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Abstract

We identify key areas of improvement for WebShop, an e-commerce shopping envi-
ronment for training decision making language agents. Specifically, shortcomings
in: 1) faithfulness of the reward function to human evaluation, 2) comprehensive-
ness of its content, and 3) human participation required for generating instructions
has hindered WebShop’s promises to be a scalable real-world environment. To
solve these issues, we first incorporate greater faithfulness to human evaluation
by designing a new reward function to capture lexical similarities and synonyms.
Second, we identify customer reviews, similar products, and customer FAQs as
missing semantic components that are most helpful to human execution of the
task from surveying 75 respondents. Finally, we reformulate the attribute tagging
problem as a extractive short-phrase prediction task to enhance scalability. Our V2
reward function closes the gap between the scores of the WebShop’s automated
reward function (from 81.5% to 87.7%) and human evaluation (89.9%). Our at-
tribute tagging approach achieves an accuracy of 72.2% with a t5-3b model fine
tuned on 2, 000 training data points, showing potential to automate the instruction
creation pipeline.

1 Introduction

WebShop is a simulated e-commerce website environment for training grounded language agents
on the task of purchasing a product that satisfies a given instruction [16]. Compared to previous
interactive language benchmarks that are often limited by a static, non-interactive dataset or an
inability to scale up [8, 14, 17], WebShop leverages large amounts of realistic data (language and
other modalities like vision) and transitions scraped from the Internet to support scalable learning. A
longer explanation of the WebShop environment and task can be found in §A.1.

A significant aspect of WebShop’s utility towards model training is its ability to simulate real world
web domains. This suggests that the WebShop environment should be realistic, scalable, and faithful
to human perceptions towards this task. In this paper, we identify three key aspects where WebShop
falls short on these claims, ultimately limiting its serviceability as a truly automatic environment. First,
the WebShop environment does not include semantic information that heavily influences how humans
perform the WebShop shopping task. Second, WebShop’s original reward function consistently over-
penalizes a chosen product due to its faulty exact matching criterion, compromising its faithfulness to
human evaluation. Third, while WebShop’s product dataset is collected in a scalable fashion via web
scraping, generating corresponding instructions relies entirely on human crowd-sourcing; WebShop
has 1.18 million real products, but of these, only 12, 087 have corresponding text instructions. This
reliance on human generation does not scale and bottlenecks WebShop’s model training efficacy.

We put forth improvements to address these three points, demonstrating how such adjustments
collectively make for a semantically richer environment that better reflects real world platforms and
offer a scalable way to generate more instructions for model training. First, we solicit and incorporate
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feedback from an audience of 75 random individuals regarding information missing from WebShop
that would be useful to completing the shopping task. Ensuring that WebShop captures key semantic
components is fundamental to its main deliverable of constructing agents that can transfer to real-life
settings. Second, we rewrite the automatic reward function’s matching criteria to look for lexically
similar and synonymous tokens when calculating the attributes and options score components.
Our V2 reward function coheres to human evaluation much more precisely (Original 81.5%, V2
87.7%, Human 89.9%). Lastly, we train and evaluate several attribute extraction models from a
product’s description. Our t5-3b model [12] fine-tuned on 2, 000 training points of [X=product
information, Y=attributes] pairs achieves an accuracy of 72.22%, demonstrating the potential
for high performance at an affordable cost in terms of human data collection. We then briefly
discuss future plans to automate the instruction generation process. Eliminating the need for human
participation in the instruction generation process is vital to WebShop’s extendibility. As real
world platforms evolve, WebShop’s long term viability for model training hinges on how efficiently
the environment, dataset, and instructions can be updated. Without such automation, WebShop’s
instructions and relevance will wither with time.

We believe that the collection of changes presented in this paper greatly advances WebShop’s usability
as an environment for designing language instructed agents with imminent real world applications,
and our primary goal with this work is to make WebShop a worthwhile platform for developing web
agents to the greater grounded language research community.

