning view communities. (2) Compared with

the methods that perform MSL independently in each view (i.e.,

LF-MVC-LAM and FMVACC), our algorithm effectively exploits

rich and supplementarity from multiple views. As a result, the ACC

on nine datasets is higher by 2.65%, 24.85%, 45.31%,13.65%,4.09%,

7.13%, 8.93%, 12.14%, and 8.80%, respectively. (3) Compared with

the random fusion method (i.e., FastMICE), our EVA is more concise

and mitigates the adverse effects of redundant and incompatible

view communities on MSL. Consequently, the ACC on the nine

datasets increased by 8.00%, 26.51%, 34.91%,14.90%, 4.44%, 1.51%,

9.79%, 9.97%, and 8.48%, respectively.

RunningTime. In the runtime comparison on large-scale datasets

(logarithmic scale on the y-axis), Figure 5 shows that EVA-MVC

ranks third. While slightly slower than AWMVC, EVA-MVC signif-

icantly outperforms it in clustering performance. Although Fast-

MICE is faster, its random view group partitioning leads to poorer

clustering results. In contrast, EVA-MVC balances running time

and clustering performance by partitioning views into VCs. Thus,

EVA-MVC demonstrates superior overall performance.

Parameter Analysis. We conducted parameter analysis on

three major parameters of EVA-MVC: 𝜏 , 𝑟 , and 𝑙 , where ACC and
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Figure 5: Running time comparison
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Figure 6: Parameter analysis on 𝜏 (𝑥-axis)
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Figure 7: Parameter analysis on 𝑙 (𝑥-axis) and 𝑟 (𝑦-axis)

(a) uci-digit (b) 3Sources (c) Caltech101-7 (d) YTF50, YTF100

Figure 8: Decision Maps Plots. The decision boundary is uni-
formly set as 𝑦 = 𝜏

𝑥 , where 𝜏 = 1.5 ± 0.3.

NMI are used as metrics. Figure 6 exhibits that EVA-MSC achieves

the optimal performance when decision boundary 𝜏 falls within

the range of 1.5 ± 0.3.

Figure 7 illustrates a three-dimensional histogram to assess the

influence of parameters 𝑟 and 𝑙 on the clustering outcomes. Our

analysis reveals that variations in parameters 𝑟 and 𝑙 have minimal

effect on the clustering results when they fall within the range

[𝑘, 3𝑘]. Hence, we recommend setting 𝑟 and 𝑙 within this range.
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Figure 9: Convergence analysis (𝑥-axis: no. of Iterations)

Table 4: The ablation study of EVA-MVC. (Metric: NMI)

Datasets LVA-MVC RVE-MVC NVA-MVC EVA-MVC

uci-digit 0.6456 0.7064 0.8124 0.8285
3Source 0.5867 0.5163 0.1578 0.7408

Caltech101-7 0.3638 0.4056 0.5055 0.6983
YTF10 0.7689 0.7581 0.7740 0.8351
YTF20 0.6543 0.7772 0.7740 0.8146
YTF50 0.7975 0.5565 0.8364 0.8487
YTF100 0.7539 0.5724 0.7532 0.8492

Convergence Evaluation. Figure 9 provides convergence curves
of EVA-MVC, all of which indicate a sharp convergence within

the first 10 iterations, followed by a stabilization in subsequent

iterations. It underscores the efficiency of EVA-MVC in achieving

clustering results with minimal iterations.

Ablation Study. To assess EVA-MVC, we conducted an abla-

tion study by generating three variants: LVA-MVC, RVA-MVC, and

NVA-MVC. The remaining aspects are kept identical to EVA-MVC.

LVA-MVC: Views are partitioned using the opposite partition crite-

ria to that of EVA-MVC, keeping views with the lowest supplemen-

tarity within a VC. RVA-MVC: Views are randomly and repetitively

assigned to VCs. NVA-MVC: Does not partition views and directly

applies early fusion to all views.

The ablation study results presented in Table 4 lead to several con-

clusions: (1) The quality of VC-specific consistency is crucial for the

clustering module, significantly benefiting from supplementarity-

driven partitioning. (2) Randomly assigning diminishes the con-

sistency quality due to the uncertainty associated with VCs. (3)

Without EVA, our framework reverts to the conventional Early

Fusion MVC approach. These findings illustrate that the proposed

EVA effectively addresses the issue of Redundant Supplementarity,

thereby enhancing subsequent tasks such as clustering.

5 CONCLUSION
In this paper, we defined Redundant Supplementarity within MSL

and introduced the EVA-MVC framework to address it by ensur-

ing Equitable View-weight Allocation (EVA) through organizing

similar views into VC groups before MSL. Theoretical analyses

and extensive experiments validate that EVA-MVC effectively re-

solves this issue and enhances overall MVC quality. This framework

marks a significant stride in boosting the robustness and accuracy

of MSL, leading to more equitable and efficient methods in this

domain. Our future research will delve into exploring Redundant

Supplementarity in broader MVC contexts.
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6 APPENDIX
6.1 Equivalence between Anchor Graph-based

EVA and Pairwise Graph-based EVA
Theorem 6.1. Equivalence of Anchor Graph and Pairwise

Graph: In assessing the difference in supplementarity between two
views, the anchor graph, 𝑍 (𝑣) , is equivalent to the pairwise graph,
𝐴(𝑣) .

Proof. To establish the equivalence between the anchor graph

𝑍 (𝑣) and the pairwise graph 𝐴(𝑣) , it is essential to demonstrate

that 𝑍 (𝑣) processes the properties of a matrix norm, just like 𝐴(𝑣) ,
including Positivity, Scaling, and the Triangle Inequality.

