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ABSTRACT
Microservice-based architectures enable different aspects of ap-
plications to be created and updated independently, even after
deployment. Associated technologies such as service mesh pro-
vide fault resiliency through attribute configurations that govern
self-adaptive application-level behavior in response to failures, in
a manner transparent to the application and constituent microser-
vices. While this provides tremendous flexibility, the configured
values of these attributes – and the relationships among them –
can significantly affect the performance and fault resilience of the
overall application. It is thus important to perform fault injection
and load testing on the application, prior to full deployment. How-
ever, given a large number of possible attribute combinations and
the complexities of the distributed system underlying microser-
vices and service mesh architectures, it is virtually impossible to
determine through traditional software development practices the
worst combinations of attribute values and load settings with re-
spect to self-adaptive application-level fault resiliency. To this end,
we present a model-based reinforcement learning approach that
determines the combinations of attribute and load settings that
result in the most significant fault resilience behaviors at an appli-
cation level. We validate our approach through a case study on a
simple “request-response” service using the Istio service mesh. Our
analysis shows that, even for a simple service, our model-based
reinforcement learning approach outperforms a baseline selection
of action parameters. Further, we show that communicative multi-
agent reinforcement learning improves the performance of both
the non-communicative single and multi-agent learning paradigms.

KEYWORDS
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1 INTRODUCTION
A key trend in web application development in recent years is the
advent of microservices-based architectures, in which applications
are composed of small microservices that communicate with one
another via distributed system mechanisms. Using open-source mi-
croservices technologies such as Kubernetes [1–3], developers can
create and update different aspects of an application independently,
even after deployment. At the same time, to ensure that faults in in-
dividual microservices – or delays in communication among them –
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do not cascade into application-level failures, microservice-based ar-
chitectures increasingly include service mesh technologies such as
Istio [4, 5] and Linkerd [6, 7]. These service meshes [8–10] contain
associated ”sidecars” [11] that monitor individual microservices
for failures and delays, and perform self-adaptive actions to ensure
application-level fault resilience. These actions may include, for
example, bypassing problematic microservices upon consecutive
errors, or ejecting them for a period of time [12–14]. The number of
consecutive errors or the length of the ejection time is configured
through attributes in the service mesh.

While this provides [15–20] tremendous flexibility, the config-
ured values of these attributes – and the relationships among them
– can significantly affect the performance and fault resilience of the
overall application. It is thus important to perform fault injection
and load testing on the application, prior to full deployment. How-
ever, given the large number of possible attribute combinations and
the complexities of the distributed system underlying microservices
and service mesh architectures, it is virtually impossible to deter-
mine through traditional software development practices the worst
combinations of attribute values and load settings with respect to
self-adaptive application-level fault resiliency.

In this paper, we present a model-based reinforcement learning
approach towards service mesh fault resiliency that we call SFR2L
(Service Fault Resiliency with Reinforcement Learning), which de-
termines the combinations of attribute and load settings that result
in the most significant fault resilience behaviors at an application
level. Our novel contributions are as followings:

(1) To the best of our knowledge, it is the first investigation on
service meshes using machine learning methods - in particu-
lar, model-based reinforcement learning - to learn the system
parameters governing application-level fault resiliency.

(2) We have developed a complete model-based reinforcement
learning workflow for service mesh resiliency, including
data collection, service modelling, and policy learning for re-
siliency optimization, using a multi-faceted agent approach.

(3) We have validated our approach via a case study on the Istio
service mesh using the httpbin “request-response” service.

(4) We provide some initial insights of the efficacy of our model-
based reinforcement learning algorithms relative to certain
relationships among attribute values and load settings rep-
resented in our datasets.

