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ABSTRACT

This paper presents DREAMLLM, a learning framework that first achieves versatile
Multimodal Large Language Models (MLLMs) empowered with frequently over-
looked synergy between multimodal comprehension and creation. DREAMLLM
operates on two fundamental principles. The first focuses on the generative model-
ing of both language and image posteriors by direct sampling in the raw multimodal
space. This approach circumvents the limitations and information loss inherent to
external feature extractors like CLIP, and a more thorough multimodal understand-
ing is obtained. Second, DREAMLLM fosters the generation of raw, interleaved
documents, modeling both text and image contents, along with unstructured layouts.
This allows DREAMLLM to learn all conditional, marginal, and joint multimodal
distributions effectively. As a result, DREAMLLM is the first MLLM capable of
generating free-form interleaved content. Comprehensive experiments highlight
DREAMLLM’s superior performance as a zero-shot multimodal generalist, reaping
from the enhanced learning synergy. Project page: dreamllm.github.io.

1 INTRODUCTION

“What I cannot create, I do not understand.”

Richard P. Feynman, on his blackboard at the time of his death, 1988

Content comprehension and creation in multimodality are crucial and among the ultimate courses
of machine intelligence (Sternberg, 1985; Legg & Hutter, 2007). To this end, Multimodal Large
Language Models (MLLMs) (Alayrac et al., 2022; Hao et al., 2022; Huang et al., 2023) have emerged
as extensions of the successful GPT-style Large Language Models (LLMs) (Brown et al., 2020; Zhang
et al., 2022; OpenAI, 2022; 2023a;b; Chen et al., 2023b; Touvron et al., 2023a;b) into visual realm.
Recognized as foundation models (Bommasani et al., 2021), MLLMs have achieved unprecedented
progress in multimodal comprehension capabilities. These advanced models typically enhance LLMs
by incorporating images as multimodal inputs, such as CLIP features (Radford et al., 2021), to
facilitate language-output multimodal comprehension. Their aim is to capture multimodal conditional
or marginal distributions via a language posterior. However, multimodal creation, which involves
generating images, texts, or both, necessitates a universal generative model that simultaneously learns
language and image posteriors—currently underexplored.

Until very recently, some concurrent works have shown success in conditional image generation using
MLLMs (Koh et al., 2023; Sun et al., 2023b). As depicted in Fig. 1, these methods compel MLLMs
to produce either discrete or continuous conditional embeddings that explicitly align with a pretrained
CLIP encoder, which could later be used by a pretrained Stable Diffusion (SD) (Rombach et al., 2022)
model for image generation. However, due to an inherent modality gap (Liang et al., 2022), CLIP
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Figure 1: Conceptual comparison of vision-language (VL) foundation models. (a) CLIP-like
models (Radford et al., 2021; Yu et al., 2022a; Li et al., 2023e) take advantage of two towers
that explicitly align VL representations. (b) Flamingo/BLIP-like models (Alayrac et al., 2022; Li
et al., 2022; 2023d; Huang et al., 2023) encode VL representations into a unified manifold space
using a singular MLLM. However, these models lack full autoregressivity, as they only output
language. (c) Concurrent MLLMs (Koh et al., 2023; Sun et al., 2023b) align visual outputs with CLIP
representations, but this alignment occurs in an intermediate space, not a raw data space. Consequently,
models such as Emu necessitate a second-stage fine-tuning of Stable Diffusion (Rombach et al., 2022)
for raw image generation. These models also fall short in generating raw interleaved documents. (d)
Our DREAMLLM, instead, generates raw language and image inputs in a unified auto-regressive
manner, inherently enabling interleaved generation. Only non-autoregressive generation loss is noted.

semantics focus predominantly on modality-shared information, often overlooking modality-specific
knowledge that could enhance multimodal comprehension. Consequently, these studies have not fully
realized the potential learning synergy between multimodal creation and comprehension, have shown
only marginal improvements in creativity, and remain deficient in multimodal comprehension.

In this work, we introduce DREAMLLM, universally learning image and text posteriors with expected
creation & comprehension synergy, based on the following two de-facto designing principles:

i. Generate Everything as It Is Different from existing works that generate intermediate image
representations like CLIP embeddings during training, DREAMLLM not only takes all modali-
ties raw data as inputs but also as outputs in a truly end-to-end fashion (i.e., outputs are identical
to inputs, see Fig. 1). The challenge lies in enabling MLLMs to learn the image posterior
without compromising their comprehension capabilities. To address this, we introduce dream
queries, a set of learnable embeddings that encapsulate the semantics encoded by MLLMs. This
approach avoids altering the output space of MLLMs. Raw images are then decoded by the SD
image decoder conditioned on these semantics. In this fashion, the pretrained SD acts as the
score function (Ho et al., 2020). The image posterior is thus modeled by direct sampling in the
pixel space, facilitated by score distillation (van den Oord et al., 2018; Poole et al., 2023).

ii. Interleaved Generative Pre-Training (I-GPT) DREAMLLM is trained to generate interleaved
multimodal corpora from the internet (Zhu et al., 2023b), both encoding and decoding interleaved
image-text multimodal inputs. Unlike encoding multimodal inputs as in existing methods,
decoding interleaved multimodal outputs is challenging due to the complex interleaving layout
structures and the long-context requirement of images. Our approach tackles the interleaved
layout learning using a unique <dream> token that predicts the placement of images within texts.
Harnessing DREAMLLM’s causal nature, all contents are generated with history multimodal
contexts of any length. This interleaved generative pretraining (I-GPT) inherently forms all
joint, marginal, and conditional distributions of images and texts in the document, leading to a
learning synergy that grounds DREAMLLM’s comprehension in creation and vice versa.

Extensive experiments across various vision-language comprehension, content creation, and language-
only tasks demonstrate DREAMLLM’s superior performance as a zero-shot multimodal generalist.
For instance, DREAMLLM-7B achieves an 8.46 FID on MS-COCO and sets a new standard with
49.1/35.9 scores on MMBench and MM-Vet evaluations, respectively. Moreover, we delve into
the learning synergy between comprehension and creation, revealing decent in-context generation
capabilities. With I-GPT pretraining, DREAMLLM generates interleaved documents following
human prompts after supervised fine-tuning on instruction-following data curated with GPT-4. To
our knowledge, this work is the first to enable MLLMs to create free-form interleaved content with a
learning synergy on both sides. As a foundational learning framework, DREAMLLM is adaptable
across all modalities, laying a promising foundation for future multimodal learning research.
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2 BACKGROUND & PROBLEM STATEMENT

Autoregressive Generative Modeling Given the joint probability distribution pθ(w) over a sequence
w = {wt}Tt=1 with length T , the canonical causal generation (Mikolov et al., 2010; Radford
et al., 2018; 2019) of every token wt by a θ-parameterized language model F is modeled as
pθ(w) =

∏T
t=1 pθ(wt|w<t). For multimodal comprehension, the sequence could contain K ordered

images I = {Ik}Kk=1 interleaved with words. The k-th image is processed as patch embeddings
with visual encoders Hϕ(·) like CLIP, which will then be encoded by a projector Mζ (e.g., a
linear layer (Huang et al., 2023) or DETR- (Carion et al., 2020)/Perceiver-like (Jaegle et al., 2021)
Resampler (Alayrac et al., 2022)) into L-length visual embeddings Vk = {vℓ}Lℓ=1. Let K(t) be the
image number before the t-th word token. The maximum likelihood estimation (MLE) is to minimize

LMLLM(Θ = {θ, ζ},w, I) := −Et
[
log pΘ(wt|w<t,V<K(t))

]
, VK(t) = Mζ ◦ Hϕ(IK(t)). (1)

Diffusion Models Diffusion Models (DMs) (Sohl-Dickstein et al., 2015; Ho et al., 2020) are
probabilistic generative models that learn the latent structure of data z = {zt}Tt=1 through continuous-
T -timestamps information diffusion. DMs involve a forward or diffusion process q that smoothly
converts data to Gaussian noise. Given the initial datapoint z1 ∼ q(z1) and diffusion rate βt := 1−αt,
this process can be defined as a marginal distribution q(zt|z1) := N (

√
αtz1, βtI), and the perturbed

data distribution is q(zt) :=
∫
q(zt|z)q(z)dz by integrating out data density q(z). A reversed

denoising probability flow p is used for generating data from noise zT ∼ N (0, I) as a Markov Chain
with transition approximated by a Gaussian model pξ(zt−1|zt) := N (µξ(zt), σ

2
t I), which relates to

an optimal MSE denoiser since q(zt−1|zt, z1) is Gaussian with enough timestamps (Feller, 1949;
Sohl-Dickstein et al., 2015). Ho et al. (2020) show that the optimization with the evidence lower
bound (ELBO) can be simplified by training a denoising U-Net ϵξ(zt, t) parameterized with ξ that
estimates the conditional expectation E[ϵ ∼ N (0, I)|zt] (Bao et al., 2022). Let C be the conditional
embeddings, and the perturbed data zt =

√
αtz1 +

√
1− αtϵ, the minimization objective is

LDM(ξ, z) := Et∼U(0,1),ϵ∼N (0,I)

[
∥ϵξ(zt; C, t)− ϵ∥2

]
. (2)

Since ϵξ(zt; t) = −σtsξ(zt; t) as derived from Tweedie’s (Efron, 2011; Luo, 2022), it is equivalent
to denoising score matching of ∇zt log pξ(zt) (Hyvärinen, 2005; Vincent, 2011), thus DMs are also
called score-function based generative models (Song & Ermon, 2019; 2020; Song et al., 2021; 2023).

2.1 HOW CAN WE USE MLLMS FOR DIFFUSION SYNTHESIS THAT SYNERGIZES BOTH SIDES?

Multimodal signals typically exhibit modality-specific information that has distinct structure but
complementary semantics (Dong et al., 2023). This complementary property allows us to utilize deep
language comprehension to enhance cross-modal image generation (Saharia et al., 2022). However,
the potential of multimodal creation to improve comprehension remains largely unexplored.

Existing strategies (Koh et al., 2023; Sun et al., 2023b; Ge et al., 2023) integrate successful Diffusion
Models with MLLMs by aligning the semantic spaces of conditional embeddings between CLIP CCLIP

and MLLMs CMLLM. The objective is to minimize alignment loss Lalign = D(Mψ ◦ CMLLM, CCLIP),
employing a distance metric D(·, ·) and a condition projector Mψ . However, CLIP models primarily
learn modality-shared semantics, often overlooking modality-specific information due to a modality
gap (Liang et al., 2022; Liu et al., 2023f). This explicit alignment with CLIP’s intermediate output
space may induce more conflicts than synergies, as MLLMs are forced to generate semantically
reduced information, deviating from their original output space. To circumvent these issues, we
propose alternative learning methodologies (See Fig. 2), which we elaborate in the ensuing sections.

Learning Objective Our aim is to leverage MLLMs to model distributions via direct pixel space
sampling. Here, the pretrained SD functions as a score metric, distilling the learned data distribution.
This approach is similar to Score Distillation Sampling (Poole et al., 2023) (SDS, also known as
Score Jacobian Chaining (Wang et al., 2023a)). In this context, image posterior is learned in a
DeepDream-like manner (Mordvintsev et al., 2015), using MLLMs’ conditional parameterization.