Firstly, we prove the Positivity of 𝑍 (𝑣) :

𝑍 (𝑣) = 𝐸 · 𝐴(𝑣) , (15)

where 𝐸 is a permutation matrix selecting 𝑝 columns from the 𝐴(𝑣)

matrix to construct 𝑍 (𝑣) . Consequently,

∥𝐴(𝑖 ) −𝐴( 𝑗 ) ∥ = ∥𝐸 · (𝑍 (𝑖 ) − 𝑍 ( 𝑗 ) )∥ ≤ ∥𝐸∥ · ∥𝑍 (𝑖 ) − 𝑍 ( 𝑗 ) ∥. (16)

Given that ∥𝐴(𝑖 ) − 𝐴( 𝑗 ) ∥ ≥ 0 and ∥𝐸∥ ≥ 0, we can conclude that

∥𝑍 (𝑖 ) − 𝑍 ( 𝑗 ) ∥ ≥ 0, satisfying the Positivity criterion.

The Scaling (∥𝛼𝑍 (𝑣) ∥ = |𝛼 | · ∥𝑍 (𝑣) ∥) and Triangle Inequality

(∥𝑍 (𝑖 )+𝑍 ( 𝑗 ) ∥ ≤ ∥𝑍 (𝑖 ) ∥+∥𝑍 ( 𝑗 ) ∥) properties of𝑍 (𝑣) can be similarly

deduced. □

6.2 Proof of Theorem 3.7
Proof. EVA partitions views into VCs based on pairwise sup-

plementarity similarities, i.e., ∀ V (𝑣) ,V (𝑢 ) ∈ VC (𝑐 ) ∧ 𝑣 ≠ 𝑢,

𝑌 (𝑣) ≈ 𝑌 (𝑢 ) .
During iterative updates, for the 𝑣-th view in the 𝑐-th VC, its

view-weight 𝛼 (𝑣) is allocated as

1

𝑠 (𝑣)∑
V(𝑢) ∈VC(𝑐 ) 𝑠

(𝑢) , where 𝑠
(𝑣) =

∥𝑋 (𝑣) −𝑈 (𝑣)𝑐 (𝑌𝑐 )𝑡=1
∥.

At the initial update, the optimization objective function for

updating (𝑌𝑐 )𝑡=1
is:

min

∑︁
V (𝑢) ∈VC (𝑐 )

𝛼 (𝑢 ) ∥𝑋 (𝑢 ) −𝑈 (𝑢 )𝑐 (𝑌𝑐 )𝑡=1
∥

=min

1

𝐶 (𝑐 )

∑︁
V (𝑢) ∈VC (𝑐 )

∥𝑈 (𝑢 )𝑌 +𝑈 (𝑢 )𝑌 (𝑢 ) −𝑈 (𝑢 )𝑐 (𝑌𝑐 )𝑡=1
∥
(17)

Given 𝐶 (𝑐 ) similar views inVC (𝑐 ) includingV (𝑣) , their supple-
mentarity can be uniformly expressed as 𝑌𝐶

(𝑐 )
. Consequently, the

updated objective function can be expressed as:

min

∑︁
V (𝑢) ∈VC (𝑐 )

𝛼 (𝑢 ) ∥𝑋 (𝑢 ) −𝑈 (𝑢 )𝑐 (𝑌𝑐 )𝑡=1
∥

=min

1

𝐶 (𝑐 )

∑︁
V (𝑢) ∈VC (𝑐 )

∥𝑈 (𝑢 )𝑌 +𝑈 (𝑢 )𝑌𝐶
(𝑐 )
−𝑈 (𝑢 )𝑐 (𝑌𝑐 )𝑡=1

∥

The view-weight 𝛼 (𝑣) , at each iterative update can be given as:

𝛼 (𝑣) =
1

𝑠 (𝑣)∑
V (𝑢) ∈VC (𝑐 )

1

𝑠 (𝑢)

(18)

By substituting 𝑠 (𝑣) = ∥𝑈 (𝑣)𝑌 + 𝑈 (𝑣)𝑌𝐶 (𝑐 ) − 𝑈 (𝑣)𝑐 (𝑌𝑐 )𝑡=1
∥, we

derive:

𝛼 (𝑣) =

1

∥𝑈 (𝑣)𝑌+𝑈 (𝑣)𝑌𝐶 (𝑐 ) −𝑈 (𝑣)𝑐 (𝑌𝑐 )𝑡=1
∥∑

V (𝑢) ∈VC (𝑐 )
1

∥𝑈 (𝑢)𝑌+𝑈 (𝑢)𝑌𝐶 (𝑐 ) −𝑈 (𝑢)𝑐 (𝑌𝑐 )𝑡=1
∥

≈ 1

𝐶 (𝑐 )

Hence, 𝛼 (𝑣) converges towards 1

𝐶 (𝑐 )
, irrespective of𝑀 . □

6.3 Alternative View Supplimentarity Graph
(VSG) Partition Algorithm

In this section, we introduce an alternative VSG partitioning algo-

rithm that can serve as a replacement for the one outlined in the

main text (Line 3 of the Algorithm 1).

Drawing inspiration from cluster tree-based clustering algo-

rithms [4], we define 𝜃𝐾 (𝑣) := inf{𝜃 > 0 : |𝐵(𝑣, 𝜃 ) ∩ 𝑍 [𝑉 ] | ≥
𝐾}, 𝑖 .𝑒 ., as the distance from 𝑣 to its 𝐾-th nearest neighbor, and

according to [22], 1/𝜃𝐾 (𝑣) can be viewed as the density of node 𝑣 .