1.1 The Istio Service Mesh
Istio is an open-source service mesh technology for distributed
and microservice architectures, that provides a transparent way to
build applications. Istio’s trafficmanagement features enable service
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monitoring and self-adaptive application-level fault resilience. In
particular, Istio provides outlier detection and circuit breakers to
realize fault resilience. Outlier detection enables the capacity of
microservices to be limited when they are behaving anomalously,
or even to be ejected for a period of time. Circuit breaking [21] is
a capability that prevents microservice failures from cascading. In
particular, if a microservice A calls another microservice B, which
does not respond within an acceptable time period, the call can be
retried or even bypassed via the circuit breaker specification.

Istio also provides fault injection [22] and load testing [23] ca-
pabilities - using the Fortio [24] load testing engine - in order to
test application fault recovery. Such testing is considered critical to
perform prior to application deployment to gain confidence in the
fault resilience of deployed applications.

To realize these self-adaptive fault resilience mechanisms, Istio
enables traffic rules to be configured for application deployment;
these configurations govern the specific behaviors of outlier de-
tection and circuit breaking. Some of the attributes of these traffic
rules are depicted below, and govern the number of requests and
connections allowed to a service that may be behaving anoma-
lously, the amount of time it may be ejected and at what rate and at
what detection interval, and the number of consecutive errors after
which a circuit breaker will be tripped. The total threads is the num-
ber of Istio worker threads, while the total requests is the number
of requests to the application - both used as configuration in Is-
tio/Fortio load testing. Details of these attributes and configurations
are at [22, 23, 25].

Traffic & Load Setting Explanation

Max Pending Requests Max pending req to a destination
Max Connections Max existing connections

Max Req Per Connection Max allowed req per connection
Ejection Time The service ejected duration
Max Ejection Max ejected service

Interval Time between ejection & recovery
Consecutive Errors Max consecutive failed requests

Total Threads Max available threads (load)
Total Requests Total number of requests (load)

The degree to which an application is fault resilient is heavily
dependent on these attribute configurations and the relationships
among them. Thus, a key challenge is to determine the most signif-
icant combination of attribute values and load settings, where the
“worst” combinations of values can be used to drive load testing.
However, the determination of these most significant value com-
binations is highly complex due to the inter-dependencies among
attributes, the failure behavior of the underlying services and the
communication among them, as well as the complexities of the
underlying distributed system. Thus, it is impossible to determine
the most significant attribute values via traditional software devel-
opment practices due to sheer number of possible behaviors.

As the determination of the most significant combinations of
attribute values and load settings is in essence an optimization
problem, machine learning methods are well-suited to address this
problem. In particular, reinforcement learning (RL) [26] is a promis-
ing approach, in which agents take actions to maximize cumulative
rewards over time. In our context, the ”worst” combinations can be
considered as rewards, where reward computation from previous

algorithmic iterations can be used to guide choices in future itera-
tions in real-time. For Istio application fault resiliency, the ”worst”
behavior is when user requests to an application fail, especially
under high volumes of incoming requests. The parameters below
can be used as the basis for rewards (or dually, penalties).

Reward Factors Definition

Querys Per Second (QPS) Rate of processing incoming requests
503 Response Rate Failed request rate

Model-free methods in reinforcement learning. require the deci-
sion agents to take real-time actions directly on service mesh-based
applications, and learn from the observed behavior. This necessi-
tates implementation of algorithmic APIs in a service mesh (e.g.
Istio) environment, likely to be very expensive and inefficient. Thus,
model-based methods – in which a simulation model of the service
mesh-based application is inferred through deep learning meth-
ods – would be more suitable in this context. Inspired by the ideas
in [27] to infer a model for microservices resource allocation, we
have developed a model-based reinforcement learning method in
which “worst-case” rewards can be used to determine configuration
settings that are critical in load testing for resiliency prior to appli-
cation deployment. Our machine learning workflow is depicted in
Figure 1, where the simulation model is inferred through multiple
layer perceptions (MLP). We devise RL agents based on Q-learning,
ranging from single agents to communicative multiple agents.

Figure 1: SFR2L Pipeline.

