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Abstract
Contextual bandit algorithms are at the core of
many applications, including recommender sys-
tems, clinical trials, and optimal portfolio selec-
tion. One of the most popular problems studied
in the contextual bandit literature is to maximize
the sum of the rewards in each round by ensuring
a sublinear regret against the best-fixed context-
dependent policy. However, in many applications,
the cumulative reward is not the right objective -
the bandit algorithm must be fair in order to avoid
the echo-chamber effect and comply with the reg-
ulatory requirements. In this paper, we consider
the α-FAIR CONTEXTUAL BANDITS problem,
where the objective is to maximize the global α-
fair utility function - a non-decreasing concave
function of the cumulative rewards in the adver-
sarial setting. The problem is challenging due
to the non-separability of the objective function
across rounds. We design an efficient algorithm
that guarantees an approximately sublinear regret
in the full-information and bandit feedback set-
tings.

1. Introduction and related work
In applications such as personalized recommendations,
greedily optimizing for the most relevant content for each
user profile tends to reduce the diversity of the recom-
mended items as it induces an unhealthy echo-chamber
effect and propagates systematic biases (Celis et al., 2019).
Recall that standard contextual bandits with a separable cu-
mulative utility function tend to maximize the click-through
rates (CTR) by recommending the most popular item for
each user profile (Semenov et al., 2022). However, an over-
emphasis on the CTR metric invariably leads to polariza-
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tion of opinions. A similar fairness issue arises with other
popular recommender systems, such as movie or song rec-
ommendations by Netflix and Spotify and various online
job recommendation portals. The main objective of this
paper is to design a class of fair contextual bandit algo-
rithms equipped with a quantifiable fairness guarantee that
holds even in the adversarial setting. Towards this goal, we
propose a contextual bandit algorithm that maximizes the
non-linear α-fair utility function instead of the usual time-
separable utility function. Due to the diminishing return
property, the optimizer of the concave α-fair utility function
strikes a trade-off between the fairness and the accuracy
of the recommendations through a tunable hyperparameter
α ∈ [0, 1).

The α-fair metric has been widely adopted in the literature
and has been considered in various dynamic resource alloca-
tion problems ((Altman et al., 2011), (Si Salem et al., 2022),
(Sinha et al., 2023)). (Lan et al., 2010) gave an axiomatic
characterization of fair utility functions and showed that
the α-fair utility function comes out naturally. Other stan-
dard utility functions, e.g., proportional fair and min-max
utilities, can be shown to be a limiting form of the α-fair
utility.

Fairness in bandit and online convex optimization have been
extensively studied in the literature (Joseph et al., 2016;
Chen et al., 2020; Agarwal et al., 2014; Patil et al., 2021;
Si Salem et al., 2022; Even-Dar et al., 2009; Claure et al.,
2020; Li et al., 2019). Chen et al. (2020) considered a
fair contextual bandit problem with a finite number of con-
texts. Their online policy ensures that the probability of
pulling each arm is lower-bounded by a pre-specified con-
stant on every round. They establish a O(

√
TMN logN)

regret bound for the usual separable cumulative loss metric
(here M is the number of contexts, and N is the number
of arms). In the stochastic setting, the work by Patil et al.
(2021); Claure et al. (2020), and Li et al. (2019) proposed
constrained bandit policies that guarantee that the minimum
fraction of pulls of each arm exceeds a given threshold.
Our work complements this line of work where we con-
sider an unconstrained maximization of the non-separable
α-fair utility function. A detailed numerical comparison be-
tween our policy and the constrained bandit policy of Chen
et al. (2020) is presented in Section 4. Badanidiyuru et al.
(2014) considered a similar contextual bandit problem in
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the stochastic setting, which was later extended to concave
utility functions (Agrawal & Devanur, 2014; Agrawal et al.,
2016). Agrawal et al. (2016) gave an efficient policy with
O(
√
T ) regret in the stochastic setting. However, because

of the impossibility of attaining a sublinear regret bound in
the full-information setting (Sinha et al., 2023, Theorem 2),
their result can not be extended to the adversarial rewards,
which is the main focus of this paper. Closest to this paper
is the recent work by Sinha et al. (2023), which considers
the problem of maximizing the α-fair utility function in the
non-contextual full-information setting. In this paper, we ex-
tend their policy to the adversarial contextual bandit setting
with finitely many contexts. This is accomplished by com-
bining a recent scale-free bandit policy with non-separable
rewards.

