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Abstract

The increasing significance of large language001
and multimodal models in societal informa-002
tion processing has ignited debates on social003
safety and ethics. However, few studies have004
approached the analysis of these limitations005
from the comprehensive perspective of human006
and artificial intelligence system interactions.007
This study investigates biases and preferences008
when humans and large models are used as key009
links in communication. To achieve this, we010
design a multimodal dataset and three differ-011
ent experiments to evaluate generative models012
in their roles as producers and disseminators013
of information. Our main findings highlight014
that synthesized information is more likely to015
be incorporated into model training datasets016
and messaging than human-generated informa-017
tion. Additionally, large models, when acting018
as transmitters of information, tend to selec-019
tively modify and lose specific content. Con-020
ceptually, we present two realistic models of au-021
tophagic ("self-consumption") loops to account022
for the suppression of human-generated infor-023
mation in the exchange of information between024
humans and AI systems. We generalize the025
declining diversity of social information and026
the bottleneck in model performance caused by027
the above trends to the local optima of large028
models.029

1 Introduction030

Large models including large language031

model(LLM)s (OpenAI, 2023; Bai et al.,032

2022; Touvron et al., 2023; Zeng et al., 2022)033

and rapidly advancing large multimodal models034

(Yang et al., 2023; Yin et al., 2023), are emerging035

as transformative tools, reshaping our world in036

ways that are both awe-inspiring and formidable.037

A significant aspect is that they are becoming an038

integral part of the dissemination of viewpoints and039

information in human society, exhibiting attributes040

such as connecting, engaging, and interacting.041

Meanwhile, their inherent limitations raise signifi- 042

cant concerns. Extensive Research has highlighted 043

key issues such as discrimination(Navigli et al., 044

2023), hallucinatory(Huang et al., 2023b) outputs, 045

and lack of interpretability(Zhao et al., 2023). 046

However, as a novel and significant component of 047

the communication era (Edwards et al., 2016), the 048

widespread use of large models and their inherent 049

limitations have not been fully explored in terms 050

of their impact on human societal dissemination, 051

including but not limited to language and visual 052

information, and modes of interaction. 053

Our work proposes two realistic models for au- 054

tophagous ("self-consuming") loops (refer to Fig 1 055

and Fig 2) based on the way humans construct and 056

use large models. These two loops emphasize the 057

fact that the interaction process between AI sys- 058

tems and humans will lead to synthetic data (or 059

AI-generated data) being more likely to win in mes- 060

saging compared to real human data. This causes 061

in a growing prevalence of synthetic data within 062

model training datasets and throughout human so- 063

ciety. In this scenario, models are predominantly 064

trained on synthetic data, and humans subsequently 065

build upon this synthetic foundation. We describe 066

this phenomenon as "self-consumption". 067

Our motivations stem from the following key 068

facts: 069

(1) Large models are being extensively utilized 070

across various domains (Kaddour et al., 2023), and 071

even crowd-sourced annotators are heavily relying 072

on generative AI for decision-making processes 073

(Veselovsky et al., 2023). 074

(2) The Internet, being a direct source of train- 075

ing data, implies that contemporary models are 076

increasingly trained on AI-synthesized data un- 077

wittingly (Alemohammad et al., 2023; Shumailov 078

et al., 2023a; Veselovsky et al., 2023). 079

(3) To reduce training costs, many studies have 080

opted to make the models themselves the genera- 081

tors and selectors of their training data (Li et al., 082
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2023; Huang et al., 2023a).083