We validate our approach through a case study on httpbin – a
simple ”request-response” service – using the Istio service mesh.
The use of httpbin enables us to focus primarily on the role of
service mesh configuration parameters, without interference from
communication delays among multiple microservices, variations
in microservice topologies, and underlying distributed system is-
sues. Our experimental results show that, even for a simple service,
our model-based reinforcement learning approach outperforms a
baseline selection of action parameters. Extending our analysis,
we further show that communicative multi-agent reinforcement
learning improves the performance of both non-communicative
single and multi-agent learning paradigms. We believe our results
on httpbin provide insight at an “atomic” level, and can be used
as input into service mesh-based applications built from composite
microservices.
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1.2 Related Work
Microservices and their self-adaptation is an active area of research,
and a comprehensive survey and taxonomy of recent work is given
in [28]. However, as described in [28], there is a very limited work
on application-level resiliency, as well as very little work on using
machine learning in the context of service self-adaptation.

From a service resiliency perspective, two kinds of approaches
have been proposed: systematic testing and formal modeling. [29]
presents an infrastructure and approach for systematic testing of
resiliency. However, this work does not cover the selection of the
tests to be run. Our work focuses on automating such a selection
through machine learning. For formal modeling, [30] presents the
use of formal verification based on continuous-time Markov Chains
(CTMCs) to analyze tradeoffs in service resiliency mechanisms in
simple client-service interactions. [31] also uses formal verification
based on CTMCs, and analyzes multiple concurrent target services
as well as steady-state availability measures.

We now describe related reinforcement learning research. [27]
presents a model-based reinforcement learning approach for re-
source allocation in scientific workflow systems based on microser-
vices. While this paper does not address service meshes or fault
resilience, our overall approach is inspired by their work. [32] pro-
poses to utilize deep neural networks to generate Q-factors instead
of storing large amounts of reward-action pairs in a hash table.
Following their work, [33] presents a deterministic policy gradient
algorithm to execute over continuous action spaces. For model-
based reinforcement learning, [34–37] demonstrate the theoretical
basis of policy gradient for model-based interactions [38–40]. With
regard to multi-agent reinforcement learning (MARL), [41] intro-
duces an efficient MARL algorithm for parallel policy optimization.
[42] proposes to deploy multi-agents to optimize the traffic con-
trols and networks, which is an important application in actual
networking practice. Communication/collaboration is a common
configuration in multi-agent systems [43–47] and advantageous at
executing more stable, efficient and better decision-making [48–53]
using decentralized Q-networks. Nevertheless, decentralized multi-
agents have weak performance in the case that only small datasets
are available or there are fewer state vector features for policy
learning. Regarding this, [54] presents a cooperative multi-agent
paradigm where the model parameters can shared by decentral-
ized agents, while each agent preserves its own private network
to make decisions. This is the groundwork for our communicative
multi-service management.

Our work is, to the best of our knowledge, the first to apply
model-based reinforcement learning to application-level fault re-
siliency for microservices and service mesh. Further, we show that
communicative multi-agent reinforcement learning improves the
performance of both the non-communicative single andmulti-agent
learning paradigm.

Our paper is structured as follows. Section 2 describes our MLP
simulation model. Our model-based reinforcement learning algo-
rithms are described in Section 3, while Section 4 presents our ex-
perimental results and discusses our conclusions and future work.

2 OUR MLP SIMULATION MODEL
We now describe our use of multiple-layer perceptrons (MLP) to
infer the simulation model depicted in Figure 1.

2.1 Model Formulation
For our investigation, we focus as listed in Table 1.1 on the 7 traffic
rules and 2 load settings - namely, the number of input requests
to and the number of threads used by the application during load
testing. We denote the feature vector representing traffic rules as c,
input requests and threads are either 𝑎1 or 𝑎2, which is concatenated
as a = {𝑎1;𝑎2}.

