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ABSTRACT

System side channels denote effects imposed on the underlying system and hard-
ware when running a program, such as its accessed CPU cache lines. Side chan-
nel analysis (SCA) allows attackers to infer program secrets based on observed
side channel logs. Given the ever-growing adoption of machine learning as a
service (MLaaS), image analysis software on cloud platforms has been exploited
by reconstructing private user images from system side channels. Nevertheless,
to date, SCA is still highly challenging, requiring technical knowledge of victim
software’s internal operations. For existing SCA attacks, comprehending such
internal operations requires heavyweight program analysis or manual efforts.
This research proposes an attack framework to reconstruct private user images
processed by media software via system side channels. The framework forms an
effective workflow by incorporating convolutional networks, variational autoen-
coders, and generative adversarial networks. Our evaluation of two popular side
channels shows that the reconstructed images consistently match user inputs, mak-
ing privacy leakage attacks more practical. We also show surprising results that
even one-bit data read/write pattern side channels, which are deemed minimally
informative, can be used to reconstruct quality images using our framework.

1 INTRODUCTION

Side channel analysis (SCA) recovers program secrets based on the victim program’s nonfunctional
characteristics (e.g., its execution time) that depend on the values of program secrets. SCA consti-
tutes a major threat in today’s system and hardware security landscape. System side channels, such
as CPU cache accesses and operating system (OS) page table accesses made by the victim software,
are widely used to recover program secrets under various real-world scenarios (Gullasch et al., 2011;
Aciicmez & Koc, 2006; Wu et al., 2012; Hähnel et al., 2017; Xu et al., 2015; Yarom et al., 2017).

To conduct SCA, attackers first conduct an online phase to log a trace of side channel data points
made by the victim software (e.g., its accessed CPU cache lines). Then, attackers launch an offline
phase to analyze the logged trace and infer secrets (e.g., private inputs). Enabled by advances in
system research, the online phase can be performed smoothly (Xu et al., 2015). Nevertheless, the
offline phase is challenging, requiring comprehension of victim software’s input-relevant operations
and how such operations influence side channels. The influence is program-specific and obscure (see
an example in Fig. 1). Even worse, side channel data points made by real-world software are usually
highly noisy. For instance, executing libjpeg (libjpeg, 2020) to decompress one unknown JPEG
image produces a trace of over 700K side channel data points, where only a small portion depends
on the image content. Identifying such input-dependent data points from over 700K records is
extremely difficult.

Launching SCA to recover images processed by media software constitutes a common threat in the
era of cloud computing (Xu et al., 2015; Hähnel et al., 2017), especially when machine learning as
a service (MLaaS) is substantially offered (e.g., for face recognition). When envisioning the high
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risk of violating user privacy, there is a demanding need to understand the adversarial capability of
reconstructing private images with SCA. To date, the offline inference phase of existing SCA attacks
requires lots of manual efforts with heuristics (Xu et al., 2015; Hähnel et al., 2017). While some
preliminary studies explore to use AI models to infer secrets (Hospodar et al., 2011; Kim et al., 2019;
Cagli et al., 2017; Hettwer et al., 2018), their approaches are primarily driven by classification, i.e.,
predicting whether a particular bit of crypto key is 0 or 1. In contrast, reconstructing user private
images requires to synthesize and enhance images from a more holistic perspective.

Recent advances in generative models, such as generative adversarial network (GAN) and variational
autoencoder (VAE), have enabled a major thrust in image reconstruction, given subtle signals in even
cross-modal settings, e.g., voice-to-face or text-to-image (Radford et al., 2016; Reed et al., 2016;
Wen et al., 2019; Hong et al., 2018b). Inspired by this breakthrough, we propose an SCA framework
using generative models. Given a trace of side channel data points made by image analysis software
(e.g., libjpeg) when processing a user input, we reconstruct an image visually similar to the
input. Each logged side channel trace, containing around a million records, is first encoded into a
matrix and pre-processed by a convolutional neural network (CNN) for feature extraction. Then,
a VAE network with a learned prior (referred to as VAE-LP) is employed to reconstruct an image
with a holistic visual appearance. We further supplement VAE-LP with a GAN model to enhance
the recovered image with vivid details. The GAN generator yields the final output.

Our attack exploits media libraries, libjpeg (libjpeg, 2020) and uPNG (Middleditch, 2010), us-
ing two popular side channels, CPU cache line accesses and OS page table accesses. Our attack
is independent of the underlying computing infrastructure (i.e., OS, hardware, image library imple-
mentation). We require enough side channel logs for training, which is consistently assumed by
previous works (Heuser & Zohner, 2012; Maghrebi et al., 2016). While existing attacks particularly
target libjpeg and leverage domain knowledge, system hacking, and manual efforts to infer pixel
values (Xu et al., 2015; Hähnel et al., 2017), we show that images with many details can be recon-
structed in an end-to-end manner. We also show surprising results that enabled by our framework,
side channel traces composing one-bit data read/write patterns, which prima facie seems minimally
informative, suffice recovering images. We conduct qualitative and quantitative evaluations on spe-
cific and general datasets representing daily images that can violate privacy if leaked. The recovered
images manifest consistent visual appearances with private inputs. The recovered images also ex-
hibit high discriminability: each recovered image (e.g., a face) can be matched to its reference input
among many candidates with high accuracy. In summary, we make the following contributions:

At the conceptual level, we present the first generative model-based SCA. Our novel approach
learns how program inputs influence system side channels from historical side channel logs to re-
construct user private images automatically. We, for the first time, demonstrate surprisingly effective
attacks toward even low-resolution side channels like one-bit data read/write access patterns.

At the technical level, we design an effective framework by incorporating various design principles
to facilitate image reconstruction from side channels. Our framework pipelines 2D CNN, VAE-LP,
and GAN models to systematically enhance the quality of generated images.

At the empirical level, our evaluations show that the proposed framework can generate images
with vivid details and are closely similar to reference inputs. The reconstructed images show high
discriminability, making privacy leakage attacks more practical.

This is the first paper to conduct SCA with generative models, revealing new SCA opportunities and
unknown threats. Our code is at https://github.com/genSCA/genSCA.

2 BACKGROUND

To formulate SCA, let the attacked program be P and its input domain be I . For a deterministic and
terminating program P , the program execution can be modeled as a mapping P : I → E where
E represents program runtime behavior (e.g., memory access). As a common assumption (Hähnel
et al., 2017), program inputs are private and profitable for attackers. Since different inputs i, i′ ∈ I
can likely induce different e, e′ ∈ E, using input-dependent e ∈ E enables to infer i.

Modern computer architectures have primarily zeroed the possibility for adversaries to log e ∈ E.
Nevertheless, an attacker’s view on P can be modeled as a function view : E → O that maps E
to side channel observations O. Hence, the composition (view ◦ P ) : I → O maps inputs to side
channel data points that can be logged by attackers. The view indicates the attacker’s capability,
and for typical system security scenarios, the view is formulated as view : Emem → Ocache ∪
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(a) SCA toward cloud platforms to recover private inputs –
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if (i is 1) then
//access cache line 0x7ff10
a = array[240];

else
//access cache line 0x7ff02
a = array[59];

endfor
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Figure 1: Performing SCA to exploit cloud computing platforms.

Opage, where Emem denotes a trace of accessed memory locations when executing P with i, and
Ocache andOpage represent CPU cache and OS page table side channels, respectively. Despite being
unable to monitor Emem, attackers can log accessed cache lines Ocache or page table entries Opage

derived from Emem. Attackers then infer Emem and recover i. We now concretize the procedure
by introducing how SCA is used to exploit cloud platforms in a two-step approach as follows:
Online Phase to Record O. Considering a cloud environment in Fig. 1(a), where two users, one
normal and one malicious, deploy two virtual machine (VM) instances on the host. Private images
i ∈ I uploaded by users are processed by media library P within the left VM. Modern computer
design, e.g., Intel SGX (Intel, 2014), guarantees that i ∈ I and the execution of P cannot be viewed
from outside the VM. However, when processing i, P usually imposes a large volume of CPU cache
and page table accesses, which, as shown in Fig. 1(a), can be recorded by the co-located malicious
VM or the malicious host OS in a fully automated manner (Han et al., 2017; Chiang et al., 2015;
Liu et al., 2015a; Xu et al., 2015; Hähnel et al., 2017).
Offline Phase to Infer i. Once side channel traces o ∈ O are collected, an offline phase is conducted
to infer (view ◦P )−1 : O → I and recover i. Fig. 1(b) presents a sample code, where depending on
values of input i, different memory locations (and cache lines) will be visited. Fig. 1(c) shows the
corresponding trace of logged cache side channel records. To infer i, attackers eliminate the second
record (since it is input-independent), and infer i as 1 according to the first record.

Attackers anticipate to 1) pinpointing a subset of records o∗ ⊆ o that depend on i, and to 2) recov-
ering the mapping from o∗ to i. However, real-world side channel traces (e.g., generated by uPNG)
could contain over one million records, where only a tiny portion o∗ is input-dependent. Even worse,
constructing the mapping between i and o∗ requires a deep understanding of program control flows
(e.g., how i affects program execution and induces cache accesses in Fig. 1(b)). To date, these tasks
require either manual effort (Xu et al., 2015; Hähnel et al., 2017) or formal analysis (Doychev et al.,
2013; Wang et al., 2017; 2019), which are program-specific and error-prone with low scalability.