Our contributions: In this paper, we make the following
contributions.

• We propose an approximately no-regret contextual
bandit algorithm for the α-fair global utility function
with an approximation factor at most 1.445. The non-
additivity of the α-fair utility function across rounds
makes this problem significantly more challenging than
the classic contextual bandit problems, where the cu-
mulative reward can be decomposed as the sum of
rewards in each round. By combining seemingly un-
related recent advances in online convex optimization
and scale-free bandit algorithms, we propose an effi-
cient policy for this problem.

• As a by-product of our algorithm specialized to a single
context, we give the first fair MAB algorithm with an
approximately sublinear regret for the α-fair utility
function in the adversarial setting.

• Because of the global non-separability of the utility
function, we introduce a new analytical technique in-
volving a novel bootstrapping method to bound the
regret in both full-information and bandit settings.

• We perform extensive numerical simulations of our pol-
icy and compare it with the state-of-the-art benchmarks
with standard datasets.

All missing proofs can be found in the accompanying sup-
plementary material.

2. The Full-information setting
We start our discourse with the simpler full-information set-
ting where the entire reward vector for all arms is revealed to
the policy at the end of every round. The more challenging
bandit feedback setting, where only the reward component

corresponding to the arm that was pulled is revealed on ev-
ery round (where the event 3′ takes place), will be studied
in Section 3. Specifically, we consider a fully adversarial
setting with N arms 1 and a finite number of contexts M .
The following sequence of events takes place on every round
t ∈ [T ].

1. The adversary first decides a context-reward pair
(ct, r(t)), where ct ∈ [M ] and δ ≤ ri(t) ≤ 1,∀i ∈
[N ]. Here δ > 0 is a fixed positive constant.

2. The context ct is revealed to the online policy, which
then uses this information to choose an arm (possibly
randomly) It ∈ [N ].

3. (Full-Information Setting) The policy obtains a re-
ward of rIt(t) and the entire reward vector r(t) is re-
vealed to the policy. Or,

3′. (Bandit-feedback Setting) The policy obtains a re-
ward of rIt(t) and only the value of rIt(t) is revealed
to the policy.

For a given online algorithm, let the probability vector
xj(t) ∈ ∆N , j ∈ [M ] denote the probability of pulling
the arms when the jth context is revealed to the policy on
round t (here ∆N is the set of all distribution on N items).
An online policy is defined by the collection of (conditional)
distributions

(
xj(t), j ∈ [M ]

)
, where, upon observing the

current context ct, the policy samples an arm It ∼ xct(t)
for round t. The goal of the policy is to sequentially learn
the best collection of distributions

(
xj(t), j ∈ [M ]

)
, one

for each context, to maximize the α-fair utility function
described next.

Note. The assumption δ ≤ ri(t) is not suitable for many
applications. Please refer to section C of the appendix,
where we do an analysis of the case of non-negative rewards,
i.e when 0 ≤ ri(t) ≤ 1 for all i ∈ [N ].

2.0.1. UTILITY FUNCTION AND THE REGRET METRIC

For each arm i ∈ [N ], the (expected) cumulative reward
accrued till round t for a given policy is defined as:

Ri(t) = Ri(t− 1) + xct
i (t)ri(t), Ri(0) = 1. (1)

In this paper, we consider the problem of maximizing the
sum of α-fair utility functions of the arms where the utility
of the ith arm is defined as:

ϕ(Ri(T )) :=
(Ri(T ))

1−α

1− α
, i ∈ [N ], (2)

1The arms could represent either distinct actions or N different
candidate policies for some problem from which we want to pick
the best one (Auer et al., 2002).
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where 0 ≤ α < 1 is some fixed constant. The parameter
α strikes a trade-off between fairness and efficiency. Set-
ting α = 0 corresponds to the usual linear reward function.
On the other hand, larger α induces fairness because of the
diminishing return property, which encourages playing all
arms evenly (Lan et al., 2010). Formally, our objective is to
design an online policy that minimizes the c-approximate
contextual regret, which competes with the best offline pol-
icy in hindsight (i.e., a fixed mapping from contexts to arms)
instead of the best arm. Formally, the contextual regret is
defined as:

RegretT (c) := max
x∗

N∑
i=1

ϕ(R∗
i (T ))− c

N∑
i=1

ϕ(Ri(T )), (3)

where c ≥ 1 is some small constant, and, for each arm
i, R∗

i (T ) is the cumulative reward (1) accrued by any
static policy using the fixed collection of distributions
x∗ ≡ (x1

∗, ...,x
M
∗ ) used in Eq. (1). A few words on the

c-regret metric (3) are in order. Clearly, c = 1 corresponds
to the usual static regret. However, it is known from Sinha
et al. (2023, Theorem 2) that even in the full-information
setting, no online policy can achieve a sublinear regret for
c = 1. The concept of c-approximate regret has been useful
in other online learning problems as well (Azar et al., 2022;
Emamjomeh-Zadeh et al., 2021; Paria & Sinha, 2021).

Note: 1. We initialize Ri(0) to 1 so that the derivative
ϕ′(Ri(t)) remains well-defined for all t ∈ [T ].

2. In the full-information setting, we work exclusively with
the expected cumulative rewards rather than the true rewards,
which is stochastic due to the randomness of the policy.
This allows us to carry out a simpler deterministic analysis.
Using standard concentration inequalities, it can be shown
that resulting bounds carry over for the true rewards as well
(Sinha et al., 2023, Section 4). However, due to the limited
feedback, this trick no longer works in the bandit setting,
where we work with the stochastic true rewards.

2.1. Algorithm design I: Linearization

Similar to Sinha et al. (2023), the algorithm design proceeds
in two steps - (1) linearization with policy-dependent gradi-
ents and then (2) solving the linearized online optimization
problem. See Figure 1 for a schematic. In the linearization
step, we first reduce the problem to an instance of an on-
line linear optimization (OLO) problem. Since the utility
function ϕ(·) is concave, we have

ϕ(x)− ϕ(y) ≤ ϕ′(y)(x− y) (4)

for all x, y > 0. Now, let β ≥ 1 be a constant, which will
be fixed later. Taking x = R∗

i (T ) and y = βRi(T ) in the

Figure 1. Diagram representing the web of reductions used in the paper. First, the

contextual bandit problem with a global α-fair objective is reduced to a standard

online linear optimization (OLO) problem. The reduction works the same way in

both the full-information and bandit-information feedback settings. Then, in either

setting, we parallelly run M instances of a non-contextual policy, and all the M

policies are coupled through the shared vector R(t) of cumulative rewards. On a

high level, after the linearization step, the jth policy for j ∈ [M ] controls the regret

for the jth context.

above inequality, we get

ϕ(R∗
i (T ))− β1−αϕ(Ri(T ))

(a)
= ϕ(R∗

i (T ))− ϕ(βRi(T ))

(b)

≤ ϕ′(βRi(T ))[R
∗
i (T )− βRi(T )]

(c)

≤ β−αϕ′(Ri(T ))

T∑
t=1

ri(t)[x
ct
∗,i − βxct

i (t)], (5)

where in (a), we have used the property that ϕ(βx) =
β1−α(x) which holds for (2); in (b), we have used inequality
(4), and in (c), we have used the definition of the cumulative
rewards given in (1), the fact that β ≥ 1 and the property
ϕ′(βx) = β−αϕ′(x). Summing up the bound (5) over all
the arms i ∈ [N ], we obtain the following bound to the
β1−α-approximate regret of any online policy:

RegretT (β
1−α)

≤ β−α
T∑

t=1

∑
i∈[N ]

ϕ′(Ri(T ))ri(t)[x
ct
∗,i − βxct

i (t)]. (6)

Note that Ri(T ) is the cumulative reward accrued in the
entire horizon of length T , and hence, it depends on the
entire sequence of rewards and the actions of the policy.
Clearly, this non-causal information is not available to the
online policy at any intermediate round t < T. This shows
that directly minimizing the upper bound (6) using online
convex optimization methods is not feasible as the reward
function involves the variables ϕ′(Ri(T ))’s. To get around
this fundamental difficulty, we now define a surrogate online
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linear optimization problem by replacing the tth coefficient
ϕ′(Ri(T )) in the RHS of the upper bound (6) with its causal
surrogate ϕ′(Ri(t− 1)). With this substitution, the problem
of minimizing (6) becomes an instance of the online linear
optimization (OLO) problem. However, in contrast with
the standard OLO problem, here the reward functions are
no longer oblivious as they depend on the policy through
its past actions. By bounding the regret of the surrogate
problem, we show that it is possible to derive an approximate
regret bound to the original regret minimization problem
(3). Hence, dropping the factor β−α, the surrogate regret
that we minimize is:

Surrogate RegretT

= max
x∗

T∑
t=1

∑
i∈[N ]

ϕ′(Ri(t− 1))ri(t)[x
ct
∗,i − xct

i (t)] (7)

In particular, for the surrogate problem, the linear reward
vector at time step t is given by ϕ′(R(t − 1)) ⊙ r(t),
which implicitly depends on the past actions of the policy
(through the first term). Here, ϕ′(R(t− 1)) ≡ (ϕ′(R1(t−
1)), ..., ϕ′(RN (t− 1))). Upon setting β ≡ (1− α)−1, the
following result relates the original regret (3) with the surro-
gate regret (7) for any policy.
Lemma 2.1. For any T ≥ 1 and for any policy, we have

RegretT (cα) ≤ (1− α)αSurrogate RegretT + cαN (8)

where cα = (1− α)−(1−α) ≤ e1/e < 1.445.

After accounting for M different contexts with a common
cumulative reward vector R(t), the proof generalizes the
arguments in Sinha et al. (2023, Lemma 1). See Section A.1
in the Appendix for the complete proof.

2.2. Algorithm design I: Solving the linearized problem
with full information

In view of the regret bound (8), we now propose α-FAIRCB
- an online policy to approximately minimize the surrogate
regret (7). In brief, α-FAIRCB runs M instances of adap-
tive online gradient descent policy in parallel, where the jth

instance is responsible for controlling the regret for the jth

context. These parallel policies are coupled through the com-
mon state vector R(t) - the cumulative reward accrued up
to time t, which is affected by all contexts. Technically, this
strategy works because, after the linearization step above,
using the Cauchy-Scwarz inequality, the regret can be upper-
bounded by the sum of policy-dependent gradients over all
M instances. Finally, the norm of these policy-dependent
gradients are controlled using a novel bootstrapping tech-
nique. The following lemma gives a precise regret bound
for the surrogate problem.
Lemma 2.2. The α-FAIRCB policy described in Algorithm
1 achieves the following static regret bound for the surrogate

Algorithm 1 α-FAIRCB (Full Information Setting)
1: Input: Fairness parameter 0 ≤ α < 1, Sequence of

reward vectors r(1), ..., r(T ), Sequence of contexts
c1, ..., cT , Euclidean projection oracle on the simplex
Π∆N

, and an upper bound D =
√
2 to the Euclidean

diameter of the simplex ∆N .
2: Output: Distributions xct(t) for each round t.
3: Initialization:

Ri(0)← 1, Sj ← 0,xj ← 1

N
, ∀i, j.

4: for t = 1 to T do
5: Receive the context ct for round t.
6: if Context ct is seen for the first time then
7: Output xct(t) = xct (uniform distribution).
8: else
9: Let t′ be the last time step when context ct was

seen.
10: Compute gradient vector g as follows:

gi =
ri(t

′)

Rα
i

∀i ∈ [N ]

11: Update the cumulative gradient norm:

Sct ← Sct + ∥g∥22

12: Carry out the online gradient ascent update:

xct ← Π∆N

(
xct +

D√
2Sct

g

)

13: Output xct(t) = xct .
14: end if
15: Observe reward vector r(t).
16: Update Ri(t)← Ri(t− 1) + xct

i (t)ri(t).
17: end for

problem (7):

Surrogate RegretT =


O(N3MT 1/2−α), if 0 < α < 1

2

O(N3M
√
log T ), if α = 1

2

O(1), if 1
2 < α < 1.

(9)

See Section A.2 for the proof of the result. The proof of
this lemma exploits a novel bootstrapping technique which
repeatedly boosts the estimate of the gradients, which are
controlled by the policy, to obtain a better adaptive regret
bound. Combining Lemma 2.1 and Lemma (2.2), we es-
tablish our main result.