As described in Section 1, QPS and 503 Response Rate are two
application-level responses that are essential observations in load
testing. We use the following notation: 𝑁 denotes the number
of requests sent to the application during load testing, 𝑁503 the
number of failed requests (503 failures) at the end of load testing,
and 𝑃503 the failure rate. Thus, 𝑃503 = 𝑁503/𝑁 . We denote 𝑞 as
the application’s rate of processing requests (QPS), and 𝑇 as the
total processing time of requests. Hence, 𝑞 = 𝑁 /𝑇 . We train a
simulation model whose input-output behavior on inputs a, c and
outputs 𝑃503, 𝑞 closely simulates that of the actual Istio API under
load testing. Multiple-layer perceptrons (MLP) is to simulate this

relationship: {𝑃503;𝑞} = W𝑆𝑀 {a; c}, where W𝑆𝑀 =
𝑙∏

𝑖=1
(Φ𝑖 + b𝑖 ) is

the well-trained 𝑙-layer MLP (Φ𝑖 is the weight of 𝑖-th layer and b𝑖
is the corresponding bias).

2.2 Data Collection and Model Training
To train our MLP simulation model, we generate five structured
datasets with varying parameter values as shown in Table 1, where
we assume all integer values, and perform a uniform selection.
(Some of the parameters have a single value, as in our experiments
the impact of these parameters was negligible.)

Each data point in each dataset consists of 9 values: the 7 traffic
rules 𝑐 and the two load parameters 𝑎. For each data point, we
run httpbin on the actual Istio API under Fortio load testing as
described in Section 1 using configurations 𝑐 and 𝑎, and record the
corresponding outputs; namely, 𝑃503 and 𝑞. This resulting data with
the configurations and corresponding responses is then provided to
W𝑆𝑀 for training; in particular to learn the weights/bias Φ𝑖 and b𝑖
for each layer. In order to test our model, we perform a 80-20 split
on each dataset to obtain training and testing sets, respectively.

Table 1: Ranges of Traffic Rule, Thread, and Request Settings.

Traffic Rule S1 S2 S3 S4 S5
& Load Settings

MaxPendReq 1-7 3-7 12-18 12-18 15-30
MaxConn 1-7 3-7 1-5 10-20 5-15

Max ReqPerConn 1-7 3-7 10-16 12-18 15-30
EjecTime 3m 3m 3m 3m 3m
MaxEjec 100% 100% 4-8% 12-18% 22-30%
IntvlTime 1s 1s 1s 1s 1s

ConsecError 1 1 4-8 12-18 22-30
TotalThreads 1-5 3-7 10-16 12-18 16-20
TotalRequests 400-450 100-700 50-500 250-600 1000-2000
DatasetSize 9302 12005 20592 12310 6970

2.3 Simulation Model Evaluation
We now evaluate the performance of our MLP simulation model
with respect to baseline models. [55] summarizes most common
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ways of modelling networking communications, among which Lo-
gistic Regression, Linear Ridge Regression and Support Vector Re-
gression are highlighted due to their simulation performance. We
thus compare these against our 5 layer-MLP. As shown in the fol-
lowing table, our MLP simulation model has the best performance
(mean squared error) compared to the baseline simulation models,
hence we use it in our approach.

Mean Squared Error for the Models

Simulation S1 S2 S3 S4 S5
Model

SVM 1.3 0.78 1.05 1.33 1.24
LogisticRegr 0.93 0.81 0.99 1.00 1.00
LinRidgeRegr 0.85 0.84 0.98 1.01 0.96
5 layer-MLP 0.13 0.17 0.52 0.63 0.38

3 OUR MODEL-BASED REINFORCEMENT
LEARNING ALGORITHMS

We now present our model-based reinforcement algorithms. We
assume load testing proceeds in𝑚 rounds; for 1 <= 𝑡 <=𝑚, we use
Round𝑡 to denote the 𝑡th round, and denote 𝑞(𝑡), 𝑃503 (𝑡), 𝑎(𝑡), 𝑐 (𝑡)
as the generalizations to rounds. We assume that all traffic rules
𝑐 (𝑡) and load testing configurations 𝑎(𝑡) are (re)-set, and that all
requests submitted, at the beginning of each round Round𝑡 .