Existing research tackles the offline phase challenge by proposing profiling-based SCA (Maghrebi
et al., 2016; Hettwer et al., 2018; Kim et al., 2019), where models are trained to approximate (view◦
P )−1 : O → I . However, existing work focuses on predicting particular bits of crypto keys from
succinct side channel traces, e.g., a few hundred records (Hettwer et al., 2020). In contrast, this
is the first work shows that by incorporating generative models, SCA can be conducted to exploit
real-world media libraries and holistically reconstruct high-quality and discriminable images.

3 THE PROPOSED FRAMEWORK

A common assumption shared by SCA (Heuser & Zohner, 2012; Hähnel et al., 2017; Xu et al.,
2015) is that the attackers can profile the victim software locally or remotely with training inputs
and collect corresponding side channel traces. We train a model to learn how different inputs can
influence side channel traces. Then, given a side channel trace logged when processing an unknown
image, our framework reconstructs an image that is visually similar to the unknown input.

Our framework has two pipelined modules (see Fig. 2). Given a side channel trace Ti corresponding
to processing an image i, we first encode Ti into a matrix. The encoded matrix will be fed to the
VAE-LP module to generate image îtrace, and we further use GAN to denoise îtrace and yield the
final output îGAN . We now elaborate on each module. More details are given in Appendix B.
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Figure 2: The proposed generative framework for recovering private images from side channel traces.

3.1 SIDE CHANNEL TRACE ENCODING

Real-world software is highly complex, and processing one image could generate a huge amount
of records, where only a few records are secret-dependent. Processing overlong traces for previous
attacks is very difficult and requires considerable domain-specific knowledge, expertise, and even
manual efforts to locate and remove irrelevant records (Xu et al., 2015; Hähnel et al., 2017).

Despite the general difficulty of processing overlong traces (each trace contains about 700K to 1.3M
data points in our evaluation), we note that adjacent records on a side channel trace are often derived
from the same or related modules (e.g., functions) of the victim software. Hence, we “fold” each
side channel trace into a N × N × K matrix to approximate spatial locality which can be further
exploited by CNNs. A trace is first divided into K segments, where N adjacent points in a segment
are put into one row, in total N rows. We do zero padding. CNNs are deployed in the trace encoder
of VAE-LP to process the encoded matrices. Overall, we have no assumption of the access pattern
or the convolutional structure of the inputs. Side channel traces are generally sparse, where only a
small portion is private-related (see Appendix J for experimental information). To smoothly process
the side channel traces with generative models, we thus employ CNN models to pre-process side
channel traces.

3.2 THE VAE-LP MODULE

VAE-LP extends standard VAE by replacing its fixed Gaussian prior with a learned prior (Den-
ton & Fergus, 2018), which represents the latent distribution of side channel traces. VAE-LP is
trained using both real-life images and their corresponding side channel traces. By incorporating the
side channel trace encoder, we can extract latent representations from the logged side channel data
points. Simultaneously, by integrating corresponding reference images during training, we provide
a guideline to help the image decoder to generate quality images. As shown in Fig. 2(a), the trace
encoder Enctrace (marked in blue) employs 2D CNNs and can extract features from side channel
traces Ti in the encoded matrices. The output of Enctrace constitutes the learned prior distribution
of latent variable, namely p(zTi

), rather than a fixed Gaussian distribution that VAE usually is. The
decoder Dec takes the mean of p(zTi

) as its input and outputs the image generated from side chan-
nel traces. The training phase also employs the image encoder Encimage (marked in red), which
accepts reference images i and outputs q(zi|i).
We train the VAE-LP network by performing forward propagation separately for two different data
resources. We then use two generated images to compute reconstruction loss and perform one
iteration of backward propagation. Let îtrace and Dectrace be the generated image and decoder
Dec by conducting forward propagation with only Ti. Similarly, let îimage and Decimage be the
generated image and Dec by conducting forward propagation with only i. Parameters of Dectrace
and Decimage are shared in the training phase, and the loss of the VAE-LP module is defined as
follows:

LossV AE−LP = L1(i, îimage) + L1(i, îtrace) + βDKL(q(zi|i)||p(zTi))

where three terms, namely, i) a reconstruction loss L1(i, îimage) derived from the reference input,
ii) a reconstruction loss L1(i, îtrace) derived from the side channel trace, and iii) a KL-divergence
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Table 1: Side channels derived from a memory access made by victim software using address addr.

Side Channel Name Side Channel Record Calculation
CPU Cache Line Index addr � L where L, denoting cache line size, is 6 on modern x86 architectures.
OS Page Table Index addr & (∼M) where M , denoting PAGE MASK, is 4095 on modern x86 architectures.
Data Read/Write Pattern one bit (0/1) denoting whether this memory access is a read or write operation.

that forces q(zi|i) to be close to p(zTi) are subsumed. During the generation phase, we remove
Encimage andDectrace. Enctrace andDecimage are retained to yield îtrace given a logged Ti. The
generative process is given by:

zTi
∼ p(zTi

) îtrace ∼ p(i|zTi
)

3.3 THE GAN MODULE

VAE-LP module is seen to recover îtrace with relatively coarse-grained information (see Sec. 5.1).
As will be elaborated in Sec. 4, different private inputs can manifest identical side channel patterns.
Hence, some details are inevitably missing during input reconstruction. To tackle this inherent
limitations, we further deploy a GAN module (see Fig. 2(b)) which takes the output of the VAE-
LP module, îtrace, and generates the final output îGAN . To smoothly refine îtrace, we employ an
autoencoder as the generator G of GAN. The loss of the extended GAN model is defined as follows:

LossGAN = γL1(G(̂itrace), îtrace) +Ei∼p(i)[logD(i)] +Eîtrace∼p(̂itrace)
[log(1−D(G(̂itrace)))]

Compared with standard GAN, we extend the loss function with L1 loss of îtrace and G(̂itrace)
with a weight of γ to force G to retain the holistic visual appearance delivered by îtrace. L1 loss
is generally acknowledged to perform better on capturing the low-frequency part of an image (Isola
et al., 2017). Indeed, our evaluation shows that L1 loss, as a common setting, sufficiently conducts
SCA and recovers user private inputs of high quality.

4 ATTACK SETUP

As introduced in Sec. 2, popular system side channels are primarily derived from program memory
accesses. Let addr be the address of a memory location accessed by the victim software, Table 1
reports three utilized side channels and how they are derived from memory accesses. Cache line
and page table side channels are commonly used for exploitation (Hähnel et al., 2017; Yarom &
Falkner, 2014). Furthermore, enabled by our framework, a very low-resolution side channel of data
read/write access patterns can, for the first time, be used to reconstruct high-quality images. Fig. 1
holistically depicts how attackers can monitor cache and page table side channels. Data read/write
patterns can be similarly recorded by monitoring how caches or page tables are visited.

Table 1 shows that different addr can be mapped to the same side channel record. Similarly, different
inputs can induce identical memory address addr. For instance, in Fig. 1(b) array[59] and
array[60]will always be executed as long as i 6= 1. Two layers of many-to-one mapping amplify
the uncertainties of synthesizing discriminable images of high quality. It is easy to see that we are
not simply mapping a trace back to an image.

Each memory address addr has 48 bits, denoting a large range of values. We normalize the memory
address value (discrete integers) into continuous values within [0, 1]. Overall, while arbitrary 48-bit
integers have a large range, side channel data points indeed vary within a small range. For instance,
for cache based side channels, the possible values are limited by the total number of CPU cache
units. In all, side channel data points are large values ranging in a relatively small range.
Attack Target. We attack two media libraries, libjpeg and uPNG, to reconstruct private user
images of JPEG and PNG formats. Previous image reconstruction SCA (Xu et al., 2015; Hähnel
et al., 2017) only exploit libjpeg. PNG and JPEG denote very popular image compression stan-
dards, and given an image in JPEG/PNG format, libjpeg and uPNG can reverse the compression
to generate a bitmap image as the basis of many image analysis tools, e.g., the Python Pillow li-
brary (Clark, 2020). The decompression process introduces many input-dependent memory accesses
which, from the attacker’s perspective, can be reflected on side channels according to Table 1.
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Figure 3: Qualitative evaluation results of three datasets in terms of three different side channels. Correspond-
ing reference images (i.e., private user inputs) are presented on the rightmost column for comparison.

We share common assumptions with existing profiling-based SCA (Hospodar et al., 2011; Heuser &
Zohner, 2012) that side channel traces have been well prepared for use. For our experiments, we use
Pin (Luk et al., 2005), a runtime monitoring tool, to intercept memory accesses of victim software.
A logged memory access trace will be converted into three separate side channel traces according
to Table 1, denoting the attacker’s view on i. Each side channel trace generated by libjpeg or
uPNG contains 700K to 1.3M records. See Appendix A for attack setup details. We evaluate traces
logged via different side channels separately. Evaluating the composition of side channels (i.e., a
“mega-side channel”) is not aligned with how real-world SCA is typically launched.

5 EVALUATION

We present the first systematic approach to reconstructing images from side channels. There is no
previous research for empirical comparison. Two closely related works provide no tools for use (Xu
et al., 2015; Hähnel et al., 2017). As disclosed in their papers, manual efforts are extensively used
to reconstruct images. For instance, both methods treat image color recovery as a separate task,
by iterating multiple reconstruction trials and manually picking one with relatively better visual
effect. Xu et al. (2015) exploit page table side channels and colors are rarely recovered. Hähnel
et al. (2017) recover adequate image colors but only exploit finer-grained cache side channels. Also,
domain-specific knowledge on libjpeg is required to locate a tiny portion of secret-dependent side
channel data points for use. In contrast, we present an end-to-end approach to recovering colorful
images with high quality, by directly analyzing a page table or cache side channel trace of up to
1.3M records. Our attack treats victim software (libjpeg or uPNG) as a “black-box” (no need for
source code) and is independent of any underlying computing infrastructure details.