2 Related Work

Prior to WebShop, designing web-based benchmarks for grounded language agents has been studied
extensively [13, 10]. This work has attempted to capture the web’s scalable, semantic, interactive,
dynamic, and realistic nature, but often fall short due to a relatively confined action space, an inability
to scale up without human-in-the-loop feedback, or a limited set of tasks. The Mini World of Bits
(MiniWoB) environment in particular has served as the test bed for a variety of approaches towards
navigating and interacting with the web, such as workflow-guided exploration [7], curriculum and
meta-learning [3], DOM tree representation [6], adversarial environment generation [4] and large-
scale behavioral cloning [5]. However, MiniWoB’s handcrafted tasks are founded on synthetic data,
and its tasks do not require long-range decision making across multiple contexts. WebShop delivers
on these limitations with its more diverse action and observation spaces; achieving the WebShop
task requires navigating longer paths with context-based action selection and backtracking. However,
WebShop under-delivers in its claims to provide a semantically rich and realistic environment, and
does not deliver in its ability to scale and evolve its instructions dataset without human participation.

3 Environment

3.1 Reward Function Reformulation

WebShop’s original reward function generates a composite score from calculating the similarity
strictly between two products’ attributes, type, options, and price, with a custom programmatic
matching function per category. Exact matching is used to score attributes and options. To quantify the
faithfulness of the original reward function, we randomly re-score 100 samples, selected from a pool
of trajectories generated by average and expert Amazon Mechanical Turk (AMT) workers, against
a human criteria. This criteria follows the original reward function with two main modifications.
Instead of exact matching, points are awarded if (1) the picked product’s attributes, options or type
are lexically similar or synonymous with the goal’s product information and (2) the desired goal
value is not found verbatim anywhere in the picked product’s descriptions.

The matching criteria consistently overpenalizes a picked product due to its failure to account for
lexical similarities and synonyms that humans would otherwise award. For instance, given a goal
token lightweight, the existing reward function would award neither light weight (semantically
similar) nor easy to carry (synonym). In addition, the original approach does not reward a goal
attribute or option that (1) does not appear in the picked product’s corresponding category, but
(2) does appear elsewhere in the product’s description. For example, given organic as a desired
option, a human scorer would award points if the picked product contains organic in its title even if
organic is not presented as an option. The consistent disparity in the attribute, options, and overall
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scores between the Original and Human reward functions, as shown in Figure 1, highlights the
over-penalization that manifests from these discrepancies.

We implement a modified reward function that applies lexical and synonym matching for scoring
attributes and options along with a comprehensive search of product information. The new proposed
reward function is defined in its entirety as Equation 1. A full pseudocode description of the matching
functions can be found in §A.2.1.

r = rtype ·
matchattrs(Uatt, Yatt) +matchopts(Uopt, Yopt) + 1[yprice ≤ uprice]

|Uatt|+ |Uopt|+ 1
(1)

To determine the faithfulness of the new reward function to human rewarding, we repeat the afore-
mentioned verification procedure with the new reward function defined in Equation 1 and list the
average scores per category in Figure 1. We also re-run imitation learning models discussed in the
original WebShop paper. More details about these models can be found in §A.2.2. For both average
and expert MTurk worker trajectories, the Attribute, Options, and Overall scores generated by the
V2 reward function are all greater than the Original reward function scores, but do not exceed the
Human benchmarks. This increase is also observed in the updated scores for IL models in Figure 2.
A lengthier discussion of the advantages and shortcomings can be found in §A.2.1.

MTurk Type Reward Attribute Options Overall

Average Original 71.7 50.5 72.4
V2 74.1 55.0 74.9
Human 75.3 57.0 76.3

Expert Original 78.1 56.1 81.5
V2 85.2 64.9 87.7
Human 88.2 66.8 89.9

Figure 1: Reward function verification comparing tra-
jectories generated by average and expert human MTurk
workers.