These facts remind us more cost-effective model084

training processes and wider applications are in-085

evitable trends of large model development, so we086

need to discuss not only the technology of large087

models themselves but also the roles they play in088

their iterations and the development of human soci-089

ety. It’s important to note that without ensuring a090

consistent presence of real human-generated data,091

large models may increasingly rely on their own092

generated datasets due to a lack of fresh data. This093

can result in stagnating improvements in model per-094

formance We define this as the large model falling095

into "local optimum". In this paper, we concentrate096

on the roles of large models as creators and distrib-097

utors of information. We explore how they handle098

data from various sources, each with unique char-099

acteristics, and examine how this data is either aug-100

mented or suppressed. The following summarizes101

the key contributions and findings of this paper:102

First, we introduce two autophagous ("self-103

consuming") loops involving both large models104

and humans. They are designed to analyze how the105

interactions and preferences between humans and106

generative artificial intelligence lead to the domi-107

nance of synthesized data in the selection of model108

training datasets and information dissemination. To109

validate the autophagous ("self-consuming") loops110

proposed, we conducted simulation experiments111

focusing on two key aspects: 1) We examined the112

preferences of both humans and large language113

models(LLMs) in the evaluation and filtration of114

information as part of the dissemination process. 2)115

We investigated the potential drawbacks associated116

with using generative models for enhancing and117

transferring information.118

Second, we designed three distinct experiments119

to prove the above realistic model. To begin with,120

we prompt LLMs to generate answers to specific121

questions, using predetermined scoring criteria, fol-122

lowed by cross-validation scoring. Similarly, we123

instruct crowdsourced annotators to evaluate the124

generated question-answer pairs using the same125

criteria. This experiment aimed to ascertain the126

preferences of language models and humans in127

evaluating and filtering information. Our findings128

indicate that these models tend to overrate their129

own answers and undervalue human responses. In130

addition, to eliminate potential biases from lengthy131

contexts and granular scoring criteria, we set up a132

real-world scenario simulation. This experiment133

demonstrated that, compared to authentic human 134

data, synthesized data is more likely to prevail in 135

information filtration processes. This tendency was 136

also observed in results from crowdsourced annota- 137

tions. Then, we conducted an "AI-washing" exper- 138

iment to illustrate how generative models overlook 139

and alter initial information details during transmis- 140

sion in a cyclical process. 141

To conduct our above experiments, we have 142

also constructed a dataset, comprising both tex- 143

tual and visual elements. We manually screened 144

the most answered questions in Stack Overflow 145

and Quora, including psychology, books, mathe- 146

matics, physics, and other fields. At the same time, 147

we selected fragments from the novel corpus for 148

anonymization processing to study the behavior of 149

the language model when delivering real human- 150

generated data. On the visual data set, we sampled 151

and cleaned the ILSVRC(Russakovsky et al., 2015) 152

to ensure the diversity of image clarity and classifi- 153

cation. 154

We aim to offer a novel perspective on the impact 155

of large models, particularly in their role as inter- 156

mediaries in human societal information dissemi- 157

nation, and the potential hazards this entails. Our 158

investigation reveals that in the cycle of informa- 159

tion exchange between humans and large models, 160

these models exhibit a strong preference in decid- 161

ing which features to amplify or suppress. This 162

leads to the local optimum, where real human data 163

increasingly struggles to enter model training and 164

information exchange. This issue not only creates 165

performance bottlenecks in large models but also 166

makes it increasingly difficult for humans to in- 167

tervene in the model’s generative processes and 168

information transmission. 169

2 Methodology 170

Inspired by perspectives on the communication era 171

as proposed by (Edwards et al., 2016), we present 172

a novel viewpoint to study the impact of large mod- 173

els. Specifically, we conceptualize large models 174

as integral components of human societal informa- 175

tion and opinion dissemination, characterized by 176

attributes such as connecting, engaging, and inter- 177

acting. Our methods are mainly divided into (1) 178

Drawing upon human behaviors in utilizing large 179

models, we design a realistic model of autophagy 180

and self-consumption. (2) We devise new datasets 181

and experimental studies to demonstrate how real- 182

world data distribution is influenced by the use of 183
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Figure 1: Autophagous ("self-consuming")
Loop of Large Models

AI-generated
Data

(Human) Synthetic
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Figure 2: Autophagous ("self-consuming")
Loop of Human

large models.184

2.1 Realistic Models forAutophagous185

("self-consuming") Loops186

Previous work by (Alemohammad et al., 2023) and187

(Shumailov et al., 2023b) analyzed the decline in188

quality and diversity of generated data by visual189

generative models, a phenomenon known as Model190

Autophagy Disorder (MAD), particularly in con-191

texts lacking fresh, real training data. However,192

they used simulated experiments to demonstrate the193

decline in model performance, but did not deeply194

analyze why real data is increasingly scarce, nor195

the impact of this phenomenon on the flow of in-196

formation in human society. Our work aims to fill197

this gap and further extend to large language and198

multimodal models.199

Drawing from the classic communication theory200

of the Ritual view as proposed in (Carey, 2008),201

we redefine the relationship between large models202

and human societal information dissemination (see203

Appendix B for details). As shown in Figures 1 and204

2, both large models and humans can act as gener-205

ators and filters of information in the Human-AI206

communication system. However, this system is207

prompting machine-learning algorithms to encode208

all the stereotypes, inequalities, and power asym-209

metries that exist in human society (Birhane, 2022).210

For example, women with darker skin are more211

likely to be misclassified in gender classification212

compared to men with lighter skin, which is due213

to the majority of samples in the training datasets214

being subjects with lighter skin tones(Buolamwini215

and Gebru, 2018), The biased information gener-216

ation and transmission processes of large models217

and humans will exacerbate such phenomena.218

Therefore, we propose two realistic models for219

autophagous ("self-consuming") loops to simulate 220

the interaction between humans and large models, 221

in order to study their biases as generators and 222

transmitters of information and to demonstrate that 223

this will ultimately lead to the loss of diversity in 224

model training data and human societal datasets, as 225

well as the exacerbation of bias. Below we the two 226

realistic models in more detail. 227

Figure 1 delineates the cyclical influence of large 228

models in the data processing lifecycle. Once de- 229

coded by these models, training data undergoes a 230

transformation through either algorithmic refine- 231

ment or human curation, resulting in what we 232

term "synthetic data". This contrasts with "human- 233

generated data", which originates directly from hu- 234

man input and is typically less structured. Large 235

models assess both types of data, but due to biases 236

inherent in their training, may preferentially filter 237

and elevate synthetic data over human-generated 238

data for use in future learning cycles, we design 239

experiments in the next section to prove this con- 240

clusion. Furthermore, Figure 1 explicates that the 241

human role in this cycle is not purely passive. Hu- 242

mans, influenced by the outputs of large models, 243

may unknowingly prioritize synthetic data due to 244

its processed nature, which seems more immedi- 245

ately usable or relevant(Veselovsky et al., 2023). 246

This preferential feedback loop can inadvertently 247

lead to the diminishment of raw, human-generated 248

data in the pool of resources, as it may be perceived 249

as less refined. 250

Figure 2 builds upon this by showcasing the spe- 251

cific behaviors of humans when interacting with 252

large models. It presents a more detailed view of 253

human-agent interactions, highlighting the empir- 254

ical finding that humans tend to favor data pro- 255
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Initial Paragraph N = 1 N = 2
An individual who was standing beyond the railing,
in the free space around the marble table, and whom
no one had yet caught sight of, since his long, thin
body was completely sheltered from every visual
ray by the diameter of the pillar against which he
was leaning; this individual, we say, tall, gaunt,
pallid, blond, still young, although already wrinkled
about the brow and cheeks, with brilliant eyes and
a smiling mouth, clad in garments of black serge,
worn and shining with age, approached the marble
table, and made a sign to the poor sufferer.

In the open expanse around the marble table, a figure
stood just beyond the railing, elusive to the gaze of
those present. His lengthy, slender frame remained
entirely shielded from view by the pillar’s breadth
against which he leaned. This person, tall and lean,
possessed a pallid countenance, complemented by
blond locks. Though still in the bloom of youth, the
furrows etched across his brow and cheeks spoke of
time’s passage. His eyes sparkled brilliantly, and a
gentle smile graced his lips. Draped in well-worn
black serge, which bore a subdued radiance earned
through years of use, he approached the marble table
and gestured to the afflicted soul.

