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Abstract

Recent studies reveal that a well-trained deep reinforcement learning (RL) policy
can be particularly vulnerable to adversarial perturbations on input observations.
Therefore, it is crucial to train RL agents that are robust against any attacks
with a bounded budget. Existing robust training methods in deep RL either treat
correlated steps separately, ignoring the robustness of long-term rewards, or train
the agents and RL-based attacker together, doubling the computational burden and
sample complexity of the training process. In this work, we propose a strong and
efficient robust training framework for RL, named Worst-case-aware Robust RL
(WocaR-RL), that directly estimates and optimizes the worst-case reward of a policy
under bounded `p attacks without requiring extra samples for learning an attacker.
Experiments on multiple environments show that WocaR-RL achieves state-of-
the-art performance under various strong attacks, and obtains significantly higher
training efficiency than prior state-of-the-art robust training methods. The code of
this work is available at https://github.com/umd-huang-lab/WocaR-RL.

1 Introduction

Deep reinforcement learning (DRL) has achieved impressive results by using deep neural networks
(DNN) to learn complex policies in large-scale tasks. However, well-trained DNNs may drastically
fail under adversarial perturbations of the input [1, 6]. Therefore, before deploying DRL policies
to real-life applications, it is crucial to improve the robustness of deep policies against adversarial
attacks, especially worst-case attacks that maximally depraves the performance of trained agents [42].

Figure 1: Policies have
different vulnerabilities.

A line of regularization-based robust methods [54, 33, 40] focuses on im-
proving the robustness of the DNN itself and regularizes the policy network
to output similar actions under bounded state perturbations. However, dif-
ferent from supervised learning problems, the vulnerability of a deep policy
comes not only from the DNN approximator, but also from the dynamics
of the RL environment [52]. These regularization-based methods neglect
the intrinsic vulnerability of policies under the environment dynamics, and
thus may still fail under strong attacks [42]. For example, in the go-home
task shown in Figure 1, both the green policy and the red policy arrive
home without rock collision, when there is no attack. However, although
regularization-based methods may ensure a minor action change under a
state perturbation, the red policy may still be susceptible to a low reward
under attacks, as a very small divergence can lead it to the bomb. On the contrary, the green policy is
more robust to adversarial attacks since it stays away from the bomb. Therefore, besides promoting
the robustness of DNN approximators (such as the policy network), it is also important to learn a
policy with stronger intrinsic robustness.
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There is another line of work considering the long-term robustness of a deep policy under strong
adversarial attacks. In particular, it is theoretically proved [54, 42] that the strongest (worst-case)
attacker against a policy can be learned as an RL problem, and training the agent under such a
learned attacker can result in a robust policy. Zhang et al. [52] propose the Alternating Training with

Learned Adversaries (ATLA) framework, which alternately trains an RL agent and an RL attacker.
Sun et al. [42] further propose PA-ATLA, which alternately trains an agent and the proposed more
efficient PA-AD RL attacker, obtaining state-of-the-art robustness in many MuJoCo environments.
However, training an RL attacker requires extra samples from the environment, and the attacker’s
RL problem may even be more difficult and sample expensive to solve than the agent’s original RL
problem [52, 42], especially in large-scale environments such as Atari games with pixel observations.
Therefore, although ATLA and PA-ATLA are able to achieve high long-term reward under attacks,
they double the computational burden and sample complexity to train the robust agent.

The above analysis of existing literature suggests two main challenges in improving the adversarial
robustness of DRL agents: (1) correctly characterizing the long-term reward vulnerability of an
RL policy, and (2) efficiently training a robust agent without requiring much more effort than
vanilla training. To tackle these challenges, in this paper, we propose a generic and efficient robust
training framework named Worst-case-aware Robust RL (WocaR-RL) that estimates and improves the
long-term robustness of an RL agent.

WocaR-RL has 3 key mechanisms. First, WocaR-RL introduces a novel worst-attack Bellman

operator which uses existing off-policy samples to estimate the lower bound of the policy value under
the worst-case attack. Compared to prior works [52, 42] which attempt to learn the worst-case attack
by RL methods, WocaR-RL does not require any extra interaction with the environment. Second,
using the estimated worst-case policy value, WocaR-RL optimizes the policy to select actions that
not only achieve high natural future reward, but also achieve high worst-case reward when there are
adversarial attacks. Therefore, WocaR-RL learns a policy with less intrinsic vulnerability. Third,
WocaR-RL regularizes the policy network with a carefully designed state importance weight. As
a result, the DNN approximator tolerates state perturbations, especially for more important states
where decisions are crucial for future reward. The above 3 mechanisms can also be interpreted from
a geometric perspective of adversarial policy learning, as detailed in Appendix B.