Model Reward Score SR

IL w/o Original 45.8 10.6
LP choice V2 51.7 11.1
IL w/o Original 56.0 26.3
LP Search V2 60.1 28.1
IL Original 59.9 29.1

V2 65.3 32.7

Figure 2: Task scores and Success Rate
(%) for WebShop models on original and
new reward functions.

Figure 1 and 2 reflect our observation that the V2 implementation of automatic scoring reduces over-
penalization and is much more faithful to human evaluation. From manual checks of 20 trajectories
chosen randomly from the pool of 200 scored trajectories, the improvements in these scores can be
directly attributed to the lexical and synonym matching cases. Across all 200 trajectories, there were
no instances where the V2 reward function assigned a score that was greater than the corresponding
Human reward function’s score. The remaining gap between the V2 and Human reward functions
can mainly be attributed to lexical versus numeric representations of numbers (i.e. "three" and "3") or
a lack of contextualization when querying for synonyms (i.e. is "blue" used as a color or an emotion).

3.2 Semantic Details

We surveyed an audience of 75 individuals, each of whom were asked to (1) complete a single round
of the WebShop shopping task, then (2) discuss if there was information useful for completing a
shopping task that was not found in WebShop. More survey details are included in §A.3. The three
most frequent responses were customer ratings and reviews (53 mentions), similar products (41
mentions), and frequently asked questions (37 mentions). We then implemented a Reviews tab on the
WebShop environment that appears on a product’s item page. Visuals are included in §A.4.

4 Scalability

WebShop’s attribute tagging and instruction generation pipelines require human annotators. For the
attribute tagging task, given a product and a pool of attributes, a human worker is tasked with assigning
relevant attributes to the product. For the instruction generation task, given a product, including its
title, product category, attributes, and options, a human worker is tasked with constructing a natural
language query. This human-in-the-loop system is time-consuming, expensive, and also introduces
potential human biases (i.e. varying degrees of knowledge across product categories). Furthermore,
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this methodology lacks robustness to changes in the WebShop environment and product dataset. For
instance, if new semantic signals are added to products (i.e. reviews), collecting new instructions that
incorporate additional details carries a cost that must be paid every time for any future iteration. Yet,
such adaptability would be crucial to WebShop’s long term viability.

To automate the attribute generation task, we fine tune an out-of-box T5 model [12] to pre-
dict attributes from the product information. We train the model at different sizes on pairs of
[X=product information, Y=attributes] drawn from WebShop’s dataset of products anno-
tated with attributes by MTurk workers. The product information consists of the title, description,
and features. The corresponding label consists of a list of five attributes. We test T5 models of
sizes [’small’, ’base’, ’large’, ’3b’] with training sets of size [50, 200, 500, 1000,
2000, 3000, 4000, 5000, 6500, 8000]. The validation and test data sets each contain 1, 000
data points. To evaluate the model’s performance, we calculate accuracy as the intersection of the
predictions and ground truth labels. Figure 3 plots each model’s accuracy at each training set size.
Additional model, training, and dataset construction details can be found in §A.5.
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Figure 3: Performance of fine tuned T5 models of various sizes on attribution generation, reformulated
as a extractive short-phrase generation task.

With 2, 000 training points, the t5-3b model achieves an accuracy of 72.22%. Larger models like
t5-large and t5-3b produce structurally and syntactically sound predictions at 1000 training points.
At 2, 000 training points, t5-3b consistently generates a correctly structured output consisting of five
unique attributes. At the same training set size, as the model size increases, accuracy increases. If this
trend persists, larger models such as t5-11b may offer greater accuracy at an affordable cost. This
reformulation demonstrates promise as an efficient and faithful replacement for human generation.

The performance of the model on attribute generation is encouraging for future work towards
automating instruction generation. This model could be supplied with a product’s information,
attributes, options, and price, then asked to output a natural language query. However, such a model
might lean towards learning more extractive practices, which in turn could confine the diversity of the
outputted instructions to a finite set of learned templates. On the other hand, a text generation model
with a similar set of inputs and outputs could potentially devise richer queries at the cost of requiring
more human-produced training data. We briefly discuss potential task formulations in §A.6.