Benchmarks. Three datasets are primarily used in the evaluation, containing typical daily images
that could violate privacy if leaked to adversaries. Consistent with existing research reconstructing
images from audio recording (Wen et al., 2019; Oh et al., 2019), we accelerate the model training
using images of 3 × 128 × 128 pixels. Wen et al. (2019) use images of an even smaller size (3 ×
64× 64). See Appendix B for model implementation and training details.
(i) Large-scale CelebFaces Attributes (CelebA) (Liu et al., 2015b) contains about 200K celebrity
face images. We randomly select 80K images for training and 20K images for testing.
(ii) KTH Human Actions (KTH) (Laptev & Lindeberg, 2004) contains videos of six actions made
by 25 persons in 4 directions. For each action, we randomly select videos of 20 persons for training
and use the rest for testing. We have 40K images for training and 10K images for testing.
(iii) LSUN Bedroom Scene (LSUN) (Yu et al., 2015) contains images of typical bedroom scenes.
We randomly select 80K images for training and 20K images for testing.

5.1 QUALITATIVE EVALUATION RESULTS

Fig. 3 shows the reconstructed images in different settings. In addition to reporting the final outputs
(i.e., the “VAE-LP & GAN” column), we also report images generated only from the VAE-LP
module in the “VAE-LP” column for comparison. More results are given in Appendix C. For most
of the cases, the reconstructed images and reference images show consistent visual appearances,
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Table 2: Discriminability evaluation. We present success rates of random guess (RG) for the comparison.

k = 1 N = 100 k = 5 N = 100 k = 20 N = 100
CelebA KTH LSUN RG CelebA KTH LSUN RG CelebA KTH LSUN RG

CPU Cache Line 47.28% 38.22% 10.00% 1% 74.98% 63.56% 28.74% 5% 90.70% 83.72% 58.88% 20%
OS Page Table 16.16% 35.86% 2.26% 1% 37.96% 61.28% 8.62% 5% 65.14% 82.22% 26.42% 20%
Read/Write Pattern 19.58% 33.44% 2.24% 1% 42.44% 58.30% 8.28% 5% 67.82% 80.14% 26.64% 20%

k = 1 N = 500 k = 5 N = 500 k = 20 N = 500
CelebA KTH LSUN RG CelebA KTH LSUN RG CelebA KTH LSUN RG

CPU Cache Line 28.68% 24.50% 3.04% 0.2% 52.22% 41.24% 10.90% 1% 72.98% 61.08% 25.92% 4%
OS Page Table 6.56% 22.58% 0.46% 0.2% 17.90% 38.80% 2.42% 1% 35.22% 58.90% 7.30% 4%
Read/Write Pattern 8.42% 20.64% 0.50% 0.2% 21.18% 36.22% 2.54% 1% 39.84% 55.74% 7.08% 4%

such as gender, skin color, bedroom window, and human gesture. Images in the LSUN dataset
contain many subtle bedroom details, imposing relatively higher challenge for reconstruction.

Realistic and recognizable images can be recovered using cache side channels (especially for LSUN)
while images recovered from the other side channels are relatively blurry. As explained in Table 1,
cache line indices (addr � 6) are closer to the memory address addr (only missing the lowest 6
bits), while page table indices eliminate the lowest 12 bits from addr (typically lower bits in addr
are informative and likely influenced by inputs), and each read/write pattern has only one bit.

Compared with images generated by VAE-LP, the GAN module enhances the image quality by
adding details and sharpening the blurred regions. GAN may overly enhance the image quality
(e.g., the first LSUN case with jungle green wallpaper). However, GAN is indeed vital to exploit
user privacy. For example, considering the first human gesture case in KTH, where the image recon-
structed from cache side channels contains a “black bar” when using VAE-LP. The GAN module
enhances this obscure image and reconstructs the human gesture, thus violating user privacy.

5.2 QUANTITATIVE EVALUATION RESULTS

To assess the generated images w.r.t. discriminability, we first study the accuracy of matching a
reconstructed image î to its reference input i. To do so, we form a set of N images which include
the reference input i andN−1 images randomly selected from our testing dataset. We then measure
whether i appears in the top-k most similar images of î. Conceptually, we mimic a de-anonymization
attack of user identity, where N scopes the search space attackers are facing (e.g., all subscribers
of a cloud service). We use a perceptually-based similarity metric, SSIM (Wang et al., 2004), to
quantify structural-level similarity between the reconstructed images and reference inputs.

Table 2 reports the evaluation results of six practical settings. Consistent with Fig. 3, cache side
channels help to reconstruct î with better discriminability (highest accuracy for all settings in Ta-
ble 2). LSUN images have lower accuracy. As shown in Fig. 3, images in LSUN contain many subtle
bedroom details and deem challenging for discrimination. We achieve the highest accuracy when
k = 20 and N = 100, while the accuracy, as expected, decreases in more challenging settings (e.g.,
when k = 1 and N = 500). Evaluations consistently outperform the baseline — random guess.
For instance, while the accuracy of random guess when k = 1 and N = 500 is 0.2%, we achieve
higher accuracy (range from 0.46% to 28.68%) across all settings. Appendix D also conducts this
evaluation using images generated from only VAE-LP. We report that better discriminability can be
achieved for all datasets when supplementing VAE-LP with GAN.

For face images in CelebA, we also study how well different facial attributes are being captured
in the reconstructed images. We use Face++ (fac, 2020), a commercial image analysis service, to
classify reconstructed images and reference inputs w.r.t. age and gender attributes. Fig. 4 reports the
confusion matrices for age and gender attributes and distributions of training data for the reference.
The reconstructed images are produced using cache side channels. Overall, we achieve a good
agreement for both male and female labels. We also observe correlated classification results for
most age groups. The age distribution indicates that early adulthood (20–40) and middle age (40–
60) mostly dominate the dataset, which presumably induces biases in the age confusion matrix.
Similarly, “male” has a smaller representation in the training set, potentially explaining its lower
agreement in the confusion matrix. Appendix D also conducts this evaluation using only VAE-LP
or using other side channels where comparable results can be achieved.
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Figure 4: Facial attribute evaluation in terms of cache side channels. Confusion matrices (with row-wise
normalization) compare the age and gender classification results on our recovered images and those obtained
from reference inputs. We also report the age and gender distributions in the training set for the reference.

Table 3: Generalizability evaluation.

(k,N ) (1, 100) (5, 100) (20, 100) (1, 500) (5, 500) (20, 500)
uPNG: SCA model trained with CelebA 18.8% 40.6% 66.0% 8.3% 20.7% 38.4%

libjpeg: SCA model trained with mini-Imagenet 4.4% 17.1% 39.8% 1.1% 5.0% 15.0%
Baseline — random guess 1% 5% 20% 0.2% 1% 4%

5.3 GENERALIZABILITY

This section explores the generalizability of our SCA. We launch attacks toward uPNG to illustrate
that our method is independent of specific software implementation or image formats. For uPNG
experiments, we evaluate attacks on the CelebA dataset using cache side channels. As shown
in table Table 3, our attack can recover discriminable images and largely outperforms the baseline
(random guess) in terms of privacy inference. See Appendix E for the reconstructed images. We also
benchmark our attack to synthesize arbitrary images without using specific types of images to train
the model. We instead use a general training dataset, mini-Imagenet. We use cache side channels to
exploit libjpeg. Table 3 illustrates that considerable privacy is leaked using mini-Imagenet as the
training set, and for all settings, our SCA largely outperforms the baseline.

The recovered images when using mini-Imagenet as the training data are visually worse than images
recovered using specialized datasets. See Appendix F for the recovered images. This observation
reveals the potential trade-off of our research. Overall, training generative models using a general
dataset without the knowledge of images classes seems “unconventional.” A generative model is typ-
ically trained using dataset of only one class (Guo et al., 2019), or it requires image class information
to be explicitly provided during both training and generation phases (Brock et al., 2019). Neverthe-
less, we still evaluate our approach using a general dataset to explore the full potential of our attack.
We attribute the adequate results using general datasets to discriminable features extracted by our
trace encoder from images of different classes. See Appendix G for further evaluations.

From a holistic perspective, the adopted training image sets constitute a predictive model of user
privacy. While a particular user input is private, we assume that the functionality of victim software
(e.g., a human face analysis service) is usually known to the public or can be probed prior to attacks.

6 DISCUSSION

This is the first paper that provides a practical solution to reconstruct images from system side chan-
nels. Proposing a novel generative model design is not our key focus. Also, despite the encouraging
results, the reconstructed images show room for improvement. For instance, not all image colors
were well recovered. Our manual inspection shows that compared with libjpeg, uPNG does not
impose informative side channel dependency on pixel colors (i.e., different colors can likely induce
identical side channel logs). Nevertheless, user privacy is presumably leaked as long as the image
skeleton is recovered. Colors (or other details) can be recovered if the system community discovered
more powerful (finer-grained) side channels.
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7 RELATED WORK

Exploiting System Side Channels. System side channels have been used to exploit various real-life
software systems (Dong et al., 2018; Wu et al., 2012; Hähnel et al., 2017; Xu et al., 2015). The
CPU cache is shown to be a rich source for SCA attacks on cloud computing environments and web
browsers (Hähnel et al., 2017; Oren et al., 2015). In addition to cache line side channels analyzed in
this research, other cache storage units, including cache bank and cache set, are also leveraged for
SCA attacks (Yarom et al., 2017; Liu et al., 2015a). Overall, while most attacks in this field perform
dedicated SCA attacks toward specific side channels, our approach is general and orthogonal to
particular side channels.