Conditional Embeddings Rather than converting the output space of MLLMs to align with CLIP,
we propose to query MLLMs using learned embeddings. Consequently, MLLMs-enriched semantics
serve as diffusion conditioning, and the distribution is implicitly modeled through synthesis sampling.
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Figure 2: Overview of of our DREAMLLM framework. Interleaved documents serve as input,
decoded to produce outputs. Both text and images are encoded into sequential, discrete token
embeddings for the MLLM input. A special <dream> token predicts where to generate images.
Subsequently, a series of dream queries are fed into the MLLM, capturing holistic historical semantics.
The images are synthesized by the SD image decoder conditioned on queried semantics. The
synthesized images are then fed back into the MLLM for subsequent comprehension.

3 DREAMLLM

We introduce DREAMLLM, a universal learning framework that facilitates both MLLM’s compre-
hension and creation capabilities. Our DREAMLLM is built with a causal decoder-only LLM Fθ as
the model foundation, i.e., Vicuna (Chiang et al., 2023) based on LLaMA (Touvron et al., 2023a)
trained on ShareGPT (Zheng et al., 2023). We adopt OpenAI’s CLIP-Large (Radford et al., 2021) as
the visual encoder Hϕ, followed by a linear layer Mζ for visual embedding projection. To synthesize
images, we use Stable Diffusion (SD) (Rombach et al., 2022) as the image decoder, and the condition
projector Mψ is also a linear layer. An overview of the architecture is depicted in Fig. 2.

3.1 END-TO-END INTERLEAVED GENERATIVE PRETRAINING (I-GPT)

All natural documents can be regarded as carriers of text-image interleaved information. Text-only,
images-only, and text-image pairs data, on the other hand, can be seen as special cases of interleaved
corpora with different modality compositions. Thus, it is critical to empower the model with the
capability to learn and generate free-form interleaved documents that form all possible distributions.

Interleaved Structure Learning To model the interleaved structure, the interleaved sequence is
operated by extending a new special <dream> token before images. During training, DREAMLLM
is trained to predict this <dream> token that indicates where an image emerges, and the conditional
image synthesis is performed afterward, as introduced next. During inference, DREAMLLM will
generate an image on its “free will” when this token is predicted.

Conditional Synthesis through Score Distillation To avoid the possible conflicts of CLIP semantics
and MLLMs stated in Sec. 2.1, we carefully design a different learning objective and conditional
embeddings. Formally, we introduce a series of learnable dream queries with lengthQ: d = {dq}Qq=1.
Considering the t-th token is predicted as <dream> token, the conditional embeddings CDREAMLLM

K(t)+1 for
the (K(t) + 1)-th image synthesis can be obtained by causally querying the previous sequences:

CDREAMLLM
K(t)+1 := Fθ(d,x<t+1,V<K(t)+1). (3)

Thus, the denoising score matching with latent z is motivated in the similar formulation to Eq. (2):

LDREAMLLM
DM (θ,d, ζ, ψ, z) := Et∼U(0,1),ϵ∼N (0,I)

[
∥ϵξ(zt; CDREAMLLM, t)− ϵ∥2

]
, (4)

where ξ is not updated since the SD is frozen. Eq. (4) can also be viewed as a generalized formulation
of textual inversion (Gal et al., 2023), but all condition embeddings are learnable by model-seeking.
From the perspective of score distillation (van den Oord et al., 2018), the KL divergence defined by
conditions and the pre-learned score function is equivalently minimized for distilling (Hinton et al.,
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Table 1: Zero-shot multimodal comprehension evaluation of image-to-text captioning, general
VQA, text-related VQA, and comprehensive benchmarks. ∗ denotes non-zero-shot results for VQA.
DREAMLLM-7B∗ is trained using the SFT data constructed by LLaVA-1.5 (Liu et al., 2023b).

Method
Captioning VQA Comprehensive

COCO I2Paragraph VQAv2 OKVQA VizWiz TextVQA MMBench MM-Vet

Comprehension Only MLLMs

MetaLM (Hao et al., 2022) - - 41.1 11.4 - - - -
Kosmos-1 (Huang et al., 2023) - - 51.0 - 29.2 - - -
Flamingo-9B (Alayrac et al., 2022) 79.4 - 51.8 44.7 28.8 - - -
OF-9B (Awadalla et al., 2023) 65.5 - 52.7 37.8 27.5 29.1 4.6 21.8
LLaVA-7B (Liu et al., 2023c) - - - - - 28.9 38.7 23.8

MLLMs for Comprehension & Creation

CM3Leon-7B∗ (Yu et al., 2023a) 61.6 10.5 47.6 23.8 37.6 - - -
Emu-14B (Sun et al., 2023b) 117.7 - 40.0 34.7 35.4 - - -

DREAMLLM-7B (Ours) 115.4 17.4 56.6 44.3 45.8 34.9 49.9 35.9
DREAMLLM-7B∗ (Ours) 103.7 8.4 72.9 52.2 49.3 41.8 58.2 36.6

2015) learned probability density in conditional image synthesis:

min
θ,d,ζ,ψ

LDREAMLLM
DM := Et,CDREAMLLM

[
DKL

(
q(zt−1|zt, z1, CDREAMLLM) ∥ pξ(zt−1|zt)

)]
. (5)

Universal Multimodal Generative Modeling An interleaved document sequence x = {xt}Tt=1
contains both words w = {wi}Ni=1 and images I = {Ik}Kk=1. The autoregressive nature forms all
possible conditional distributions, such as image conditional multimodal comprehension p(w|I)
or text-to-image synthesis p(I|w). The images are processed as visual embeddings V for causal
comprehension. Assuming that the pretrained SD is an optimal score function, Eq. (5) thus could
be viewed as an MLE optimization for the synthesis posterior. Different from Eq. (1), the targeted
sequence xt now could be both encoded images or words. The objective is thus unified to the MLE
of all causally-conditioned posteriors in arbitrary forms:

LDREAMLLM
MLLM (Θ = {θ,d, ζ, ψ},x) := −Et [log pΘ(xt|x<t)] . (6)

3.2 MODEL TRAINING

In this work, we consider a three-stage training procedure. It can be summarized as follows, and the
implementation details, like training data, can be found in Table 13 in Appendix C.

I Alignment Training This stage is used to alleviate the gap in multimodality, facilitating the
adaptation of multimodal inputs to LLMs. The linear visual projector, linear condition projector,
and learnable dream embeddings are pretrained for cross-modal manifold alignment among frozen
LLMs, visual encoder, and SD. We use approximately 30M image-text pairs data, training both
image-to-text comprehension and text-to-image synthesis.

II I-GPT Pretraining Following alignment, the LLM undergoes an unfrozen process for I-GPT
pretraining (detailed in Sec. 3.1). This critical stage facilitates the learning of joint vision-language
distributions via generative modeling. Training incorporates approximately 2M selectively filtered
documents from MMC4-Core (Zhu et al., 2023b), adhering to a CLIP score threshold of 0.25.
Furthermore, we use 2M paired data samples from LAION400M (Schuhmann et al., 2021),
captioned by BLIP (Li et al., 2022) (i.e., BLIP-LAION), to enhance text-to-image training and
potentially mitigate the impact of some low-quality noisy images and texts from sMMC4.

III Supervised Fine-tuning This stage enables the model to perform general multimodal com-
prehension and creative tasks following human instructions (Ouyang et al., 2022). We utilize
approximately 80K visual instruction tuning data collected by Liu et al.. For instruction-following
content creation, GPT-4 is prompted with document summaries or image captions, collecting
approximately 20K instruction-following document synthesis from MMC4 (InstructMMC4) and
20K image synthesis data from BLIP captioned LAION400M (Instruct-BLIP-LAION).

4 EXPERIMENTS

DREAMLLM is a versatile multimodal generalist that excels at zero-shot or in-context vision-
language comprehension and synthesis tasks. In this section, we conduct systematic evaluations for
demonstration. See qualitative results in Appendix B and implementation details in Appendix C.
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4.1 MULTIMODAL COMPREHENSION

Multimodal comprehension enables humans to interact with agents conditioned on both words and
visual content. We evaluate the multimodal vision and language capabilities of DREAMLLM across
several benchmarks, including image-to-text captioning on COCO (Karpathy & Fei-Fei, 2017) and
Image2Paragraph (Krause et al., 2017), general visual question answering (VQA) on VQAv2 (Goyal
et al., 2019), OKVQA (Marino et al., 2019), VizWiz (Gurari et al., 2018), and text-related VQA on
TextVQA (Singh et al., 2019). Additionally, we conducted a zero-shot evaluation on the recently
developed benchmarks of MMBench and MM-Vet to assess the model’s performance in complex
multimodal tasks. The results are presented in Table 1 (See Table 5, and Table 6 in Appendix A).
All metrics and data splits are listed in Table 14 in Appendix C. We find that i) DREAMLLM
outperforms other MLLMs across all benchmarks. Notably, DREAMLLM-7B surpasses concurrent
MLLMs with image synthesis capabilities by a significant margin, achieving +16.6 higher accuracy
on VQAv2 compared to Emu-13B. ii) On comprehensive benchmarks like MMBench and MM-Vet,
DREAMLLM achieves state-of-the-art performance against all 7B counterparts. Detailed analysis
revealed superior spatial/relation reasoning capabilities in DREAMLLM compared to other MLLMs,
likely a result of its image synthesis learning. See qualitative results and comparisons on multimodal
dialogue in Table 11, Table 12, Fig. 10, Fig. 11, and Fig. 12, in Appendix B.

4.2 TEXT-CONDITIONAL IMAGE SYNTHESIS

Table 2: Zero-shot text-to-image generation FID on
MS-COCO LN-COCO. LM denotes language model
based methods, MG denotes multimodal generation meth-
ods, and FIG denotes free-form interleaved generation
methods. † is fine-tuned SDv2.1 on our state I data. ∗

denotes retrieval-augmentation (Sheynin et al., 2023). ▷
denotes results after stage I alignment training.

Method LM MG FIG MS-COCO LN-COCO

Text2Image Specialists

Retrieval Result (Yu et al.) ✗ ✗ ✗ 17.97 33.59
DALL-E (Ramesh et al.) ✗ ✗ ✗ ∼28 -
CogView (Ding et al.) ✗ ✗ ✗ 27.1 -
CogView2 (Ding et al.) ✗ ✗ ✗ 24.0 -
SDv2.1 (Rombach et al.) ✗ ✗ ✗ 12.43 34.26
SDv2.1† (Rombach et al.) ✗ ✗ ✗ 11.91 25.35
GLIDE (Nichol et al.) ✗ ✗ ✗ 12.24 -
Make-A-Scene (Gafni et al.) ✗ ✗ ✗ 11.84 -
DALL-E 2 (Ramesh et al.) ✗ ✗ ✗ 10.39 -
Muse-3B (Chang et al.) ✓ ✗ ✗ 7.88 -
Imagen-3.4B (Saharia et al.) ✓ ✗ ✗ 7.27 -
Parti-20B (Yu et al.) ✓ ✗ ✗ 7.23 15.97

Multimodal Large Language Models

CM3-13B (Aghajanyan et al.) ✓ ✓ ✗ 29.56 -
GILL-8B (Koh et al.) ✓ ✓ ✗ 12.20 -
Emu-13B (Sun et al.) ✓ ✓ ✗ 11.66 -
CM3Leon-7B∗ (Yu et al.) ✓ ✓ ✗ 10.82 -

DREAMLLM-7B▷ (Ours) ✓ ✓ ✓ 8.76 22.42
DREAMLLM-7B (Ours) ✓ ✓ ✓ 8.46 20.53

Text2Image is one of the most commonly
used techniques for creative content gener-
ation that follows human’s fabulous imag-
inations through free-form languages.