5 Conclusion

We have identified key claims where WebShop falls short, namely the environment’s semantic richness,
the faithfulness of the reward function to human evaluation, and the scalability of the attribute and
instruction generation pipelines. Our improvements resolve key bottlenecks in WebShop’s usability
and makes WebShop a more fertile, solid ground for future work.
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A Appendix

A.1 WebShop Background

WebShop is a simulated e-commerce website environment with 1.18 million real world products and
12, 097 crowd-sourced text instructions. The task at hand is, given a natural language instruction
describing a product, an agent or human task performer is asked to navigate a shopping site with
multiple types of webpages and choose from a wide number of actions to find, customize, and
purchase a product best fits the specifications outlined by the original instructions.

The WebShop environment features a variety of states (each of which corresponds to a unique web
page) and a number of actions to transition from one state to another. A state s represents one of four
types of webpages:

• search page: This page displays a search bar for entering search queries.
• results page: This page displays a list of products corresponding to a search query. Each

product’s product title, price, and rating are displayed.
• item page: This page displays a product description, which specifically includes the product

title, price, rating, and buttons to view more details.
• item_detail page: This page shows additional information about the product depending

on the page’s type, which includes description, features, and reviews.

At each state, an agent has two choices of actions: to either search a text query (e.g. search[Red
shoes]) or choose a text button (e.g. choose[Size 9]). The following Table 1 lists the full set of
available actions and the state transitions they correspond to.

Type Argument State −→ Next State

search [Query] search −→ results
choose Back to Search * −→ search
choose Prev/Next Page results −→ results
choose [Product Title] results −→ item
choose [Option] item −→ item
choose Description/Features item −→ item_detail
choose Previous item_detail −→ item
choose Buy Now Item −→ Episode End

Table 1: List of Actions in WebShop

Within the WebShop environment, an agent is then given the human-provided text instruction and
asked to purchase a product that matches the specifications. Rewards are automatically computed
using a combination of programmatic matching functions that consider the attributes, type, options
and price of the chosen product.

Putting all these components together, the WebShop shopping task can be formulated as a partially
observable Markov decision process (POMDP) (S,A, T ,R,U ,O) with state space S, action space
A, deterministic transition function T : S ×A → S , reward functionR : S ×A → [0, 1], instruction
space U , and a state observation space O. Each web state s ∈ S can be rendered into a HTML
observation ohtml ∈ Ohtml or a parallel text observation otext ∈ Otext. The action space A at each
step is either an infinite space of text to search, or a finite set of buttons to click (Table 1). The
transition T is given by the routing of the web pages as specified in Table 1.

In the WebShop environment setting, an agent is presented with a variety of challenges for language
grounding, including understanding compositional instructions, query (re-)formulation, comprehend-
ing and acting on noisy text in webpages, and performing strategic exploration.

A.2 Reward Function Details

This section of the appendix includes details regarding the implementation of the new reward function,
along with several case studies of the improvements over the original reward function, along with a
discussion on potential areas to refine the new function even more.
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A.2.1 Matching Implementation

The matching functions for attributes and options are implemented separately due to the selective
application of lexical matching when capturing lexical similarities for options. While attributes are
always lexical, options could be numeric (i.e. shoe size, dimensions, quantity/count); for options with
numeric values, only exact matching is used to avoid over-scoring. For instance, if a desired option is
a shoe size of 11 and the picked product specifies a chosen shoe size of 13, the lexical similarity score
is high despite the option being absolutely incorrect. In the above implementation, this difference is
captured by line 4 in Algorithm 2 of Figure 4; aside from line 4, the two matching algorithms are
technically identical.