In the expansive openness surrounding the marble
table, a figure stood just beyond the railing, elu-
sive to the gazes of those present. His lengthy and
slender frame remained completely shielded from
view by the width of the pillar against which he
leaned. This tall and lean individual possessed a
pallid countenance, enhanced by his blond locks.
Although still in the prime of youth, the lines etched
across his forehead and cheeks spoke of the passage
of time. His eyes shimmered with brilliance, and a
gentle smile graced his lips. Adorned in a well-worn
black serge, which exuded a muted radiance earned
through years of use, he approached the marble ta-
ble and gestured towards the troubled soul.

N = 3 N = 4 N = 5
In the expansive area encircling the marble table,
a figure stood just beyond the railing, evading the
gaze of those present. His lithe, elongated form
remained entirely veiled from view by the pillar’s
substantial girth against which he leaned. This in-
dividual, statuesque and slender, possessed a pallor
that harmonized with his blond locks. Despite being
in the prime of his youth, the lines etched across
his forehead and cheeks whispered of the passage
of time. His eyes gleamed with a brilliant intensity,
and a tender smile graced his lips. Cloaked in weath-
ered black serge, which bore a subdued luminance
earned through years of wear, he approached the
marble table and extended a gesture to the afflicted
soul.

In the expansive expanse surrounding the marble
table, a figure stood just beyond the railing, eluding
the gaze of those present. His lithe, elongated sil-
houette remained entirely shrouded from view by
the pillar’s substantial girth against which he leaned.
This individual, statuesque and slender, possessed a
pallor that blended seamlessly with his blond locks.
Despite being in the zenith of his youth, the lines
etched across his forehead and cheeks murmured of
the passage of time. His eyes shone with a brilliant
intensity, and a tender smile graced his lips. Draped
in weathered black serge, which bore a subdued ra-
diance earned through years of wear, he approached
the marble table and extended a gesture to the af-
flicted soul.

In the expansive expanse surrounding the marble
table, a figure stood just beyond the railing, elud-
ing the gaze of those in attendance. His grace-
ful, elongated silhouette remained entirely shrouded
by the substantial girth of the pillar against which
he leaned. This person, statuesque and slender,
possessed a complexion that seamlessly blended
with his blond locks. Despite being in the zenith
of his youth, the lines etched across his forehead
and cheeks whispered of the passage of time. His
eyes shimmered with a brilliant intensity, and a
tender smile graced his lips. Draped in weathered
black serge, which bore a subdued radiance earned
through years of wear, he approached the marble
table and extended a reassuring gesture to the trou-
bled soul.

Table 1: Example of AI-Washing experiment for text. N represents the number of times the large language model is
used for refinement, with each changed part highlighted.

duced by large models. Our experiments in the256

following section suggest that without transparent257

data provenance, humans may prefer these models’258

outputs, further contributing to the cyclical bias259

toward synthetic data. The relationship between260

these two loops is symbiotic; while Figure 1 pro-261

vides an overview of the data cycle in a large model262

training loop, Figure 2 zooms in on the human as-263

pect, offering a microcosm of human preference in264

the Human-AI communication.265

2.2 Rationality and Risks of Autophagous266

Loops267

In this section, we describe how we prove the above268

realistic models and the risks posed by such au-269

tophagous loops. Firstly, the core proposition of270

our reality model is that large models and humans271

cannot maintain objectivity and impartiality as part272

of the information dissemination loop. Further-273

more, there is a clear preference for synthetic data,274

ultimately leading to a diminishing proportion of275

human real data in the information cycle.276

To demonstrate the inhibitory and promotive phe-277

nomena of information transmission within Au-278

tophagous Loops (as indicated by the colored seg-279

ments in Fig 1 and Fig 2). We employed main-280

stream LLMs to generate question-answer pairs281

based on prompts and instructed them to perform282

cross-scoring. In our result analysis, we focused283

on examining the consistency and bias of humans 284

and language models in adhering to scoring stan- 285

dards. We also compared differences between vari- 286

ous model families (such as GPTs and LLaMAs) 287

as answer generators and scorers. 288

Additionally, to mitigate the impact of extended 289

context and scoring standards, we designed a sim- 290

ulated testing scenario to analyze which is more 291

likely to prevail in the cycle of information dissemi- 292

nation in real-world scenarios: real-human answers 293

or AI-generated answers. 294

Finally, to explore the risks posed by large mod- 295

els and humans as information generators in our 296

realistic models, we conducted an "AI-washing" 297

experiment to observe the changes in real data after 298

multiple AI refinements. Our primary analysis fo- 299

cused on the loss of information diversity and the 300

large models’ varying enhancement and weakening 301

of different information. For instance, repeatedly 302

refining an animal image using SDXL eventually 303

transforms it into a human character (see Fig 3). 304

This bias leads to the deepening of stereotypes in 305

human-AI information exchanges. 306

3 Experimental Study 307

Based on our discussion in Section 2.2, in this sec- 308

tion we evaluate the preferences of humans and 309

language models in information selection, thereby 310
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analyzing how real human-generated data is sup-311

