Towards an Enhanced, Faithful, and Adaptable Web Interaction Environment

Anonymous Author(s)
Affiliation
Address
email

Abstract

We identify key areas of improvement for WebShop, an e-commerce shopping environment for training decision making language agents. Specifically, shortcomings in: 1) faithfulness of the reward function to human evaluation, 2) comprehensiveness of its content, and 3) human participation required for generating instructions has hindered WebShop’s promises to be a scalable real-world environment. To solve these issues, we first incorporate greater faithfulness to human evaluation by designing a new reward function to capture lexical similarities and synonyms. Second, we identify customer reviews, similar products, and customer FAQs as missing semantic components that are most helpful to human execution of the task from surveying 75 respondents. Finally, we reformulate the attribute tagging problem as an extractive short-phrase prediction task to enhance scalability. Our V2 reward function closes the gap between the scores of the WebShop’s automated reward function (from 81.5% to 87.7%) and human evaluation (89.9%). Our attribute tagging approach achieves an accuracy of 72.2% with a t5-3b model fine tuned on 2,000 training data points, showing potential to automate the instruction creation pipeline.

1 Introduction

WebShop is a simulated e-commerce website environment for training grounded language agents on the task of purchasing a product that satisfies a given instruction [16]. Compared to previous interactive language benchmarks that are often limited by a static, non-interactive dataset or an inability to scale up [2, 14, 17], WebShop leverages large amounts of realistic data (language and other modalities like vision) and transitions scraped from the Internet to support scalable learning.

A significant aspect of WebShop’s utility towards model training is its ability to simulate real world web domains. This suggests that the WebShop environment should be realistic, scalable, and faithful to human perceptions towards this task. In this paper, we identify three key aspects where WebShop falls short on these claims, ultimately limiting its serviceability as a truly automatic environment. First, the WebShop environment does not include semantic information that heavily influences how humans perform the WebShop shopping task. Second, WebShop’s original reward function consistently over-penalizes a chosen product due to its faulty exact matching criterion, compromising its faithfulness to human evaluation. Third, while WebShop’s product dataset is collected in a scalable fashion via web scraping, generating corresponding instructions relies entirely on human crowd-sourcing; WebShop has 1.18 million real products, but of these, only 12,087 have corresponding text instructions. This reliance on human generation does not scale and bottlenecks WebShop’s model training efficacy.

We put forth improvements to address these three points, demonstrating how such adjustments collectively make for a semantically richer environment that better reflects real world platforms and offer a scalable way to generate more instructions for model training. First, we solicit and incorporate

feedback from an audience of 75 random individuals regarding information missing from WebShop that would be useful to completing the shopping task. Ensuring that WebShop captures key semantic components is fundamental to its main deliverable of constructing agents that can transfer to real-life settings. Second, we rewrite the automatic reward function’s matching criteria to look for lexically similar and synonymous tokens when calculating the attributes and options score components. Our V2 reward function coheres to human evaluation much more precisely (Original 81.5%, V2 87.7%, Human 89.9%). Lastly, we train and evaluate several attribute extraction models from a product’s description. Our t5-3b model [11] fine-tuned on 2,000 training points of [X=product information, Y=attributes] pairs achieves an accuracy of 72.22%, demonstrating the potential for high performance at an affordable cost in terms of human data collection. We then briefly discuss future plans to automate the instruction generation process. Eliminating the need for human participation in the instruction generation process is vital to WebShop’s extendibility. As real world platforms evolve, WebShop’s long term viability for model training hinges on how efficiently the environment, dataset, and instructions can be updated. Without such automation, WebShop’s instructions and relevance will wither with time.

We believe that the collection of changes presented in this paper greatly advances WebShop’s usability as an environment for designing language instructed agents with imminent real world applications, and our primary goal with this work is to make WebShop a worthwhile platform for developing web agents to the greater grounded language research community.

2 Related Work

Prior to WebShop, designing web-based benchmarks for grounded language agents has been studied extensively [12-9]. This work has attempted to capture the web’s scalable, semantic, interactive, dynamic, and realistic nature, but often fall short due to a relatively confined action space, an inability to scale up without human-in-the-loop feedback, or a limited set of tasks. The Mini World of Bits (MiniWoB) environment in particular has served as the test bed for a variety of approaches towards navigating and interacting with the web, such as workflow-guided exploration [6], curriculum and meta-learning [2], DOM tree representation [5], adversarial environment generation [3] and large-scale behavioral cloning [4]. However, MiniWoB’s handcrafted tasks are founded on synthetic data, and its tasks do not require long-range decision making across multiple contexts. WebShop delivers on these limitations with its more diverse action and observation spaces; achieving the WebShop task requires navigating longer paths with context-based action selection and backtracking. However, WebShop under-delivers in its claims to provide a semantically rich and realistic environment, and does not deliver in its ability to scale and evolve its instructions dataset without human participation.