In our scenario, 𝜃𝐾 (𝑣) = 1/𝐺𝑣𝑢 (as Eq. 10 in main text) , where 𝑢 is

the 𝐾-th most similar view of 𝑣 in terms of supplementarity, and

𝐺𝑣𝑢 denotes their supplementarity.

The alternative VSG partition algorithm, outlined in Algorithm 2,

proceeds as follows:

(1) Initialize all nodes as disconnected and compute their den-

sities, 𝜃𝐾 (𝑣).
(2) Traverse the nodes in descending order of density, i.e.,

1/𝜃𝐾 (𝑣) (Line 2);
(3) For each node 𝑣 with density higher than the threshold

𝜃 , check if there exist other nodes whose distance to 𝑣 is

smaller than their densities. If so, connect and merge these

nodes into the same community. (Lines 3-4).

(4) Decrease the threshold 𝜃 and repeat steps 3-4 until 𝜃 reaches

its minimum.

(5) The resulting connected nodes form View Communities

(Output).
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Algorithm 2: Alternative VSG Partition Algorithm

Input:𝑉𝑆𝐺,𝐾 = 𝑉 − 1, 𝛾 = 0.3.

1 For each 𝑍 (𝑣) computes 𝜃𝐾 (𝑣) .
2 for 𝜃 grows from 0 to max(𝜃𝐾 (𝑣) ) : do
3 Construct a graph𝐶𝐺𝑁𝑁

𝜃
with nodes {𝑁 (𝑖 ) : (𝜃𝐾 (𝑖 ) ≤ 𝜃 ) }.

4 Include edge (𝑖, 𝑗 ) if𝐺𝑖 𝑗 ≤ 𝛾 min(𝜃𝐾 (𝑖 ), 𝜃𝐾 ( 𝑗 ) ) .
5 end
6 Compute the connected components of𝐶𝐺𝑁𝑁

𝜃
.

Output:𝐺 communities of 𝑁 [𝑉 ] .

This demonstrates that our EVAmodule is independent of the em-

bedded VSG partition algorithm, as the VSG partitioning algorithm

described in the main text can be substituted with Algorithm 2.

Both algorithms share a common intuition:

(1) The view density (i.e., view degree) is used to estimate the

impact of a view (node) by computing its “centrality" across

multiple views. A view with a higher density value is more

likely to serve as the View Community Mode (central view).

(2) Views with lower impact values are either dominated by

nearby VC modes due to their proximity (i.e., distance) or

serve as new VC Modes if they are far away from other

Modes.

In summary, any density-based clustering algorithms that cap-

ture both the density and distance correlations of views can be

seamlessly integrated into EVA after thorough analysis.

6.4 Optimization for EVA-MVC
As mentioned earlier, EVA can be followed by any MVC method.

In our framework EVA-MVC, the widely recognized MSL method

OMSC [8] is chosen as the default. In this subsection, OMSC is

employed as an illustrative example to showcase the Optimization

and Convergence of the proposed framework.

6.4.1 Overall Framework. The overall objective function of of inte-

grating EVA with OMSC can be formulated as follows:

min

𝛼,𝛽,𝑈
(𝑣)
𝑐 ,𝑌𝑐 ,𝐻𝑐 ,𝐴,𝑆,𝐿,𝐹

𝐶∑︁
𝑐=1

𝑉 (𝑐 )∑︁
𝑣=1

𝛼2

𝑣

2

∥𝑋 (𝑣) −𝑈 (𝑣)𝑐 𝑌𝑐 ∥2𝐹

+ 𝛽
2

𝑐

2

∥𝑌𝑐 − 𝐻𝑐𝐴𝑆 ∥2𝐹 + 𝜆∥𝑆 − 𝐿𝐹 ∥
2

𝐹 ,

𝑠 .𝑡 . 𝛼𝑇 1 = 1, 𝛼 ≥ 0, 𝑌𝑐 (𝑌𝑐 )𝑇 = 𝐼𝑑𝑐 , (𝐻𝑐 )
𝑇 (𝐻𝑐 ) = 𝐼𝑙 , 𝐴𝑇𝐴 = 𝐼𝑟 , 𝑆

𝑇 1 = 1

𝐿𝑇 𝐿 = 𝐼𝑘 , 𝐹𝑖 𝑗 ∈ {0, 1},
𝑘∑︁
𝑖=1

𝐹𝑖 𝑗 = 1,∀𝑗 = 1, 2, ..., 𝑛, (𝛽2)𝑇 1 = 1, 𝛽 ≥ 0.

6.4.2 Optimization of EVA-MVC. Initialization. The variables

are initialized as follows: 𝛼 = 1

𝑉 (𝑐 )
, 𝛽 = 1√

𝐶
and 𝑈

(𝑣)
𝑐 = 𝐼 ∈

R𝑚
(𝑣)×𝑘 , 𝑌𝑐 = 𝐼 ∈ R𝑑𝑐×𝑛, 𝐻𝑐 = 𝐼 ∈ R𝑑𝑐×𝑙 , 𝐴 = 𝐼 ∈ R𝑙×𝑟 , 𝑆 = 𝐼 ∈

R𝑟×𝑛, 𝐿 = 𝐼 ∈ R𝑟×𝑘 , 𝐹 = 𝐼 ∈ R𝑘×𝑛 , where 𝑘 is the number of

clusters and 𝐼 denotes the identity matrix. The initialization aims

to satisfy the orthogonal constraint.