We assess text-conditional image synthe-
sis on the MS-COCO validation set (Lin
et al., 2014) and LN-COCO, the COCO
subset of Localized Narratives (Pont-
Tuset et al., 2020), following prior
works (Xu et al., 2018; Yu et al., 2022b).
The MS-COCO dataset primarily con-
tains high-level image abstractions with
shorter captions, whereas LN-COCO pro-
vides more comprehensive image descrip-
tions (Yu et al., 2022b). DREAMLLM
samples 8 images per text prompt on MS-
COCO by CLIP score ranking, following
previous works (Ramesh et al., 2022). On
LN-COCO, DREAMLLM samples one
image per prompt without CLIP ranking
since the text is too long and exceeds the
CLIP length limit. Note that Parti sam-
ples 16 images per prompt with CoCa (Yu
et al., 2022a). Our evaluation metric is
the zero-shot Fréchet Inception Distance
(FID) (Heusel et al., 2017), the results of
which are presented in Table 2. We note three key observations: i) Our DREAMLLM shows a signifi-
cant FID improvement over the StableDiffusion baseline after stage-I alignment, reducing the score
by 3.67 and 11.83 on MS-COCO and LN-COCO, respectively. Further, FID improvements of 3.97
and 13.73 are achieved after pretraining and supervised fine-tuning. The substantial improvement on
LN-COCO underscores DREAMLLM’s superior capability in processing long-context information.
ii) When compared to prior specialist models, DREAMLLM delivers competitive results based on
the SD image decoder. iii) DREAMLLM consistently outperforms concurrent MLLMs-based image
synthesis methods. For instance, DREAMLLM-7B surpasses Emu-13B by a significant 3.20 FID on
MS-COCO. See qualitative results on text-to-image synthesis in Fig. 13 and Fig. 14 in Appendix B.

4.3 MULTIMODAL JOINT CREATION & COMPREHENSION

Free-form Interleaved Document Creation Leveraging the interleaved generative modeling
from I-GPT, DREAMLLM can now generate interleaved documents in a free-form manner. In
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Help me write the introduction and illustrations about Vienna city, show several high-quality photographs
about the beautiful scenes and buildings such as Vienna International Opera House.

The Austrian capital, Vienna, has long been known as the City
of Dreams, and there is no better place to experience than this
romantic city during the holiday season. The city’s historic
center is surrounded by a collection of beautiful buildings on
a square mile. Stroll along the famous Ring Boulevard and
admire the architecture. Some of the buildings date back to the
13th century. The Vienna State Opera House is one of the most
beautiful buildings. Founded in 1869, the opera house is the

Imagine you are a robot agent in the house. There is a mobile phone on the dining table in the dining
room, and you are in the living room. Write a short article about how would you walk through the house to
grab the mobile phone with your robotic arm step by step. Include several high-quality photographs to
illustrate your procedure.

As a robot agent in the house, I would walk through the house to grab the mobile
phone in the dining room as shown in the image below. <dream_1>
First, I would look around the living room to make sure the area is safe and there
are no obstacles or people that I need to avoid. I would then walk towards the dining
room and stop before entering the room.
Next, I would look for the mobile phone on the table, as shown in the image below.
<dream_2>

Once I have identified the phone, I would then move closer to
it and extend my robot arm to grab it, as shown in the image
below. <dream_3>
Once the phone is grabbed, I would then bring it back to the
living room and place it on the table where it belongs.

home of the Vienna State Opera and the annual Vienna Opera Ball. <dream_1> Cosmopolitan flair, an
eclectic mix of architectural styles and a rich cultural heritage come together in Vienna. The city is
home to a number of museums, palaces and churches. The Sacher Torte and the Wiener Schnitzel are local
specialties. A visit to the romantic Christmas Market in Vienna is also a unique experience. <dream_2>

<dream_1> <dream_2>

DreamLLM DreamLLM

<dream_1>

<dream_3><dream_2>

DreamLLM
DreamLLM

DreamLLM

Human Instruction DreamLLM Generation

Figure 3: Selected DREAMLLM instruction following interleaved content creation examples.
Note that each image is created automatically at the location decided by DREAMLLM, and then it
will be fed back as multimodal comprehension input for the following content generation.

Fig. 3, we showcase the generated interleaved contents based on human instructions. It demonstrates
that: i) DREAMLLM can generate meaningful content per the instructions. ii) The system can
autonomously create images at any specified location by predicting the proposed <dream> tokens,
thereby eliminating the need for additional human intervention. This is a more user-friendly approach
compared to systems like Emu, which necessitate human input for image generation locations.

Image Quality Document quality can be influenced by factors such as text content, image quality
(including image-text alignment), and illustration positioning. To assess the quality of generated
documents, we utilized a held-out instruction-following subset from the constructed InstrcutMMC4
as a demonstrative tool. This subset comprises 15K documents across 30 MMC4-defined topics, with
500 samples per topic. We began by evaluating image quality using FID on this subset, generating
each image based on the corresponding ground truth texts. The results revealed that when using
only matched text inputs for image synthesis, SD achieved an FID score of 74.77. In contrast, our
DREAMLLM significantly outperforms SD with an FID score of 36.62.

Human Evaluation We perform a comprehensive human evaluation to assess the quality of the
generated samples. We randomly selected 150 samples (5 per topic) for instruction-following docu-
ment generation, mixing the generated and ground truth MMC4 documents without any identifying
information. Five unbiased volunteers were then asked to determine whether the given samples were
supported. Given the presence of duplicate and low-quality images in MMC4, the supportive rate for
MMC4 was only 77.24%. In contrast, our DREAMLLM model achieves a supportive rate of 60.68%,
surpassing the 30% Turing test requirement. This result indicates that the generated documents
contain high-quality images placed logically, demonstrating the effectiveness of our model.
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5 DISCUSSIONS

5.1 SYNERGY BETWEEN CREATION & COMPREHENSION?

Table 3: Concrete analysis of the synergy between mul-
timodal comprehension and creation (image synthesis).
ID denotes whether the interleaved dataset is used during
the second stage of pretraining.

ID Lalign MM-Vet VQAv2 COCO

0 Stable Diffusion ✗ - - - 12.43

1 Creation-only ✗ ✗ - - 8.50
2 Creation-only ✓ ✗ - - 8.57
3 Comprehension-only ✗ ✗ 31.0 55.1 -
4 Comprehension-only ✓ ✗ 34.4 54.3 -
5 Joint-learning ✓ ✗ 35.9 56.6 8.46
6 Joint-learning ✓ ✓ N/A N/A N/A

To elucidate the synergy between multi-
modal creation and comprehension, we
make the comparison among three meth-
ods with DREAMLLM architecture, each
utilizing identical training data yet differ-
ing in their learning objectives: a) the
Creation-only baseline, focused solely on
text/document-conditional image synthe-
sis; b) the Comprehension-only baseline,
dedicated to word generation exclusively;
c) the Joint-learning method, which is the
default setting of DREAMLLM learning
both image and language modeling.

Quantitative Analysis As per Table 3, the following observations are made: i) The powerful
language comprehension of LLMs significantly enhances the performance of text-to-image specialists
like SD, as evidenced by the impressive 8.50 FID (line 1). ii) The use of interleaved data, such as
MMC4, can potentially boost multimodal comprehension performance (line 4). iii) The proposed
I-GPT further synergizes comprehension and creation with improved performance (line 5). iv) When
incorporating CLIP alignment loss Lalign stated in Section 2.1, our DREAMLLM fails to converge but
rather ends in a collapsing point (line 6). This indicates that the queries are adaptively learning the
true data distributions, where CLIP semantics are in conflict with MLLM-encoded semantics.

Question: Which animal in
the picture is larger,
the cat or the dog?
Answer A: The dog in the
picture is larger than
the cat.
Answer B: The cat in the
picture is larger than
the dog.

Question: What's the difference between these two animals?
Answer A: In Photo A, there is a large bear sitting on a tree branch,
leaning against it, and looking over its shoulder. The bear appears to be
a sleeping or resting pose. In Photo B, there is an image of a koala that
is sitting on a tree branch and leaning over to one side. The koala is in
a different posture compared to the bear in Photo A; it is not asleep or
resting, but rather sitting and leaning. The main difference between
these two animals is their body position and the fact that the bear is
much larger than the koala.
Answer B: In the two images, A is a bear and B is a koala. The difference lies
in their physical characteristics, habitat, and diet. Bears are large,
omnivorous mammals known for their strength and ability to climb trees. They
have a distinctive appearance with a large body, short limbs, and a broadsnout.
Bears are found in various habitats, with some species living in forests,
mountains, or grasslands. Koalas, on the other hand, are small marsupials native
to Australia, known for their unique appearance with a fluffy, teddy-bear-like
fur, a short tail, and large, round ears. Koalas primarily feed on the leaves of
eucalyptus trees and have a specialized dental structure to efficiently process
the fibrous plant material. These differences in physical features, habitat, and
diet highlight the distinct characteristics of each animal.

Photo A:

Photo B:

Photo:

Figure 4: Qualitative comparison. Answer A: answer
from comprehension-only models w/o interleaved train-
ing; Answer B: answer from joint-learning models.

Qualitative Analysis In Fig. 4, we
compare answers to some examplar VQA
tasks from comprehension-only and joint
learning modules, respectively. It can be
seen that: i) The joint-learning method
exhibits superior multimodal comprehen-
sion, particularly in identifying subject re-
lationships and attributes like object size.
ii) In multimodal comprehension scenar-
ios involving multiple image inputs, the
joint-learning approach demonstrates en-
hanced precision. This improved perfor-
mance is a natural outcome of I-GPT pretraining, allowing better modeling of multimodal correlations
in various interleaved documents.

Multimodal In-Context Generation Multimodal in-context generation is a critical emerging capa-
bility for MLLMs (Bommasani et al., 2021; Alayrac et al., 2022). While significant strides have been
made in in-context visual question answering, in-context image synthesis remains relatively lacking
in exploration. The multimodal context-conditional image synthesis capabilities of DREAMLLM, as
demonstrated in Fig. 5, offer promising insights into this domain. Tasks such as in-context image
edition, subject-driven image generation, and compositional generation, however, pose significant

Teddy bear

Multimodal Input

Delicious food.
X. DreamLLM

swims in water

Multimodal Input

on the beach

A black dog.
A dog X.

in the snow lies on sofa

DreamLLM DreamLLM

DreamLLMDreamLLM

(a) In-context Image Edition (b) In-context Subject-Driven Generation 

DreamLLM
DreamLLM

(c) In-context Compositional Generation

A bear.

A pod of dolphins leaping out of the water in 
an ocean, with a ship on the background.