We now turn our attention to the definition of rewards. As de-
scribed in Section 1, our goal is to identify the worst configurations
with respect to fault resiliency. We thus use rewards to represent
“penalties”, where high rewards correspond to configurations that
have a negative impact on fault resiliency. Configurations with
high rewards can then be used as input into load testing.We
thus define the reward 𝑟 (𝑡) at Round𝑡 as

𝑟 (𝑡) = 𝑞(𝑡) · 𝑃503 (𝑡) . (1)

We note that the reward 𝑟 (𝑡) grows with the probability of failed
requests and the rate of processing requests, hence taking into ac-
count both the probability of failure and the load on the application.

We now illustrate how to apply a single RL agent to a single ser-
vice. Then we discuss the deployment of multi-agent reinforcement
learning to address the complex parametric space optimization ac-
cording to their collaborative relationships. Finally, multi-service
resiliency optimization is illustrated using communicative decen-
tralized learning.

3.1 Single Agent for Single Service
Firstly, we demonstrate the simplest case that only one agent and
one simulation model interact with each other. In this case, only
one kind of action (threads or requests) is decided by 𝐴𝑔(𝑡). Given
a preset traffic rule c(𝑡), agent 𝐴𝑔(𝑡) takes as input state s(𝑡) =
{c(𝑡), 𝑎1 (𝑡)} and makes action 𝑎2 (𝑡). After that, we obtain all con-
figurations to trigger application responses 𝑞(𝑡) · 𝑃503 (𝑡) to yield
reward 𝑟 (𝑡).

The policy of the single agent is 𝜋𝜃 (𝑡 ) = 𝑎2 (𝑡), and the Q-factor
is 𝑄 (s, 𝑎) = 𝐸 [𝑟 (𝑡 + 1), 𝑟 (𝑡 + 2), ...|𝑆 (𝑡) = s, 𝑎2 (𝑡) = 𝑎], RL model is
𝑚(s, 𝑎) = 𝐸 [𝑆 (𝑡 + 1) |𝑆 (𝑡) = s, 𝑎2 (𝑡) = 𝑎]. Our goal is to maximize
the performance function 𝐽 (𝜃 ) = 𝐸 [𝑟 (1) +𝛼𝑟 (2) +𝛼2𝑟 (3) + ...|𝜋 (𝜃 )],
where 𝛼 is the discounted coefficient used in RL. In the implemen-
tation, the agent will search through all the actions for a given state

and select the state-action pair with the highest corresponding
Q-factor [56]. The policy gradient for long term

∇𝐽 (𝜃 ) = 𝐸𝛾 [∇𝜃
𝑡−1∑︁
𝑡=0

𝑙𝑜𝑔𝜋 (𝑎2 (𝑡) |s(𝑡)𝑅(𝛾)], (2)

where 𝛾 is the sequential action-state pair trace in time order:
{s(0), 𝑎2 (0), s(1), 𝑎2 (1), ..., s(𝑡 − 1), 𝑎2 (𝑡 − 1)}, 𝑅(𝛾) is the reward
function across the trace and ∇𝐽 (𝜃 ) is the gradient used for net-
work update. The single agent for single service is summarized in
Algorithm 1.