Algorithm 1 Attribute Matching (matchattrs)

Input gAttrs, pAttrs, product
Output Attribute score

1: hits = 0
2: for g← gAttrs do
3: if g in pAttrs then hits++
4: for p← pAttrs do
5: if fuzz(g, p)>0.85 then hits++
6: if g in synonym(p, 5)∗ then hits++
7: if g in product then hits++
8: return hits / len(gAttrs)

Algorithm 2 Option Matching (matchopts)

Input gOpts, pOpts, product, optType
Output Attribute score

1: hits = 0
2: for g← gOpts do
3: if g in pOpts then hits++
4: if optType is numeric then break†

5: for p← pOpts do
6: if fuzz(g, p)>0.85 then hits++
7: if g in synonym(p, 5)∗ then hits++
8: if g in product then hits++
9: return hits / len(gOpts)

Figure 4: Implementation pseudocode for matchattrs and matchopts. ∗ - The synonym function takes
two arguments: the query word and number of synonyms to return. † - If break is hit, the rest of the
loop (lines 5-8) is skipped and the thread of execution proceeds to the next iteration.

Figure 4 contains the pseudocode of implementations for matching attributes and options. The
thefuzz [1] and PyMultiDictionary [11] modules are respectively used to determine lexical similarity
and synonimity. The PyMultiDictionary library compiles a set of synonyms from educalingo.com,
synonym.com, and WordNet. For each word, the most frequently occurring synonyms across all three
datasets are compiled into a list, which is then statically referenced. A significant shortcoming of this
library is that for words with multiple meanings, the corresponding synonyms are only of the word’s
most popular meaning. For instance, given the word bat, the synonyms returned by PyMultiDictionary
all related to the act of hitting an object, rather than the animal or baseball equipment. While this
is a clear downside, a small but definite advantage is that the current synonymy metric will not
generate any false positives – words that PyMultiDictionary thinks are synonyms, but in reality are
not. This reason accounts for why, out of all 200 trajectories scored by humans for purposes of
evaluating the new reward function, no score generated by the new reward function was greater than
the corresponding human reward function’s score.

The following Table 2 is a list of examples, sourced from the reward verification results, where the
new reward function identified and rewarded a synonym that 1. a human task worker also awarded
points to during the reward verification process, but that 2. the original reward function did not award
due to its exact matching criteria.

Goal Product Value Picked Product Value Reason

grey gray Lexical Match
lightweight light weight Lexical Match

dry chapped Synonym Match
organic natural Synonym Match
elastic stretchy Synonym Match

Table 2: Examples of matches that both human evaluators and the V2 reward function awarded, but
the original reward function did not.
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A.2.2 Baseline Models

The imitation learning models that we run here are directly drawn from the baselines established in
the original WebShop paper [16]. LP Search uses a pre-trained BART model to generate the search
query and IL w/o LP Search uses a rule-based heuristic. LP Choice uses pre-trained BERT weights to
initialize the choice action model and IL w/o LP Choice trains a Transformer from scratch.

A.3 Task Difficulty Survey

We designed a survey with the high level goal of quantifying WebShop’s usability and qualifying
important gaps between WebShop’s environment and real world equivalents. The survey asked the
following three questions:

1. On a scale of 1 to 7, how hard or easy did you find this task? (1 - Very Hard; 7 - Very Easy)

2. In your opinion, on a scale of 1 to 7, how well did the product you chose fit the original
instructions? (1 - No Relation to Instructions; 7 - Perfect Match)

3. What information would you have found helpful in completing this task that you could not
find in WebShop? (Free Response)

The survey was delivered as a Google Form and distributed via a combination of posts on public
online forums and a posting on WebShop’s project site. Participation in the survey was completely
voluntary with no compensation. Beyond the answers to the above three questions, nothing else about
a user’s background was collected, including the user’s performance on the WebShop task, which
preceded the survey question responses.