3 Environment

3.1 Reward Function Reformulation

WebShop’s original reward function generates a composite score from calculating the similarity strictly between two products’ attributes, type, options, and price, with a custom programmatic matching function per category. Exact matching is used to score attributes and options. To quantify the faithfulness of the original reward function, we randomly re-score 100 samples, selected from a pool of trajectories generated by average and expert Amazon Mechanical Turk (AMT) workers, against a human criteria. This criteria follows the original reward function with two main modifications. Instead of exact matching, points are awarded if (1) the picked product’s attributes, options or type are lexically similar or synonymous with the goal’s product information and (2) the desired goal value is not found verbatim anywhere in the picked product’s descriptions.

The matching criteria consistently overpenalizes a picked product due to its failure to account for lexical similarities and synonyms that humans would otherwise award. For instance, given a goal token lightweight, the existing reward function would award neither light_weight (semantically similar) nor easy to carry (synonym). In addition, the original approach does not reward a goal attribute or option that (1) does not appear in the picked product’s corresponding category, but (2) does appear elsewhere in the product’s description. For example, given organic as a desired option, a human scorer would award points if the picked product contains organic in its title even if organic is not presented as an option. The consistent disparity in the attribute, options, and overall
scores between the *Original* and *Human* reward functions, as shown in Figure 1, highlights the over-penalization that manifests from these discrepancies.

We implement a modified reward function that applies lexical and synonym matching for scoring attributes and options along with a comprehensive search of product information. The new proposed reward function is defined in its entirety as Equation (1). A full pseudocode description of the matching functions can be found in §A.1.

\[
[h]r = r_{\text{type}} \cdot \frac{\text{match}_{\text{attrs}}(U_{\text{att}}, Y_{\text{att}}) + \text{match}_{\text{opts}}(U_{\text{opt}}, Y_{\text{opt}}) + 1}{|U_{\text{att}}| + |U_{\text{opt}}| + 1}
\]

To determine the faithfulness of the new reward function to human rewarding, we repeat the aforementioned verification procedure with the new reward function defined in Equation (1) and list the average scores per category in Figure 1. We also re-run imitation learning models discussed in the original WebShop paper. For both average and expert MTurk worker trajectories, the *Attribute*, *Options*, and *Overall* scores generated by the V2 reward function are all greater than the *Original* reward function scores, but do not exceed the *Human* benchmarks. This increase is also observed in the updated scores for IL models in Figure 2.

<table>
<thead>
<tr>
<th>MTurk Type</th>
<th>Reward</th>
<th>Attribute</th>
<th>Options</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>Original</td>
<td>71.7</td>
<td>50.5</td>
<td>72.4</td>
</tr>
<tr>
<td></td>
<td>V2</td>
<td>74.1</td>
<td>55.0</td>
<td>74.9</td>
</tr>
<tr>
<td></td>
<td>Human</td>
<td>75.5</td>
<td>57.0</td>
<td>76.3</td>
</tr>
<tr>
<td>Expert</td>
<td>Original</td>
<td>78.1</td>
<td>56.1</td>
<td>81.5</td>
</tr>
<tr>
<td></td>
<td>V2</td>
<td>85.2</td>
<td>64.9</td>
<td>87.7</td>
</tr>
<tr>
<td></td>
<td>Human</td>
<td>88.2</td>
<td>66.8</td>
<td>89.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>Reward</th>
<th>Score</th>
<th>SR</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL w/o</td>
<td>Original</td>
<td>45.8</td>
<td>10.6</td>
</tr>
<tr>
<td>LP choice</td>
<td>V2</td>
<td>51.7</td>
<td>11.1</td>
</tr>
<tr>
<td>IL w/o</td>
<td>Original</td>
<td>56.0</td>
<td>26.3</td>
</tr>
<tr>
<td>LP Search</td>
<td>V2</td>
<td>60.1</td>
<td>28.1</td>
</tr>
<tr>
<td>IL</td>
<td>Original</td>
<td>59.9</td>
<td>29.1</td>
</tr>
<tr>
<td></td>
<td>V2</td>
<td>65.3</td>
<td>32.7</td>
</tr>
</tbody>
</table>

Figure 1: Reward function verification comparing trajectories generated by average and expert human MTurk workers.