Profiling-based SCA. Machine learning techniques have substantially boosted profiling-based SCA
by learning from historical data. DNN models have been used to recover secret keys from crypto
libraries under different scenarios (Heuser & Zohner, 2012; Maghrebi et al., 2016; Cagli et al., 2017;
Hettwer et al., 2018; Kim et al., 2019; Hettwer et al., 2020). Nevertheless, the success of existing AI-
based SCA attacks is primarily driven by the model classification capability, e.g., deciding whether
a particular bit of AES secret key is 0 or 1. This paper advocates the new focus on reconstructing
images with generative models, leveraging another major breakthrough in DNN.

SCA Mitigation. Existing SCA mitigation techniques can be categorized into system-based and
software-based approaches. For system-based approaches, previous works have proposed to ran-
domize the cache storage units or enforce fine-grained isolation schemes (Wang & Lee, 2006; 2008;
2007; Liu et al., 2016). Some recent advances propose to leverage new hardware features to mitigate
side channel attacks (Gruss et al., 2017). In addition, software-level approaches, including design-
ing secret-independent side channel accesses, randomizing memory access patterns (Coppens et al.,
2009; Raj et al., 2009; Schwarz et al., 2018), have also been proposed. Compared with system- and
hardware-based mitigations, software-based approaches usually do not require a customized hard-
ware design, and are generally more flexible. Nevertheless, software-based approaches can usually
incur extra performance penalty.

8 CONCLUSION

This paper has presented a general and effective SCA framework. The framework is trained with
side channels to exploit media software like libjpeg and uPNG. Our evaluation shows that recon-
structed images manifest close similarity with user inputs, making privacy leakage attacks practical.
We also show surprising findings that enabled by our framework, attacks with low-resolution side
channels become feasible.

9 ETHICS STATEMENT

We present a systematic and effective pipeline of recovering private images using system side chan-
nels. It is generally acknowledged that studying attack schemes helps eliminate false trust on modern
computing infrastructures and promote building secure systems (Athalye et al., 2018). While there
is a risk that SCA could become easier using our methods, we believe that our work will also pro-
mote rapidly detecting SCA before security breaches. As will be shown in Appendix J, our proposed
technique can serve as a “bug detector” to isolate certain code blocks in image processing software
that induce SCA opportunities. Developers can thus refer to our findings to patch their software.

Our efforts could impact the ever-growing CV community in building side channel-free image anal-
ysis tools. Despite the algorithm-level efforts to address privacy concerns, e.g., via differential
privacy (Dwork et al., 2006), the infrastructure-level vulnerabilities have not yet received enough
attention, especially in the real-world scenarios like MLaaS. Our research will serve as a critical
incentive to re-think tradeoffs (e.g., cost vs. security guarantee) currently taken in this field.

10 ACKNOWLEDGEMENTS

We thank the ICLR anonymous reviewers and area chairs for their valuable feedback. Junping Zhang
is supported by National Key Research and Development Project (2018YFB1305104).

9



Published as a conference paper at ICLR 2021

REFERENCES

Face attributes analysis service. https://www.faceplusplus.com/attributes/, 2020.

PAGE MASK. https://elixir.bootlin.com/linux/v5.6.10/source/arch/
x86/include/asm/page_types.h#L12, 2020.

Onur Aciicmez and Cetin Kaya Koc. Trace-driven cache attacks on AES. In ICICS, 2006.

Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of
security: Circumventing defenses to adversarial examples. arXiv preprint arXiv:1802.00420,
2018.

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale GAN training for high fidelity
natural image synthesis. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=B1xsqj09Fm.

Eleonora Cagli, Cécile Dumas, and Emmanuel Prouff. Convolutional neural networks with data aug-
mentation against jitter-based countermeasures. In International Conference on Cryptographic
Hardware and Embedded Systems, pp. 45–68. Springer, 2017.

R. C. Chiang, S. Rajasekaran, N. Zhang, and H. H. Huang. Swiper: Exploiting virtual machine vul-
nerability in third-party clouds with competition for i/o resources. IEEE Transactions on Parallel
and Distributed Systems, 26(6):1732–1742, June 2015. ISSN 1045-9219.

Alex Clark. Pillow. Python image analysis library, 2020. URL https://pillow.
readthedocs.io/en/stable/.

Bart Coppens, Ingrid Verbauwhede, Koen De Bosschere, and Bjorn De Sutter. Practical mitigations
for timing-based side-channel attacks on modern x86 processors. In IEEE SP, 2009.

Emily Denton and Rob Fergus. Stochastic video generation with a learned prior. In International
Conference on Machine Learning, pp. 1174–1183, 2018.

Xiaowan Dong, Zhuojia Shen, John Criswell, Alan L Cox, and Sandhya Dwarkadas. Shielding
software from privileged side-channel attacks. In 27th USENIX Security Symposium, pp. 1441–
1458, 2018.

Goran Doychev, Dominik Feld, Boris Kopf, Laurent Mauborgne, and Jan Reineke. CacheAudit: A
tool for the static analysis of cache side channels. In USENIX Sec., 2013.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity
in private data analysis. In Theory of cryptography conference, pp. 265–284. Springer, 2006.

Daniel Gruss, Julian Lettner, Felix Schuster, Olya Ohrimenko, Istvan Haller, and Manuel Costa.
Strong and efficient cache side-channel protection using hardware transactional memory. In
USENIX Sec., 2017.

David Gullasch, Endre Bangerter, and Stephan Krenn. Cache games—bringing access-based cache
attacks on AES to practice. In Proc. IEEE Symp. on Security and Privacy (S&P), pp. 490–505,
2011.

Yong Guo, Qi Chen, Jian Chen, Qingyao Wu, Qinfeng Shi, and Mingkui Tan. Auto-embedding
generative adversarial networks for high resolution image synthesis. IEEE Transactions on Mul-
timedia, 21(11):2726–2737, 2019.

Marcus Hähnel, Weidong Cui, and Marcus Peinado. High-resolution side channels for untrusted
operating systems. In 2017 USENIX Annual Technical Conference, pp. 299–312, 2017.

Y. Han, J. Chan, T. Alpcan, and C. Leckie. Using virtual machine allocation policies to defend
against co-resident attacks in cloud computing. IEEE Transactions on Dependable and Secure
Computing, 14:95–108, Jan 2017.

10

https://www.faceplusplus.com/attributes/
https://elixir.bootlin.com/linux/v5.6.10/source/arch/x86/include/asm/page_types.h#L12
https://elixir.bootlin.com/linux/v5.6.10/source/arch/x86/include/asm/page_types.h#L12
https://openreview.net/forum?id=B1xsqj09Fm
https://pillow.readthedocs.io/en/stable/
https://pillow.readthedocs.io/en/stable/


Published as a conference paper at ICLR 2021

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.
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A ATTACK SETUP DETAILS

In this section, we provide detailed information regarding our attack setup, including three employed
side channels, the attacked libjpeg and uPNG libraries (libjpeg, 2020; Middleditch, 2010), and
how we log side channel information. Three side channels are taken into account as follows:

• Cache Line. Cache line side channel denotes one popular hardware side channel, enabling
the exploitation of real-world crypto, image and text libraries (Hähnel et al., 2017; Yarom &
Falkner, 2014). The CPU cache, as one key component in modern computer architecture,
stores data so that future memory requests of that particular data become much faster.
Data are stored in a cache block of fixed size, called the cache line. Each memory access
made by victim software is projected to a cache line access. In typical cloud platforms, an
attacker can monitor cache line accesses made by victim software, leading to a powerful
side channel. For modern Intel architectures, the cache line index of a memory address
addr can be computed as addr � 6. Therefore, access of a particular cache line can be
mapped back to 26 memory addresses.

• Page Table. The OS kernel uses the page table to track mappings between virtual and phys-
ical memory addresses. Every memory access made by the victim software is converted
into its physical address by querying a page table entry. In cloud computing platforms, a
malicious OS on the host can observe page table accesses made by the victim software to
infer its memory access (Xu et al., 2015). Given a virtual address addr, we calculate the
accessed page table index by masking addr with PAGE MASKM : addr & (∼ M). M is
4095 on modern x86 architectures (pag, 2020).

• Data Read/Write Access. Our preliminary study shows surprising results that enabled by
powerful generative models, low-resolution side channels of only one-bit data read/write
access records can be used to recover quality images. That is, given a memory access
made by the victim software, we use one bit to note whether the access is a read or write
operation. Such data read/write accesses can be easily observed by monitoring either cache
or page table accesses.

SCA attacks using cache lines and page tables are well-known and have enabled real-life exploita-
tions in various scenarios. In contrast, to our knowledge, no real-world attacks are designed to
exploit read/write patterns. This work shows that quality images can be synthesized by using such
low-resolution read/write access side channels.