For questions one and two, users gave average scores of 5.44 and 5.75 respectively. To determine
the most frequent responses for question three, we manually went through survey responses and
grouped responses by common keywords. Across all 75 responses, customer ratings and reviews
were mentioned in 53 of the replies, followed by similar products (41 times) and frequently asked
questions (37 times). Beyond these, users also mentioned non-semantic enhancements and features
to make task navigation easier, such as filtering/sorting products by category or price, a history of
viewed products, and product recommendations. We believe pursuing implementations of these
additional features would not only bolster WebShop’s semantic richness and faithfulness to human
task performers, but also make for a richer action space.

A.4 Reviews Implementation

The reviews tab is displayed on an item page. Upon clicking on this tab, a list of reviews, each of
which consist of a title, rating, and comment, are displayed on a separate page. From here, the user’s
choices of action are either to go back to the item page via the back button or go back to the search
search results page via the back to search button. This is equivalent to how the description
and features pages can be navigated to and from.

Figure 5: Reviews Page. The page can be accessed via the Reviews button on the item page
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Reviews for each corresponding item were retrieved by first navigating to the corresponding product
page via the product ID on amazon.com, then scraping the reviews section of the product page using
ScraperAPI [9]. This was performed for all 1.18 million real world products in the original WebShop
dataset.

A.5 Model, Training, Dataset Construction

To construct the initial dataset for the attribute tagging model, we randomly select 10000 products
from the 12087 original products with text instructions. Each of these products in this pool have
attribute tags from crowd-sourcing MTurk workers, which was done by the original WebShop authors.
We then reformat this data into [product description, attribute] pairings. We then split
these values according to an 80/10/10 split. To generate training dataset of different sizes, we sample
without replacement the respective amount (i.e. [50, 200, 500 ..., 5000, 6500]) from the
8000 train set.

We use an out-of-box summarization model from Hugging Face’s transformers library [15], following
the examples laid out in the open source summarization module code to set the target model, training
dataset, and validation dataset for each run.

We run the t5-small and t5-base models on a single GPU with batch size of 4, gradient accumu-
lation step of 2, learning rate of 1e-4, and 3 training epochs. For the larger t5-large and t5-3b
models, we use the accelerate library to handle distributed training across 4 GPUs and adjust batch
size to 2, gradient accumulation step to 8, learning rate of 3e-4, and 3 training epochs [2].

We formally define the accuracy metric as follows:

accuracy =
attributespredicted ∩ attributestruth

|attributestruth|
(2)

A.6 Instruction Generation

In this section, we briefly discuss potential future work for generating natural language instructions
from product information and the extracted attributes. We surmise three ways to formulate this task:
populating instruction templates, summarizing a product description as an instruction, or generating
product instructions from target attributes.

Creating templates is a straightforward process that would require little engineering, while guaran-
teeing that the output instructions are fluent and logical. A general formulation involves devising a
natural language instruction template with slots that would be filled in with desired attributes, options,
and a price. For instance:

I’m looking for a <product> that is <list of attributes>. Please make sure the
<option type> is <option value>, and keep it under <price>.

This simple and straightforward approach would be an immediate solution to augmenting the num-
ber of available of instructions. However, it reduces the linguistic diversity of instructions and
consequently has the clear downside of drastically simplifying the challenge of query understanding.

A more promising direction that preserves linguistic diversity would be to frame creating an instruction
as an purposeful extraction of product information. Similar to the formulation described in Section 4,
we can define a dataset consisting of pairs of [X=product information, Y=instruction] taken
directly from WebShop’s dataset, then train a T5 based summarization model. However, due to
the lack of uniformity in the crowdsourced instructions, while we expect outputs to reflect this
heterogeneity, we anticipate getting such a setup to create fluent and comprehensible instructions
will likely require a larger dataset that may exceed the size of WebShop’s dataset of readily available,
crowdsourced instructions.

Last but not least, building off of the attribute extraction model put forth in Section 4, we believe that
prompting a generative model such as GPT-3 with pairs of attributes and instructions may be a viable
approach that may not require a significant number of examples. However, such an approach would
require calibration and fine tuning to ensure that generated instructions do not feature attributes or
options that do not reflect the underlying target goal product.
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