Our contributions can be summarized as below. (1) We provide an approach to estimate the worst-
case value of any policy under any bounded `p adversarial attacks. This helps evaluate the robustness
of a policy without learning an attacker which requires extra samples and exploration. (2) We
propose a novel and principled robust training framework for RL, named Worst-case-aware Robust

RL (WocaR-RL), which characterizes and improves the worst-case robustness of an agent. WocaR-
RL can be used to robustify existing DRL algorithms (e.g. PPO [39], DQN [32]). (3) We show
by experiments that WocaR-RL achieve improved robustness against various adversarial attacks
as well as higher efficiency, compared with state-of-the-art (SOTA) robust RL methods in many
MuJoCo and Atari games. For example, compared to the SOTA algorithm PA-ATLA-PPO [42] in the
Walker environment, we obtain 20% more worst-case reward (under the strongest attack algorithm),
with only about 50% training samples and 50% running time. Moreover, WocaR-RL learns more
interpretable “robust behaviors” than PA-ATLA-PPO in Walker as shown in Figure 2.

Previous robust agent (PA-ATLA-PPO): jumping with one leg 

Our robust agent: lowering down its body 

Figure 2: The robust Walker agents trained with (top) the state-of-the-art method PA-ATLA-PPO [42] and
(bottom) our WocaR-RL. Although PA-ATLA-PPO agent also achieves high reward under attacks, it learns to
jump with one leg, which is counter-intuitive and may indicate some level of overfitting to a specific attacker. In
contrast, our WocaR-RL agent learns to lower down its body, which is more intuitive and interpretable. The full
agent trajectories in Walker and other environments are provided in supplementary materials as GIF figures.
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2 Related Work
Defending against Adversarial Perturbations on State Observations. (1) Regularization-based

methods [54, 40, 33] enforce the policy to have similar outputs under similar inputs, which achieves
certifiable performance for DQN in some Atari games. But in continuous control tasks, these methods
may not reliably improve the worst-case performance. A recent work by Korkmaz [21] points out
that these adversarially trained models may still be sensible to new perturbations. (2) Attack-driven

methods train DRL agents with adversarial examples. Some early works [22, 4, 29, 34] apply weak or
strong gradient-based attacks on state observations to train RL agents against adversarial perturbations.
Zhang et al. [52] propose Alternating Training with Learned Adversaries (ATLA), which alternately
trains an RL agent and an RL adversary and significantly improves the policy robustness in continuous
control games. Sun et al. [42] further extend this framework to PA-ATLA with their proposed more
advanced RL attacker PA-AD. Although ATLA and PA-ATLA achieve strong empirical robustness,
they require training an extra RL adversary that can be computationally and sample expensive. (3)
There is another line of work studying certifiable robustness of RL policies. Several works [27, 33, 9]
computed lower bounds of the action value network Q⇡ to certify robustness of action selection at
every step. However, these bounds do not consider the distribution shifts caused by attacks, so some
actions that appear safe for now can lead to extremely vulnerable future states and low long-term
reward under future attacks. Moreover, these methods cannot apply to continuous action spaces.
Kumar et al. and Wu et al.[23, 49] both extend randomized smoothing [7] to derive robustness
certificates for trained policies. But these works mostly focus on theoretical analysis, and effective
robust training approaches rather than robust training.

Adversarial Defenses against Other Adversarial Attacks. Besides observation perturbations,
attacks can happen in many other scenarios. For example, the agent’s executed actions can be
perturbed [50, 44, 45, 24]. Moreover, in a multi-agent game, an agent’s behavior can create adversarial
perturbations to a victim agent [13]. Pinto et al. [35] model the competition between the agent and
the attacker as a zero-sum two-player game, and train the agent under a learned attacker to tolerate
both environment shifts and adversarial disturbances. We point out that although we mainly consider
state adversaries, our WocaR-RL can be extended to action attacks as formulated in Appendix C.5.
Note that we focus on robustness against test-time attacks, different from poisoning attacks which
alter the RL training process [3, 20, 41, 56, 36].

Safe RL and Risk-sensitive RL. There are several lines of work that study RL under safety/risk
constraints [18, 11, 10, 2, 46] or under intrinsic uncertainty of environment dynamics [26, 30].
However, these works do not deal with adversarial attacks, which can be adaptive to the learned
policy. More comparison between these methods and our proposed method is discussed in Section 4.

3 Preliminaries and Background
Reinforcement Learning (RL). An RL environment is modeled by a Markov Decision Process
(MDP), denoted by a tuple M = hS,A, P,R, �i, where S is a state space, A is an action space, P :
S⇥A ! �(S) is a stochastic dynamics model2, R : S⇥A ! R is a reward function and � 2 [0, 1) is
a discount factor. An agent takes actions based on a policy ⇡ : S ! �(A). For any policy, its natural

performance can be measured by the value function V ⇡(s) := EP,⇡[
P1

t=0 �
tR (st, at) | s0 = s],

and the action value function Q⇡(s, a) := EP,⇡[
P1

t=0 �
tR (st, at) | s0 = s, a0 = a]. We call V ⇡

the natural value and Q⇡ the natural action value in contrast to the values under attacks, as will be
introduced in Section 4.