pressed in the human-language model information312

dissemination loop.313

3.1 Experimental Setup314

Models and Dataset We employed six LLMs315

to generate and evaluate response data based316

on specific instructions. These models include317

ChatGPT(Li et al., 2022), GPT-4(OpenAI, 2023),318

Claud21, Llama-2-70b-chat(Touvron et al., 2023),319

PaLM2 chat-bison2, and Solar-0-70b-16bit3, each320

representing different architectural frameworks.321

The focus on larger models in our experiments322

is due to their superior capability in instruction323

adherence and context length handling, which we324

found lacking in smaller-scale models. For com-325

puter vision tasks, we utilized the open-source326

model StableDiffusionXL(Podell et al., 2023). In327

assessing textual diversity, the models bge-large-zh-328

v1.5(Xiao et al., 2023) and bge-large-en-v1.5(Xiao329

et al., 2023) were selected as embedding models.330

Our experimental dataset comprised manually331

curated text and image sets. Initially, we hand-332

picked 100 diverse question-answer pairs from333

StuckOverflow and Quaro as the seed data. Sub-334

sequently, for each instruction, the large models335

generated initial responses. Based on the self-336

alignment approach proposed by (Li et al., 2023),337

these responses were further processed to create338

datasets rated as either 1 (lowest) or 5 (highest) in339

terms of quality. The prompts used for generating340

these diverse responses are detailed in Appendix341

C. Finally, we constructed a data set consisting342

of 1900 question-answer pairs. Specifically, our343

dataset consists of a series of 22 tuples, each struc-344

tured as follows:345

Tj = {d,Q,D,A} ∪
5⋃

i=0

{Amodeli ,

Amodeliscore5, Amodeliscore1}

(1)346

Appendix D provides explanations of the cor-347

responding mathematical notation, showing more348

details about the distribution of the dataset.349

The text dataset construction process begins with350

the selection of passages from classic literature351

known for their rich stylistic features and thematic352

1https://www.anthropic.com/index/claude-2
2https://blog.google/technology/ai/

google-palm-2-ai-large-language-model/
3https://huggingface.co/upstage/

SOLAR-0-70b-16bit

significance, where the English dataset is excerpted 353

from the pile books3(Gao et al., 2020), and the 354

Chinese passages are selected from WebNovel. A 355

meticulous anonymization process is employed to 356

prevent the large language model from identify- 357

ing the textual sources, this involves the alteration 358

of recognizable names, places, and events. The 359

image dataset was constructed by carefully select- 360

ing a subset of images from the comprehensive 361

ILSVRC(Russakovsky et al., 2015) dataset, as well 362

as other web image data, with selected categories 363

covering a wide range of topics and scenarios, pro- 364

viding a broad range of visual features and com- 365

plexity. 366

Cross-scoring Experiment To demonstrate the in- 367

hibitory and promotive phenomena of information 368

transmission within autophagous loops, we design 369

cross-scoring experiments with question-answer 370

pairs. We focus on whether LLMs and humans 371

can remain impartial when filtering and transmit- 372

ting information, and if not, what kind of bias they 373

have. 374

We prompt each model to assess not only the 375

answers generated by other models but also those 376

produced by humans. The scoring range was be- 377

tween 1 to 5 (see Table 9). For instance, in the 378

"five-score answers" segment, an answer generated 379

by ChatGPT would be evaluated by other LLMs 380

like GPT4 and Claud2, assigning a score within the 381

1-5 range based on its quality. At the same time, 382

we found fifty crowdsourced annotators to rate all 383

question-answer pairs equally, find the scoring cri- 384

teria in Table 10. We recorded the average scores 385

for all valid samples, excluding instances where 386

the models refused to respond. 387

Exam Scenario Simulation In this experiment, 388

we present our experimental design to answer 389

the following question: Human-generated or AI- 390

generated answers, which one wins in information 391

screening and filtering? As depicted in Figure 7, 392

we design an examination scenario where answers 393

generated by ChatGPT and Claud2, alongside those 394

produced by humans, were anonymized to mitigate 395

any bias. To further eliminate the potential influ- 396

ence of the sequence in which the answers were 397

presented, we randomized their order. Both lan- 398

guage models and human participants, assuming 399

the role of experts, were then tasked with assigning 400

scores to these answers on a percentile scale, and 401

choosing the best answer. 402

AI Washing For AI washing experiments, we aim 403

5

https://www.anthropic.com/index/claude-2
https://blog.google/technology/ai/google-palm-2-ai-large-language-model/
https://blog.google/technology/ai/google-palm-2-ai-large-language-model/
https://huggingface.co/upstage/SOLAR-0-70b-16bit
https://huggingface.co/upstage/SOLAR-0-70b-16bit


Originally Generated Answer
Scorer / Generator ChatGPT GPT4 Claud2 Llama-2-70b-chat PaLM-2-chat-bison Solar-0-70b-16bit Human Average
ChatGPT 4.33 4.29 3.88 4.25 3.92 4.17 2.48 3.90
GPT4 4.63 4.56 4.04 4.41 3.95 4.60 2.77 4.14
Claud2 3.92 3.97 4.00 4.00 3.95 3.97 3.36 3.88
Llama-2-70b-chat 3.91 3.99 3.82 4.00 3.61 3.90 3.23 3.78
PaLM-2-chat-bison 3.99 4.05 3.72 4.22 3.60 3.77 3.57 3.85
Solar-0-70b-16bit 4.10 4.35 4.05 4.16 4.01 4.12 2.59 3.91
Human 4.75 4.79 4.50 4.18 4.28 4.17 3.58 4.32

Best Quality Answer
Scorer / Generator ChatGPT GPT4 Claud2 Llama-2-70b-chat PaLM-2-chat-bison Solar-0-70b-16bit Human Average
ChatGPT 4.24 4.28 4.41 3.80 4.21 4.20 - 4.19
GPT4 4.52 4.75 4.20 4.11 4.00 4.36 - 4.32
Claud2 3.92 3.98 4.21 4.20 4.01 3.97 - 4.04
Llama-2-70b-chat 3.91 4.03 4.26 4.07 4.30 3.95 - 4.09
PaLM-2-chat-bison 3.98 4.23 4.42 3.84 4.26 3.98 - 4.12
Solar-0-70b-16bit 4.34 4.43 4.42 4.33 4.28 4.11 - 4.32
Human 4.23 4.92 4.30 4.20 4.07 4.26 - 4.33

Worst Quality Answer
Scorer / Generator ChatGPT GPT4 Claud2 Llama-2-70b-chat PaLM-2-chat-bison Solar-0-70b-16bit Human
ChatGPT 3.13 1.33 1.27 1.27 2.83 2.21 - 2.01
GPT4 3.19 1.40 1.29 1.33 2.98 1.70 - 1.98
Claud2 4.08 3.23 3.71 1.76 3.85 3.77 - 3.40
Llama-2-70b-chat 2.69 1.06 2.17 1.78 2.27 2.11 - 2.01
PaLM-2-chat-bison 2.65 1.23 1.28 1.69 2.73 2.31 - 1.98
Solar-0-70b-16bit 3.28 1.26 1.89 2.40 2.37 2.40 - 2.27
Human 1.76 2.31 1.24 1.33 2.00 1.82 - 2.09