Update 𝑈 (𝑣)𝑐 . To update 𝑈
(𝑣)
𝑐 , we fix the other variables and

reformulate the overall optimization problem, Eq. 6.4.1, as follows:

min ∥𝑋 (𝑣) −𝑈 (𝑣)𝑐 𝑌𝑐 ∥2𝐹 . (19)

To transform Eq. 19, we use the expanded trace of the Frobenius

norm and obtain the following model:

min 𝑇𝑟 (−2(𝑋 (𝑣) )𝑇𝑈 (𝑣)𝑐 𝑌𝑐 + (𝑌𝑐 )𝑇 (𝑈 (𝑣)𝑐 )𝑇𝑈
(𝑣)
𝑐 𝑌𝑐 ) . (20)

By setting the derivative of Eq. 20 to zero,𝑈
(𝑣)
𝑐 is updated as:

𝑈
(𝑣)
𝑐 = 𝑋 (𝑣) (𝑌𝑐 )𝑇 . (21)

Update 𝑌𝑐 . Similar to𝑈
(𝑣)
𝑐 , the optimization of 𝑌𝑐 is equivalent

to maximizing the following form:

max 𝑇𝑟 (𝑌𝑐𝐵), (22)

where𝐵 =
∑𝑉 (𝑔)
𝑣=1

𝛼2

𝑣 (𝑋 (𝑣) )𝑇𝑈
(𝑣)
𝑐 +𝛽2

𝑐𝑆
𝑇𝐴𝑇 (𝐻𝑐 )𝑇 . According to [50],

we employ Singular Value Decomposition (SVD) to update 𝑌𝑐 . The

formula is as follows:

𝑌𝑐 = 𝑈𝐵𝑉𝐵, (23)

where 𝐵 = 𝑈𝐵Σ𝐵𝑉𝐵 .

Update𝐻𝑐 . Similarly to updating𝑌
(𝑣)
𝑐 , it is equivalent to solving

𝐻𝑐 by the following form:

max 𝑇𝑟 (𝐻𝑐𝑊 ), (24)

where𝑊 = 𝑌𝑐𝑆
𝑇𝐴𝑇 . Therefore, the optimal solution of variable

𝐻𝑐 = 𝑈𝑊𝑉𝑊 , where𝑊 = 𝑈𝑊 Σ𝑊𝑉𝑊 .

Update 𝐴. Similar to updating 𝐻𝑐 , the formula for updating 𝐴

is as follows:

𝐴 = 𝑈𝑅𝑉𝑅, (25)

where𝑅 =
∑𝐺
𝑔=1

𝛽2

𝑔 (𝐻𝑐 )𝑇 𝑃𝑔𝑆𝑇 and𝑅 can be decomposed to𝑈𝑅Σ𝑅𝑉𝑅
by SVD.

Update 𝑆 . By fixing the other variables, we can obtain the overall
following optimization problem for updating 𝑆 as follows:

min

𝐶∑︁
𝑐=1

𝛽2

𝑐

2

∥𝑌𝑐 − 𝐻𝑐𝐴𝑆 ∥2𝐹 + 𝜆∥𝑆 − 𝐿𝐹 ∥
2

𝐹 .

𝑠 .𝑡 . 𝑆 ≥ 0, 𝑆1 = 1

(26)

In order to address the optimization problem of 𝑆 , we can reformu-

late it as a Quadratic Programming (QP) problem [30] as follows:

min

1

2

𝑆𝑇
:, 𝑗𝑄𝑆:, 𝑗 + ℎ𝑇 𝑆:, 𝑗 , (27)

where𝑄 = 2(∑𝐶𝑐=1
𝛽2

𝑐 +𝜆)𝐼 andℎ𝑇 = −2

∑𝐺
𝑐=1
(𝑌𝑐 )𝑇

:, 𝑗
𝐻𝑐𝐴−2𝜆𝐹𝑇

:, 𝑗
𝐺𝑇 .

Therefore each column in matrix 𝑆 is subsequently regarded as an

autonomous QP problem for resolution.

Update 𝐿. Similar to resolution of 𝐻𝑐 and 𝐴, 𝐿 can be updated

by using the following formula:

max 𝑇𝑟 (𝐿𝑇𝐷), 𝑠 .𝑡 . 𝐿𝑇 𝐿 = 𝐼𝑘 , (28)

where 𝐷 = 𝑆𝐹𝑇 . Therefore the solution of 𝐿 is 𝑈𝐷𝑉𝐷 , where 𝐷 =

𝑈𝐷Σ𝐷𝑉𝐷 .
Update 𝐹 . By fixing the other variables, we can obtain the

overall following optimization problem for updating 𝐹 as follows:

min 𝜆∥𝑆−𝐿𝐹 ∥2𝐹 ,

𝑠 .𝑡 . 𝐹𝑖 𝑗 = {0, 1},
𝑘∑︁
𝑖=1

𝐹𝑖 𝑗 = 1,∀𝑗 = 1, 2, . . . , 𝑛.
(29)

Notice that in each column of 𝐹 there is only one 1 and other

elements are zeros. Therefore, we can solve Eq. 29 column by col-

umn. When solving the 𝑖-th column, we replace the 𝑖-th column

11
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by [1, 0, . . . , 0]𝑇 , [0, 1, 0, . . . , 0]𝑇 , . . . , [0,. . . , 0, 1]𝑇 respectively, and

select the one has the lowest objective function value as the solution

of the 𝑖-th row.