Deep Reinforcement Learning (DRL). In large-scale problems, a policy can be parameterized by
a neural network. For example, value-based RL methods (e.g. DQN [32]) usually fit a Q network and
take the greedy policy ⇡(s) = argmaxaQ(s, a). In actor-critic methods (e.g. PPO [39]), the learner
directly learns a policy network and a critic network. In practice, an agent usually follows a stochastic
policy during training that enables exploration, and executes a trained policy deterministically in
test-time, e.g. the greedy policy learned with DQN. Throughout this paper, we use ⇡✓ to denote the
training-time stochastic policy parameterized by ✓, while ⇡ denotes the trained deterministic policy
that maps a state to an action.

Test-time Adversarial Attacks. After training, the agent is deployed into the environment and
executes a pre-trained fixed policy ⇡. An attacker/adversary, during the deployment of the agent, may

2�(X ) denotes the space of probability distributions over X .
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perturb the state observation of the agent/victim at every time step with a certain attack budget ✏. Note
that the attacker only perturbs the inputs to the policy, and the underlying state in the environment
does not change. This is a realistic setting because real-world observations can come from noisy
sensors or be manipulated by malicious attacks. For example, an auto-driving car receives sensory
observations; an attacker may add imperceptible noise to the camera, or perturb the GPS signal,
although the underlying environment (the road) remains unchanged. In this paper, we consider the `p
thread model which is widely used in adversarial learning literature: at step t, the attacker alters the
observation st into s̃t 2 B✏(st), where B✏(st) is a `p norm ball centered at st with radius ✏. The above
setting (`p constrained observation attack) is the same with many prior works [19, 34, 54, 52, 42].

4 Worst-case-aware Robust RL

In this section, we present Worst-case-aware Robust RL (WocaR-RL), a generic framework that can
be fused with any DRL approach to improve the adversarial robustness of an agent. We will introduce
the three key mechanisms in WocaR-RL: worst-attack value estimation, worst-case-aware policy
optimization, and value-enhanced state regularization, respectively. Then, we will illustrate how to
incorporate these mechanisms into existing DRL algorithms to improve their robustness.

Mechanism 1: Worst-attack Value Estimation
Traditional RL aims to learn a policy with the maximal value V ⇡ . However, in a real-world problem
where observations can be noisy or even adversarially perturbed, it is not enough to only consider
the natural value V ⇡ and Q⇡. As motivated in Figure 1, two policies with similar natural rewards
can get totally different rewards under attacks. To comprehensively evaluate how good a policy is
in an adversarial scenario and to improve its robustness, we should be aware of the lowest possible
long-term reward of the policy when its observation is adversarially perturbed with a certain attack
budget ✏ at every step (with an `p attack model introduced in Section 3).

The worst-case value of a policy is, by definition, the cumulative reward obtained under the optimal
attacker. As justified by prior works [54, 42], for any given victim policy ⇡ and attack budget ✏ > 0,
there exists an optimal attacker, and finding the optimal attacker is equivalent to learning the optimal
policy in another MDP. We denote the optimal (deterministic) attacker’s policy as h⇤. However,
learning such an optimal attacker by RL algorithms requires extra interaction samples from the
environment, due to the unknown dynamics. Moreover, learning the attacker by RL can be hard and
expensive, especially when the state observation space is high-dimensional.

Instead of explicitly learning the optimal attacker with a large amount of samples, we propose to
directly estimate the worst-case cumulative reward of the policy by characterizing the vulnerability
of the given policy. We first define the worst-attack action value of policy ⇡ as Q⇡(s, a) :=
EP [

P1
t=0 �

tR (st,⇡(h⇤(st))) | s0 = s, a0 = a]. The worst-attack value V ⇡ can be defined using
h⇤ in the same way, as shown in Definition A.1 in Appendix A. Then, we introduce a novel operator
T ⇡ , namely the worst-attack Bellman operator, defined as below.

Definition 4.1 (Worst-attack Bellman Operator). For MDP M, given a fixed policy ⇡ and attack
radius ✏, define the worst-attack Bellman operator T ⇡ as

(T ⇡Q) (s, a) := Es0⇠P (s,a)[R(s, a) + � min
a02Aadv(s0,⇡)

Q (s0, a0)], (1)

where 8s 2 S , Aadv(s,⇡) is defined as
Aadv(s,⇡) := {a 2 A : 9s̃ 2 B✏(s) s.t. ⇡(s̃) = a}. (2)

Here Aadv(s0,⇡) denotes the set of actions an adversary can mislead the victim ⇡ into selecting by
perturbing the state s0 into a neighboring state s̃ 2 B✏(s0). This hypothetical perturbation to the future

state s0 is the key for characterizing the worst-case long-term reward under attack. The following
theorem associates the worst-attack Bellman operator and the worst-attack action value.

Theorem 4.2 (Worst-attack Bellman Operator and Worst-attack Action Value). For any given policy

⇡, T ⇡
is a contraction whose fixed point is Q⇡

, the worst-attack action value of ⇡ under any `p
observation attacks with radius ✏.