A salmon. X. A grizzly bear catching a salmon in a 
crystal clear river surrounded by a forest

DreamLLM

Multimodal Input DreamLLM SD

A ship on the ocean. X.
DreamLLM

Figure 5: Selected DREAMLLM in-context image generation examples. The X in multimodal
inputs are replaced accordingly by the text prompts shown under the generated images. We show the
results of the SD baseline in (c) with only the text prompt X for a comparison.
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challenges in a zero-shot setting, particularly without downstream fine-tuning as in DreamBooth (Ruiz
et al., 2023) or attention modification techniques as in Prompt2Prompt (Hertz et al., 2023). Despite
these hurdles, Fig. 5 illustrates DREAMLLM’s ability to generate images conditioned on the provided
image context. This capability suggests promising potential for DREAMLLM in maintaining subject,
identity, and semantic context, thereby paving a new way for resolving these complex tasks.

5.2 WHAT IS LEARNED BY DREAMLLM?

A cat and 
a glass 

of whisky.

A polar 
bear in 

the forest.

(b)

image

cross-attention maps of 
dream queries & U-Net latent

cross-attention maps of 
dream queries & U-Net latent

image

(a)

Figure 6: Cross-attention of dream queries and the dif-
fusion U-Net latent. Similar to (Hertz et al., 2023), the
64 queries can be viewed as 64 “words”. Each attention
map is computed as the cross-attention between each
query and the latent feature in the U-Net. The 64 queries
are ordered as 8×8 grid sequentially, and each attention
map is the result averaged across all timestamps.

Dream Query Attention In DREAM-
LLM, the conditional embedding is de-
rived from MLLMs with some learned
dream queries. Fig. 6 demonstrates a vi-
sualization of the learned cross-attention
mechanism between these queries and the
diffusion latent. Similar to (Hertz et al.,
2023), we visualize the attention map av-
eraged across all timestamps. It is seen
that: i) The query attention is structured,
disentangled, and semantically-oriented.
This is evidenced by the fact that distinct
queries adeptly capture different subject
and background semantics. ii) Despite
varying prompts, attention patterns exhibit
remarkable similarity as shown in Fig. 6
(a) and (b). This contrasts with the token
attentions from the original SD, which are typically text-token dependent. We postulate that this
arises from the model’s causal nature, leading to a consistent semantic structure order.

6 RELATED WORKS

Rapid developments have been witnessed in extending LLMs like LLaMA (Touvron et al., 2023a) to
multimodal comprehension that enables human interaction with both words and visual content. One
line of work is built by system integration of LLMs with various functioning agents where language
acts as general interface (Wu et al., 2023; Gupta & Kembhavi, 2023; Yang et al., 2023b; Liang
et al., 2023; Shen et al., 2023; Yang et al., 2023a; Surís et al., 2023), and remarkable success has
been demonstrated in such plugin-style frameworks. Another line of work instead explores training
LLMs to consume and understand multimodal inputs (Hao et al., 2022; Huang et al., 2023; Chen
et al., 2023b) with parameter-efficient tuning (Hu et al., 2022; Alayrac et al., 2022; Li et al., 2023d;
Zhang et al., 2023e; Zhu et al., 2023a; Ye et al., 2023) and instruction tuning (Xu et al., 2023b;
Liu et al., 2023c; Dai et al., 2023a). More recently, some approaches have been developed towards
visual-interactive multimodal comprehension by precise referring instruction tuning (Zhao et al.,
2023a; Peng et al., 2023; Chen et al., 2023a; Zhang et al., 2023g). For cross-modal creation, early
works generally tokenize the visual contents into discrete VQ codebooks (van den Oord et al., 2017;
Wang et al., 2022; Sun et al., 2022; Lu et al., 2023; Diao et al., 2023; Yu et al., 2023a). Recent works
instead explore incorporating MLLMs for image synthesis using text-to-image models such as Stable
Diffusion, and the objective is to generate conditional embeddings that align pretrained CLIP text
(i.e., CLIP) or CLIP variant embeddings (Koh et al., 2023; Ge et al., 2023; Sun et al., 2023a;b).

7 CONCLUSIONS

How can the learning synergy between multimodal content understanding and creation emerge? In
this paper, we present DREAMLLM, a learning framework for developing MLLMs that not only
comprehends but also creates multimodal content via diffusion models. Through score distillation of
conditional-image synthesis distributions, we avoid the need for intermediate representation targets
that may bring information loss. The employment of interleaved documents further enriches the
multimodal distributions, fostering the learning of multimodal encoding and decoding. Our extensive
empirical evaluations across diverse VL benchmarks demonstrate the effectiveness of DREAMLLM
and the emerging learning synergy between multimodal content understanding and creation. Besides,
this work initiates the first step towards free-form interleaved content creation. As a general learning
framework, we hope it will spur further research in the multimodal machine learning field.
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Table 4: Zero-shot natural language processing evaluation. We report the 5-shot result on MMLU
and the relative performance of DREAMLLM compared to base LLM Vicuna-7B.

Method
Commonsense Reasoning Reading Multitask

PIQA SIQA HellaSwag WinoGrande BoolQ MMLU

Language Only Large Language Models (LLMs)

GPT-3 (Brown et al., 2020) 81.0 - 78.9 70.2 60.5 43.9
PaLM-540B (Chowdhery et al., 2022) 82.3 - 83.4 81.1 88.0 69.3
LLaMA-7B (Touvron et al., 2023a) 79.8 48.9 76.1 70.1 76.5 35.1
Vicuna-7B (Chiang et al., 2023) 77.7 47.5 75.7 67.5 73.9 45.0

Multimodal Large Language Models (MLLMs)

MetaLM (Hao et al., 2022) 72.3 - 53.5 56.1 62.2 -
Kosmos-1 (Huang et al., 2023) 72.9 - 50.0 54.8 56.4 -

DREAMLLM-7B (Ours) 78.6+1.5 48.8+1.3 77.4+1.7 68.5+1.0 75.2+1.3 41.8−3.2

Table 5: Zero-shot multimodal comprehension evaluation on MMBench (Liu et al., 2023e) dev
set. LR: Logical Reasoning, AR: Attribute Reasoning, RR: Relation Reasoning, FP-C: Fine-grained
Perception (Cross Instance), FP-S: Fine-grained Perception (Single Instance), CP: Coarse Perception.
DREAMLLM ∗ is trained using the SFT data constructed by LLaVA-1.5 (Liu et al., 2023b).

Method LR AR RR FP-S FP-C CP Overall

OpenFlamingo-9B (Awadalla et al., 2023) 4.2 15.4 0.9 8.1 1.4 5.0 6.6
MMGPT-7B (Gong et al., 2023) 2.5 26.4 13.0 14.1 3.4 20.8 15.3
MiniGPT-4-7B (Zhu et al., 2023a) 7.5 31.3 4.3 30.3 9.0 35.6 24.3
InstructBLIP-7B (Dai et al., 2023a) 14.2 46.3 22.6 37.0 21.4 49.0 36.0
VisualGLM (Zeng et al., 2023) 10.8 44.3 35.7 43.8 23.4 47.3 38.1
LLaVA-7B (Liu et al., 2023c) 16.7 48.3 30.4 45.5 32.4 40.6 38.7
LLaMA-Adapter V2 (Gao et al., 2023) 11.7 35.3 29.6 47.5 38.6 56.4 41.2
MiniGPT-4-13B (Zhu et al., 2023a) 20.8 50.7 30.4 49.5 26.2 50.7 42.3

DREAMLLM-7B (Ours) 15.8 53.7 60.9 53.2 40.0 58.3 49.9
DREAMLLM-7B∗ (Ours) 23.3 67.2 47.8 58.6 54.4 70.5 58.2

A ADDITIONAL EXPERIMENTS

A.1 ADDITIONAL NATURAL LANGUAGE UNDERSTANDING RESULTS

We evaluate the natural language processing capabilities of DREAMLLM post-multimodal adap-
tation learning via zero-shot experiments on language-only tasks. These included commonsense
reasoning (PIQA (Bisk et al., 2020), SIQA (Sap et al., 2019), HellaSwag (Zellers et al., 2019), Wino-
Grande (Sakaguchi et al., 2021)), reading comprehension (BoolQ (Clark et al., 2019)), and a general
multi-task benchmark (MMLU 5-shot (Hendrycks et al., 2021)). As Table 4 illustrates, DREAMLLM
outperforms the Vicuna baseline on most language benchmarks. This suggests that DREAMLLM’s
multimodal adaptation does not compromise the language learning model’s (LLM) capabilities. When
compared to prior Multimodal Language Learning Models (MLLMs), DREAMLLM demonstrates
superior performance, although this may be attributed to the higher baseline results. This finding
suggests that a more robust LLM base model could yield improved results.

A.2 ADDITIONAL MULTIMODAL COMPREHENSION RESULTS

Detailed Comprehensive Comparison The evaluation results on MMBench (Liu et al., 2023e) and
MM-Vet (Yu et al., 2023b) are presented in Table 5 and Table 6, respectively. The key observations
from these results are as follows: i) Our DREAMLLM-7B outperforms all other 7B MLLMs, setting
a new benchmark in overall performance. Notably, it even exceeds the performance of some 13B
models, including LLaVA and MiniGPT-4. ii) A detailed capability evaluation reveals DREAMLLM’s
superior performance in fine-grained understanding and relational/spatial comprehension. This
advantage is likely due to DREAMLLM’s unique learning synergy, where image distributions are
comprehended not solely through language-posterior comprehension but also through creation.
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Table 6: Zero-shot multimodal comprehension evaluation of core VL capabilities on MM-Vet (Yu
et al., 2023b). ‡ denotes compositional systems with OpenAI GPT and various interfaces. Rec:
General Visual Recognition, OCR: Optical Character Recognition, Know: Knowledge, Gen: Language
Generation, Spat: Spatial Awareness, Math: Arithmetic Math. DREAMLLM ∗ is trained using the
SFT data constructed by LLaVA-1.5 (Liu et al., 2023b).

Method Rec OCR Know Gen Spat Math Total

TF Agent-GPT-4‡ (Huggingface, 2023) 18.2 3.9 2.2 3.2 12.4 4.0 13.4±0.5
MM-ReAct-GPT-3.5‡ (Yang et al., 2023b) 24.2 31.5 21.5 20.7 32.3 26.2 27.9±0.1
MM-ReAct-GPT-4‡ (Yang et al., 2023b) 33.1 65.7 29.0 35.0 56.8 69.2 44.6±0.2

LLaMA-Adapter v2-7B (Gao et al., 2023) 16.8 7.8 2.5 3.0 16.6 4.4 13.6±0.2
OpenFlamingo-9B (Awadalla et al., 2023) 24.6 14.4 13.0 12.3 18.0 15.0 21.8±0.1
MiniGPT-4-8B (Zhu et al., 2023a) 27.4 15.0 12.8 13.9 20.3 7.7 22.1±0.1
BLIP-2-12B (Li et al., 2023d) 27.5 11.1 11.8 7.0 16.2 5.8 22.4±0.2
MiniGPT-4-14B (Zhu et al., 2023a) 29.9 16.1 20.4 22.1 22.2 3.8 24.4±0.4
Otter-9B (Li et al., 2023b) 28.4 16.4 19.4 20.7 19.3 15.0 24.6±0.2
InstructBLIP-14B (Dai et al., 2023a) 30.8 16.0 9.8 9.0 21.1 10.5 25.6±0.3
InstructBLIP-8B (Dai et al., 2023a) 32.4 14.6 16.5 18.2 18.6 7.7 26.2±0.2
LLaVA-7B (LLaMA-2) (Liu et al., 2023c) 32.9 20.1 19.0 20.1 25.7 5.2 28.1±0.4
LLaVA-13B (LLaMA-2) (Liu et al., 2023c) 39.2 22.7 26.5 29.3 29.6 7.7 32.9±0.1

DREAMLLM-7B (Ours) 41.8 26.4 33.4 33.0 31.0 11.5 35.9±0.1
DREAMLLM-7B (Ours) 42.0 28.1 33.2 33.8 32.0 11.5 36.6±0.1

Table 7: Zero-shot visual hallucination evaluation on POPE (Li et al., 2023f) using MS-COCO
val set. Yes denotes the proportion of answering “Yes” to the given question, which is better if it is
more close to 50%. Objects that do not exist in the image are sampled with three different strategies.
Random: random sampling, Popular: top-k most frequent objects in MS-COCO (k = 3), Adversial:
objects are first ranked based on co-occurring frequencies, then top-k frequent ones are sampled.