Update𝛼𝑣 and 𝛽𝑐 . By fixing other variables, the overall objective
formulation for updating 𝛼𝑣 can be rewritten as:

min

𝑉 (𝑐 )∑︁
𝑣=1

𝛼2

𝑣𝑠
2

𝑣 , 𝑠 .𝑡 . 𝛼
𝑇 1 = 1, 𝛼 ≥ 0 (30)

where 𝑠𝑣 = ∥𝑋 (𝑣) −𝑈 (𝑣)𝑐 𝑌𝑐 ∥𝐹 . According to Cauchy-Buniakowsky-
Schwarz inequality [1], we can update 𝛼𝑣 and 𝛽𝑐 as follows:

𝛼𝑣 =

1

𝑠𝑣∑
𝑣

1

𝑠𝑣

, 𝛽𝑐 =

1

𝑙𝑐∑
𝑐

1

𝑙𝑐

, (31)

where 𝑙𝑐 =
1

2
∥𝑌𝑐 − 𝐻𝑐𝐴𝑆 ∥𝐹 .

6.5 Framework Convergence Analysis
6.5.1 Convergence Analysis of EVA-MVC. In this section, we present
the convergence proof for Algorithm 1 (EVA-MVC) in the main

text.

Theorem 6.2. The proposed EVA-MVC algorithm is proven to be
converged.

Proof. We begin by defining the objective function of the pro-

posed Algorithm 1 in the main text as follows:

J (𝛼, 𝛽,𝑈 (𝑣)𝑐 , 𝑌𝑐 , 𝐻𝑐 , 𝐴, 𝑆, 𝐿, 𝐹 ) =

𝑚𝑖𝑛
𝛼,𝛽,𝑈

(𝑣)
𝑐 ,𝑌𝑐 ,𝐻𝑐 ,𝐴,𝑆,𝐿,𝐹

∑︁
𝑝

∑︁
𝑣

𝛼2

𝑣

2

| |𝑋 (𝑣) −𝑈 (𝑣)𝑐 𝑌𝑐 | |2𝐹

+ 𝛽
2

𝑐

2

∥𝑌𝑐 − 𝐻𝑐𝐴𝑆 ∥2𝐹 + 𝜆∥𝑆 − 𝐿𝐹 ∥
2

𝐹 ,

𝑠 .𝑡 . 𝛼𝑇 1 = 1, 𝛼 ≥ 0, 𝑌𝑐 (𝑌𝑐 )𝑇 = 𝐼𝑑𝑐 , (𝐻𝑐 )
𝑇 (𝐻𝑐 ) = 𝐼𝑙 , 𝐴𝑇𝐴 = 𝐼𝑟 , 𝑆

𝑇 1 = 1,

𝐿𝑇 𝐿 = 𝐼𝑘 , 𝐹𝑖 𝑗 ∈ {0, 1},
𝑘∑︁
𝑖=1

𝐹𝑖 𝑗 = 1,∀𝑗 = 1, 2, ..., 𝑛,

𝐺∑︁
𝑔=1

𝛽2

𝑐 = 1, 𝛽 ≥ 0,

As observed from the equation above, the entire function is not

jointly convex when all variables are considered simultaneously.

Instead, we propose an alternate optimization algorithm to opti-

mize each variable while keeping the others fixed. Let we define

𝛼 (𝑡 ) , 𝛽 (𝑡 ) , (𝑈 (𝑣)𝑐 ) (𝑡 ) , 𝑌
(𝑡 )
𝑐 ,𝐻

(𝑡 )
𝑐 , 𝐴(𝑡 ) , 𝑆 (𝑡 ) , 𝐿 (𝑡 ) , 𝐹 (𝑡 ) be the solution

at the 𝑡-iteration.

(i) Optimizing𝑈 (𝑣)𝑐 with fixed𝛼, 𝛽, 𝑌𝑐 , 𝐻𝑐 , 𝐴, 𝑆, 𝐿, and 𝐹 .Given
𝛼 (𝑡 ) , 𝛽 (𝑡 ) ,𝑌 (𝑡 )𝑐 , 𝐻

(𝑡 )
𝑐 , 𝐴(𝑡 ) , 𝑆 (𝑡 ) , 𝐿 (𝑡 ) , 𝐹 (𝑡 ) , the optimization in Equa-

tion 14 (in the main text) respect to 𝑈
(𝑣)
𝑐 can be analytically ob-

tained. The detailed derivation can be found in the Section 3.3 in

the main text. Suppose the obtained optimal solution is (𝑈 (𝑣)𝑐 ) (𝑡+1) .
We have:

J (𝛼 (𝑡 ) , 𝛽 (𝑡 ) , (𝑈 (𝑣)𝑐 ) (𝑡 ) , 𝑌
(𝑡 )
𝑐 , 𝐻

(𝑡 )
𝑐 , 𝐴(𝑡 ) , 𝑆 (𝑡 ) , 𝐿 (𝑡 ) , 𝐹 (𝑡 ) )

≥J (𝛼 (𝑡 ) , 𝛽 (𝑡 ) , (𝑈 (𝑣)𝑐 ) (𝑡+1) , 𝑌
(𝑡 )
𝑐 , 𝐻

(𝑡 )
𝑐 , 𝐴(𝑡 ) , 𝑆 (𝑡 ) , 𝐿 (𝑡 ) , 𝐹 (𝑡 ) ) .