Theorem 2.3. Algorithm 1 achieves the following approxi-
mate regret bound for the contextual bandit problem in the
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full information setting with the α-fair utility function:

RegretT (cα) = (1− α)α


O(N3MT 1/2−α), if 0 < α < 1

2

O(N3M
√
log T ), if α = 1

2

O(1), if 1
2 < α < 1.

where cα = (1− α)−(1−α) < 1.445.

3. The Bandit feedback setting
We now study the same problem in the more challenging
bandit feedback model. In this setup, only the reward of
the arm selected by the policy, i.e., rctIt (t), is revealed on
each round. Following standard practice, we assume that
the reward vectors r(t) and the context sequence ct ∈ [M ]
for each time step t are generated by an oblivious adversary,
i.e., the sequence of rewards and contexts is fixed a priori.

Because of the limited feedback, an online policy cannot
observe the expected cumulative rewards defined in Eqn.
(1) as one needs to know the entire reward vector r(t) to
compute the expected reward. Hence, instead of using the
distribution xct(t), we directly use the random one-hot en-
coded vector Xct(t) to define the true cumulative rewards
2. Here, the It

th component (which corresponds to the se-
lected arm) of the vector Xct(t) is set to one, and the rest
of the components are set to zero. Hence, the true cumula-
tive reward vector, which the policy can observe under the
bandit feedback setting, evolves as follows:

Ri(t) = Ri(t− 1) +Xct
i (t)ri(t), Ri(0) = 1. (10)

As before, we will use the notation xct(t) ∈ ∆N to denote
the probability distribution of pulling the arms on step t.
Hence, for all i ∈ [N ] and t ∈ [1, T ], we have

P[Xct
i (t) = 1] = xct

i (t). (11)

Our objective is to design a policy which minimizes the
expected c-approximate regret defined below:

RegretT (c)

:= max
x∗∈(∆N )M

E

∑
i∈[N ]

ϕ(R∗
i (T ))− c

∑
i∈[N ]

ϕ(Ri(T ))

 .

(12)

In the above definition, c ≥ 1 is a small constant whose
value will be specified later and R∗(T ) is the cumulative
reward vector obtained for a stationary contextual bandit
policy which pulls arms according to the fixed collection

2With a slight abuse of notation, we use the same symbol R(t)
to denote the expected cumulative rewards in the full-information
setting (1) and true cumulative rewards in the bandit feedback
setting (10).

of distributions x∗ ≡ (x1
∗, ...,x

M
∗ ) depending on the cur-

rent context. Let (x1
∗, ...,x

M
∗ ) ∈ (∆N )M be the best-fixed

collection of distributions which achieves the maximum in
(12). We have

RegretT (c)

= E

∑
i∈[N ]

ϕ(R∗
i (T ))− c

∑
i∈[N ]

ϕ(Ri(T ))


(a)
=
∑
i∈[N ]

E[ϕ(R∗
i (T ))]− cE

∑
i∈[N ]

ϕ(Ri(T ))


(b)

≤
∑
i∈[N ]

ϕ(E[R∗
i (T )])− cE

∑
i∈[N ]

ϕ(Ri(T ))


(c)
=
∑
i∈[N ]

ϕ

(
1 +

T∑
t=1

ri(t)x
ct
∗,i

)
− cE

∑
i∈[N ]

ϕ(Ri(T ))


(13)

Above, in (a), we have used the linearity of expectation.
In (b), we have used Jensen’s Inequality on the concave
function ϕ. In (c), we have just expanded E[R∗

i (T )] using
(10) and (11).

3.1. Algorithm design I: Linearization

Similar to the full-information setting, we handle the non-
linearity by reducing the problem to a standard bandit prob-
lem with appropriately constructed linear reward functions.
Following (5), we have

ϕ(ER∗
i (T ))− β1−αϕ(Ri(T ))

≤ β−αϕ′(Ri(T ))

T∑
t=1

ri(t)[x
ct
∗,i − βXct

i (t)] (14)

where above, β ≥ 1 is some constant to be fixed later.
Summing the above inequality for all i ∈ [N ] and taking
expectations w.r.t the actions of the policy, we have

∑
i∈[N ]

ϕ(ER∗
i (T ))− β1−αE

∑
i∈[N ]

ϕ(Ri(T ))


≤ β−αE

∑
i∈[N ]

T∑
t=1

ϕ′(Ri(T ))ri(t)[x
ct
∗,i − βXct

i (t)]

 .