POPE Model Accuracy Precision Recall F1-Score Yes (%)

Random

mPLUG-Owl-7B (Ye et al., 2023) 53.97 52.07 99.60 68.39 95.63
LLaVA-13B (Liu et al., 2023c) 50.37 50.19 99.13 66.64 98.77
MMGPT-7B (Gong et al., 2023) 50.10 50.05 100.00 66.71 99.90
MiniGPT-4-14B (Zhu et al., 2023a) 79.67 78.24 82.20 80.17 52.53
InstructBLIP-14B (Dai et al., 2023a) 88.57 84.09 95.13 89.27 56.57

DREAMLLM-7B (Ours) 86.36 85.92 87.93 86.91 52.75

Popular

mPLUG-Owl-7B (Ye et al., 2023) 50.90 50.46 99.40 66.94 98.57
LLaVA-13B (Liu et al., 2023c) 49.87 49.93 99.27 66.44 99.40
MMGPT-7B (Gong et al., 2023) 50.00 50.00 100.00 66.67 100.00
MiniGPT-4-14B (Zhu et al., 2023a) 69.73 65.86 81.93 73.02 62.20
InstructBLIP-14B (Dai et al., 2023a) 82.77 76.27 95.13 84.66 62.37

DREAMLLM-7B (Ours) 80.07 75.74 88.47 81.61 58.40

Adversarial

mPLUG-Owl-7B (Ye et al., 2023) 50.67 50.34 99.33 66.82 98.67
LLaVA-13B (Liu et al., 2023c) 49.70 49.85 99.07 66.32 99.37
MMGPT-7B (Gong et al., 2023) 50.00 50.00 100.00 66.67 100.00
MiniGPT-4-14B (Zhu et al., 2023a) 65.17 61.19 82.93 70.42 67.77
InstructBLIP-14B (Dai et al., 2023a) 72.10 65.13 95.13 77.32 73.03

DREAMLLM-7B (Ours) 72.63 67.07 88.93 76.47 66.30

Visual Hallucination Visual hallucination, a phenomenon where MLLMs generate non-existent
objects or identities in images, significantly compromises their multimodal comprehension capabili-
ties (Dai et al., 2023b; Liu et al., 2023a; Gunjal et al., 2023) and may pose safety risks (MacLeod
et al., 2017; Rohrbach et al., 2018). We assess the robustness of DREAMLLM against visual
hallucination using the recently developed POPE benchmark (Li et al., 2023f). Refer to Table 7
for a detailed comparison with concurrent comprehension-only MLLMs. Our results indicate that
DREAMLLM-7B exhibits robustness to visual hallucination, matching or surpassing the performance
of 13B counterparts. Remarkably, DREAMLLM achieves the best or second-best performance in
the most challenging setting. We posit that this robust anti-hallucination property stems from a deep
understanding of object concepts and semantics fostered by multimodal creation learning.
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Table 8: Few-shot multimodal comprehension evaluation. k is the number of in-context examples.
† denotes methods using the RICES sample selection approach (Yang et al., 2022). DREAMLLM-7B∗

is trained using the SFT data constructed by LLaVA-1.5 (Liu et al., 2023b).

Method
VQAv2 VizWiz

k=2 k=4 k=8 k=2 k=4 k=8

Comprehension Only MLLMs

Kosmos-1 (Huang et al., 2023) 51.4 51.8 51.4 31.4 35.3 39.0
Flamingo-9B† (Alayrac et al., 2022) - 56.3 58.0 - 34.9 39.4

MLLMs for Comprehension & Creation

Emu-14B† (Sun et al., 2023b) 56.4 58.4 59.0 37.8 41.3 43.9
DREAMLLM-7B (Ours) 58.1 59.2 59.4 46.1 46.7 46.8
DREAMLLM-7B∗ (Ours) 73.8 74.4 73.8 49.8 50.3 49.7

A.3 IN-CONTEXT MULTIMODAL COMPREHENSION

Few-Shot Evaluation In Table 8, we show the results of few-shot (i.e., k-shot and we set k=2,
4, 8) evaluation by promoting models with a small number of training examples in context. The
results demonstrate the strong in-context learning performance of DREAMLLM compared to Emu
and Flamingo. It shows that DREAMLLM’s effectiveness in leveraging in-context knowledge.

Qualitative Examples In Fig. 7, we present qualitative instances of in-context comprehension using
DREAMLLM. The illustrations indicate that DREAMLLM, when prompted with specific examples,
efficiently executes in-context comprehension in the required formats and logic.

This is a Welsh Corgi. This is a Koala. This is

a woolly Mammoth.

What is the title of 
this painting? Answer: 

The Son of Man.

When was this
masterpiece painted?

Answer: 1818.

Who painted this? 
Answer:

Claude Monet.

Film name: Harry 
Potter and the 

Prisoner of Azkaban

Film name: 
Blade Runner 2049

Joker

Film name:

Input Prompt Completion

Figure 7: Selected DREAMLLM in-context multimodal comprehension examples.
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Input Image

dog

swimming in 
the pool

Wearing 
sunglasses

wearing a 
top hat in the jungle

on the beach

teapot

in blue

as a lamp in the jungle

floating in 
the water

painted in 
green

runs on the 
mountain

in front of 
wheat field

car

Input Image Input Image

Figure 8: Selected zero-shot subject-driven image generation examples with DREAMLLM. The
results demonstrate that DREAMLLM is able to perform zero-shot subject-driven image generation
while preserving image subject details and following generation instructions.

Table 9: Ablation studies and inference latency of DREAMLLM. The zero-shot FID on MS-COCO
30K is reported. The inference latency is tested on NVIDIA A800 devices.

(a) The number of <dream>
queries.

No. Queries COCOFID↓

32 9.56
64 8.46

128 14.24

(b) Inference latency versus dif-
ferent number of diffusion steps.

Steps DREAMLLM SD

50 3.65s 3.46s
100 7.02s 6.84s
150 10.41s 10.22s

A.4 SUBJECT-DRIVEN IMAGE GENERATION

Image consistency is important when generating interleaved content or performing controllable image
generation tasks (Gal et al., 2023; Ruiz et al., 2023). However, MMC4 does not have such image
consistency property, which leads to unsatisfactory image consistency results as shown in Fig. 3. To
further verify the effectiveness and potential of DREAMLLM in generating consistent images that
preserve subject features, we fine-tune stage II pretrained DREAMLLM on subject representation
learning data constructed by following the recently proposed controllable image generation method
BLIP-Diffusion (Li et al., 2023c). We fine-tune DREAMLLM on this small ∼270K samples data
for 20 epochs, and the results are shown in Fig. 8. It demonstrates the effectiveness and promising
potential of applying DREAMLLM for image-consistent generation.

A.5 ADDITIONAL ABLATION STUDY

Query Number In Table 9a, we show the results of DREAMLLM using different numbers of the
proposed learnable queries. i.e., <dream> queries. The results show that 64 queries achieve the best
result, while 128 may be too many, which may impact the performance. However, the choice of query
number is also related to the choice of training data size and diffusion model. For example, if given
more data and a stronger diffusion model image decoder, queries more than 64 may be better.

Inference Latency In Table 9b, we present a comparison of real-time inference latency between
DREAMLLM and SD. Relative to SD, DREAMLLM introduces a marginal latency cost of 0.2s on
average. This is because the latency primarily stems from the computational demands of the diffusion
U-Net denoising rather than the text condition embedding. To enhance inference efficiency, potential
strategies could include the adoption of Consistency Models (Song et al., 2023) or the implementation
of model compression techniques such as quantization (Yao et al., 2022; Dong et al., 2022; Shang
et al., 2023).
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Table 10: Language processing and multimodal comprehension & creation capability comparison
to the rewrite-then-generate baseline.

Method
Language Processing Multimodal Processing

PIQA SIQA HellaSwag WinoGrande BoolQ MMLU VQAv2 MM-Vet COCO

Vicuna-7B (Chiang et al., 2023) 77.7 47.5 75.7 67.5 73.9 45.0 - - -
rewrite-then-generate 78.2 48.5 75.8 68.3 77.4 43.1 54.2 34.1 11.91
DREAMLLM-7B (Ours) 78.6 48.8 77.4 68.5 75.2 41.8 56.6 35.9 8.46

A.6 ADDITIONAL DISCUSSIONS ON PROMPT REWRITING STRATEGY

Very recently, OpenAI has released DELLE-3 (Betker et al., 2023), which proposes to improve
generated image quality by rewriting descriptive and better prompts with GPT-4. This product has
demonstrated great success in leveraging LLMs as language-output agents. However, it generally
requires a large amount of high-quality data and is limited when applied to image-conditional genera-
tion tasks. For instance, DALLE-3 necessitates the initial training of a bespoke image captioning
specialist capable of producing high-quality descriptive captions, followed by model training in a
data-rich environment featuring these written captions. This process is non-trivial, hinging heavily on
the availability of substantial volumes of high-quality data. Moreover, such disjoint systems cannot
guarantee learning synergy. In contrast, our exploration of DreamLLM has essentially unveiled
the significant potential of LLMs to attain a comprehensive understanding of multimodality that
genuinely comprehends modalities beyond mere language.

To make a comparison regarding language processing and multimodal comprehension capabilities
to this rewrite-then-generate baseline method, we conduct a preliminary study. Given the absence
of an optimal dataset holding improved prompts, we modify the original MMC4 by using <dream>
start & end tokens before and after the specific text prompt that has the highest CLIP similarity
to a specific image, which can be used as text prompts for image generation. In this setting, we
only train the LLMs to output texts, and no image decoders are involved during training. During
inference, when the model outputs texts encompassed by the <dream> tokens, the texts are used
for an off-the-shelf SD image decoder for generating images. After training, we test the model’s
language processing and multimodal capabilities. The results show that i) the rewrite-then-generate
method achieves similar performance to DREAMLLM. This demonstrates that both methods won’t
impact the language capability, which is as expected. ii) the performance of the rewrite-then-generate
baseline falls short when compared to DREAMLLM, particularly in the context of text-to-image
generation on the COCO dataset. This underlines the efficacy of the synergistic learning approach
inherent in DREAMLLM, suggesting its potential superiority over the baseline methodology.

