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Abstract

In recent years, a variety of learned regularization frameworks for solving inverse1

problems in imaging have emerged. These offer flexible modeling together with2

mathematical insights. The proposed methods differ in their architectural design3

and training strategies, making direct comparison challenging due to non-modular4

implementations. We address this gap by collecting and unifying the available5

code into a common framework. This unified view allows us to systematically6

benchmark the approaches and highlight their strengths and limitations, providing7

valuable insights into their future potential.8

1 Introduction9

Inverse problems are ubiquitous in imaging sciences, for example for describing the image acquisition10

process of magnetic resonance imaging (MRI) or computed tomography (CT). Mathematically, the11

reconstruction is modeled as a linear inverse problem. More precisely, we want to reconstruct an12

(unknown) image x ∈ Rd from an observation y ∈ Rm determined by the linear relation13

y = Hx+ n, (1)

where H ∈ Rm×d encodes the underlying data acquisition process and the noise n ∈ Rm accounts14

for imperfections in this description. As H is often ill-conditioned or non-invertible, the inverse15

problem (1) is ill-posed in the sense of Hadamard and reconstructing x from y is challenging. A16

classical method to address ill-posedness is variational regularization [39], for which the unknown x17

is approximated by18

x̂(y) = argmin
x

{
D(Hx,y) + αR(x)

}
. (2)

In (2), the data fidelity D : Rm ×Rm → R ensures data consistency, the regularizer R : Rd → R19

promotes desired properties of x, and the regularization parameter α > 0 balances the two. The20

literature on variational regularization methods and their mathematical analysis is vast, see [8, 22, 39]21

and the references therein. In particular, the variational approach (2) leads to several desirable22

properties like universality, data consistency, stability and interpretability. Over the past years,23

deep-learning-based approaches have become the state-of-the-art for solving inverse problems [7].24

However, several concerns regarding their trustworthiness remain, see, e.g., [4, 16]. In contrast,25

hand-crafted regularizers R such as the total variation (TV) [37] are theoretically founded but cannot26

achieve the same reconstruction quality as data-driven approaches. We focus on the blend of these27

approaches, namely the learning of R from data.28

Contributions We provide an overview of architectures and training methods for learned regular-29

izers and provide a systematic benchmark in a unified setting. We provide implementations to all30

examples and highlight the individual strengths and limitations.31
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2 Architectures and Training Methods32

Architectures A pioneering learnable regularizer R is the Field of Experts (FoE) [36], which is33

the sum of 1D potentials composed with convolutional filters. Recently, it was proposed to learn the34

FoE using linear splines, leading to the Convex Ridge Regularizer (CRR) [17] and Weakly Convex35

Ridge Regularizer (WCRR) [18]. Another convex architecture is the Input Convex Neural Network36

(ICNN) [7] and its descendant, namely the input weakly-convex neural network [40]. Following the37

idea of structured nonconvexity, these were extended to Input Difference of Convex Neural Networks38

(IDCNNs) [44]. Examples of more complex multiscale CNN regularizers are the Total Deep Variation39

(TDV) [25] and the Least Squares Residual (LSR) [46]. Exploiting the self-similarity of natural40

and medical images, the expected patch log likelihood (EPLL) [45] and patch normalizing flow41

regularizers (PatchNR) [3] define a regularizer by representing the patch distribution by a mixture42

model or generative model. Finally, some Plug-and-Play frameworks provably define a regularization43

term R, see [14, 21]. As an example, we inlcude Learned Proximal Networks (LPNs) [14]. Other44

architectures, which are not included in our comparison, are energy-based generative priors [43],45

dictionary learning [11, 32, 42] and priors based on generative models [2, 10, 13, 20].46

Training Methods First, we consider bilevel learning (BL), which adapts the θ such that the47

reconstruction (2) minimizes some loss. This idea started with learning only the regularization48

parameter α in (2) [12, 19, 26], and has been gradually lifted to learning regularizers. Here, we49

rely on Jacobian free backpropagation [9, 15] to compute the required gradients. Alternatively,50

the gradients can be computed by implicit differentiation [23, 30], which also allows to choose51

the involved step sizes and accuracies adaptively to ensure convergence [38]. A second paradigm52

is based on distinguishing desirable and undesirable images a priori, without actually solving (1).53

Prominent examples include (local) adversarial regularization (AR) [31, 34, 35] and network Tikhonov54

regularizers (NETT) [29]. During training, these approaches are not linked to the variational problem55