(15)

Combining the last inequality with (13), we get

RegretT (β
1−α)

≤ β−αE

∑
i∈[N ]

T∑
t=1

ϕ′(Ri(T ))ri(t)[x
ct
∗,i − βXct

i (t)]

 .

(16)
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Motivated by the above bound, we now consider a surrogate
bandit problem by replacing the term ϕ′(Ri(T )) with its
causal counterpart ϕ′(Ri(t− 1)). We now design an online
policy to minimize the surrogate regret defined as follows:

Surrogate RegretT

≡ E

∑
i∈[N ]

T∑
t=1

ϕ′(Ri(t− 1))ri(t)[x
ct
∗,i −Xct

i (t)]


= E

[
T∑

t=1

⟨ϕ′(R(t− 1))⊙ r(t),xct
∗ −Xct(t)⟩

]
. (17)

Above, ⊙ is the elementwise product of vectors. As before,
ϕ′(R(t− 1)) ≡ (ϕ′(R1(t− 1)), ..., ϕ′(RN (t− 1))). Anal-
ogous to Lemma 2.1, we have the following result, which
relates the regret defined in (12) to the surrogate regret de-
fined in (17).

Lemma 3.1. For any T ≥ 1, we have

RegretT (cα) ≤ (1− α)αSurrogate RegretT + cαN, (18)

where cα = (1− α)−(1−α) ≤ e1/e < 1.445.

3.2. Algorithm design II: Solving the linearized problem
with bandit feedback

Lemma 3.1 motivates us to design an online policy that
minimizes the regret (17) for the surrogate bandit problem.
However, unlike the standard adversarial bandit problem,
where the reward vectors are fixed a priori in an oblivious
fashion, in this case, the rewards for each round t, defined
as gt ≡ ϕ′(R(t − 1)) ⊙ rt, depends on the past actions
of the policy. We can decompose the surrogate regret over
different contexts as follows:

E

[
T∑

t=1

⟨gt,xct
∗ −Xct(t)⟩

]

= E

 ∑
j∈[M ]

∑
t:ct=j

⟨gt,xj
∗ −Xj(t)⟩


(a)
=
∑

j∈[M ]

E

 ∑
t:ct=j

⟨gt,xj
∗ −Xj(t)⟩


(b)

≤
∑

j∈[M ]

E

 max
y∈{ek}N

k=1

∑
t:ct=j

⟨gt,y −Xj(t)⟩


︸ ︷︷ ︸

regret due to the jth context

=: ˆRegretT . (19)

Above, in (a), we have used the linearity of expectation; in
(b), we have used the fact that for any fixed sequence of re-
wards in a bandit OLO problem, the best offline benchmark

is the best fixed arm in hindsight. The above inequality can
be written as

Surrogate RegretT ≤ ˆRegretT (20)

To minimize the surrogate regret, we now design a policy
that minimizes ˆRegretT , which is the sum of the regret
for each context. Note that since the cumulative reward
vector is common to all contexts, the regret bounds for
different contexts are coupled with each other. To solve
the per-context learning problem, we use the adaptive and
scale-free multi-armed bandit policy, proposed by (Putta
& Agrawal, 2022), as a black box. Specifically, we run M
parallel instances of this policy, one for each context where
they share the global cumulative reward vector R(t). For
ease of reference, we quote the regret bound achieved by the
bandit policy of Putta & Agrawal (2022) in the following
theorem.

Algorithm 2 α-FAIRCB (Bandit Information Setting)
1: Input: Fairness parameter 0 ≤ α < 1, Sequence of

reward vectors r(1), ..., r(T ), Sequence of contexts
c1, ..., ct.

2: Output: Arm It ∈ [N ] to be played at round t, for
t ∈ [1, T ].

3: Initialize Ri(0)← 1 for all i ∈ [N ].
4: Initialize M adaptive, scale-free MAB policies from

(Putta & Agrawal, 2022). Let Aj denote the jth in-
stance of the policy, for j ∈ [M ].