Algorithm 1: Single Agent for Single Service
Input: s(1), ..., s(𝑡) from Round 1 to Round 𝑡

1 for s(𝑡) do
2 Execute the 𝜋𝜃 (𝑡 ) to obtain the optimal action 𝑎2 (𝑡)

using s(𝑡) ;
3 Combine 𝑎(𝑡) and s(𝑡) to formulate input vector i(𝑡) to

trigger microservice response;
4 Observe reward 𝑟 (𝑡) to do policy gradient as per Eq. (2);

3.2 Multi-agents for Single Service
Following the previous settings, we extend the scenario into multi-
agent interactions and define two kinds of collaborative relation-
ships between two agents, respectively. Denote 𝑎1 (𝑡) as the action
taken by 𝐴𝑔1 (𝑡), 𝑎2 (𝑡) as the action taken by 𝐴𝑔2 (𝑡). s1 (𝑡), s2 (𝑡)
are corresponding state vectors, Two agents share the same reward
for ∇𝐽 (𝜃1),∇𝐽 (𝜃2), 𝜃1, 𝜃2 are RL Q-network parameters.

3.2.1 Independent Decision-making. In this scenario, 𝐴𝑔1 (𝑡) and
𝐴𝑔2 (𝑡) take the same state vector s(𝑡) with traffic rules c(𝑡) only
and make actions in parallel: 𝜋𝜃1 (𝑡) = 𝑎1 (𝑡) and 𝜋𝜃2 (𝑡) = 𝑎2 (𝑡).
After both actions aremade, the input vector for microservice model
is {c(𝑡);𝑎1 (𝑡);𝑎2 (𝑡)}.

3.2.2 Dependent Decision-making. Two agents are executed in
order and the input for the latter agent takes into account the action
of the former agent. Thus, input state vector s2 (𝑡) = {s1 (𝑡);𝑎1 (𝑡)} .
Similarly, the input vector s1 (𝑡) = {s2 (t);𝑎2 (𝑡)}. All types of agent
interdependencies are listed below.

Agent State Action (in order)

Thread Agent 7 Traffic rules + Requests Threads
Request Agent 7 Traffic Rules + Threads Requests
Thread&Request 7 Traffic Rules for both Threads, Requests
Thread-Request 7 Rules-7 Rules + Threads Threads, Requests
Request-Thread 7 Rules-7 Rules + Requests Requests, Threads

3.3 Communicative Multi-Agents for
Multi-Services

So far we explored 𝑛 services that are optimized by multiple agents,
but with no parameter sharing. We now introduce communication
among agents for decision making, as depicted in 2. All state vec-
tors of all agents go through the shareable Q-network SNet. SNet
parameters are then input to each agent’s private PNet.

Each agent calculates the rewards for their respective service,
which is used to update the agent’s own PNet. Outputs from each
PNet are then shared with the SNet.
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Figure 2: The configuration of communicative multi-agents.

Algorithm 2: Communicative Multi-agents
Input: c1 (1), ..., cn (1) ..., c1 (𝑡), ..., cn (𝑡) from Round 1 to

Round 𝑡 for 𝑛 services
1 for Round 1 to 𝑡 : do
2 for all agents do
3 Generate s𝑛 (𝑡);
4 s𝑛 (𝑡) goes through SNet and obtain msn (𝑡);
5 for all ms𝑛 (𝑡) do
6 ms𝑛 (𝑡) goes through respective PNet𝑛 .
7 𝑎𝑛 (𝑡) ← 𝜋𝜃𝑠 ,𝜃𝑝𝑛 (𝑡 ) ;
8 Obtain corresponding service response ;
9 Update PNet using corresponding reward 𝑟𝑛 (𝑡) as

Equation (4);
10 Update SNet using all 𝑟𝑛 (𝑡) as Equation (6);

We define the sharable network SNetwith input state 𝑆1 (𝑡), ...𝑆𝑛 (𝑡)
and weight 𝜃𝑠 . The decentralized network (private) PNet with hid-
den and output layers and their weights are 𝜃𝑝𝑖 where 1 <= 𝑖 <= 𝑛

is the number of agents. For the purpose of optimizing the worst-
case resiliency, the reward is defined as

𝑟𝑛 (𝑡) = 𝑞𝑛 (𝑡) · 𝑃503 (𝑡) + 𝛽 ·
∑𝑛
𝑖=0 𝑞𝑛 (𝑡) · 𝑃503 (𝑡)