(2), and require the selection of a suitable regularization parameter α for the inverse problem at56

hand. Finally, from a Bayesian viewpoint, regularizers can be characterized by the log density of the57

training dataset. Using this identity, R can be trained via maximum likelihood losses, which we use58

for the patch-based architectures EPLL and PatchNR. Alternatively, we can use a score matching59

objective. While this is computationally very efficient, we found that the results are not competitive60

towards BL and AR. Instead, we use it as a pretraining method to initialize θ for BL.61

3 Comparative Study62

We perform an experimental comparison of the architectures and training methods for CT reconstruc-63

tion. To solve (2) efficiently, we use the nonmonotonic Accelerated Proximal Gradient algorithm [28,64

Supplementary material]. Our code is based on the DeepInverse library [41] and available online1.65

Forward Operator and Noise Level We consider a sparse-view CT setting, where H is given by66

the discretized X-ray transform with 60 equispaced angles and a parallel beam geometry. We use the67

DeepInverse implementation. To keep the setup simple, we consider Gaussian noise with σ = 0.768

instead of more realistic Poisson noise.69

Datasets and Experiments We evaluate all models on the first test batch of the LoDoPaB-CT70

dataset [27] consisting out of 128 images of size 362× 362 based on the LIDC/IDRI database [6].71

For the training phase, we consider two different settings. In the supervised CT setting, we assume72

that we have access to training images from LoDoPaB-CT. To this end, we use 3522 images from73

its validation set for training. However, in practice, we rarely have training images from the same74

domain or scanner. Therefore, we also consider an unsupervised CT setting, where we train the75

regularizer R based on natural images from the BSDS500 dataset [5, 33]. In this case, we also train76

on a denoising task without actually using the forward operator H. As an error measure, we report77

the peak signal-to-noise ratio.78

Results The results for supervised CT are given in Table 1 and for unsupervised CT in Table 2.79

Additionally, Table 3 contains training methods that are specific to certain architectures. Moreover,80
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Figure 1: Reconstructions (crop) for the CT task for some baselines and BL with various architectures.

Table 1: Supervised CT experiment.
CRR ICNN WCRR IDCNN CNN TDV LSR

BL 32.30 32.16 32.85 32.56 - 33.67 33.72
AR 32.23 31.98 32.48 31.93 32.29 32.33 -

Table 2: Unsupervised CT experiment.
CRR ICNN WCRR IDCNN CNN TDV LSR

BL 32.17 31.99 32.65 32.45 32.69 33.23 33.11
AR 32.14 31.94 32.61 31.98 32.04 32.43 -

Table 3: Baselines and regularizers with architecture-specific training routines.
FBP TV FBP+UNET LPD EPLL PatchNR NETT LPN

unsupervised 19.98 30.99 n/a n/a 31.94 32.17 30.64 31.29
supervised n/a n/a 33.03 33.71 32.55 32.63 32.01 32.08

Table 3 includes common baselines such as the filtered back projection (FBP), the TV reconstruction,81

a UNet-based postprocessing of the FBP (FBP+UNet) [24] and a learned primal dual reconstruction82

(LPD) [1]. A hyphen indicates that the corresponding setup was unstable or required a very long83

training time. Visual reconstruction results for BL and some baselines are provided in Figure 1.84

4 Discussion, Conclusions and Limitations85

From our experiments, we conclude that learned regularizers like the TDV and LSR can produce86

competitive results to LPD, which is state-of-the-art for CT. Also the (weakly) convex architectures87

like (W)CRR and ICNN significantly outperform classical approaches like TV while still providing88

theoretical guarantees. Interestingly, the CRR consistently yields a higher PSNR than the more89

general ICNN architecture. Considering the training methods, BL always outperformed AR in terms90

of the PSNR. On the other hand, we note that AR is much faster to train, even though we do not report91

systematic results in this direction. Finally, all regularizers perform well in the unsupervised setting,92

which is a clear advantage over end-to-end reconstruction networks. Nevertheless, there is a slight93

drop in PSNR and also the visual impression degrades. The reconstruction times are competitive with94

other iterative reconstruction methods such as the well established PnP approach.95

While our results give a clear impression of the capabilities and limitations of the specific architectures96

and training methods, several aspects remain to be explored. This includes robustness towards errors97

in the forward model H, the required size of the dataset, and uncertainty estimates. Also it is unclear98

if training R on several inverse problems can lead to a foundational model for inverse problems.99
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