Table 2: Scoring analysis of language models and human responses. The table presents average scores out of a five-
point scale, assigned by both models and human evaluators, to the generated answers. These scores are calculated
based on the criteria outlined in Appendix G and Appendix F. The table is organized into three sections: originally
generated answers, best quality answers( Amodeliscore5 in our dataset), and worst quality answers( Amodeliscore1 in our
dataset), providing a comprehensive view of the evaluative trends across different generators and scorers. A in our
dataset, represented in the table as raw data generated by humans.

to answer the following question: Are large models404

faithful messengers of information? We focus on405

two aspects: Do these models capture the main406

points in the information that needs to be conveyed?407

Whether large models play the role of an important408

link in the transmission of information can lead to409

important losses. We instruct SDXL and ChatGPT410

to process these samples N times respectively. The411

prompts we used can be found in Table 8.412

3.2 Experimental Results413

3.2.1 Information Selection Biases in Human414

and Language Model Interactions415

LLMs can identify the quality of response as in-416

formation filters but have obvious biases against417

real human data. Table 2 displays the cross-418

scoring results among various LLMs using a five-419

point scale. The outcomes from this evaluation420

allow us to discern: LLMs do have an inherent ca-421

pability to comprehend grading standards and can422

adjust the quality of their generated answers based423

on relevant instructions. However, when scoring424

data according to these criteria, each model exhibits425

certain preferences.426

Specifically, models tend to assign higher scores427

to the high-quality answers generated by them-428

selves, particularly for ChatGPT and GPT-4, which 429

both demonstrate high confidence in their own out- 430

puts. Our experimental results extend the conclu- 431

sion that "language models are narcissistic evalua- 432

tors" (Liu et al., 2023) to the current top-performing 433

LLMs (including both black box and white box 434

models). Also, we find that ChatGPT and GPT-4 435

exhibit similar characteristics in scoring; they are 436

bolder in giving high or low scores (more likely to 437

give scores of 5 or 1), and they both tend to give 438

lower scores to Claude2 and PaLM 2 chat-bison. At 439

the same time, as the generator of answers, Chat- 440

gpt’s worst quality answers can still deceptively 441

obtain higher scores from other models, but human 442

crowdsourcing workers can tell them. Furthermore, 443

we observed that Claud2 tends to favor neutral and 444

’less controversial’ ratings, often assigning scores 445

of 3 or 4, notably even for the worst quality an- 446

swers. This is reflected in the fact that Claud2’s 447

score for low-quality answers is much higher than 448

that of other models, and the difference between its 449

score for initial answers and best-quality answers 450

is not obvious. 451

Llama-2-70b-chat and Solar-0-70B-16bit show 452

similar scoring and generating behaviors, which 453

might be due to Solar-0-70B-16bit being fine-tuned 454
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on the basis of LLaMA2-70B, indicating that the455

pre-training model has a significant influence on456

the model’s preferences. We observed that prompt-457

ing the model to generate better answers did not al-458

ways lead to higher scores in our experiments. Only459

Claud2 showed significant improvement in the an-460

swers compared to the original responses. Con-461

versely, when the model generated poorer answers,462

the overall effect was notably significant. However,463

ChatGPT and Palm-2-chat-bision still achieved rel-464

atively high scores, a possible reason is could be465

attributed to the models being highly aligned to466

avoid producing harmful outputs(Lambert et al.,467

2022). We leave further investigation to our future468

work.469

Human-generated answers receive lower scores.470

In Table 2, we observe that human-generated re-471

sponses received comparatively lower scores from472

the LLMs. Upon analysis, we found that human473

evaluators were able to objectively assess the an-474

swers produced by the LLMs, demonstrated by475

the fact that their scores for high-quality answers476

consistently remained above 4.00 when confronted477

with the results generated by the large language478

model, while the results for lower-quality answers479

remained below 3.00. Furthermore, the scoring480

behavior of our 50 crowd-sourced annotators to-481

ward the answers generated by the large language482

model was largely consistent. This may be due to483

the highly structured and standardized nature of an-484

swers produced by AI systems aligned with human485

feedback, which often received higher scores. In486

contrast, human-generated answers received lower487

scores from the annotators, with significant vari-488

ations among different evaluators. This may be489

attributed to the higher alignment degree between490

the large model and the human collective, com-491

pared to the alignment among individual humans.492

3.3 LLMs-generated Answers are more likely493

to Win in Information Screening494

To mitigate the impact of scoring criteria and ex-495

cessive context length on the evaluative capabilities496

of large models and human raters, we conducted497

an experimental examination grading scenario, as498

presented in Table 3, aligned with those from the499

previous section: human-generated responses re-500

ceived comparatively lower scores. Furthermore,501

we engaged ChatGPT, Claud2, and crowd anno-502

tators to select the best answers. It was observed503

that human answers were seldom chosen as the504

Evaluator

Generator ChatGPT Claud2 Human

Average Score

ChatGPT 95 90 91.7
Claud2 92 88 90
Human 90 75 80

Selected as Best Answer

ChatGPT 41 58 66
Claud2 55 42 25
Human 4 0 9

Table 3: Result of exam scenario simulation

best, indicating a challenge in integrating authen- 505

tic human-generated responses into the training 506

data for models and the real-world human feed- 507

back loop. This finding substantiates the potential 508

risks highlighted in Section 2.2. 509

3.4 LLMs as Biased Information Transmitters 510

Figure 3: Processing images multiple times using a
generative model as well as a Prompt that only controls
the quality of the image can lead to serious biases.

Figure 4: How different images retain and discard dif-
ferent details after 20 Ai-washing experiments. This
suggests that generative models tend to emphasize or
deemphasize certain features, revealing their unique pat-
terns of recognizing, understanding, and reconstructing
visual content.

Large models exhibit inherent biases regarding 511

the manner and content of conveyed informa- 512

tion. The findings of our AI washing experiments 513

demonstrate that large models exhibit inherent bi- 514

ases regarding the manner and content of conveyed 515
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information, as evident in our examination of vi-516

sual and textual data. Let us first illustrate with an517

example: Table 1 presents the results of our sam-518

ple data being refined five times by ChatGPT. We519

observe subtle shifts in the sample’s language style520

and narrative technique. Beginning from the third521

iteration, the sample seems to have reached a "local522

optimum", with fewer edits needed, and ultimately,523

the large language model significantly expanded524

the original details and altered the style. Similarly,

Figure 5: Density distributions of cosine similarity
scores for entities processed N times by LLM.