Figure 1 and 2 reflect our observation that the V2 implementation of automatic scoring reduces over-penalization and is much more faithful to human evaluation. From manual checks of 20 trajectories chosen randomly from the pool of 200 scored trajectories, the improvements in these scores can be directly attributed to the lexical and synonym matching cases. Across all 200 trajectories, there were no instances where the V2 reward function assigned a score that was greater than the corresponding Human reward function’s score. The remaining gap between the V2 and Human reward functions can mainly be attributed to lexical versus numeric representations of numbers (i.e. "three" and "3") or a lack of contextualization when querying for synonyms (i.e. is "blue" used as a color or an emotion).

3.2 Semantic Details

We surveyed an audience of 75 individuals, each of whom were asked to (1) complete a single round of the WebShop shopping task, then (2) discuss if there was information useful for completing a shopping task that was not found in WebShop. More survey details are included in §A.2. The three most frequent responses were *customer ratings and reviews* (53 mentions), *similar products* (41 mentions), and *frequently asked questions* (37 mentions). We then implemented a *Reviews* tab on the WebShop environment that appears on a product’s item page. Visuals are included in §A.3.

4 Scalability

WebShop’s attribute tagging and instruction generation pipelines require human annotators. For the attribute tagging task, given a product and a pool of attributes, a human worker is tasked with assigning relevant attributes to the product. For the instruction generation task, given a product, including its title, product category, attributes, and options, a human worker is tasked with constructing a natural language query. This human-in-the-loop system is time-consuming, expensive, and also introduces potential human biases (i.e. varying degrees of knowledge across product categories). Furthermore, this methodology lacks robustness to changes in the WebShop environment and product dataset. For
instance, if new semantic signals are added to products (i.e. reviews), collecting new instructions that incorporate additional details carries a cost that must be paid every time for any future iteration. Yet, such adaptability would be crucial to WebShop’s long term viability.

To automate the attribute generation task, we fine tune an out-of-box T5 model \[11\] to predict attributes from the product information. We train the model at different sizes on pairs of \([X=\text{product information}, Y=\text{attributes}]\) drawn from WebShop’s dataset of products annotated with attributes by MTurk workers. The product information consists of the title, description, and features. The corresponding label consists of a list of five attributes. We test T5 models of sizes \[\text{[small, base, large, 3b]}\] with training sets of size \[50, 200, 500, 1000, 2000, 3000, 4000, 5000, 6500, 8000\]. The validation and test data sets each contain 1,000 data points. To evaluate the model’s performance, we calculate accuracy as the intersection of the predictions and ground truth labels. Figure 3 plots each model’s accuracy at each training set size. Additional model, training, and dataset construction details can be found in §A.4.

![Figure 3: Performance of fine tuned T5 models of various sizes on attribution generation, reformulated as a extractive short-phrase generation task.](image)

With 2,000 training points, the t5-3b model achieves an accuracy of 72.22%. Larger models like t5-large and t5-3b produce structurally and syntactically sound predictions at 1000 training points. At 2,000 training points, t5-3b consistently generates a correctly structured output consisting of five unique attributes. At the same training set size, as the model size increases, accuracy increases. If this trend persists, larger models such as t5-11b may offer greater accuracy at an affordable cost. This reformulation demonstrates promise as an efficient and faithful replacement for human generation.

The performance of the model on attribute generation is encouraging for future work towards automating instruction generation. This model could be supplied with a product’s information, attributes, options, and price, then asked to output a natural language query. However, such a model might lean towards learning more extractive practices, which in turn could confine the diversity of the outputted instructions to a finite set of learned templates. On the other hand, a text generation model with a similar set of inputs and outputs could potentially devise richer queries at the cost of requiring more human-produced training data.

5 Conclusion

We have identified key claims where WebShop falls short, namely the environment’s semantic richness, the faithfulness of the reward function to human evaluation, and the scalability of the attribute and instruction generation pipelines. Our improvements resolve key bottlenecks in WebShop’s usability and makes WebShop a more fertile, solid ground for future work.
References

A Appendix

A.1 Matching Implementation

Algorithm 1 Attribute Matching ($match_{attrs}$)

<table>
<thead>
<tr>
<th>Input</th>
<th>gAttrs, pAttrs, product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output</td>
<td>Attribute score</td>
</tr>
</tbody>
</table>

1: hits = 0
2: for g ← gAttrs do
3: if g in pAttrs then hits++
4: for p ← pAttrs do
5: if fuzz(g, p) > 0.85 then hits++
6: if g in synonym(p, 5) then hits++
7: if g in product then hits++
8: return hits / len(gAttrs)

Algorithm 2 Option Matching ($match_{opts}$)