(32)

(ii) Optimizing𝑌𝑐 withfixed𝛼, 𝛽,𝑈 (𝑣)𝑐 , 𝐻𝑐 , 𝐴, 𝑆, 𝐿, and 𝐹 .Given
𝛼 (𝑡 ) , 𝛽 (𝑡 ) , (𝑈 (𝑣)𝑐 ) (𝑡 ) , 𝐻

(𝑡 )
𝑐 , 𝐴(𝑡 ) , 𝑆 (𝑡 ) ,𝐺 (𝑡 ) , and 𝐹 (𝑡 ) , the optimiza-

tion in Eq. 6.5.1 respect to𝑌
(𝑡 )
𝑐 can be analytically obtained. Suppose

the obtained optimal solution is 𝑌
(𝑡+1)
𝑐 . We have:

J (𝛼 (𝑡 ) , 𝛽 (𝑡 ) , (𝑈 (𝑣)𝑐 ) (𝑡 ) , 𝑌
(𝑡 )
𝑐 , 𝐻

(𝑡 )
𝑐 , 𝐴(𝑡 ) , 𝑆 (𝑡 ) , 𝐿 (𝑡 ) , 𝐹 (𝑡 ) )

≥J (𝛼 (𝑡 ) , 𝛽 (𝑡 ) , (𝑈 (𝑣)𝑐 ) (𝑡 ) , 𝑌
(𝑡+1)
𝑐 , 𝐻

(𝑡 )
𝑐 , 𝐴(𝑡 ) , 𝑆 (𝑡 ) , 𝐿 (𝑡 ) , 𝐹 (𝑡 ) ) .

(33)

The process of optimizing other variables is the same as (i) and
(ii). Together with these equations, we have:

J (𝛼 (𝑡 ) , 𝛽 (𝑡 ) , (𝑈 (𝑣)𝑐 ) (𝑡 ) , 𝑌
(𝑡 )
𝑐 , 𝐻

(𝑡 )
𝑐 , 𝐴(𝑡 ) , 𝑆 (𝑡 ) , 𝐿 (𝑡 ) , 𝐹 (𝑡 ) ) ≥

J (𝛼 (𝑡+1) , 𝛽 (𝑡+1) , (𝑈 (𝑣)𝑐 ) (𝑡+1) , 𝑌
(𝑡+1)
𝑐 , 𝐻

(𝑡+1)
𝑐 , 𝐴(𝑡+1) , 𝑆 (𝑡+1) , 𝐿 (𝑡+1) , 𝐹 (𝑡+1) ),

(34)

which indicates that the objective function of our algorithm mono-

tonically decreases with the increase of iterations. Also, the objec-

tive function is lower bounded by zero. As a result, the proposed

algorithm can be verified to converge to a local minimum. □

According to Theorem 6.2 and [2], our proposed algorithm is

theoretically guaranteed to converge to a local minimum. Further-

more, the conducted experiments on benchmarks demonstrate the

convergence of EVA-MVC.

6.6 Comprehensive Experiments
6.6.1 Generalization Evaluation. We evaluate the generalization

capability of EVA-MVC by integrating EVA with representative

Multi-view Clustering (MVC) methods across various categories (as

detailed in Table 1). The complete results are presented in Table 5.

Table 5: Generalization Evaluation on EVA-MVC. (Metric:
ACC)

Datasets 3Sources Caltech101-7 YTF10 YTF20 YTF50

FPMVS 0.4201 0.6872 0.7326 0.6948 0.6851

EVA+FPMVS 0.6508 0.7001 0.7588 0.7300 0.6719
MSGL 0.3353 0.6282 0.7549 0.5978 0.4675

EVA+MSGL 0.3491 0.5421 0.7249 0.6768 0.6675
SMVSC 0.3786 0.7014 0.7406 0.6517 0.6393

EVA+SMVSC 0.7100 0.7001 0.7749 0.7438 0.6906
OMSC 0.3372 0.6614 0.7820 0.7446 0.7152

EVA+OMSC 0.7692 0.8853 0.7854 0.7776 0.7918
FMVACC 0.4923 0.4105 0.7141 0.6883 0.6704

EVA+FMVACC 0.8047 0.4769 0.7986 0.7269 0.6844
AWMVC 0.6450 0.3693 0.7140 0.6395 0.6671

EVA+AWMVC 0.7337 0.5413 0.7551 0.7762 0.7166
FastMICE 0.5041 0.5362 0.7703 0.6797 0.6921

EVA+FastMICE 0.7443 0.5785 0.7511 0.6768 0.6999
EMVGC-LG 0.5321 0.3708 0.7755 0.7279 0.6515

EVA+EMVGC-LG 0.5628 0.4113 0.7836 0.7326 0.6725
CMVC 0.7396 0.5039 0.8120 0.7588 0.7138

EVA+CMVC 0.7633 0.5339 0.9052 0.7761 0.7436
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Figure 10: Parameter analysis on 𝜏 (𝑥-axis)

(a) CiteSeer (b) Animal (c) CIFAR-10 (d) YTF10 (e) YTF20 (f) YTF50

Figure 11: Parameter 𝑙 (𝑥-axis) and 𝑟 (𝑦-axis) analysis

6.6.2 Parameter Analysis. The comprehensive results of the Pa-

rameter Analysis are depicted in Figure 10 and Figure 11.

6.6.3 Analysis on View Supplementarity Graph (VSG) and Deci-
sion Map . The VSG plots of multi-view datasets are presented in

Figure 12, while the corresponding decision maps are displayed

in Figure 13. In the VSG plots, datasets like Caltech101-7, YTF10,

YTF20, YTF50, and YTF100 reveal the issue of “Redundant Sup-

plementarity”, showcasing significant overlaps among the views.

Concerning the decision maps, the decision boundaries are uni-

formly set at 𝜏 = 1.5 ± 0.3 for all datasets.

6.6.4 Convergence Analysis. The assessment of framework conver-

gence is depicted in Figure 14.

6.6.5 Performance Comparison. A detailed performance compari-

son is provided in Table 6.