Figure 6: The average cosine similarity difference over
a series of 20 iterations.

525
in the visual model, we observed a comparable526

phenomenon. By comparing the results of artifi-527

cial intelligence processes applied to the images528

described in Figure 3 and Figure 4, Our observa-529

tions reveal that repeatedly processing images with530

generative models resembles an information and531

feature filtration process. The model decides which532

specific aspects to preserve, diminish, or amplify533

based on its inherent biases. Specifically, in Figure534

3, the model preserved the color distribution of the535

original image but altered the main subject from536

a cat to a human portrait. Conversely, in the right537

two columns of Figure 4, we observe a predomi-538

nant alteration in image style rather than a change539

in the primary content. Most notably, the tomato540

image underwent several iterations with minimal 541

transformation. This inconsistency could be at- 542

tributed to the fact that while SDXL is renowned 543

for generating high-quality images, the definition 544

of quality in the context of generative models is 545

subjective and heavily influenced by the annota- 546

tions of the training dataset, as discussed in (Podell 547

et al., 2023). These observations indicate a bias 548

in the model’s processing, where certain features 549

are selectively preserved or altered based on the 550

model’s training and inherent design. This can lead 551

to images containing specific features taking up a 552

larger proportion of the information loop, such as 553

hand-drawn styles, portraits, close-ups of objects 554

with clear backgrounds, etc. 555

The risk to the fairness and diversity of infor- 556

mation spread Our experiment demonstrates that 557

large models when acting as information dissemina- 558

tors, possess a unique optimization function. They 559

tend to optimize more for real-world data while 560

being more lenient towards the data they generate 561

themselves. Specifically, Figure 5 shows that after 562

processing text using LLMs, the similarity between 563

texts significantly increases, with the lower similar- 564

ity tail being ’washed out’, and the cross-similarity 565

between sentences being enhanced. Meanwhile, in 566

Fig 6, we can see that after N = 3 iterations, the 567

average cosine similarity difference of the text rela- 568

tive to the previous round tends to stabilize. This 569

indicates an ’alignment’ process of the large mod- 570

els when processing information. We will leave the 571

specific details of this process to future research. 572

As large models become increasingly important in 573

information dissemination, this phenomenon poses 574

significant risks to the fairness and diversity of in- 575

formation dissemination. 576

4 Conclusion 577

In our study, a Ritual view of communication the- 578

ory is utilized to examine large models as gen- 579

erators and disseminators of information within 580

human society. We present two realistic models 581

for autophagous loops and experimentally validate 582

the biases of large models and humans in partic- 583

ipating in the information cycle. It is found that 584

AI-generated information tends to prevail in infor- 585

mation filtering, whereas real human data is often 586

suppressed, leading to a loss of information diver- 587

sity. This trend limits next-generation model per- 588

formance due to fresh data scarcity and threatens 589

the human information ecosystem. 590
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5 Limitations591

Selection of Models While we have experimented592

with LLMs that are available, many outstanding593

models are worth exploring in the future. These594

include the GLM family of models(Du et al., 2022),595

which are known for their innovative architectures,596

and the MoE-structured Mixtral 8x7B4, etc. In ad-597

dition, some open-source multilingual models are598

also worth investigating, such as the Qwen series of599

models trained on a large Chinese corpus(Bai et al.,600

2023) and the Arabic model Jais5. Models with dif-601

ferent languages, parameter sizes, and architectures602

exhibit different behaviors. In the field of visual603

models, more open-source and commercial models604

are worth investigating, such as Midjourney and605

DALL-E 3. In future research, we aim to deeply an-606

alyze the roles and characteristics of these models607

as an important part of human social information608

transfer.609

Reliability of Crowdsourced Workers A signif-610

icant portion of our conclusions is derived from611

crowd-sourced annotators, sponsored by a start-up612

company’s data annotation department. Of these613

annotators, 64 % hold graduate degrees in science614

and engineering, and all possess proficient bilin-615

gual reading skills in Chinese and English. How-616

ever, ensuring that their existing AI knowledge617

does not bias their judgments remains challeng-618

ing. Additionally, the distribution of our annota-619

tors in the real world varies from the general user620

base of generative models. There is also an ongo-621

ing debate about the reliability of crowd-sourced622

workers(Spurling et al., 2021; Tarasov et al., 2014).623

Veselovsky et al. have discussed the behavior of624

annotators using LLMs for labeling, which could625

compromise the reliability of the results.626
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A Related Work873