5: for t = 1 to T do
6: Observe context ct.
7: Play an arm It picked by policy Act . Let Xct(t)

denote the one-hot vector representing arm It.
8: Feed the modified reward vector ϕ′(R(t− 1))⊙r(t)

to policy Act . 3

9: Update Ri(t) ← Ri(t − 1) + Xct
i (t)ri(t) for all

i ∈ [N ].
10: end for

Theorem 3.2 (Theorem 1 of (Putta & Agrawal, 2022)). For
any oblivious sequence of reward vectors l1, ..., lT ∈ RN ,
the adaptive version of Algorithm 1 of Putta & Agrawal
(2022) achieves the following regret bound:

E

[
max

{ek}N
k=1

T∑
t=1

⟨lt, ek −X(t)⟩
]

= O(log T · [
√
NL2 + L∞

√
NL1]). (21)

In the above, X(t) is the one-hot encoded vector de-
noting the arm pulled on round t, L∞ = maxt∥lt∥∞,
L2 =

∑T
t=1∥lt∥22, L1 =

∑T
t=1∥lt∥1 and the expectation is

taken w.r.t. the actions of the policy.
3Even though we pass the full vector ϕ′(R(t−1))⊙r(t) to the

bandit subroutine, it only “sees” the reward ϕ′(RIt(t− 1))rIt(t)
for the arm It it has just picked.
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Remarks: Technically, the regret bound in Theorem 3.2
was originally established for oblivious adversaries. How-
ever, in our case, the surrogate reward vector gt depends
on the past actions of the policy up to round t− 1. To see
why we can still plug in the generic regret bound (21), note
that the reward vector gt on round t does not depend on the
action X(t) taken on round t. Hence, we can use the re-
gret bound for an imaginary adversary that fixes the reward
vector gt at the end of round t − 1. Since the reward on
round t does not affect the previous actions of the policy, the
regret bound (21) holds. Adapting the above bound to our
contextual setting, we have the following scale-free regret
bound.
Lemma 3.3. For any t ∈ [1, T ], let gt := ϕ′(R(t− 1))⊙
r(t). The adaptive version of Algorithm 1 of (Putta &
Agrawal, 2022) achieves the following bound for any j ∈
[M ]:

E

 max
y∈{ek}N

k=1

∑
t:ct=j

⟨gt,y −Xj(t)⟩

 ≤
Õ

E

√N
∑

t:ct=j

∥gt∥22 + max
t:ct=j

∥gt∥∞
√

N
∑

t:ct=j

∥gt∥1

 ,

(22)

where the Õ(·) notation hides the logarithmic factors.
Above, the expectation is taken w.r.t the policy actions.

Please refer to Section A.5 for the proof. The following
result bounds the surrogate regret (19).
Lemma 3.4. The α-FAIRCB policy described in Algorithm
2 achieves the following bound on the regret of the surrogate
bandit OLO problem for the α-fair utility function:

ˆRegretT = Õ(MN2T
1−α
2 ) (23)

where the Õ(·) notation hides the log T factor.

Finally, combining Lemma 3.1, (20) and Lemma 3.4, we
establish our main result.
Theorem 3.5. Algorithm 2 achieves the following approxi-
mate regret bound for the contextual bandit problem in the
bandit information feedback setting with the α-fair utility
function:

RegretT (cα) = (1− α)αÕ(MN2T
1−α
2 ) (24)

where cα = (1 − α)−(1−α) < 1.445, and the Õ notation
hides factors logarithmic in T .

4. Experiments
We evaluate the performance of the proposed algorithm on
a movie genre recommendation problem using the MOVIE-
LENS 25M dataset (Harper & Konstan, 2015). The dataset

consists of 25 million data points, each consisting of a movie
rating given by a user. For our experiments, we take a small
sample comprising of the around 5, 000 data points. These
samples are users having a frequency of 1000 within the
dataset. The underlying contextual bandit problem is for-
mulated as follows: we interpret the users as contexts and
movie genres as arms. In the selected sample, the number
of contexts turns out to be M = 5 (number of users), and
the number of arms featured is N = 19 (number of movie
genres). The dataset is sorted by the column containing the
timestamps at which the ratings were reported, and this is
taken to be the order of request arrivals. Since our policy
requires a positive lower bound to the rewards, we take the
minimum reward to be δ = 0.001 if the recommended genre
doesn’t fit the current movie (i.e a reward very close to 0)
and 1 otherwise.