In summary, the conclusions derived from the comprehensive

experiments above align with those drawn in the main text.
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Figure 12: Illustration of View Supplementarity Graphs (VSGs) in seven multi-view datasets. Each circle represents a specific
view, labeled with the corresponding number. The edges between circles indicate the similarity in supplementarity between
the views. The black dotted circles represent the View Communities obtained by Decision Maps.

(a) uci-digit (b) 3Sources (c) Caltech101-7 (d) CiteSeer (e) Animal

(f) CIFAR-10 (g) YTF10 (h) YTF20 (i) YTF50, YTF100

Figure 13: Decisionmaps of multi-view datasets, where the 𝑥-axis represents the density 𝜌 and the𝑦-axis indicates the dependent
distance 𝛿 . The decision boundary is uniformly set as 𝑦 = 𝜏

𝑥 , where 𝜏 = 1.5 ± 0.3.
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Figure 14: Convergence analysis (x-axis: the number of Iterations 𝑇 )

Table 6: Comparison results.

Datasets Metric LF-LAM FPMVS MSGL SMVSC OMSC FMVACC AWMVC FastMICE EMVGC-LG CMVC EVA-MVC

uci-digit

ACC 0.9005±0.014 0.8265±0.000 0.7380±0.029 0.8055±0.000 0.7325±0.000 0.7716±0.062 0.7749±0.015 0.8070±0.039 0.8889±0.025 0.9205±0.000 0.9270±0.000

NMI 0.8186±0.017 0.8124±0.000 0.7417±0.016 0.7557±0.000 0.7490±0.000 0.7339±0.030 0.7427±0.009 0.8185±0.028 0.8380±0.017 0.8576±0.000 0.8576±0.000

Purity 0.9005±0.014 0.8270±0.000 0.8120±0.027 0.8055±0.000 0.7395±0.000 0.7933±0.047 0.7935±0.014 0.8603±0.039 0.8932±0.023 0.9205±0.000 0.9270±0.000

Fscore 0.8160±0.022 0.7733±0.000 0.6606±0.022 0.7003±0.000 0.6848±0.000 0.6923±0.043 0.6987±0.013 0.8054±0.040 0.8182±0.026 0.8517±0.000 0.8621±0.000

3Source

ACC 0.5207±0.009 0.4201±0.000 0.3353±0.012 0.3786±0.000 0.3372±0.000 0.4923±0.044 0.6450±0.010 0.5041±0.054 0.5321±0.050 0.7396±0.000 0.7692±0.000

NMI 0.5110±0.010 0.1578±0.000 0.0630±0.013 0.1117±0.000 0.1271±0.000 0.3792±0.051 0.5419±0.007 0.4135±0.053 0.4778±0.048 0.6566±0.000 0.7408±0.000

Purity 0.7337±0.015 0.5325±0.000 0.6331±0.135 0.4378±0.000 0.4378±0.000 0.6047±0.040 0.7343±0.006 0.6177±0.019 0.6608±0.038 0.7870±0.000 0.8579±0.000

Fscore 0.4822±0.015 0.3391±0.000 0.3713±0.026 0.2914±0.000 0.2530±0.000 0.4100±0.043 0.5633±0.009 0.4022±0.054 0.4590±0.047 0.7079±0.000 0.7531±0.000

Caltech101-7

ACC 0.4322±0.027 0.6872±0.000 0.6282±0.088 0.7014±0.000 0.6614±0.000 0.4105±0.017 0.3693±0.008 0.5362±0.011 0.3708±0.017 0.5039±0.000 0.8853±0.000

NMI 0.5091±0.030 0.5055±0.000 0.4448±0.114 0.5633±0.000 0.5567±0.000 0.3939±0.017 0.4957±0.009 0.5778±0.013 0.4870±0.015 0.5647±0.000 0.6983±0.000

Purity 0.8541±0.020 0.8086±0.000 0.7069±0.067 0.8656±0.000 0.8588±0.000 0.7734±0.022 0.8348±0.005 0.6160±0.018 0.8226±0.007 0.8559±0.000 0.9084±0.000

Fscore 0.4529±0.008 0.6728±0.000 0.5956±0.063 0.6809±0.000 0.6503±0.000 0.4114±0.018 0.4364±0.007 0.5714±0.014 0.4135±0.012 0.5485±0.000 0.8615±0.000

CiteSeer

ACC 0.3897±0.022 0.3867±0.000 0.2137±0.005 0.3734±0.000 0.3867±0.000 0.4480±0.074 0.4300±0.055 0.4355±0.023 0.3969±0.091 0.5284±0.000 0.5845±0.000

NMI 0.1604±0.028 0.1439±0.000 0.0109±0.004 0.1486±0.000 0.1472±0.000 0.2280±0.060 0.2332±0.014 0.2195±0.025 0.2272±0.074 0.2607±0.000 0.3331±0.000

Purity 0.4142±0.021 0.4060±0.000 0.2171±0.005 0.4018±0.000 0.4344±0.000 0.4849±0.077 0.4943±0.037 0.4905±0.023 0.4172±0.086 0.5501±0.000 0.6237±0.000

Fscore 0.2869±0.017 0.2908±0.000 0.2965±0.012 0.2853±0.000 0.2916±0.000 0.3340±0.051 0.3403±0.024 0.3237±0.017 0.3240±0.029 0.3769±0.000 0.4451±0.000

Animal

ACC N/A 0.2026±0.000 0.1350±0.005 0.1740±0.000 0.1804±0.000 0.1334±0.002 0.1494±0.004 0.1641±0.003 0.1765±0.008 0.1727±0.000 0.1883±0.000