Generative models are transforming the system874

of information production and dissemination in875

human society. Represented by generative mod-876

els such as ChatGPT and DALL-E 3(Betker et al.,877

2023), anyone can issue commands to artificial878

intelligence through natural language, expressing879

their creativity and requirements. The AI under-880

stands and utilizes various resources to produce881

and create information(Kaddour et al., 2023; Yin882

et al., 2023), which is then rapidly disseminated883

through the internet. This breakthrough has signif-884

icantly altered the role of artificial intelligence in885

human society. Generative models are no longer886

just tools; they have become a crucial component887

in the production and dissemination of informa-888

tion(Goldstein et al., 2023). The risks associated889

with generative AI are not solely due to the bi-890

ases and hallucination(Huang et al., 2023b; Shen891

et al., 2023), which we have continually empha-892

sized. They also stem from how humans interact893

with these systems, and the potential consequences894

such as the creation of "information cocoons"(Piao895

et al., 2023).896

Self-Training and Self-Consuming Large Mod-897

els. There is now a lot of excellent work that898

provides new ideas for automated model align-899

ment, enabling data filtering and data enhance-900

ment through the model itself (Gulcehre et al.,901

2023; Li et al., 2023), and thus avoiding the signifi-902

cant costs involved in creating high-quality human-903

annotation data. Simultaneously, a large number of904

datasets(Taori et al., 2023; Xue et al., 2023) gener-905

ated by LLMs are also used to fine-tune pretraining906

foundation models, and the most powerful mod-907

els currently available are often used as judges in908

"model competitions"(Chiang et al., 2023). The909

risk involved in these approaches is significant, as910

models have already been preliminarily proven to911

be less than objective and impartial(Wu and Aji,912

2023; Liu et al., 2023). In Alemohammad et al.’s913

research, an autophagous ("self-consuming") loop914

specific to computer vision models was proposed.915

This cycle, characterized by the training of mod-916

els using data generated by the models themselves,917

leads to a decline in both model performance and918

data diversity(Shumailov et al., 2023a). Subse-919

quent studies have also demonstrated similar traits920

in language models(Briesch et al., 2023).921

B Ritual View of Communication 922

Carey conceptualized the Ritual View of Communi- 923

cation in his communications theory. This perspec- 924

tive views communication not just as a medium 925

for the transmission of information, but as a sym- 926

bolic process that contributes to the construction 927

and maintenance of social reality. Carey’s theory 928

posits that communication is integral to the rep- 929

resentation, maintenance, adaptation, and sharing 930

of a society’s cultures over time. Sharing, partici- 931

pation, association, and fellowship are all central 932

to his views. In short, the ritual view conceives 933

communication as a process that enables and en- 934

acts societal transformation. The relevance of this 935

theory extends to modern media forms such as 936

newspapers and social media platforms in this com- 937

munication age(Thornburg, 1995; Edwards et al., 938

2016). The emergence of the Internet and so- 939

cial media platforms like Twitter has further de- 940

veloped the ritualistic nature of communication. 941

These advancements have facilitated the growth 942

of global online communities and redefined pat- 943

terns of interaction (Jain et al., 2021; Lee and Kim, 944

2014). Similarly, generative AI represents a pro- 945

found transformation in the modes of human social 946

communication and the ways humans interact with 947

artificial intelligence(Fui-Hoon Nah et al., 2023; 948

Rane, 2023). We should regard artificial intelli- 949

gence, trained on extensive human civilization data, 950

as an integral part of human societal information 951

transmission, acknowledging its role in shaping 952

and sharing the cultural and social fabric of human 953

society(Papadimitriou, 2016; Rane, 2023). 954

C Answer Generation Prompt Template 955

In this section, we present the prompt 956

template for generating the Originally 957

Generated Answer(Table 4), the Best 958

Quality Answe(Table 5) and the Worst Quality 959

Answer(Table 6). 960

Question:{query}+{detail}
Answer the question:

Table 4: The prompt template for generating the
Originally Generated Answer
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Below is an instruction from an user
and a candidate answer. Evaluate
whether or not the answer is a good
example of how Al Assistant should
respond to the users instruction.
score=5: It means it is a perfect
answer from an Al Assistant. It has
a clear focus on, being a helpful
Al Assistant, where the response looks
like intentionally written to address
the user's question or instruction
without any irrelevant sentences. The
answer provides high-quality content,
demonstrating extensive knowledge in
the area, is very well written, logical
, easy to follow.
Question: {query}+{detail}
Now give an example of an Al assistant
answerwith a score of 5 about the
question:

Table 5: The prompt template for generating the Best
Quality Answer

Provide an AI assistant response with a
score of 1(lowest quality) based on the
given instruction: Your example should
demonstrate an incomplete, vague, off-
topic, controversial, or exactly what
the user asked for.
Question: {query}+{detail}
Now give the counter-example of an AI
assistant response:

Table 6: The prompt template for generating the Worst
Quality Answer

D Dataset Details961

Our QA pair dataset was generated by process-962

ing manually selected seed data through a large963

language model. The seeds were sourced from964

Stackoverflow and Quora, featuring the most popu-965

lar questions and top-supported answers. Table 7966

illustrates the distribution of this data.967

our dataset consists of a series of 22 tuples based968

on the seed data, each structured as follows:969

Data Category Percentage
Stackoverflow QA 30%
Quora QA - Books 10%
Quora QA - Psychology 10%
Quora QA - Life 10%
Quora QA - Happiness 10%
Quora QA - Personal Experiences 10%
Quora QA - Mathematics 10%

Table 7: Distribution of Dataset Categories

Tj = {d,Q,D,A} ∪
5⋃

i=0

{Amodeli ,

Amodeliscore5, Amodeliscore1}

(2) 970

where j indexes the tuple within the dataset. 971

Each element of the tuple is defined as: 972

• d: The domain of the question-answer pair 973

which provides context for the question clas- 974

sification. 975

• Q: The question posed by a user that serves 976

as a direct input for model-generated answers. 977

• D: Document-related information that pro- 978

vides background knowledge necessary for 979

answering Q. 980

• A: The human answer that received the most 981

endorsements for question Q, serving as a 982

benchmark for answer quality. 983

For each language model modeli, where i ranges 984

from 0 to 5, representing one of six different large 985

language models: 986

• Amodeli : The initial answer generated by 987

model i. 988

• Amodeliscore5: The highest quality answer gen- 989

erated by model i, according to prompts. 990

• Amodeliscore1: The lowest quality answer gen- 991

erated by model i, according to prompts. 992

E AI-Washing Prompt Template 993

We use prompts that have nothing to do with the 994

content generated and instead have to do with the 995

quality of the generation, as presented in Table 8. 996

F LLM Cross-scoring Prompt 997

We use the same prompt as in the work of Li et al.. 998

as shown in Table 9 999
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[Prompt for ChatGPT]
(en) Polish the following paragraph:
{paragraph}

[Prompt for SDXL]
Positive: best quality, masterpiece,
ultra detailed, 8K, UHD, Ultra Detailed
Negative: worst quality, split picture,
ignoring prompts, lowres

Table 8: The prompt template for AI-washing.