𝑛
, (3)

where 𝛽 is the coefficient. After rewards are generated for each
one, the respective PNet will be updated by corresponding rewards
and Q-factor pair, SNet will be updated by all pairs from all service
agents. As a consequence, the policy of each agent is relevant to 𝜃𝑝𝑛
and 𝜋𝜃𝑠 ,𝜃𝑝𝑛 (𝑡 ) = 𝑎𝑛 (𝑡). The long-term policy gradient for PNet𝑛

∇𝐽 (𝜃𝑝𝑛) = 𝐸𝛾𝑛 [∇𝜃𝑝𝑛
𝑡−1∑︁
𝑡=0

𝑙𝑜𝑔𝜋 (𝑎𝑛 (𝑡) |msn (𝑡)𝑅(𝛾𝑛)], (4)

where msn (𝑡) is the output vector of SNet and the input of PNet.
The prediction function 𝑓𝜃𝑠 of SNet is represented by

ˆs(𝑡 + 1) = 𝑓𝜃𝑠 (sn (𝑡),msn (𝑡)) . (5)

Updating 𝜃𝑠 is to find the MSE minimizer of predicted ˆs(𝑡 + 1) and
s(𝑡 + 1)

𝜃𝑠 = argmin
𝜃𝑠

∑
D




sn (𝑡 + 1) − 𝑓𝜃𝑠 (s(𝑡),msn (𝑡))



2

|D| , (6)

where training data sn (𝑡),msn (𝑡), sn (𝑡 + 1) ∈ D for all agents.
If multiple actions are decided by agents, only agents of similar
action types communicate over all services (i.e. request agents
only communicate with other request agents, thread agents only
communicate with other agent agents etc.). The learning paradigm
for multi-services is summarized in Algorithm 2.

4 CASE STUDIES
We now describe the results of our experiments using reinforce-
ment learning agents that implement the algorithms presented in
Section 3.

Our experiments proceed in rounds: at the beginning of each
round, the values for each traffic rule configuration are selected. We
again use the parameter ranges in Table 1, with integer values for
the traffic rules chosen uniformly from the given ranges (or using
the single fixed value as given). (E.g. For S1, themax pending request
is uniformly drawn from𝑈 (1, 7)). This gives us our 𝑐 (𝑡) input for
Round𝑡 . We now use our RL algorithms to select the choices of load
testing parameters for the number of requests and threads, giving
us values for 𝑎(𝑡).

To test our approach, we input 𝑐 (𝑡) and 𝑎(𝑡) into our MLP sim-
ulation model in each round Round𝑡 ; the output is 𝑃503 and 𝑞(𝑡).
We repeat this for𝑚 rounds; the cumulative rewards over the𝑚

rounds is then 𝑅𝑟𝑙 =
𝑚∑
𝑡=0

𝑟 (𝑡). To evaluate the performance of our

approach, we wish to compare the results of our RL agents against
a baseline model. As no other baseline models exists to the best of
our knowledge, we use a baseline model of random selection, where
we use the same 𝑐 (𝑡), but randomly select 𝑎(𝑡) (without the use of
RL). The cumulative rewards generated by our MLP model with

these baseline inputs at each round is defined as 𝑅𝑏𝑙 =
𝑚∑
𝑡=0

𝑟𝑏𝑙 (𝑡).

The reward ratio 𝑅𝑎𝑡𝑖𝑜𝑠𝑖𝑚 = 𝑅𝑟𝑙/𝑅𝑏𝑙 , which measures the perfor-
mance of our RL methods using the simulation model w.r.t. baseline
selection of the 𝑎(𝑡), is depicted in Table 2 in the columns labeled
“Sim.”