NMI N/A 0.1596±0.000 0.0935±0.004 0.1444±0.000 0.1434±0.000 0.0896±0.001 0.1246±0.003 0.1299±0.004 0.1413±0.004 0.1541±0.000 0.1503±0.000

Purity N/A 0.2124±0.000 0.1742±0.006 0.2045±0.000 0.2050±0.000 0.1672±0.002 0.1869±0.005 0.1858±0.005 0.2068±0.009 0.2190±0.000 0.2207±0.000

Fscore N/A 0.1466±0.000 0.0978±0.003 0.1045±0.000 0.1314±0.000 0.0825±0.001 0.0975±0.001 0.1020±0.001 0.1139±0.003 0.1099±0.000 0.1117±0.000

CIFAR-10

ACC N/A 0.9898±0.000 0.9314±0.028 0.9882±0.000 0.9885±0.000 0.9535±0.049 0.9282±0.090 0.9500±0.056 0.9154±0.045 0.9931±0.000 0.9944±0.000

NMI N/A 0.9729±0.000 0.8843±0.034 0.9690±0.000 0.9697±0.000 0.9365±0.017 0.9112±0.032 0.9625±0.018 0.9178±0.018 0.9811±0.000 0.9841±0.000

Purity N/A 0.9898±0.000 0.9314±0.027 0.9882±0.000 0.9885±0.000 0.9541±0.048 0.9394±0.064 0.9899±0.001 0.9214±0.037 0.9931±0.000 0.9944±0.000

Fscore N/A 0.9800±0.000 0.8763±0.023 0.9767±0.000 0.9773±0.000 0.9360±0.043 0.9094±0.067 0.9463±0.050 0.8995±0.041 0.9864±0.000 0.9890±0.000

YTF10

ACC N/A 0.7326±0.000 0.7549±0.056 0.7406±0.000 0.7820±0.000 0.7141±0.054 0.7104±0.017 0.7703±0.050 0.7755±0.024 0.8120±0.000 0.7854±0.000

NMI N/A 0.7740±0.000 0.7923±0.042 0.7794±0.000 0.8275±0.000 0.7541±0.019 0.7830±0.009 0.8068±0.020 0.8067±0.016 0.8349±0.000 0.8351±0.000

Purity N/A 0.7621±0.000 0.8546±0.025 0.7619±0.000 0.7810±0.000 0.7529±0.034 0.7935±0.010 0.8518±0.026 0.7967±0.018 0.8469±0.000 0.8327±0.000

Fscore N/A 0.6960±0.000 0.6489±0.084 0.6835±0.000 0.7456±0.000 0.6761±0.035 0.6875±0.014 0.7475±0.034 0.7366±0.031 0.7702±0.000 0.7788±0.000

YTF20

ACC N/A 0.6948±0.000 0.5978±0.039 0.6517±0.000 0.7446±0.000 0.6883±0.024 0.6395±0.013 0.6797±0.032 0.7279±0.028 0.7588±0.000 0.7776±0.000

NMI N/A 0.7740±0.000 0.7166±0.026 0.7586±0.000 0.8170±0.000 0.7712±0.014 0.7669±0.006 0.8007±0.014 0.7901±0.005 0.7861±0.000 0.8146±0.000

Purity N/A 0.7259±0.000 0.7516±0.035 0.7045±0.000 0.7731±0.000 0.7249±0.028 0.7108±0.010 0.7704±0.017 0.7427±0.008 0.7850±0.000 0.8066±0.000

Fscore N/A 0.6261±0.000 0.4579±0.052 0.6248±0.000 0.6835±0.000 0.6355±0.025 0.5976±0.016 0.5980±0.061 0.6438±0.016 0.6595±0.000 0.7147±0.000

YTF50

ACC N/A 0.6851±0.000 0.4675±0.042 0.6393±0.000 0.7152±0.000 0.6704±0.020 0.6671±0.007 0.6921±0.023 0.6515±0.014 0.7138±0.000 0.7918±0.000

NMI N/A 0.8364±0.000 0.6446±0.049 0.8019±0.000 0.8170±0.000 0.8220±0.007 0.8308±0.001 0.8315±0.007 0.7948±0.003 0.8375±0.000 0.8487±0.000

Purity N/A 0.7140±0.000 0.6516±0.041 0.6514±0.000 0.7731±0.000 0.6967±0.018 0.7340±0.004 0.7518±0.016 0.7307±0.024 0.7728±0.000 0.8359±0.000

Fscore N/A 0.6381±0.000 0.2849±0.025 0.5423±0.000 0.6835±0.000 0.6087±0.026 0.5964±0.006 0.6124±0.023 0.6142±0.010 0.6313±0.000 0.7145±0.000

YTF100

ACC N/A 0.5293±0.000 0.4340±0.035 0.5906±0.000 0.6651±0.000 0.6344±0.002 0.6283±0.010 0.6683±0.016 0.6195±0.014 0.6652±0.000 0.7531±0.000

NMI N/A 0.7532±0.000 0.6342±0.046 0.7991±0.000 0.8337±0.000 0.8190±0.004 0.8304±0.002 0.8309±0.069 0.8247±0.005 0.8318±0.000 0.8492±0.000

Purity N/A 0.5446±0.000 0.6100±0.038 0.6103±0.000 0.7141±0.000 0.6659±0.020 0.7212±0.007 0.7359±0.014 0.7163±0.008 0.7375±0.000 0.8000±0.000

Fscore N/A 0.3541±0.000 0.1562±0.033 0.5035±0.000 0.5846±0.000 0.5765±0.026 0.5297±0.007 0.6000±0.022 0.5147±0.006 0.5850±0.000 0.7043±0.000
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