B ADDITIONAL QUALITATIVE EXAMPLES

Multimodal Dialogue In Tables 11 and 12, we present a qualitative comparative analysis of
VQA results between our model, DREAMLLM, and other state-of-the-art models: GPT-4 (OpenAI,
2023a;b), LLaVA (Liu et al., 2023c), BLIP-2 (Li et al., 2022), and OpenFlamingo (Awadalla et al.,
2023). The key findings are as follows: i) DREAMLLM surpasses GPT-4 in providing more
detailed and precise responses to given questions. ii) While LLaVA (Liu et al., 2023c) also offers
detailed responses, it frequently introduces imaginary elements not present in the image. In contrast,
DREAMLLM delivers more accurate answers, effectively avoiding this visual hallucination issue.
This observation aligns with our earlier findings in Table 7, which underscore the robustness of
DREAMLLM against visual hallucination. Furthermore, we showcase additional qualitative results
of the multimodal dialogue in Fig. 10, Fig. 11, and Fig. 12. These figures illustrate DREAMLLM’s
proficiency in comprehending and generating long-context multimodal information in arbitrary input
and output formats.

Text-condition Image Synthesis In Fig. 13 and Fig. 14, we show the image examples of DREAM-
LLM using the same prompts from previous works for a cross reference and comparison, including
DALL-E (Ramesh et al., 2021), DALL-E 2 (i.e., unCLIP) (Ramesh et al., 2022), GLIDE (Nichol
et al., 2022), Imagen (Saharia et al., 2022), and Parti (Yu et al., 2022b). Similar to Parti, we have
extended some prompts with new sub-prompts to construct more examples from different prompts.
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Visual input example, Extreme Ironing:

Source: https://www.barnorama.com/wp-content/uploads/2016/12/03-Confusing-Pictures.jpg

User What is unusual about this image?
DREAMLLM (Ours) The unusual aspect of this image is that a man is ironing clothes while sitting on the trunk

of a car parked in traffic. This is unconventional because ironing clothes is typically done
indoors, on a flat surface, and away from busy streets where cars are passing by. The man’s
actions of ironing clothes while on the trunk of the car and amidst traffic create an unusual
and interesting scene.
[Start a new conversation, and clear the history]

User What’s happening in the scene?
DREAMLLM (Ours) In the scene, a man is ironing clothes while standing on the back of a car on a busy city

street. The street is filled with traffic and the man is exposed to the dangers of being
close to moving vehicles. This unusual activity of ironing clothes while standing on an
automobile also draws attention to the man’s determination to accomplish his task despite
the challenging urban environment.

User What is unusual about this image?
LLaVA (Liu et al., 2023c) The unusual aspect of this image is a man ironing clothes on the back of a minivan or

van. This is not a typical place to perform this activity, as one would usually iron clothes
in a more stationary and safe location, such as a home, using a regular ironing board.
The scene depicted in the image is peculiar as it involves a makeshift ironing setup on a
vehicle, which can be both unsafe and unconventional. Additionally, it is not clear how
the man is able to maintain balance and stability while ironing clothes in such an unstable
environment.
[Start a new conversation, and clear the history]

User What’s happening in the scene?
LLaVA (Liu et al., 2023c) The image depicts a man standing on top of a yellow SUV in a busy city street. He is

holding a portable ladder, seemingly ironing clothes while standing on the vehicle. Around
the scene, there are other cars, a traffic light, and a fire hydrant. Additionally, there are
two other people in the vicinity, one close to the man on the car and another further away.
The man on the ladder appears to be attracting attention due to his unconventional choice
of ironing his clothes on top of a moving car. The city street around him is bustling with
activity, adding to the unique nature of the scene.

User What is unusual about this image?
GPT-4 (OpenAI, 2023a;b) The unusual thing about this image is that a man is ironing clothes on an ironing board

attached to the roof of a moving taxi.

User Can you explain this meme in detail?
BLIP-2 (Li et al., 2023d) a man is sitting on the back of a yellow cab

User Can you explain this meme in detail?
OpenFlamingo (Awadalla et al., 2023) The man is drying his clothes on the hood of his car.

Table 11: Visual question answering example comparison of DREAMLLM to LLaVA (Liu et al.,
2023c), GPT-4 (OpenAI, 2023a;b), BLIP-2 (Li et al., 2023d), and OpenFlamingo (Awadalla et al.,
2023). This table format follows OpenAI (2023a;b).
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Visual input example, Chicken Nugget Map:

User Can you explain this meme in detail?
DREAMLLM (Ours) The meme presents a humorous visual in which a close-up of a plate of fried chicken,

specifically chicken nuggets, appears to be a map of the world. The context suggests that
someone has made this map by arranging the chicken nuggets to resemble the shapes
and outlines of various countries. The image is accompanied by a caption that reads,
“Sometimes I just look at pictures of the earth from space and I marvel at how beautiful it
is all is.” This hints that the person who created the “map” might have been inspired by the
beauty of our planet from space, and they have used the similar visual pattern to create an
amusing and creative representation of the world using chicken nuggets.

User Can you explain this meme in detail?
LLaVA (Liu et al., 2023c) The meme in the image is a creative and humorous take on food, with a focus on chicken

nuggets, as the center of the universe. The meme begins with the phrase “Sometimes I just
look at pictures of the Earth from space and I marvel at how beautiful it all is...” The main
image features a tray of cooked chicken nuggets, with the chicken pieces positioned to
resemble the continents and islands on a world map. The meme playfully suggests that the
chicken nuggets represent the Earth, and the various locations depicted in the photo are
actually chicken nugget versions of different places. The punchline of the meme appears
in smaller text at the bottom, reading “I mean, it’s not the real Earth, but how beautiful it
is all is.” This lighthearted and entertaining meme combines food and humor, using the
image of chicken nuggets to create a funny and imaginative representation of the world.

User Can you explain this meme?
GPT-4 (OpenAI, 2023a;b) This meme is a joke that combines two unrelated things: pictures of the earth from space

and chicken nuggets. The text of the meme suggests that the image below is a beautiful
picture of the earth from space. However, the image is actually of chicken nuggets
arranged to vaguely resemble a map of the world. The humor in this meme comes from
the unexpected juxtaposition of the text and the image. The text sets up an expectation of a
majestic image of the earth, but the image is actually something mundane and silly.

User Can you explain this meme in detail?
BLIP-2 (Li et al., 2023d) sometimes i just look at pictures of the earth from space and marvel how beautiful it is

User Can you explain this meme in detail?
OpenFlamingo (Awadalla et al., 2023) It’s a picture of a chicken nugget on the International Space Station.

Table 12: Visual question answering example comparison of DREAMLLM to LLaVA (Liu et al.,
2023c), GPT-4 (OpenAI, 2023a;b), BLIP-2 (Li et al., 2023d), and OpenFlamingo (Awadalla et al.,
2023). This table format follows OpenAI (2023b).
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Table 13: Training recipes for DREAMLLM. The three training stages are introduced in Section 3.2.
Stage I: Alignment training, Stage II: I-GPT pretraining, Stage III: Supervised fine-tuning.

Stage I Stage II Stage III

Config Alignment I-GPT SFT

Training Hyper-Parameters

Optimizer AdamW AdamW AdamW
Learning Rate 2e-3 2e-5 4e-5
Weight Decay 0.0 0.0 0.0
Training Epochs 1 1 3
Warmup Ratio 0.003 0.003 0.003
Learning Rate Scheduler Cosine Cosine Cosine
Batch Size Per GPU 8 8 8
Maximum Token Length 2048 2048 2048
Unfreeze LLM ✗ ✓ ✓

Training Data

Dataset

➀ LLaVAPretrain (558K) ➀ MMC4 (2M) ➀ LLaVAInstruct (80K/665K)
➁ BLIP-LAION (8M) ➁ BLIP-LAION (2M) ➁ InstructMMC4 (20K)
➂ LAION400M (11M) ➂ Instruct-BLIP-LAION (20K)

➃ LAION-COCO (11M)

Data Size 30M 4M 120K
Data Type Pair Interleave/Pair Instruction

Training Cost

GPU Device 128×NVIDIA A800 128×NVIDIA A800 128×NVIDIA A800
Training Time ∼6h ∼10h ∼1.5h

C IMPLEMENTATION DETAILS

C.1 TRAINING DATA & HYPER-PARAMETERS

In Table 13, we list the detailed training dataset usage and hyper-parameters. The training data are
constructed based on the following datasets: a) LAION400M (Schuhmann et al., 2021), b) LAION-
COCO (Schuhmann et al., 2023), c) MMC4 (Zhu et al., 2023b), d) BLIP-LAION (Li et al., 2022)
which is filtered and caption by BLIP (Li et al., 2022), e) LLaVAPretrain (Liu et al., 2023c) which
contains 558K image-text pairs from BLIP-captioned CC3M (Sharma et al., 2018), SBU (Ordonez
et al., 2011), and LAION400M filtered by LLaVA, f) LLaVAInstruct, which contains 80K/665K
visual instruction-following data constructed by LLaVA (Liu et al., 2023c) and LLaVA-1.5 (Liu
et al., 2023b), and g) InstructMMC4, which is our instruction-following interleaved document
generation data curated by prompting GPT-4 to generate instruction based on the text contents of
MMC4. h) Instruct-BLIP-LAION, which is our instruction-following image synthesis data. Similar
to InstructMMC4, it is curated by prompting GPT-4 to generate instructions based on image captions.
Unless otherwise specified, we randomly sample the indicated number of instances from each dataset
during the training process.

C.2 DREAMLLM MODEL

Language Model We use LLaMA-1 (Touvron et al., 2023a) trained on ShareGPT (Zheng et al.,
2023) as as the default LLM (i.e., Vicuna-7B1 (Chiang et al., 2023)) following Liu et al. (2023c) to
endow its instruction-following capacity. During training, we use Flash Attention (Dao et al., 2022)
and PyTorch FSDP (Zhao et al., 2023b) to accelerate training efficiency.

Visual Encoder The visual encoder is the publicly available OpenAI CLIP-L/14 (Radford et al.,
2021) model, which is frozen during the whole process. The images are resized to 224×224 resolution
to align with the CLIP pretraining settings, resulting in a sequence of 256 total tokens for each image.
Following prior VL practice (Lu et al., 2019; Liu et al., 2023c), we append a special <IMG> token
before the image sequence and a special <IMG/> at the end of the sequence.

1Vicuna-7B v1.1: https://huggingface.co/lmsys/vicuna-7b-v1.1.
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Table 14: Overall descriptions of the evaluation benchmarks for evaluating capabilities, including
VL comprehension, content creation, and natural language processing (NLP).