Preparing Victim Software Consistent with existing SCA of exploiting media software (Xu et al.,
2015; Hähnel et al., 2017), we use a widely-used JPEG image processing library, libjpeg, as the
attack target. Attacking libjpeg which has been exploited in the literatures makes it easier to
(conceptually) compare our approach with existing works. As mentioned in our paper, we indeed
contact authors of both papers to inquire their tools; we didn’t receive any response by the time of
writing. As disclosed in their papers, manual efforts are primarily used to recover images. On the
other hand, there is no issue for our approach to analyze other image processing libraries as long as
different inputs adequately influence side channel logs. To demonstrate the generalizability of our
approach, we also attacked another image library, uPNG, which takes images of PNG format as the
inputs.

JPEG and PNG are two popular image compression standards. Given an image of JPEG/PNG
formats, both image processing libraries reverse the compression step to generate a bitmap image
as the prerequisite of many image analysis applications. The decompression process introduces
considerable amount of input-dependent side channel accesses for both libraries. We compile both
libjpeg and uPNG on 64-bit Ubuntu 18.04 machine with gcc with optimization-level as -O0
which disables all optimizations.

We measure the complex of libjpeg, by counting the line of code of the attacked libjpeg
module. We report the attacked module, conducting JPEG image decompression under various
settings, has approximately 46K lines of code. Similarly, the uPNG software has about 1.2K lines of
code. In contrast, typically the crypto software attacked by previous profiling-based SCA (Hettwer
et al., 2020; Gullasch et al., 2011; Aciicmez & Koc, 2006; Yarom et al., 2017) are much simpler. For
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instance, the x86 implementation of Advanced Encryption Standard (AES) in OpenSSL has about
600 lines of code (excluding global data structures like permutation boxes).

Preparing Side Channel Logs To prepare side channel traces, we use Pin (Luk et al., 2005),
a runtime monitoring framework developed by Intel to intercept all memory accesses of our test
programs when processing an input image i. Every virtual address addr on the logged trace is
translated into its corresponding cache line and page table indexes following the aforementioned
methods. Similarly, we intercept all memory accesses, and for each memory access, we use one bit
to denote whether it is a data read or write access. All these runtime monitoring tasks can be done
by writing two plugins of Pin. We report that processing each image with libjpeg can generate
a trace of 730K to 760K side channel records. Processing an image with uPNG can generate a trace
of about 1.3M side channel records. Recall as introduced in Sec. 3.1, each side channel trace is
encoded into a N × N × K matrix and then processed by CNNs. A libjpeg trace is encoded
into a 512 × 512 × 3 matrix. A uPNG trace is encoded into a 512 × 512 × 6 matrix. We do zero
padding for matrices. In comparison, exploiting crypto libraries (e.g., AES decryption) generates
much succinct side channel traces with only a few hundred records (Hettwer et al., 2020),

Attacking Other Image Processing Software and DNN Models We pick libjpeg since this
is the only media software attacked by existing SCA (Xu et al., 2015; Hähnel et al., 2017). We
also attacked uPNG to demonstrate the generalizability of our approach. Note that libjpeg is
commonly used in the image analysis pipeline, e.g., it is the prerequisite of the popular Python
image processing library — Pillow (Clark, 2020).

Also, careful readers may wonder the feasibility of directly exploiting DNN-based image analy-
sis tools. However, as pointed out in previous research (Hong et al., 2018a), memory access of
typical DNN operations like matrix multiplications is not input-dependent. That is, while it has
been demonstrated by the same authors that cache side channels is feasible to recover DNN model
architectures (Hong et al., 2020), SCA is generally not feasible to recover inputs to DNN models.

B MODEL ARCHITECTURE AND EXPERIMENT SETUP

We now report the architecture and parameters of our framework. The Enctrace of VAE-LP module
is reported in Table 5. Encimage and Decimage are reported in Table 4. The generator G and
discriminator D of our GAN module are listed in Table 6 and Table 7, respectively.

We implement our framework in Pytorch (ver. 1.5.0). We use the Adam optimizer (Kingma &
Ba, 2014) with learning rate ηV AE−LP = 0.0001 for the VAE-LP module, and learning rate
ηGAN = 0.0002 for the GAN module. We set β1 = 0.5, and β2 = 0.999 for both modules. β
in LossV AE−LP is 0.0001, and γ in LossGAN is 100. Minibatch size is 50.

We ran our experiments on an Intel Xeon CPU E5-2678 with 256 GB of RAM and one Nvidia
GeForce RTX 2080 GPU. The training is completed at 200 iterations (100 iterations for the VAE-LP
module, and 100 iterations for the GAN module).
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Table 4: The image encoder Encimage and image decoder Decimage architectures.
Image Encoder Image Decoder

Layer Act. Output shape Layer Act. Output shape
Input - 3× 128× 128 Input - 128× 1× 1

Conv 4× 4/2,1 LReLU(0.2) 128× 64× 64 Deconv 4× 4/1,0 BN + ReLU 128× 4× 4
ResBlock (He et al., 2016) - 128× 64× 64 ResBlock - 128× 4× 4

Conv 4× 4/2,1 BN + LReLU(0.2) 128× 32× 32 Deconv 4× 4/2,1 BN + ReLU 128× 8× 8
ResBlock - 128× 32× 32 ResBlock - 128× 8× 8

Conv 4× 4/2,1 BN + LReLU(0.2) 128× 16× 16 Deconv 4× 4/2,1 BN + ReLU 128× 16× 16
ResBlock - 128× 16× 16 ResBlock - 128× 16× 16

Conv 4× 4/2,1 BN + LReLU(0.2) 128× 8× 8 Deconv 4× 4/2,1 BN + ReLU 128× 32× 32
ResBlock - 128× 8× 8 ResBlock - 128× 32× 32

Conv 4× 4/2,1 BN + LReLU(0.2) 128× 4× 4 Deconv 4× 4/2,1 BN + ReLU 128× 64× 64
ResBlock - 128× 4× 4 ResBlock - 128× 64× 64

Conv 4× 4/1,0 LReLU(0.2) 128× 1× 1 Deconv 4× 4/2,1 Tanh 3× 128× 128
Output - 128 Output - 3× 128× 128

Table 5: The trace encoder Enctrace architecture.
Trace Encoder

Layer Act. Output shape
Input - 3× 512× 512

Normalize - 3× 512× 512
Conv 4× 4/2,1 BN + LReLU(0.2) 64× 256× 256
Conv 4× 4/2,1 BN + LReLU(0.2) 64× 128× 128
Conv 4× 4/2,1 BN + LReLU(0.2) 64× 64× 64
Conv 4× 4/2,1 BN + LReLU(0.2) 128× 32× 32
Conv 4× 4/2,1 BN + LReLU(0.2) 256× 16× 16
Conv 4× 4/2,1 BN + LReLU(0.2) 512× 8× 8
Conv 4× 4/2,1 BN + LReLU(0.2) 512× 4× 4
Conv 4× 4/1,0 BN + Tanh 128× 1× 1

Output - 128

Table 6: The generator G architecture.
Encoder Decoder

Layer Act. Output shape Layer Act. Output shape
Input - 3× 128× 128 Input - 1024× 1× 1

Conv 4× 4/2,1 - 128× 64× 64 Deconv 4× 4/2,1 BN + ReLU 1024× 2× 2
Conv 4× 4/2,1 BN + LReLU(0.2) 256× 32× 32 Deconv 4× 4/2,1 BN + ReLU 1024× 4× 4
Conv 4× 4/2,1 BN + LReLU(0.2) 512× 16× 16 Deconv 4× 4/2,1 BN + ReLU 1024× 8× 8
Conv 4× 4/2,1 BN + LReLU(0.2) 1024× 8× 8 Deconv 4× 4/2,1 BN + ReLU 512× 16× 16
Conv 4× 4/2,1 BN + LReLU(0.2) 1024× 4× 4 Deconv 4× 4/2,1 BN + ReLU 256× 32× 32
Conv 4× 4/2,1 BN + LReLU(0.2) 1024× 2× 2 Deconv 4× 4/2,1 BN + ReLU 128× 64× 64
Conv 4× 4/2,1 LReLU(0.2) 1024× 1× 1 Deconv 4× 4/2,1 Tanh 3× 128× 128

Output - 1024× 1× 1 Output - 3× 128× 128

Table 7: The discriminator D architecture.
Discriminator

Layer Act. Output shape
Input - 3× 128× 128

Conv 4× 4/2,1 BN + LReLU(0.2) 128× 64× 64
Conv 4× 4/2,1 BN + LReLU(0.2) 256× 32× 32
Conv 4× 4/2,1 BN + LReLU(0.2) 512× 16× 16
Conv 4× 4/2,1 BN + LReLU(0.2) 1024× 8× 8
Conv 4× 4/2,1 BN + LReLU(0.2) 1024× 4× 4
Conv 4× 4/1,0 Sigmoid 1× 1× 1

Output - 1
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C SAMPLE OUTPUTS WHEN ATTACKING LIBJPEG

This section provides more images generated by our framework when attacking libjpeg. Overall,
we interpret the results as promising and highly consistent across all three different datasets. As dis-
cussed in Sec. 5.1, the reconstructed and the corresponding reference images show highly consistent
identities, such as gender, face orientation, human gesture, and hair style.

Read/Write Access OS Page Table CPU Cache Line

VAE-LP Reference InputVAE-LP & GAN VAE-LP VAE-LPVAE-LP & GAN VAE-LP & GAN

Figure 5: Evaluation results of CelebA dataset in terms of three different side channels. The reference images
(i.e., private user inputs) are presented on the right most column for the reference.