Theorem 4.2 proved in Appendix A suggests that the lowest possible cumulative reward of a pol-
icy under bounded observation attacks can be computed by worst-attack Bellman operator. The
corresponding worst-attack value V ⇡ can be obtained by V ⇡(s) = mina2Aadv(s,⇡) Q

⇡(s, a).

4



How to Compute Aadv. To obtain Aadv(s,⇡), we need to identify the actions that can be the
outputs of the policy ⇡ when the input state s is perturbed within B✏(s). This can be solved by
commonly-used convex relaxation of neural networks [15, 55, 48, 53, 14], where layer-wise lower
and upper bounds of the neural network are derived. That is, we calculate ⇡ and ⇡ such that
⇡(s) � ⇡(ŝ) � ⇡(s), 8ŝ 2 B✏(s). With such a relaxation, we can obtain a superset of Aadv, namely
Âadv. Then, the fixed point of Equation (1) with Aadv being replaced by Âadv becomes a lower
bound of the worst-attack action value. For a continuous action space, Âadv(s,⇡) contains actions
bounded by ⇡(s) and ⇡(s). For a discrete action space, we can first compute the maximal and minimal
probabilities of taking each action, and derive the set of actions that are likely to be selected. The
computation of Âadv is not expensive, as there are many efficient convex relaxation methods [31, 53]
which compute ⇡ and ⇡ with only constant-factor more computations than directly computing ⇡(s).
Experiment in Section 5 verifies the efficiency of our approach, where we use a well-developed
toolbox auto_LiRPA [51] to calculate the convex relaxation. More implementation details and
explanations are provided in Appendix C.1.

Estimating Worst-attack Value. Note that the worst-attack Bellman operator T ⇡ is similar to
the optimal Bellman operator T ⇤, although it uses mina2Aadv instead of maxa2A. Therefore, once
we identify Aadv as introduced above, it is straightforward to compute the worst-attack action
value using Bellman backups. To model the worst-attack action value, we train a network named
worst-attack critic, denoted by Q⇡

�
, where � is the parameterization. Concretely, for any mini-batch

{st, at, rt, st+1}Nt=1, Q⇡

�
is optimized by minimizing the following estimation loss:

Lest(Q
⇡
�
) :=

1

N

NX

t=1

(y
t
�Q⇡

�
(st, at))

2,where y
t
= rt + � min

â2Aadv(st+1,⇡)
Q⇡

�
(st+1, â). (3)

For a discrete action space, Aadv is a discrete set and solving y
t

is straightforward. For a continuous
action space, we use gradient descent to approximately find the minimizer â. Since Aadv is in general
small, this minimization is usually easy to solve. In MuJoCo, we find that 50-step gradient descent
already converges to a good solution with little computational cost, as detailed in Appendix D.3.3.

Differences with Worst-case Value Estimation in Related Work. Our proposed worst-attack
Bellman operator is different from the worst-case Bellman operator in the literature of risk-sensitive
RL [18, 11, 43, 10, 2, 46], whose goal is to avoid unsafe trajectories under the intrinsic uncertainties
of the MDP. These inherent uncertainties of the environment are independent of the learned policy.
In contrast, our focus is to defend against adversarial perturbations created by malicious attackers
that can be adaptive to the policy. The GWC reward proposed by [33] also estimates the worst-case
reward of a policy under state perturbations. But their evaluation is based on a greedy strategy and
requires interactions with the environment, which is different from our estimation.

Mechanism 2: Worst-case-aware Policy Optimization
So far we have introduced how to evaluate the worst-attack value of a policy by learning a worst-attack
critic. Inspired by the actor-critic framework, where the actor policy network ⇡✓ is optimized towards
a direction that the critic value increases the most, we can regard worst-attack critic as a special critic
that directs the actor to increase the worst-attack value. That is, we encourage the agent to select an
action with a higher worst-attack action value, by minimizing the worst-attack policy loss below:

Lwst(⇡✓;Q
⇡
�
) := � 1

N

NX

t=1

X

a2A
⇡✓(a|st)Q⇡

�
(st, a), (4)

where Q⇡
�

is the worst-attack critic learned via Lest introduced in Equation (3). Note that Lwst is a
general form, while the detailed implementation of the worst-attack policy optimization can vary
depending on the architecture of ⇡✓ in the base RL algorithm (e.g. PPO has a policy network, while
DQN acts using the greedy policy induced by a Q network). In Appendix C.2 and Appendix C.3, we
illustrate how to implement Lwst for PPO and DQN as two examples.