Dataset Task description Eval Split Metric
V

L
C

om
pr

eh
en

si
on

COCO (Karpathy & Fei-Fei, 2017) Scene description test CIDEr (Vedantam et al., 2015)
Image2Paragraph (Krause et al., 2017) Scene description test CIDEr (Vedantam et al., 2015)
VQAv2 (Goyal et al., 2019) Scene understanding QA test-dev VQA Acc (Antol et al., 2015)
OKVQA (Marino et al., 2019) External knowledge QA val VQA Acc (Antol et al., 2015)
VizWiz (Gurari et al., 2018) Scene understanding QA test-dev VQA Acc (Antol et al., 2015)
TextVQA (Singh et al., 2019) Text reading QA val VQA Acc (Antol et al., 2015)
MM-Vet (Yu et al., 2023b) Multimodal Comprehension - GPT-4 Eval (Yu et al., 2023b)
MMBench (Liu et al., 2023e) Multimodal Comprehension dev GPT-3.5 Eval (Liu et al., 2023e)
POPE (Li et al., 2023f) Visual Hallucination - Acc, F1-score, Recall, Precision

C
re

at
io

n MS-COCO (Lin et al., 2014) Text-Conditional Image Synthesis val-30K FID (Heusel et al., 2017)
LN-COCO (Pont-Tuset et al., 2020) Text-Conditional Image Synthesis val FID (Heusel et al., 2017)
MMC4 (Zhu et al., 2023b) Doc-Conditional Image Synthesis held-out FID (Heusel et al., 2017)

N
L

P

SIQA (Sap et al., 2019) Commonsense Reasoning dev Acc
PIQA (Bisk et al., 2020) Commonsense Reasoning dev Acc
HellaSwag (Zellers et al., 2019) Commonsense Reasoning dev Acc
WinoGrande (Sakaguchi et al., 2021) Commonsense Reasoning dev Acc
BoolQ (Clark et al., 2019) Reading Comprehension dev Acc
MMLU (Hendrycks et al., 2021) Aggregated Comprehension test Acc

Diffusion Image Decoder We adopt SDv2.1 (Rombach et al., 2022) trained on 512×512 resolution
as the default diffusion image decoder. Same as the visual encoder, the SD model is frozen without
any modifications or training throughout the whole process. When constructing the SD target to
compute the MSE loss, we resize the images to 512 resolution to fit its pretraining configuration.

Dream Query We use dream queries to gather semantic context from MLLMs as introduced before in
Sec. 3. Without specifications, we use 64 learnable query embeddings. It is both efficient and effective
in generating high-quality images. In order to predict when to generate images, we also introduce
the special <dream> token, which is appended before the dream query sequence. A <dream/> is
appended at the end of the sequence, similar to image inputs.

Classifier-Free Guidance Classifier-free guidance (CFG) (Ho & Salimans, 2021) has been demon-
strated successful in generating photo-realistic contents at the cost of acceptable generation diversity.
This technique modifies the objective by ϵ̂ := (1+ s)ϵξ(xt, t, C)− sϵξ(xt, t, ∅), where ∅ is a special
“empty” condition representation and s is the condition scale. The larger guidance scale generally
improves image authenticity while decreasing diversity. We only adopt CFG during inference, and
the scale is set to 7.5 by default and 2.0 for MS-COCO text-conditional image generation.

C.3 EVALUATION BENCHMARKS

Systemic evaluations of DREAMLLM regarding VL comprehension, content creation, and NLP
capabilities have been conducted. See the used benchmarks and datasets listed in Table 13. During
the evaluation, we use the prompt templates listed in Fig. 9.

D ADDITIONAL RELATED WORKS

Large Language Models A flourishing era of Natural Language Processing (NLP) driven by LLMs
is being experienced, with the parameter size growing over 100B according to the scaling law (Kaplan
et al., 2020). The GPT series of models, starting with GPT-1 (Radford et al., 2018) and followed
by GPT-2 (Radford et al., 2019), made significant advancements in few-shot learning by scaling up
the number of parameters to 175 billion in GPT-3 (Brown et al., 2020). This breakthrough garnered
a lot of attention and paved the way for further research and development in the field. Since then,
researchers have focused on developing LLMs by improving the scaling strategy. Several notable
efforts include Gopher (Rae et al., 2021), GaLM (Du et al., 2022), FLAN (Wei et al., 2022a), Switch-
Transformer (Fedus et al., 2022), Chinchilla (Hoffmann et al., 2022), and PaLM (Chowdhery et al.,
2022). Besides, instruction-based tuning techniques are explored for aligning with human prefer-
ences (Christiano et al., 2017; Ouyang et al., 2022). Such success of LLMs has been further solidified
by the production release of ChatGPT (OpenAI, 2022) and the highly anticipated GPT-4 (OpenAI,
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2023a;b). Meanwhile, in the community, the open-source LLMs are achieving remarkable progress
in language capabilities compared to their close-source counterparts. For example, OPT (Zhang et al.,
2022), BLOOM (Scao et al., 2022), GLM (Zeng et al., 2023), LLaMA (Touvron et al., 2023a;b), and
Falcon (Penedo et al., 2023) all raised great attention and are been widely deployed. Other methods
attempt to learn from distillation, such as Alpaca (Taori et al., 2023) and Vicuna (Chiang et al., 2023).

Text-Conditional Content Creation with Diffusion Models The recent surge in AI-generated
content (AIGC) has been primarily driven by diffusion-based methods, particularly in the realm of
text-conditional content creation. Saharia et al. (2022) have achieved astonishing advancements in
high-resolution image synthesis through large-scale pretrained language models and cascaded DMs.
Another paradigm, such as SD, focuses on latent spaces and demonstrates superior efficiency and
performance (Rombach et al., 2022; Ramesh et al., 2022; Peebles & Xie, 2022; Podell et al., 2023).
Recently, Lian et al. (2023) propose to enhance the reasoning capability by constructing layouts with
LLMs. DALLE-3 (Betker et al., 2023) leverages LLMs as agents and proposes to generate images by
incorporating GPT-4 for providing high-quality and detailed prompts that facilitate image synthesis.
Motivated by the great success in 2D, a series of works have significantly propelled the 3D synthesis
development (Mildenhall et al., 2022; Liu et al., 2023d; Lin et al., 2023; Wang et al., 2023c; Tang
et al., 2023) based on Score Distillation Sampling (SDS) (Poole et al., 2023; Wang et al., 2023a) that
utilizes pretrained 2D DMs. For text-to-video/4D synthesis, the expansion of pretrained spatial to a
spatial-temporal factorized U-Net with joint image and video data training has yielded significant
success (Ho et al., 2022a;b; Singer et al., 2023a;b).

E LIMITATIONS, FAILURE CASES & FUTURE WORKS

Limitations While DREAMLLM has made significant strides toward the development of versatile,
creative, and foundational MLLMs, it still has several limitations.

Model scale. The primary constraint pertains to the scale of the LLMs utilized. Current evaluations
mainly employ 7B LLMs as the base model, and despite the impressive results garnered, the potential
benefits of larger model sizes, such as 65B or 130B (Kaplan et al., 2020), are worth future exploration.

Training data. The second challenge relates to the quality and quantity of training data (Jia et al.,
2021). As the model size and capabilities scale up, a corresponding increase in data is crucial.
However, the procurement and refinement of high-quality training data present substantial logistical
and financial hurdles. For instance, the open-source interleaved dataset MMC4 contains a significant
amount of noise in the form of text and images, like commercial advertisements. This noise could
adversely affect the model’s output language and image style.

Prompt sensitivity. The sensitivity of LLMs to human prompts is a known issue (Wei et al., 2022b;
Wang et al., 2023b; Zhou et al., 2023), a challenge that extends to MLLMs. For instance, MLLMs’
propensity for detailed responses necessitates tailored prompting to elicit concise and short answers,
which is particularly useful when addressing Visual Question Answering (VQA) tasks.

Failure Cases The main failure cases of DREAMLLM are observed for multiple image-based
content creations. For instance, when presented with two images and a composite instruction such as
“A and B”, DREAMLLM sometimes generates a single subject that amalgamates the characteristics
of A and B. This output aligns more closely with the directive “A like B”. This phenomenon is not
unique to DREAMLLM, but is also observed in specialized compositional generation methodologies,
such as StructureDiffusion (Feng et al., 2023; Chefer et al., 2023). This recurring issue may be
attributed to the inherent complexity of compositional generation tasks, compounded by the severe
scarcity of data specific to this domain.

Future Works As a simple and general multimodal learning framework, our future work aims to
enhance the DREAMLLM framework by integrating fine-grained visual comprehension via methods
like precise referring instruction tuning (Zhao et al., 2023a). We also plan to expand beyond visual
and linguistic content comprehension and generation. Several promising research directions include:

• Exploring applications of in-context generation capabilities of DREAMLLM to complex tasks such
as image-to-image translation (Isola et al., 2017; Zhang et al., 2023c;d; Parmar et al., 2023).
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Based on the image, give the image caption briefly. <IMAGE> Please summarize object in one sentence within 10 words.USER:

The image depictsASSISTANT: <ANSWER>

(a) Image Captioning (Short)

(b) Image Captioning (Long)

Based on the image, please describe the image in detail. <IMAGE> Please describe the image in detail.USER:

The image depictsASSISTANT: <ANSWER>

(c) VQA (Short)

Based on the image, please answer the question. <IMAGE> Please provide an accurate answer within one word.USER:

The answer is:ASSISTANT: <ANSWER>

(d) VQA (Long)

This is an exam, please answer according to the image and question. <IMAGE>

Please provide an accurate and detailed answer.

USER:

ASSISTANT: <ANSWER>

<QUESTION>

<QUESTION>

(e) Visual Hallucination

Based on the image, please objectively and accurately indicate whether the object exists. <IMAGE>USER:

ASSISTANT: The answer is: <ANSWER>

Is there a <OBJECT> in the image?

System Prompt

A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.

Figure 9: Prompt templates. (a) Short image captioning includes COCO captioning, and (b) long
image captioning includes Image2Paragraph. (c) Short VQA includes VQAv2, VizWiz, OKVQA,
and TextVQA. (d) Long VQA includes MMBench and MM-Vet. (e) Visual hallucination includes
POPE. <IMAGE> is the image representation, <QUESTION> denotes each specific question, <ANSWER>
is the generated answer, and <OBJECT> is a specific object name in POPE.

• The extension of the DREAMLLM model to video data possessing long-term context is natural,
capitalizing on the model’s ability to encapsulate temporal knowledge through context consistency.
This would give rise to video comprehension and text-to-video generation capabilities.

• Utilizing DREAMLLM’s context consistency feature for geometry-preserving tasks, including
3D content creation (Poole et al., 2023; Qi et al., 2023b; Liu et al., 2023d), representation learn-
ing (Dong et al., 2023; Qi et al., 2023a; Zhang et al., 2023a;f), scene comprehension (Zhang et al.,
2023b; Hong et al., 2023), and embodied artificial inteligence (Ichter et al., 2022; Qi et al., 2024).

• In addition, since the diffusion model is used as the image decoder, it would be interesting to explore
DMs-based zero-shot perception such as classification (Li et al., 2023a) and segmentation (Xu
et al., 2023a) with the goal of unifying all perception tasks with image synthesis/generation.

• Striving to achieve a unified multimodal zero-shot generalist by extending the scope to various
modalities using techniques such as ImageBind (Girdhar et al., 2023) and exploring content creation
models in other modalities like audio (Kong et al., 2021).
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Can you give a short introduction
to this movie?

The Godfather, also known as Il Padrino, is a classic
American crime drama film directed by Francis Ford
Coppola. It is the first installment in The Godfather
trilogy, which also includes The Godfather Part II
(1974) and The Godfather Part III (1990). The movie is
widely regarded as a masterpiece and a milestone in
the mafia genre, exploring the story of the Corleone
family, a fictional Italian-American crime family in
New York. It follows the transformation of Michael
Corleone, the youngest son of the family's aging don,
Vito Corleone, as he rises to power and eventually
takes on the mantle of his father. The film features a
strong cast, which includes Marlon Brando as Vito
Corleone, Al Pacino as Michael Corleone, James Caan as
Sonny Corleone, Robert Duvall as Tom Hagen, and Diane
Keaton as Kay Corleone. The Godfather is known for its
iconic scenes, memorable lines, and its impact on the
Hollywood film industry.