Read/Write Access OS Page Table CPU Cache Line

VAE-LP Reference InputVAE-LP & GAN VAE-LP VAE-LPVAE-LP & GAN VAE-LP & GAN

Figure 6: Evaluation results of CelebA dataset in terms of three different side channels. The reference images
(i.e., private user inputs) are presented on the right most column for the reference.
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Read/Write Access OS Page Table CPU Cache Line

VAE-LP Reference InputVAE-LP & GAN VAE-LP VAE-LPVAE-LP & GAN VAE-LP & GAN

Figure 7: Evaluation results of KTH dataset in terms of three different side channels. The reference images
(i.e., private user inputs) are presented on the right most column for the reference.

Read/Write Access OS Page Table CPU Cache Line

VAE-LP Reference InputVAE-LP & GAN VAE-LP VAE-LPVAE-LP & GAN VAE-LP & GAN

Figure 8: Evaluation results of KTH dataset in terms of three different side channels. The reference images
(i.e., private user inputs) are presented on the right most column for the reference.
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Read/Write Access OS Page Table CPU Cache Line

VAE-LP Reference InputVAE-LP & GAN VAE-LP VAE-LPVAE-LP & GAN VAE-LP & GAN

Figure 9: Evaluation results of LSUN dataset in terms of three different side channels. The reference images
(i.e., private user inputs) are presented on the right most column for the reference.

Read/Write Access OS Page Table CPU Cache Line

VAE-LP Reference InputVAE-LP & GAN VAE-LP VAE-LPVAE-LP & GAN VAE-LP & GAN

Figure 10: Evaluation results of LSUN dataset in terms of three different side channels. The reference images
(i.e., private user inputs) are presented on the right most column for the reference.
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D QUANTITATIVE EVALUATION

Besides the quantitative evaluation of the discriminability of reconstructed images reported in the
paper, we also analyze images reconstructed by using only the VAE-LP module and presented the
results in Table 8. Accordingly, we give the quantitative data that has been already reported in our
paper for cross comparison in Table 9.

Table 8: Discriminability evaluation results on outputs using VAE-LP (higher is better). We also
present the baseline, random guess (RG), for comparison.

k = 1 N = 100 k = 1 N = 500
CelebA KTH LSUN RG CelebA KTH LSUN RG

Cache Line 49.98% 30.28% 10.36% 1% 31.18% 19.82% 3.30% 0.2%
Page Table 14.66% 29.00% 1.94% 1% 5.98% 18.20% 0.50% 0.2%
Read/Write 17.52% 24.46% 1.98% 1% 7.86% 14.92% 0.40% 0.2%

k = 5 N = 100 k = 5 N = 500
CelebA KTH LSUN RG CelebA KTH LSUN RG

Cache Line 78.00% 54.42% 29.74% 5% 56.06% 32.86% 11.50% 1%
Page Table 35.38% 52.70% 7.92% 5% 16.92% 31.54% 1.92% 1%
Read/Write 39.16% 47.06% 7.08% 5% 19.68% 26.02% 1.86% 1%

k = 20 N = 100 k = 20 N = 500
CelebA KTH LSUN RG CelebA KTH LSUN RG

Cache Line 91.98% 79.16% 59.66% 20% 75.98% 51.20% 26.72% 4%
Page Table 61.94% 76.88% 24.90% 20% 32.96% 50.32% 6.48% 4%
Read/Write 65.46% 72.92% 24.56% 20% 36.90% 43.78% 6.30% 4%

Table 9: Discriminability evaluation results on the outputs using VAE-LP & GAN modules (higher
is better). We have already reported these results in Table 2.

k = 1 N = 100 k = 1 N = 500
CelebA KTH LSUN RG CelebA KTH LSUN RG

Cache Line 47.28% 38.22% 10.00% 1% 28.68% 24.50% 3.04% 0.2%
Page Table 16.16% 35.86% 2.26% 1% 6.56% 22.58% 0.46% 0.2%
Read/Write 19.58% 33.44% 2.24% 1% 8.42% 20.64% 0.50% 0.2%

k = 5 N = 100 k = 5 N = 500
CelebA KTH LSUN RG CelebA KTH LSUN RG

Cache Line 74.98% 63.56% 28.74% 5% 52.22% 41.24% 10.90% 1%
Page Table 37.96% 61.28% 8.62% 5% 17.90% 38.80% 2.42% 1%
Read/Write 42.44% 58.30% 8.28% 5% 21.18% 36.22% 2.54% 1%

k = 20 N = 100 k = 20 N = 500
CelebA KTH LSUN RG CelebA KTH LSUN RG

Cache Line 90.70% 83.72% 58.88% 20% 72.98% 61.08% 25.92% 4%
Page Table 65.14% 82.22% 26.42% 20% 35.22% 58.90% 7.30% 4%
Read/Write 67.82% 80.14% 26.64% 20% 39.84% 55.74% 7.08% 4%

Comparing results reported in Table 8 and Table 9, we observed that by using VAE-LP & GAN mod-
ules together, the KTH human gesture dataset has a substantial improvement in terms of accuracy.
The average accuracy of the KTH dataset is 41.9% in Table 8 while the average accuracy of the KTH
dataset is increased to 49.8% in Table 9. This observation is consistent with our findings in Sec. 5.2
and some cases demonstrated in Fig. 7 and Fig. 8. Recall we observed an obscure “black bar” in
KTH images reconstructed by only using VAE-LP module, while a human gesture can be clearly
identified by enhancing the “black bar” with the GAN module. We also observed improved accu-
racy for the CelebA (41.0% to 41.4%) and LSUN datasets (12.6% to 12.9%) when supplementing
VAE-LP with GAN. Overall, we interpret that better discriminability can be achieved when using
GAN, implying higher success rate for attackers to de-anonymize user identity and privacy.
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We also present fine-grained facial attribute comparison between the reconstructed images and refer-
ence inputs. In Sec. 5.2 we have reported gender and age confusion matrices evaluation using cache
side channels (also presented in Fig. 11 for the reference and cross comparison), we also report other
settings in Fig. 12, Fig. 13, and Fig. 14. To quantitatively evaluate the confusion matrices, we mea-
sure and report the weighted-average F1 score in Table 10. Besides one case with notably increased
F1 score (the gender matrix using page table), VAE-LP and VAE-LP & GAN have comparable
weighted-average F1 scores.
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Figure 11: Facial attribute evaluation in terms of cache side channels. Images are generated using VAE-LP &
GAN modules. Confusion matrices (with row-wise normalization) compare the age and gender classification
results on our recovered images and those obtained from reference inputs. We also report age and gender
distribution in the dataset for comparison. We have already reported these results in Fig. 4.
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Figure 12: Facial attribute evaluation in terms of cache side channels. Images are generated using the VAE-LP
module. Confusion matrices (with row-wise normalization) compare the age and gender classification results
on our recovered images and those obtained from reference inputs. The age and gender distributions in the
dataset have been given in Fig. 11.

21



Published as a conference paper at ICLR 2021

Page Table + VAE-LP

0.03 0.36 0.26 0.19 0.11 0.04 0.00

0.01 0.36 0.28 0.19 0.11 0.04 0.01

0.01 0.33 0.29 0.20 0.12 0.04 0.01

0.01 0.28 0.27 0.23 0.15 0.05 0.01

0.01 0.25 0.24 0.23 0.17 0.08 0.02

0.01 0.19 0.22 0.22 0.20 0.11 0.04

0.00 0.18 0.20 0.24 0.19 0.14 0.06

20 30 40 50 60 70

20

30

40

50

60

70

Re
fe

re
nc

e
In

pu
t

Output

Attribute (Age)

0.00 0.33 0.47 0.17 0.02 0.01 0.00

0.00 0.30 0.48 0.18 0.03 0.00 0.00

0.00 0.27 0.49 0.20 0.03 0.00 0.00

0.00 0.24 0.47 0.24 0.04 0.00 0.00

0.00 0.23 0.44 0.28 0.04 0.01 0.00

0.00 0.20 0.39 0.31 0.10 0.01 0.00

0.00 0.15 0.38 0.34 0.10 0.02 0.00

20 30 40 50 60 70

20

30

40

50

60

70

Re
fe

re
nc

e
In

pu
t

Output

Attribute (Age)

OS Page Table + VAE-LP & GAN

0.87 0.13

0.53 0.47

Female Male

Fe
m

al
e

M
al

e
Re

fe
re

nc
e

In
pu

t

Attribute (Gender)

Output

Page Table + VAE-LP

0.82 0.18

0.46 0.54

Female Male

Fe
m

al
e

M
al

e
Re

fe
re

nc
e

In
pu

t

Attribute (Gender)

Output

Page Table + VAE-LP & GAN

Figure 13: Facial attribute evaluation in terms of page table side channels. We present evaluation results by
using images reconstructed using only VAE-LP module, and images reconstructed using VAE-LP & GAN.
Confusion matrices (with row-wise normalization) compare the age and gender classification results on our
recovered images and those obtained from reference inputs. The age and gender distribution in the dataset have
been given in Fig. 11.
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Figure 14: Facial attribute evaluation in terms of memory read/write access pattern side channels. We present
evaluation results by using images reconstructed using only VAE-LP module, and images reconstructed using
VAE-LP & GAN. Confusion matrices (with row-wise normalization) compare the age and gender classification
results on our recovered images and those obtained from reference inputs. The age and gender distribution in
the dataset have been given in Fig. 11.