The proposed worst-case-aware policy optimization has several merits compared to prior ATLA [52]
and PA-ATLA [42] methods which alternately train the agent and an RL attacker. (1) Learning the
optimal attacker h⇤ requires collecting extra samples using the current policy (on-policy estimation).
In contrast, Q⇡

�
can be learned using off-policy samples, e.g., historical samples in the replay buffer,

and thus is more suitable for training where the policy changes over time. (Q⇡

�
depends on the current
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policy via the computation of Aadv.) (2) We properly exploit the policy function that is being trained
by computing the set of possibly selected actions Âadv for any state. In contrast, ATLA [52] learns an
attacker by treating the current policy as a black box, ignoring the intrinsic properties of the policy.
PA-ATLA [42], although assumes white-box access to the victim policy, also needs to explore and
learn from extra on-policy interactions. (3) The attacker trained with DRL methods, namely ĥ⇤, is
not guaranteed to converge to an optimal solution, such that the performance of ⇡ estimated under ĥ⇤

can be overly optimistic. Our estimation, as mentioned in Mechanism 1, computes a lower bound of
Q⇡ and thus can better indicate the robustness of a policy.

Mechanism 3: Value-enhanced State Regularization
As discussed in Section 1, the vulnerability of a deep policy comes from both the policy’s intrinsic
vulnerability with the RL dynamics and the DNN approximator. The first two mechanisms of WocaR-
RL mainly focus on the policy’s intrinsic vulnerability, i.e., let the policy select actions that are less
vulnerable to possible attacks in all future steps. However, if a bounded state perturbation can cause
the network to output a very different action, then the Aadv set will be large and Q⇡ can thus be low.
Therefore, it is also important to encourage the trained policy to output similar actions for the clean
state s and any s̃ 2 B✏(s), as is done in prior work [54, 40, 9].

But different from these prior methods, we note that different states should be treated differently.
Some states are “critical” where selecting a bad action will result in catastrophic consequences. For
example, when the agent gets close to the bomb in Figure 1, we should make the network more
resistant to adversarial state perturbations. To differentiate states based on their impacts on future
reward, we propose to measure the importance of states with Definition 4.3 below.

Definition 4.3 (State Importance Weight). Define state importance weight of s 2 S for policy ⇡ as
w(s) = max

a12A
Q⇡(s, a1)� min

a22A
Q⇡(s, a2). (5)

Figure 3: States in Pong with
(left) high weight w(s) and
(right) low weight w(s).

To justify whether Definition 4.3 can characterize state importance,
we train a DQN network in an Atari game Pong, and show the states
with the highest weight and the lowest weight in Figure 3, among
many state samples. We can see that the state with higher weight in
Figure 3(left) is indeed crucial for the game, as the green agent paddle
is close to the ball. Conversely, a less-important state in Figure 3(right)
does not have significantly different future rewards under different
actions. Computing w(s) is easy in a discrete action space, while in a
continuous action space, one can use gradient descent to approximately
find the maximal and the minimal Q values for a state. Similar to the
computation of Equation (3) with a continuous action space, we find that a 50-step gradient descent
works well in experiments.

By incorporating the state importance weight w(s), we regularize the policy network and let it pay
more attention to more crucial states, by minimizing the following loss:

Lreg(⇡✓) =
1

N

NX

t=1

w(st) max
s̃t2B✏(st)

Dist(⇡✓(st),⇡✓(s̃t)), (6)

where Dist can be any distance measure between two distributions (e.g., KL-divergence). Minimizing
Lreg can result in a smaller Aadv, and thus the worst-attack value will be closer to the natural value.

WocaR-RL: A Generic Robust Training Framework

Policy Network Worst-attack
Critic Network 

evaluating worst-attack value

worst-case-aware policy optimization

value-enhanced state regularization

base DRL loss (PPO,DQN,...)

Figure 4: Training architecture of WocaR-RL. (Components
proposed in this paper are colored as red.)

So far we have introduced three key mech-
anisms and their loss functions, Lest in
Equation (3), Lwst in Equation (4) and
Lreg in Equation (6). Then, our robust
training framework WocaR-RL combines
these losses with any base RL algorithm.
To be more specific, as shown in Figure 4,
for any base RL algorithm that trains policy
⇡✓ using loss LRL, we learn an extra worst-
attack critic network Q⇡

�
by minimizing

LQ⇡
�
:= Lest(Q

⇡
�
), (7)
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and combine Lwst and Lreg with LRL to optimize ⇡✓ by minimizing
L⇡✓ := LRL(⇡✓) + wstLwst(⇡✓;Q

⇡
�
) + regLreg(⇡✓), (8)

where wst and reg are hyperparameters balancing between natural performance and robustness.
Note that Q⇡

�
is trained together but independently with ⇡✓ using historical transition samples, so

WocaR-RL does not require extra samples from the environment. WocaR-RL can also be interpreted
from a geometric perspective based on prior RL polytope theory [8, 42] as detailed in Appendix B.