Do you feel dangerous in the scene in 
the picture?

Good. Show me an illustration of a panda wearing a 
suit and drinking the martini like the Godfather.

The image depicts a large painted tiger made from a
variety of colored rocks and stones, which is a
piece of artwork rather than a real animal. As an
inanimate object, the tiger does not pose any danger.
While the representation of the tiger may be
frightening to some, it is important to remember
that this work of art is not capable of causing harm.

An illustration of a panda wearing a
suit and drinking a martini like the
Godfather.

What is the name of this painting?

The name of this painting is “Girl with a Pearl 
Earring.”

Can you give a short introduction to this painting?

“Girl with a Pearl Earring” is a painting by the
Dutch master Johannes Vermeer, created during the
17th century. The painting features a girl wearing
a pearl earring and a headscarf, with her head
tilted to the side. The use of light and shadow, as
well as the intricate details in her clothing and
the surrounding environment, are characteristic of
Vermeer's unique painting style.

What emotional value can this store 
bring to human society?

The Disney Store, with its whimsical and colorful
interior and a dizzying array of Disney-themed
merchandise, can bring a sense of joy, wonder, and
nostalgia to human society. Walking into the store
evokes feelings of excitement and delight, as
customers are surrounded by familiar characters,
stories, and memories associated with the iconic
Disney brand. This emotional value can also promote
imagination and creativity, as children can engage
with the merchandise by pretending and playing out
their favorite Disney stories. The store provides a
unique and uplifting shopping experience for both
children and adults, fostering positive emotions
and creating memorable moments that can enrich
personal experiences and interactions.

Fantastic. Generate some high-quality illustrations 
of Disney-themed merchandise for me.

An image of a bag of Disney branded
merchandise, with a picture of a
Disney character in the background.

What about a big Disney character
like Mickey Mouse?

Photograph A:

Photograph B:

What is written in these photographs? What is
the difference between these two photos? Answer
in detail about the difference in written words
and styles.

In the two photographs, A and B, the written words
are different. In Photograph A, the word “Dream”
is written differently, possibly with a blue and
pink background, while in Photograph B, the word
“Dream” appears in a vintage style. The difference
in the style of the word and the background
suggests that each photograph presents a different
approach, possibly signifying different moods or
themes. Additionally, the presence of a “llm” in
Photograph B suggests a variation in the text
compared to only having the word “Dream” in
Photograph A.

DreamLLM

DreamLLM

DreamLLM

Figure 10: Qualitative examples of multimodal dialogue between human and DREAMLLM.
Various modalities can be used as inputs or outputs, and multi-round dialogue is shown.
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The man in photo A is Albert Einstein, and the man in photo B is Lionel Messi.

Who is the man in photo A, and who is the man in photo B?

Photograph of man A:

Photograph of man B:

Imagine what kind of conversation will these two people have when they sit in the same room?
Please give a possible dialogue script.

If Albert Einstein and Lionel Messi were to sit in the same room, they might have a fascinating
conversation about their experiences, knowledge, and perspectives on various topics such as science,
physics, and their respective sports. Here is a possible dialogue script:

Einstein: Good afternoon, Mr. Messi. How are you?

Messi: Hello, Dr. Einstein. I am doing well. Thank you for having me.

Einstein: I am pleased to encounter a fellow genius in the world of sports, and I would love to hear
your insights on the game.

Messi: Thank you, sir. As a soccer player, I feel that the key to success is having a strong mindset,
an understanding of the game, and the ability to adapt to different situations. I try to learn from
each game and work on my weaknesses.

Einstein: Indeed, I have said similar things about the nature of intelligence and knowledge. Learning
from past experiences is crucial to personal growth and understanding. It reminds me of a famous
quote by the German philosopher Johann Gottlieb Fichte: “If you would be a genius, think deeply and
long, and incessantly about one thing. ”

Messi: I understand the value of continuous learning, and I try to apply it in my training and on the
field. I am always trying to improve my skills and learn from my colleagues in the club.

Einstein: That is a wonderful attitude to have. I am also very impressed by your passion for the
field. In my opinion, passion is an integral part of success. It fuels the drive to achieve greatness,
and it is especially evident in my own field of physics. For instance, I once said, “The passion for
truth is the foundation for the sciences.”

Messi: It is a great feeling to know that I am playing a sport that is full of passionate individuals.
I am proud to be a part of that world and do my part in contributing to it.

Einstein: I am sure that you, Mr. Messi, would agree that having a passion for knowledge can lead to
discoveries that change the world. For example, my theory of relativity has had a profound impact on
our understanding of space, time, and gravity. It was a result of decades of contemplation and
research.

Messi: The world of sports and the world of science are not so different when it comes to the pursuit
of excellence. I am honored to be in the presence of a true genius like you, Dr. Einstein.

Einstein: I feel the same way, and I would like to thank you for this opportunity to engage in a
conversation about our respective fields. The world is a wondrous place, and I am grateful to be a
part of it.

Figure 11: Qualitative examples of multimodal dialogue between human and DREAMLLM.
Various modalities can be used as inputs or outputs, and multi-round dialogue is shown.
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This image is funny for a few reasons. First, the brown teddy bear is in a swimming pool, which is an
unexpected and unusual environment for a stuffed bear. Typically, teddy bears are found indoors, in a child's
room or on a couch. Swimming pools are associated with human activities, so seeing a teddy bear in a pool
evokes a sense of humor, as it's an amusing juxtaposition of the bear's typically inanimate and non-aquatic
nature with the human-centered environment of a pool. Second, the bear is holding up one of its hands, which
could be interpreted as a gesture of surprise or even as an attempt to save itself from drowning, adding to
the humor. Lastly, the fact that the bear is swimming with a smile on its face, as if it is enjoying itself,
further contributes to the amusing nature of the scene. The combination of the unfamiliar environment and the
bear's expressions create a funny and entertaining image.

Wow. That's correct. Can you write an article about teddy bears and swimming? Discuss what
will happen if teddy bears can swim. Include some high-quality images.

If teddy bears can swim, it's likely that they would try to mimic human behavior in the water. They would
likely float on their backs, kick their legs, and even hold their breath underwater. Of course, it's
impossible to know for certain what teddy bears would do in such a situation, but that doesn't mean you
shouldn't imagine! Imagine a scene with a teddy bear floating in a pool, wearing a cap and goggles, and
laughing with delight as it floats on its back in the water. Imagine the scene with a lemon drop pool float
and a swim cap on a teddy bear and it would be even more adorable. In the image, you'll see a brown teddy bear
wearing a swim cap, floating on its back in a swimming pool.

That's interesting. So, what do you think a real bear looks like? Show me a high-quality DSLR
photograph of a bear in the forest.

A real bear, such as a brown or black bear, typically has shaggy hair that can be either brown, blond, or
black. The exact color can vary depending on the species of bear and the region where it lives. Bears have
thick fur and are usually large and muscular with strong limbs, which they use for climbing, digging, and
foraging for food. In the image, you'll see a bear in a forest, walking through the trees.

Can you explain why this is funny. Think about it carefully and step-by-step.

The image is so amusing and cute that it can evoke a feeling of joy and happiness in anyone who sees the image.
The teddy bear is floating on its back in the water, and what's even more amusing is the bear is wearing a red
and yellow shirt with a large brown belly. This makes the bear look even more furry and cute, and even more
likely to make you smile.

The photo is taken with a DSLR camera, which allows for a high level of detail, sharpness, and clarity in the
image. The bear appears to be staring into the distance, focusing on something in the distance. The image
captures the bear's natural habitat, which is a prime example of the forest environment where these animals
live. The image highlights the bear's size and strength, along with its untamed and wild nature. This
photograph is an excellent example of wildlife photography, capturing a real-life scene that is both visually
striking and informative.

DreamLLM

DreamLLM

DreamLLM

Figure 12: Qualitative examples of multimodal dialogue between human and DREAMLLM.
Various modalities can be used as inputs or outputs, and multi-round dialogue is shown.
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small bird with a pale yellow underside light brown crown and back gray tail and wing tips 
tip of tail feather bright yellow black eyes and black strip over eyes

(a)

an astronaut riding a horse X, where X ∈ {“in a photorealistic style”, “in the style of Pop 
Art”, “as a charcoal sketch”, “as a golden relief”}

(c)

panda mad scientist mixing sparkling 
chemicals, art station

(d)

an espresso machine that makes coffee X, art station, 
where X ∈ {“in a warm scene”, “from human soul”}

an armchair in the shape of an avocado

(b)

a futuristic city X, where X ∈
{“in a synthwave style”, “in vaporwave style”, “made of water”, “Beijing opera style”}

(e)

(f)

robots meditating in a vipassana retreat

DreamLLM DreamLLM DreamLLM DreamLLM

DreamLLM DreamLLM DreamLLM DreamLLM

DreamLLM DreamLLM DreamLLM DreamLLM

DreamLLM DreamLLM DreamLLM DreamLLM

DreamLLM DreamLLM DreamLLM DreamLLM

DreamLLM DreamLLM DreamLLM DreamLLM

Figure 13: DREAMLLM text-conditional image generation examples with prompts from (a-b) DALL-
E (Ramesh et al., 2021), (c-d) DALL-E 2 (Ramesh et al., 2022), (e-f) GLIDE (Nichol et al., 2022).
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A sculpture of a duck X. where X ∈
{“made out of transparent glass”, “made of wool”, “made of wood”, “made of paper”}

(a)

DreamLLM DreamLLM DreamLLM DreamLLM

A couple of glasses are sitting on a table.

(b)

DreamLLM DreamLLM DreamLLM DreamLLM

Downtown X at sunrise. detailed ink wash. where X ∈
{“Istanbul”, “Austin”, “Beijing”, “LA”}

(e)

DreamLLM DreamLLM DreamLLM DreamLLM

(c)

DreamLLM DreamLLM DreamLLM DreamLLM

A squirrel is inside a giant bright shiny crystal 
ball in on the surface of blue ocean. 

There are few clouds in the sky.

An art gallery displaying Monet paintings. The art 
gallery is flooded. Robots are going around the 

art gallery using paddle boards.

Oil-on-canvas painting of a blue
night sky with roiling energy.
A fuzzy and bright yellow
crescent moon shining at the top.
Below the exploding yellow stars
and radiating swirls of blue,
a distant village sits quietly
on the right. Connecting earth
and sky is a flame-like cypress
tree with curling and swaying
branches on the left. A church
spire rises as a beacon over
rolling blue hills.

(d)

a long wooden bench in 
front of a brick wall

DreamLLM DreamLLM DreamLLM

a hot air balloon landing 
in a corn field

(f)

DreamLLM DreamLLM DreamLLM DreamLLM

a beat-up truck at the base of the Great Pyramid a wooden deck overlooking a mountain valley

Figure 14: DREAMLLM text-conditional image generation examples with prompts from (a-c) Imagen
and DrawBench (Saharia et al., 2022), (d-f) Parti (i.e., PartiPrompts or P2) (Yu et al., 2022b).
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