Table 10: Weighted-average F1-score (higher is better).
Age Gender

VAE-LP VAE-LP & GAN VAE-LP VAE-LP & GAN
CPU Cache Line 0.27 0.27 0.76 0.75
OS Page Table 0.25 0.26 0.68 0.79
Memory Read/Write 0.25 0.27 0.71 0.71
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E SAMPLE OUTPUTS WHEN ATTACKING UPNG

This section provides images generated by our framework when attacking uPNG. While the side
channel traces induced by uPNG is generally less informative than libjpeg (as shown in Table 3
and discussed in Sec. 6), we still observed high visually consistent identities between the recon-
structed images and their reference inputs, including gender, face orientation, hair style, hair length,
whether wearing a pair of glasses and many other factors.

VAE-LP

VAE-LP & GAN

Reference Input

Figure 15: Evaluation results of CelebA dataset in terms of the cache side channels.

VAE-LP

VAE-LP & GAN

Reference Input

Figure 16: Evaluation results of CelebA dataset in terms of the cache side channels.

VAE-LP

VAE-LP & GAN

Reference Input

Figure 17: Evaluation results of CelebA dataset in terms of the cache side channels.
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F SAMPLE OUTPUTS WHEN TRAINING WITH MINI-IMAGENET

To measure our attack reconstructing arbitrary images without knowing the type of images being
processed, Sec. 5.3 reports model training and attack performance using a general dataset, mini-
Imagenet. We report that the mini-Imagenet dataset has in total 60K images of 100 classes, and we
divide each class (with 600 images) into 480 training images and 120 testing images. As a result,
we have in total 48K images for training and take the other 12K images for testing. While training
generative models with a general dataset is not the common practice unless image class information
is explicitly provided (Brock et al., 2019), Table 3 still reports highly encouraging results of the
discriminability analysis by largely outperforming the baseline — random guess. In this section, we
provide sample images generated at this step.

The synthesized images from the mini-Imagenet dataset is visually much worse that images synthe-
sized from specific datasets (e.g., CelebA in Fig. 5). Nevertheless, by comparing the synthesized
images and their corresponding references (i.e., user inputs), we interpret that images still exhibit
high discriminability, in the sense that many visually consistent image skeletons and colors are re-
covered, indicating adequate leakage of user privacy.

VAE-LP& GAN

VAE-LP

Reference Input

Figure 18: Evaluation results of mini-Imagenet dataset when attacking libjpeg with cache side channels.

VAE-LP& GAN

VAE-LP

Reference Input

Figure 19: Evaluation results of mini-Imagenet dataset when attacking libjpeg with cache side channels.
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VAE-LP& GAN

VAE-LP

Reference Input

Figure 20: Evaluation results of mini-Imagenet dataset when attacking libjpeg with cache side channels.

G CLASSIFYING OUTPUTS OF THE TRACE ENCODER

By training our framework with mini-Imagenet and assessing the discriminability, Sec. 5.3 has
demonstrated that our attack can largely outperform the baseline even with no prior knowledge
on the class information of user private images. We attribute the promising evaluation results to the
discriminable features successfully extracted by our trace encoder (trained with mini-Imagenet; see
Appendix F). This section presents empirical results by assessing to what extent the latent represen-
tations derived from images of two randomly selected classes are distinguishable.

To this end, we build a binary classifier, by piggybacking our trace encoder with a fully-connected
(FC) layer and using Sigmoid as the activation function. As mentioned in Appendix F, the mini-
Imagenet dataset has in total 60K images of 100 classes, and we divide each class into 480 images
for training and 120 images for testing. At this step, we randomly select two classes of images, and
use their training sets (in total 960 images) to train the proposed binary classifier. We then use their
testing sets, including in total 240 images, to measure the binary classification accuracy. It is worth
mentioning that we only train the classifier for one epoch to highlight that the latent representations
extracted by the trace encoder already exhibit high quality and discriminability. We only tune the
parameters of FC layer but preserve the parameters of our trace encoder.

We iterate this process for 100 times. Fig. 21 reports the classification accuracy across all 100 binary
classification tasks. While the baseline accuracy for our binary classification task is 50%, most tasks
exhibit much higher classification accuracy. We report the average accuracy is 81.6% and 32 cases
exhibit a classification accuracy above 90%.
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Figure 21: Classification accuracy across 100 binary classifiers.
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H ROBUSTNESS TO NOISE

This section provides experiences on the robustness of our framework by inserting noise into the
side channel traces. To this end, we evaluated the following three settings:

• Gaussian noise insertion: For each side channel data point input on the side channel
trace, input = x×n+(1−x)× input, where x ∈ [0.1, 0.2, 0.5], and n denotes randomly
generated noise following the Gaussian Distribution.

• Zero replacement: Randomly set x% of the data points on the side channel trace to 0,
where x ∈ [10, 20, 50].

• Round shifting: Round shifting the side channel trace for x steps, where x ∈ [1, 10, 100].

Reference Input

x = 0

x = 0.1

x = 0.2

x = 0.5

Figure 22: Evaluation results of CelebA dataset in terms of cache side channels and three different noise
setting. We also present the synthesized images with no noise for the reference. User input images are presented
on the first row for the reference.

Reference Input

x = 0

x = 10

x = 20

x = 50

Figure 23: Evaluation results of CelebA dataset in terms of cache side channels and three different random
zero replacement setting. We also present the synthesized images with no zero replacement (x = 0) for the
reference. User input images are presented on the first row for the reference.
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Table 11: Discriminability evaluation by adding Gaussian noise in the side channel trace.

Configuration x = 0 x = 0.1 x = 0.2 x = 0.5
k = 1 N = 100 49.98% 48.32% 39.14% 5.66%
k = 5 N = 100 78.00% 76.28% 67.08% 19.62%
k = 20 N = 100 91.98% 90.56% 86.22% 45.20%

Table 12: Discriminability evaluation by randomly replacing x% side channel data points with zero.

Configuration x = 0 x = 10 x = 20 x = 50
k = 1 N = 100 49.98% 45.02% 38.50% 14.40%
k = 5 N = 100 78.00% 73.30% 65.52% 35.50%
k = 20 N = 100 91.98% 89.42% 85.86% 64.14%

Reference Input

x = 0

x = 1

x = 10

x = 100

Figure 24: Evaluation results of CelebA dataset in terms of cache side channels and three different shifting
setting. We also present the synthesized images with no shifting (x = 0) for the reference. User input images
are presented on the first row for the reference.

We present the corresponding qualitative evaluation results in Fig. 22, Fig. 23, and Fig. 24, respec-
tively. Accordingly, we present the quantitative results in Table 11, Table 12, and Table 13.

Overall, despite the challenging settings, we still observed considerable visually consistent features
(e.g., face orientation, hair style, gender) between the reconstructed images and their reference in-
puts. Fig. 24 shows that round shifting seems to impose relatively low impact on the reconstructed
images (e.g., comparing x = 0 with x = 100). In contrast, a more challenging setting, adding
Gaussian noise to each side channel data point, causes observable effect on the constructed images
(e.g., comparing x = 0 with x = 0.5).
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Table 13: Discriminability evaluation by round shifting the side channel trace.

Configuration x = 0 x = 1 x = 10 x = 100
k = 1 N = 100 49.98% 49.56% 49.94% 47.48%
k = 5 N = 100 78.00% 77.42% 77.00% 75.30%
k = 20 N = 100 91.98% 91.44% 91.52% 90.66%

I ABLATION EXPERIMENTS

This section provides more ablation experiments. We aim to demonstrate the necessity of image
encoder and a learned prior. To this end, we launch experiences to synthesize images without using
the image encoder (see the 4th row of Fig. 25), and also synthesize images with a fixed Gaussian
prior (the 3rd row of Fig. 25). It is easy to see that the reconstructed images manifest much lower
quality compared with images synthesized by our framework (the 2nd row of Fig. 25). In particu-
lar, images synthesized without using the image encoder are seen to contain grids (the last row of
Fig. 25). It is also observed that when feeding the decoder with a fixed gaussian prior, the synthe-
sized images are low quality as well. The outputs become not recognizable since the fixed prior has
primarily no information of side channel traces. This also indicates that our model is not a simple
image generator, and the trace encoder plays a vital role in the pipeline. Overall, we interpret these
ablation evaluations highlight the importance of the image encoder and a learned prior in SCA.
Our designed framework, by incorporating the side channel trace encoder, can effectively extract
latent representations from the logged side channel data points. Simultaneously, by integrating cor-
responding reference images during training, we provide a guideline to help the image decoder to
generate quality images.

Reference Input

Learned Prior

+  

Image Encoder

w/o

Image Encoder

Fixed Prior

Figure 25: Evaluation results of CelebA dataset in terms of cache side channels and different settings. User
input images are presented on the first row for the reference. Images synthesized by our presented framework
are presented on the second row.

In addition, we further conduct another ablation experiments regarding image level metrics. To do
so, we use LPIPS (Zhang et al., 2018), image-level perceptual loss, to calculate the similarity of the
reconstructed image and ground truth image.

The results are given in Table 14. Compared with our results reported in Sec. 5, the accuracy of
GAN output is reduced by around 10% and reduced even more on output of VAE-LP. Nevertheless,
the results are reasonable since the model is not train using this perceptual loss. Overall, we interpret
the evaluation results show that from the perspective of “human adversaries”, the GAN module is
indeed necessary.
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Table 14: Ablation experiments with LPIPS.