Our WocaR-RL is a generic robust training framework that can be used to robustify existing DRL
algorithms. We provide two case studies: (1) combining WocaR-RL with a policy-based algo-
rithm PPO [39], namely WocaR-PPO, and (2) combining WocaR-RL with a value-based algorithm
DQN [32], namely WocaR-DQN. The pseudocodes of WocaR-PPO and WocaR-DQN are illustrated
in Appendix C.2 and Appendix C.3. The application of WocaR-RL to other DRL methods is then
straightforward, since most DRL methods are either policy-based or value-based. Next, we show
by experiments that WocaR-PPO and WocaR-DQN achieve state-of-the-art robustness with superior
efficiency, in various continuous control tasks and video game environments. We also empirically
verify the effectiveness of each of the 3 mechanisms of WocaR-RL and their weights by ablation
study in Section 5.2.

5 Experiments and Discussion
In this section, our experimental evaluations on various MuJoCo and Atari environments aim to study
the following questions: (1) Can WocaR-RL learn policies with better robustness under existing
strong adversarial attacks? (2) Can WocaR-RL maintain natural performance when improving
robustness? (3) Can WocaR-RL learn more efficiently during robust training? (4) Is each mechanism
in WocaR-RL effective? Problem (1), (2) and (3) are answered in Section 5.1 with detailed empirical
results, and problem (4) is studied in Section 5.2 via ablation experiments.

5.1 Experiments and Evaluations

Environments. Following most prior works [54, 52, 33] and the released implementation, we apply
our WocaR-RL to PPO [39] on 4 MuJoCo tasks with continuous action spaces, including Hopper,
Walker2d, Halfcheetah and Ant, and to DQN [32] agents on 4 Atari games including Pong, Freeway,
BankHeist and RoadRunner, which have high dimensional pixel inputs and discrete action spaces.

Baselines and Implementation. We compare our algorithm with several state-of-the-art robust
training methods, including (1) SA-PPO/SA-DQN [54]: regularizing policy networks by convex
relaxation. (2) ATLA-PPO [52]: alternately training an agent and an RL attacker. (3) PA-ATLA-

PPO [42]: alternately training an agent and a more advanced RL attacker PA-AD. (4) RADIAL-

PPO/RADIAL-DQN [33]: optimizing policy network by designed adversarial loss functions based on
robustness bounds. SA and RADIAL have both PPO and DQN versions, which are compared with
our WocaR-PPO and WocaR-DQN. But ATLA and PA-ATLA do not provide DQN versions, since
alternately training on DQN can be expensive as explained in the original papers [42]. (PA-ATLA has
an A2C version, which we compare in Appendix D.2.) Therefore, we reproduce their ATLA-PPO
and PA-ATLA-PPO results and compare them with our WocaR-PPO. More implementation and
hyperparameter details are provided in Appendix D.1.

Case I: Robust PPO for MuJoCo Continuous Control
Evaluation Metrics. To reflect both the natural performance and robustness of trained agents, we
report the average episodic rewards under no attack and against various attacks. For a comprehensive
robustness evaluation, we attack the trained robust models with multiple existing attack methods,
including: (1) MaxDiff [54] (maximal action difference), (2) Robust Sarsa (RS) [54] (attacking with
a robust action-value function), (3) SA-RL [54] (finding the optimal state adversary) and (4) PA-AD

[42] (the existing strongest attack by learning the optimal policy adversary with RL). For a clear
comparison, we use the same attack radius ✏ as in most baselines [54, 52, 42].

Performance and Robustness of WocaR-PPO Figure 5 (left four columns) shows performance
curves during training under four different adversarial attacks. Among all four attack algorithms,
WocaR-PPO converges much faster than baselines, and often achieves the best asymptotic robust
performance, especially under the strongest PA-AD attack. It is worth emphasizing that since
we train a robust agent without explicitly learning an RL attacker, our method not only obtains
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Figure 5: Robustness, Efficiency and High Natural Performance of WocaR-PPO. (Left four columns)
Learning curves of rewards under MaxDiff, Robust Sarsa, SA-RL and PA-AD (the strongest) attacks during
training on four environments. (Rightmost column) Average episode natural rewards v.s. average worst rewards
under attacks. Each row shows the performance of baselines and WocaR-PPO on one environment. Shaded
regions are computed over 20 random seeds. Results under more attack radius ✏’s are in Appendix D.3.1.

stronger robustness and much higher efficiency, but also a more general defense: WocaR-PPO
obtains comprehensively superior performance against a variety of attacks compared against existing
SOTA algorithms based on learned attackers (ATLA-PPO, PA-ATLA-PPO). Additionally, in our
experiments, WocaR-PPO learns relatively more universal defensive behaviors as shown in Figure 2,
which can physically explain why our algorithm can defend against diverse attacks. We provide
policy demonstrations in multiple tasks in our supplementary materials.
The comparison of natural performance and the worst-case performance appears in Figure 5 (right).
We see that WocaR-PPO maintains competitive natural rewards under no attack compared with other
baselines, which demonstrates that our algorithm gains more robustness without losing too much
natural performance. The full results of baselines and our algorithm under different attack evaluations
are provided by Table 2 in Appendix D.2 (including performance under random attacks).