<table>
<thead>
<tr>
<th>Input</th>
<th>gOpts, pOpts, product, optType</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output</td>
<td>Attribute score</td>
</tr>
</tbody>
</table>

1: hits = 0
2: for g ← gOpts do
3: if g in pOpts then hits++
4: if optType is numeric then break†
5: for p ← pOpts do
6: if fuzz(g, p) > 0.85 then hits++
7: if g in synonym(p, 5) then hits++
8: if g in product then hits++
9: return hits / len(gOpts)

Figure 4: Implementation pseudocode for $match_{attrs}$ and $match_{opts}$. * - The synonym function takes two arguments: the query word and number of synonyms to return. † - If break is hit, the rest of the loop (lines 5-8) is skipped and the thread of execution proceeds to the next iteration.

Figure 4 contains the pseudocode of implementations for matching attributes and options. The thefuzz [1] and PyMultiDictionary [10] modules are respectively used to determine lexical similarity and synonymity.

The matching functions for attributes and options are implemented separately due to the selective application of lexical matching when capturing lexical similarities for options. While attributes are always lexical, options could be numeric (i.e. shoe size, dimensions, quantity/count); for options with numeric values, only exact matching is used to avoid over-scoring. For instance, if a desired option is a shoe size of 11 and the picked product specifies a chosen shoe size of 13, the lexical similarity score is high despite the option being absolutely incorrect. In the above implementation, this difference is captured by line 4 in Algorithm 2 of Figure 4, aside from line 4, the two matching algorithms are technically identical.

A.2 Task Difficulty Survey

We designed a survey with the high level goal of quantifying WebShop’s usability and qualifying important gaps between WebShop’s environment and real world equivalents. The survey asked the following three questions:

1. On a scale of 1 to 7, how hard or easy did you find this task? (1 - Very Hard; 7 - Very Easy)
2. In your opinion, on a scale of 1 to 7, how well did the product you chose fit the original instructions? (1 - No Relation to Instructions; 7 - Perfect Match)
3. What information would you have found helpful in completing this task that you could not find in WebShop? (Free Response)

The survey was delivered as a Google Form and distributed via a combination of posts on public online forums and a posting on WebShop’s project site. Participation in the survey was completely voluntary with no compensation. Beyond the answers to the above three questions, nothing else about a user’s background was collected, including the user’s performance on the WebShop task, which preceded the survey question responses.

For questions one and two, users gave average scores of 5.44 and 5.75 respectively. To determine the most frequent responses for question three, we manually went through survey responses and grouped responses by common keywords. Across all 75 responses, customer ratings and reviews were mentioned in 53 of the replies, followed by similar products (41 times) and frequently asked
questions (37 times). Beyond these, users also mentioned non-semantic enhancements and features to make task navigation easier, such as filtering/sorting products by category or price, a history of viewed products, and product recommendations. We believe pursuing implementations of these additional features would not only bolster WebShop’s semantic richness and faithfulness to human task performers, but also make for a richer action space.

A.3 Reviews Implementation

The reviews tab is displayed on an item page. Upon clicking on this tab, a list of reviews, each of which consist of a title, rating, and comment, are displayed on a separate page. From here, the user’s choices of action are either to go back to the item page via the back button or go back to the search results page via the back to search button. This is equivalent to how the description and features pages can be navigated to and from.

Figure 5: Reviews Page. The page can be accessed via the Reviews button on the item page

Reviews for each corresponding item were retrieved by first navigating to the corresponding product page via the product ID on amazon.com, then scraping the reviews section of the product page using ScraperAPI [8]. This was performed for all 1.18 million real world products in the original WebShop dataset.

A.4 Model, Training, Dataset Construction

To construct the initial dataset for the attribute tagging model, we randomly select 10000 products from the 12087 original products with text instructions. Each of these products in this pool have attribute tags from crowd-sourcing MTurk workers, which was done by the original WebShop authors. We then reformat this data into [product description, attribute] pairings. We then split these values according to an 80/10/10 split. To generate training dataset of different sizes, we sample without replacement the respective amount (i.e. [50, 200, 500 ..., 5000, 6500]) from the 8000 train set.

We use an out-of-box summarization model from Hugging Face’s transformers library [15], following the examples laid out in the open source summarization module code (link) to set the target model, training dataset, and validation dataset for each run. We run the t5-small and t5-base models on a single GPU with batch size of 4, gradient accumulation step of 2, learning rate of 1e-4, and 3 training epochs. For the larger t5-large and t5-3b models, we use the accelerate library to handle distributed training across 4 GPUs and adjust batch size to 2, gradient accumulation step to 8, learning rate of 3e-4, and 3 training epochs [13].