Model K = 1, N = 100 K = 5, N = 100 K = 20, N = 100
VAE-LP 23.02% 47.92% 72.40%
VAE-LP & GAN 39.64% 63.12% 81.42%
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Figure 26: Calculating gradient using backward propagation.

J MAPPING SIDE CHANNEL TRACES BACK TO INFORMATIVE FUNCTIONS

In this section, we explore side channel traces and aim to answer the question “what information in
the side channel is used for image reconstruction?” To this end, we explore which data points on the
side channel trace affects most to the output by calculating the gradient. Due to the limited time, we
tested cache side channel traces logged for the libjpeg software.

Given an image i which is not in training data, we first collect its corresponding cache side channel
trace Ti when being processed by libjpeg. VAE-LP module will then take Ti as the input and
reconstruct itrace. As shown in Fig. 26, we then calculate the loss of itrace and i, and further perform
backward propagation to calculate the gradient up to Ti, namely gTi

. Since gTi
has the same size

of Ti, we can pinpoint which part of Ti contributes most to itrace by localizing which part of gTi

has a higher value. More specifically, we normalize gTi
to [0, 1] and only keep values greater than a

threshold T (T is set as 0.8 in our current study). Overall, we report that from the employed cache
side channel trace with 754139 data points, we successfully pinpoint a set of 31 data points that
primarily contribute to the private image reconstruction (see Fig. 28 and Fig. 29).

Since each side channel data point is converted from a memory address (see Table 1), our retained
“informative” side channel data points can thus be mapped back to certain functions in libjpeg.
That is, we indeed use informative side channel records to isolate functions in libjpeg that poten-
tially leak privacy. Fig. 27 depicts how this backward mapping and isolation are conducted. For in-
stance, given a side channel record 0x55dba1628e62 marked as informative and notably contributes
to the gradient, we use the address of the corresponding memory access instruction, 0x7f38daafd6b5,
to isolate function jsimd convsamp float. That is, certain input-dependent memory access in
jsimd convsamp float induces this cache line access and eventually contributes to the recon-
struction of the user private input.

Fig. 28 reports a part of the logged side channel trace and marks several side channel data points
in red which largely affects the gradient. We show their corresponding functions in libjpeg in
Fig. 29. Overall, we report that this evaluation successfully pinpoints multiple critical functions in
the libjpeg software that has input-dependent cache accesses. In particular, we note that this eval-
uation helps to “re-discover” some functions that have been reported by previous research (mostly
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iT

0x55…d4c

0x55…e62
0x55…aa2

0x55…6ce

0x55…d50

0x7f…13f 0x55…aa2

0x7f…6b5 0x55…e62
0x7f…022 0x55…6ce

0x7f…6a8 0x55…64c

0x7f…036 0x55…d50

Instruction
address

Accessed memory
address

0x7f…6a0 <jsimd_convsamp>:

/*function body*/

0x7f…6ad: 00 00 00

0x7f…6b0 <jsimd_convsamp_float>:

/*function body*/

0x7f…6bd: 00 00 00

Figure 27: Mapping “informative” side channel data points back to functions in libjpeg.

with manual effort) as vulnerable to SCA: e.g., functions write ppm, put rgb and output ppm
which dump the decompressed raw image to the disk.

More importantly, this evaluation helps to pinpoint new functions that contribute to the private im-
age reconstruction (and hence become vulnerabilities to SCA), such as jsimd can fdct islow,
jsimd can fdct ifast, jsimd convsamp and jsimd convsamp float. These func-
tions primarily conduct image discrete cosine transformation (DCT) and decompression. We inter-
pret this as a highly encouraging finding, in particular:

• As reviewed in Sec. 2, previous research uses manual effort (Xu et al., 2015; Hähnel et al.,
2017) or formal methods (Doychev et al., 2013; Wang et al., 2017) to pinpoint program
components that depend on inputs, which are program-specific and error-prone with low
scalability.

• This research and our study in this section actually reveals a procedure where we leverage
gradient to directly highlight which part of the logged side channel trace contributes to the
synthesis of outputs. Then, we map the highlighted trace back to where they are derived
from in the victim software to isolate vulnerable components (i.e., a bug detection tool).

We view it as a promising finding: our approach depicted in this section is general and can be
launched fully automatically without requiring manual efforts or formal methods which are usually
not scalable. As shown in this section, our tentative study not only re-discovers vulnerabilities that
were found by previous research, but helps to identify, to our best knowledge, unknown program
components that are vulnerable to SCA. Looking ahead, we would like to explore this direction as a
follow-up of the present work.
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0x55dba162b8a8
0x7f38dab5e6ac
0x55dba1616c12
0x55dba162b8b4
0x7f38dab5e6b0
0x55dba1616c04
0x55dba162b91c
0x7f38dab5e6b4
0x55dba1616bf6
0x55dba162bc58
0x7f38dab5e6c8
0x55dba1616c14
0x55dba162b940
0x7f38dab5e6cc
0x55dba1616c22
0x55dba162b97c
0x7f38dab5e6d0)
0x55dba1616c30
0x55dba162bb54
0x7ffd1d241fe0
0x7ffd1d241fd8
0x55dba1615878
0x7ffd1d241fd0
0x55dba162a9e0
0x7ffd1d241fc0
0x55dba162a8a8
0x55dba162a8f8
0x7ffd1d241fb8
0x7ffd1d241fb0
0x7ffd1d241fa8
0x7ffd1d241fa0
0x7ffd1d241f98
0x7ffd1d241f90
0x7ffd1d241f88
0x7ffd1d242020
0x7ffd1d242000
0x7ffd1d241f78
0x7ffd1d242008
0x55dba16158b4
0x55dba1617fef
0x55dba1617ff0
0x55dba1617ff1
0x55dba1617ff2
0x55dba1617ff3
0x55dba1617ff4
0x55dba1617ff5
0x7ffd1d242008
0x7ffd1d242010
0x7ffd1d242018
0x7ffd1d242000
0x7ffd1d241f88
0x7ffd1d241f90
0x7ffd1d241f98
0x7ffd1d241fa0
0x7ffd1d241fa8
0x7ffd1d241fb0
0x7ffd1d241fb8
0x7ffd1d242018
0x7ffd1d242010
0x55dba162b654
0x7ffd1d241fc0
0x55dba162a944
0x7ffd1d241fd8
0x55dba1615880
0x7ffd1d242030
0x7ffd1d242030
0x55dba162a96c
0x55dba1616c60
0x7ffd1d241fe0
0x55dba162bac0
0x7f38dab5e684
0x55dba1616c62
0x55dba162bb90
0x7f38dab5e688
0x55dba1616c70
…

Figure 28: Part of the logged side channel trace and informative side channel data points marked in
red.
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Function Instruction Address Accessed Memory Address
put_rgb 0x7f38dab131b8 0x55dba1628acc
put_rgb 0x7f38dab131f9 0x55dba1628acc
put_rgb 0x7f38dab131b8 0x55dba1628ac4
put_rgb 0x7f38dab131b8 0x55dba1628ac6
put_rgb 0x7f38dab13109 0x7ffd1d241f18
put_rgb 0x7f38dab131fe 0x55dba162cc44

put_demapped_rgb 0x7f38dab13010 0x7ffd1d241fe4
put_rgb 0x7f38dab131e0 0x55dba162cccb

jsimd_can_fdct_islow 0x7f38daafd6cd 0x55dba161be41
jsimd_convsamp 0x7f38daafd6a8 0x55dba1628d5c
jsimd_convsamp 0x7f38daafd6a8 0x55dba1628d60

jsimd_convsamp_float 0x7f38daafd6bc 0x55dba1629e80
jsimd_convsamp 0x7f38daafd6a8 0x55dba1628d60

jsimd_convsamp_float 0x7f38daafd6bc 0x55dba1629e88
jsimd_convsamp_float 0x7f38daafd6b5 0x55dba161be62
jsimd_can_fdct_islow 0x7f38daafd6cd 0x55dba161be61

put_rgb 0x7f38dab131db 0x55dba16286f5
jsimd_can_fdct_islow 0x7f38daafd6cd 0x55dba161ee25
jsimd_can_fdct_islow 0x7f38daafd6cd 0x55dba161ef2d
jsimd_can_fdct_islow 0x7f38daafd6cd 0x55dba161ef35

output_ppm 0x7f38dab10293 0x55dba162cfb7
output_ppm 0x7f38dab10293 0x55dba162cfb9

jsimd_convsamp_float 0x7f38dab102b0 0x55dba1616b50
jsimd_convsamp_float 0x7f38daafd6b5 0x55dba1620be2
jsimd_can_fdct_islow 0x7f38daafd6cd 0x55dba1620c39

jsimd_convsamp 0x7f38daafd6a8 0x55dba1628d34
jsimd_convsamp_float 0x7f38daafd6bc 0x55dba1629f30
jsimd_can_fdct_islow 0x7f38daafd6cd 0x55dba1620de1
jsimd_convsamp_float 0x7f38daafd6b5 0x55dba1620de6
jsimd_can_fdct_islow 0x7f38daafd6cd 0x55dba1620efd

jinit_write_ppm 0x7f38dab03f1d 0x55dba1616c14

Figure 29: Isolated functions in libjpeg that contribute to the reconstruction of user private im-
ages.
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