Efficiency of Training WocaR-PPO. The learning curves in Figure 5 (left) directly show the
sample efficiency of WocaR-PPO. Following the optimal settings provided in [54, 52, 33], our method
takes 50% training steps required by RADIAL-PPO and ATLA methods on Hopper, Walker2d, and
Halfcheetah because RADIAL-PPO needs more steps to ensure convergence and ATLA methods
require additional adversary training steps. When solving high dimensional environments like Ant,
WocaR-PPO only requires 75% steps compared with all other baselines to converge. We also provide
additional results of baselines using the same training steps as WocaR-PPO in Appendix D.3.2.
In terms of time efficiency, WocaR-PPO saves 50% training time for convergence on Hopper,
Walker2d, and Halfcheetah, and 32% time on Ant compared with the SOTA method. Therefore,
WocaR-PPO achieves both higher computational efficiency and higher sample efficiency than SOTA

baselines. Detailed costs in time and sampling are in Appendix D.3.3.

Case II: Robust DQN for Atari Video Games
Evaluation Metrics. Since Atari games have pixel state spaces and discrete action spaces, the
applicable attacking algorithms also differ from those in MuJoCo tasks. We include the following
common attacks: (1) 10-step untargeted PGD (projected gradient descent) attack, (2) MinBest [19],
which minimizes the probability of choosing the “best” action, (3) PA-AD [42], as the state-of-the-art
RL-based adversarial attack algorithm.

8



Model
Pong BankHeist

Natural
Reward

PGD MinBest PA-AD Natural
Reward

PGD MinBest PA-AD
✏= 3/255 ✏= 3/255

DQN 21.0 ± 0.0 -21.0 ± 0.0 -9.7 ± 4.0 -19.0 ± 2.2 1308 ± 24 0 ± 0 119 ± 65 102 ± 92
SA-DQN 21.0 ± 0.0 21.0 ± 0.0 20.6 ± 3.5 18.7 ± 2.6 1245 ± 14 1176 ± 63 1024 ± 31 489 ± 106

RADIAL-DQN 21.0 ± 0.0 21.0 ± 0.0 19.5 ± 2.1 13.2 ± 1.8 1178 ± 4 1176 ± 63 928 ± 113 508 ± 85
WocaR-DQN (Ours) 21.0 ± 0.0 21.0 ± 0.0 20.8 ± 3.3 19.7 ± 2.4 1220 ± 12 1214 ± 7 1045 ± 20 754 ± 102

Model
Freeway RoadRunner

Natural
Reward

PGD MinBest PA-AD Natural
Reward

PGD MinBest PA-AD
✏= 3/255 ✏= 3/255

DQN 34.0 ± 0.1 0.0 ± 0.0 5.5 ± 1.8 4.7 ± 2.9 45527 ± 4894 0 ± 0 2985 ± 1440 203 ± 65
SA-DQN 30.0 ± 0.0 30.0 ± 0.0 18.3 ± 3.0 9.5 ± 3.8 44638 ± 2367 20678 ± 1563 4214 ± 2587 5516 ± 4684

RADIAL-DQN 33.1 ± 0.2 33.2 ± 0.2 16.4 ± 2.3 10.8 ± 3.6 44675 ± 5854 38576 ± 1960 8476 ± 3964 1290 ± 4015
WocaR-DQN (Ours) 31.2 ± 0.4 31.4 ± 0.3 19.8 ± 3.8 12.3 ± 3.2 44156 ± 2279 38720 ± 1765 10545 ± 2984 8239 ± 2766

Table 1: Robustness and High Natural Performance of WocaR-DQN. Average episode rewards ± standard
deviation over 50 episodes on three baselines and WocaR-DQN on four Atari environments. Best results (natural
reward of under attacks for each column) on each environment boldfaced. WocaR-DQN outperforms all the
baselines in most cases or gains similar performance in the other metrics. We highlight the most robust agent as
gray . Each result is obtained with 10 random seeds.
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(a) Walker2d: Worst-case Values
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(b) Walker2d: Worst-case Rewards
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(c) Ant: Worst-case Values
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(d) Ant: Worst-case Rewards

Figure 6: (a)&(b) Comparison between estimated worst-attack action values Q⇡
�

and Actual worst-case rewards
under the strongest attacksduring training on Walker2d; (c)&(d) The comparison between worst-case values and
rewards to verify worst-attack value estimation on Ant.

Performance and Robustness of WocaR-DQN. Table 1 presents the results on four Atari games
under attack radius ✏ = 3/255, while results and analysis under smaller attack radius 1/255 are in
Appendix D.2. We can see that our WocaR-DQN consistently outperforms baselines under MinBest

and PA-AD attacks in all environments, with a significant advance under the strongest (worst-case)

PA-AD attacks compared with other robust agents. Under PGD attacks, WocaR-DQN performs
comparably with the state-of-the-art in Freeway and Pong (which are simpler games) and gains higher
rewards than other agents in BankHeist and Roadrunner. Since SA-DQN and RADIAL-DQN focus
on bounding and smoothing the policy network and do not consider the policy’s intrinsic vulnerability,
they are robust under the PGD attack but still vulnerable against the stronger PA-AD attack.