We then also wish to compare the result of our MLP simulation
model against the actual behavior of the Istio API. To this end, for
each dataset used above, we record the inputs 𝑐 (𝑡) and 𝑎(𝑡) (chosen
by our RL agents, or by random selection for the baseline) at each
Round𝑡 . We then input these parameter values into the actual Istio
API, and compute the actual rewards at each round. We thus obtain
a cumulative reward on the actual Istio API using our RL agents,
as well as a cumulative reward on the actual Istio API using the
random baseline selection for the load testing parameters. The
reward ratio 𝑅𝑎𝑡𝑖𝑜𝑣𝑎𝑙 , which measures the performance of our RL
methods validated on the actual Istio API w.r.t. baseline selection
of the 𝑎(𝑡), is depicted in Table 2 in the columns labeled “Val.”. Our
experiments use 500 epochs, where each epoch contains𝑚 = 1000
rounds.
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Table 2: Policy Evaluations. We note that *5 means 5 services are aggregated and communicative.

Configurations
Datasets S1 S2 S3 S4 S5

Sim. Val. Sim. Val. Sim. Val. Sim. Val. Sim. Val.

Single for Single Request 1.03 1.01 2.71 1.77 1.75 1.31 2.05 1.81 1.31 1.29
Thread 2.21 1.63 1.04 0.99 1.18 0.98 1.16 1.00 1.02 0.93

Multi for Single
Thread&Request 2.26 2.15 3.45 2.80 1.84 1.44 2.07 2.65 1.31 1.45
Thread-Request 2.24 2.36 3.39 2.57 1.96 1.32 2.14 3.07 1.32 1.20
Request-Thread 2.22 2.11 3.44 3.00 1.79 1.62 2.11 2.52 1.33 1.33

Multi for Multi

Request*5 1.01 1.00 2.96 2.30 1.77 1.43 2.05 2.87 1.33 1.30
Thread*5 2.23 1.83 1.15 1.28 1.13 1.06 1.18 1.03 1.01 1.16

Thread&Request*5 2.26 2.35 4.12 2.92 1.84 1.29 2.11 2.83 1.32 2.05
Thread-Request*5 2.22 1.51 3.53 2.52 1.94 2.21 2.09 3.18 1.34 1.44
Request-Thread*5 2.28 2.19 3.50 2.33 1.99 2.40 2.11 2.16 1.33 1.44

Figure 3: Cumulative reward (per epoch) ratio. Upper - single service case. Bottom - aggregated multi-services. Note that we use
the term "call" interchangeably with "request".

Wenow examine the results in Table 2.We first observe that most
of the multi-agents have higher performance than the single agent
decisions, as evidenced by the higher value (recall that the value is
the ratio of cumulative rewards from the RL decision w.r.t. baseline
selection of load testing parameters). For instance in dataset S2,
Thread&Request agents gain 27% higher rewards than Request only
(3.45 to 2.71) agent in simulation and 69% higher rewards (2.80
to 1.77) in validation. Furthermore,multi-agents usually have
higher validation accuracy than single agent, as evidenced
by the simulation value being more close to the validation value
for a given data set. For example for dataset S1, the Thread only
agent has 2.21 reward ratio in simulation and 1.63 in validation
(36% higher), but Thread&Request agent has a 2.26 reward ratio
and more accurate 2.15 validated ratio (5% higher). In addition, as
shown in Figure 3, multi-services have more stable learning trends.

(Note that we use the term "call" interchangeably with "request" in
the figure.)

In this paper, we have comprehensively investigated how model-
based reinforcement learning can aid in fault resiliency for service
mesh-based applications. In particular, the configuration settings
that yield the “worst-case” rewards give insight into which combi-
nations of Istio configurations should be tested rigorously during
load testing to ensure robust fault recovery. The stability of our
learning trends lends confidence that the identified configurations
are likely to significantly compromise application-level fault re-
siliency. Our experiments on a simple ”request-response” service
are not subjected to interference from potential delays in microser-
vice communication, microservices topologies, or underlying dis-
tributed systems issues. We thus view that our results can be used
”atomically” in future extensions of our approach to applications
built from composite microservices.
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