G Scoring Criteria for Human Evaluation1000

Based on the modifications to the previous scoring1001

prompts for the LLMs, we created scoring criteria1002

for our crowdsourced annotators, as demonstrated1003

by Table 10.1004

H Exam Scenario Simulation1005

Figure 7 displays the flowchart and prompt tem-

Figure 7: Exam Scenario Simulation
1006

plate for the Exam Scenario Simulation experi-1007

ment.1008

I Examples of AI-washing Experiments1009

for Image1010

We give more examples of the image AI-washing1011

experiments in Figure 8 and Figure 9, where we1012

can observe that after iterative processing the tex-1013

tual parts of the images are frequently changed and1014

fragmented, e.g., the text on the airplane, the num-1015

bers on the clock, and the letters on the potato chip1016

packet are changed several times. The pet dog is1017

gradually stylized as a cartoon and becomes black1018

and white, and the cauliflower is transformed by 1019

the model into a bouquet of flowers after the first 1020

processing and is gradually stylized as a cartoon. 1021

At the same time, the model adds features to the 1022

initial image based on stereotypes from the train- 1023

ing data, such as the logo of a clock and the logo 1024

of a car. In contrast, the overall structure, colors, 1025

and borders of the image of an apple are not sig- 1026

nificantly changed. It can be seen that the model 1027

will be affected by the model’s own structure and 1028

training process when processing image features 1029

and has different enhancement or inhibition effects 1030

on different features. 1031

J Computational details of data 1032

distribution 1033

The density of cosine similarity scores between 1034

two vectors A and B is calculated as: 1035

Cosine Similarity =
A ·B

∥A∥∥B∥
(3) 1036

Where: A and B are the embedding vectors of two 1037

paragraphs. 1038

The density of cosine similarity scores is esti- 1039

mated using Kernel Density Estimation (KDE), 1040

which is given by: 1041

KDE(x) =
1

n

n∑
i=1

Kh(x− xi) (4) 1042

Where: 1043

• Kh is the kernel function with bandwidth h 1044

• x represents the value at which the density is 1045

estimated 1046

• xi are the data points (cosine similarity scores 1047

in this case) 1048

• n is the number of data points. 1049

The KDE process smoothens the discrete data 1050

points to create a continuous density curve, repre- 1051

sented on the y-axis of Figure 5. 1052

The average cosine similarity difference between 1053

two successive iteration is calculated as follows: 1054

∆S = S̄i − S̄i−1 (5) 1055

Where: 1056

• ∆S is the average cosine similarity difference 1057

between the current file and the previous file. 1058
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Below is an instruction from an user and a candidate answer. Evaluate whether
or not the answer is a good example of how Al Assistant should respond to
the users instruction
Please assign a score using the following 5-point scales
1: It means the answer is incomplete, vague, off-topic, controversial, or
exactly what the user asked for For example, some content seems missing,
the numberedlist dnot start from the beginning, the opening sentence
repeats the user's question. Or the response is from another person's
perspective with their personal experience (e.g. taken fmblog posts), or
looks like an answer from a forum. Or it contains promotional text,
navigation text, or other irrelevant information
2: It means the answer addresses most of the asks from the user. It does
not directly address the user's question. For example, it only provides a
high-level instead of the exact solution to the user's question
3: It means the answer is helpful but not written by an Assistant. It
addresses the basic asks of the user. It is complete and self-contained
with the drawback that the response is not written from an assistant's
perspective, but from other people's perspective. The content looks like
an excerpt from a blog post, or web page, and provides search results. For
example, it contains personal experience or opinion, mentions comments
section, or shares on socialmedia, etc.
4: It means the answer is written from an Al assistant's perspective with a
clear focus on addressing the instruction. It provides a the complete, clear,
and comprehensive response to user's question or instruction without missing
or irrelevant information. It is well organized self-contained, and written
in a helpful tone. It has minor room for improvement, more concise and
focused.
5: It means it is a perfect answer from an Al Assistant. It has a clear focus
on, being a helpful Al Assistant, where the response looks like intentionally
written to address the user's question or instruction without any irrelevant
sentences. The answer provides high-quality content, demonstrating extensive
knowledge in the area, is very well written, logical, easy to follow,
engaginIt means it is a perfect answer from an Al Assistant. It has a clear
focus on, being a helpful Al Assistant, where the response looks like
intentionally written to address the user's question or instruction without
any irrelevant sentences. The answer provides high-quality
content, demonstrating extensive knowledge in the area, is very well written,
logical, easy to follow, engaging, and insightful please first provide brief
reasoning you used to derive the rating score, and then write "Score:
|rating" in the last line.
generated instruction: {question}+{detail}
answer: {answer}

Table 9: The prompt template for evaluating answers

• S̄i is the average cosine similarity within the1059

current file.1060

• S̄i−1 is the average cosine similarity within1061

the previous file. 1062

• For the first file comparison, S̄i−1 is assumed 1063

to be 1. 1064
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You are to evaluate the quality of a response given to a specific question.
Your evaluation should consider how well the response addresses the query,
its completeness, clarity, and relevance.
Scoring Scale:
Score 1: The response is unsatisfactory. It is incomplete, vague, unrelated
to the question, or may simply echo the question without providing an answer.
The content may be off-topic, contain promotional material, or resemble a
personal opinion rather than a factual answer.
Score 2: The response generally relates to the question but does not directly
answer it. It may provide an overview rather than the specific details or
solution that the question warrants.
Score 3: The response is useful and addresses the basic query. However, it
may not be from the expected perspective, potentially reading like a generic
excerpt from a blog or an article rather than a targeted answer.
Score 4: The response is on target, addressing the question directly and
completely with a clear and organized presentation. Minor improvements could
be made to enhance focus or conciseness.
Score 5: The response is exemplary, directly and comprehensively addressing
the question with high-quality content. It demonstrates extensive knowledge,
is logically structured, easy to understand, engaging, and provides insight.
Procedure for Evaluation:
Read the question and the corresponding response carefully.
Evaluate the response based on the above criteria.

Question: {query}+{detail}
Response: {answer}

Record your score :

Table 10: Scoring criteria for crowdsourced annotations

This calculation method provides a metric for1065

assessing the change in similarity across sequential1066

data sets, reflecting the evolution or consistency of1067

the data characteristics.1068
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Figure 8: Examples of image AI-washing experiments
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Figure 9: Examples of image AI-washing experiments (part2)
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