Efficiency of Training WocaR-DQN. The total training time for SA-DQN, RADIAL-DQN, and
our WocaR-DQN are roughly 35, 17, and 18 hours, respectively. All baselines are trained for 6
million frames on the same hardware. Therefore, WocaR-DQN is 49% faster (and is more robust)
than SA-DQN. Compared to the more advanced baseline RADIAL-DQN, although WocaR-DQN is
5% slower, it achieves better robustness (539% higher reward than RADIAL-DQN in RoadRunner).

5.2 Verifying Effectiveness of WocaR-RL

Now we dive deeper into the algorithmic design and verify the effectiveness of WocaR-RL by ablation
studies on WocaR-PPO.

(1) Worst-attack value estimation. We show the learned worst-attack value estimation, Q⇡

�
, during

the training process in Figure 6a and 6c, in comparison with the actual reward under the strongest
attack (PA-AD [42]) in Figure 6b and 6d. The pink curves in both plots suggest that our worst-

attack value estimation matches the trend of actual worst-case reward under attacks, although the
network estimated value and the real reward have different scales due to the commonly-used reward
normalization for learning stability. Therefore, the effectiveness of our proposed worst-attack value
estimation (Lest) is verified.

(2) Worst-case-aware policy optimization. Compared to vanilla PPO and SA-PPO, we can see that
WocaR-PPO improves the worst-attack value and the worst-case reward during training, suggesting
the effectiveness of our worst-attack value improvement (Lwst). The comparison of natural rewards,
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Figure 7: (a) Ablation evaluations for state importance weight w(s) under no attack and four types of attacks
on Halfcheetah; (b) Ablation studies for state regularization Lreg under different evaluation metrics on Hopper.
Ablated results on other environments are in Appendix D.3.6.

as well as curves in other environments, are provided in Appendix D.3.4. Moreover, the adjustable
weight wst in Equation (8) controls the trade-off between natural value and worst-attack value in
policy optimization. When wst is high, the policy pays more attention to its worst-attack value.
Appendix D.3.5 verifies that WocaR-RL, with different values of weight wst, produces different

robustness and natural performance while consistently dominating other robust agents.

(3) Value-enhanced state regularization. We conduct ablation experiments to analyze the effect of
two techniques: our proposed state importance weight w(s) and the state regularization loss Lreg [54].
In Figure 7a, we compare the performance of the original WocaR-PPO to a variant of WocaR-PPO
without the state importance weight w(s) on Halfcheetah, which visually indicates that w(s) can
help agents boost the robustness. Since SA-PPO [54] also uses a state regularization technique,
the improvement of SA-PPO added with w(s) also show the universal effectiveness of our state
importance. Without w(s), our algorithm also achieves similar or better performance than baselines,
but including this inexpensive technique w(s) gives WocaR-RL a greater advantage, especially under
learned strong attacks SA-RL and PA-AD. Figure 7b presents the performance of ATLA methods
and our algorithm without Lreg on Hopper, which verifies that WocaR-PPO also yields the superior
performance when removing the regularization technique. And the comparison between WocaR-PPO
and WocaR-PPO without Lreg demonstrates that the weighted state regularization is beneficial to
enhancing the robustness in our algorithm. Detailed ablation studies for w(s) and Lreg on four
MuJoCo environments are shown in Appendix D.3.6.

6 Conclusion and Discussion

This paper proposes a robust RL training framework, WocaR-RL, that evaluates and improves the long-
term robustness of a policy via worst-attack value estimation, worst-case-aware policy optimization,
and value-enhanced state regularization. Different from recent state-of-the-art adversarial training
methods [42, 52] which train an extra adversary to improve the robustness of an agent, we directly
estimate and improve the lower bound of the agent’s cumulative reward. As a result, WocaR-RL not
only achieves better robustness than state-of-the-art robust RL approaches, but also halves the total
sample complexity and computation complexity, in a wide range of Atari and MuJoCo tasks.

There are several aspects to improve or extend the current approach. First, the proposed worst-attack
Bellman operator in theory gives the exact worst-case value of a policy under `p bounded attacks. But
in practice, it is hard to compute the set Aadv directly, so we use convex relaxation to obtain a superset
of it, Âadv. As a result, the fixed point of worst-attack Bellman operator with Aadv being replaced
by Âadv is a lower bound of the worst-case value. Then, our algorithm increases the worst-case value
by improving its lower bound, as visualized and explained in Figure 8 in Appendix B. Therefore,
one potential way of further improving the robustness is using a tighter relaxation. In addition, this
paper only considers the `p threat model as is common in most related works. But in real-world
applications, other attack models could exist (e.g. patch attacks [5]), and improving the robustness of
RL agents in these scenarios is another important research direction.
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