Performance metrics: To measure fairness, we use the
popular Jain’s Fairness Index (Jain et al., 1998), calculated
for the vector of cumulative rewards at the end of the time
horizon. For any round t ∈ [1, T ], Jain’s fairness index is
defined as:

Jain’s Fairness Index :=
(
∑N

i=1 Ri(t))
2

N
∑N

i=1 R
2
i (t)

. (25)

Jain’s fairness index assumes a value between 0 and 1, where
a value of 1 is obtained when all components of the reward
vector are the same (i.e., fully fair). In particular, if each arm
receives an equal share of cumulative rewards, this index
will be 1. Throughout our experiments, we take α = 0.9
(i.e. a high level of fairness). We also plot the approximate
contextual regret as defined in equations (3) and (12) for the
full information and bandit feedback settings, respectively.

Calculating the offline baseline metrics: Note that the
offline benchmarks in equations (3) and (12) required for
computing the approximate regret involve computing the
best offline collection of M distributions maximizing the
cumulative α-fair utility function. Since ϕ(·) is a concave
function, this is a standard concave maximization problem
over the convex domain (∆N )M . In our experiments, we
use the CVXPY package for solving this problem (Diamond
& Boyd, 2016).

Baseline Policies (Full Information Setting): We consider
two baselines (1) a context-agnostic HEDGE policy (i.e. a
policy that ignores contexts) and (2) the FAIRCB policy
from (Chen et al., 2020). Note that inherently HEDGE is
not a fair policy as its objective is to optimize the total re-
ward. On the other hand, FAIRCB’s fairness constraint is
specified by a tunable parameter ν ∈ (0, 1

N ); in particular,
the constraint is that the marginal probability of each arm
being pulled at any given time step is at least ν. To deter-
mine the appropriate value of ν for our experiments, we
run the FAIRCB policy for 50 different values of ν evenly
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Figure 2. Fairness levels for varying values of ν

against the fairness level of our policy for α = 0.9.
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Figure 3. Approximate regret for the full infor-

mation setting.
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Figure 4. Jain’s Fairness Index for the full infor-

mation setting.
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Figure 7. Jain’s Fairness Index for the bandit in-

formation setting.

distributed in the interval
[
0, 1

N

)
, and compare the fairness

levels achieved for each of these policies with the fairness
level achieved by our policy with α = 0.9 (see Figure 2).
It can be seen that for increasing ν, the fairness levels of
FAIRCB show a generally increasing trend, and even for
the highest value of ν in our sample (ν = 0.98

N ), the fair-
ness level is still not as high as our policy’s. For further
experiments, we take ν = 0.98/N (i.e the fairness level for
FAIRCB achieving the largest fairness index).

Results (Full Information Setting): Figure 3 shows that
the proposed α-FAIRCB policy outperforms the HEDGE
and FAIRCB policies in terms of the approximate contex-
tual regret (3). As expected, the context-agnostic HEDGE
policy with no inherent notion of fairness performs the worst
among the three policies under consideration. Finally, in
terms of Jain’s Fairness Index (25), we observe that the
proposed α-FAIRCB outperforms both the non-contextual
HEDGE and FAIRCB policies even for a moderately large
time horizon (Figure 4).

Varying values of α: We also study the effects of different
values of α in the performance of α-FAIRCB. It is expected
that as α increases, a higher level of fairness is achieved.
Figure 5 shows this trend. Also, Figure 6 shows that as
α increases, the averaged total cumulative reward of our
policy decreases, which is expected with increasing levels
of fairness.

Baseline Policies (Bandit Information Setting): For this
setting, we do the computations on about 50k data points.
As a baseline policy, we run the context-agnostic adaptive

multi-armed bandit policy proposed by Putta & Agrawal
(2022), which is also used by our contextual bandit policy
as a subroutine.

Results (Bandit Information Setting): In terms of Jain’s
Fairness Index, it is observed from Figure 7 that although
for the first few rounds, (Putta & Agrawal, 2022)’s policy
outperforms α-FAIRCB, but over the entire time horizon,
α-FAIRCB achieves a significantly better fairness index.
The behaviour for the first few time steps can be explained
by the fact that Putta & Agrawal (2022)’s policy has an
exploration component, which makes the policy choose
each arm with an approximately equal probability in the
initial stages. However, since their policy maximizes the
cumulative rewards, it achieves a worse fairness index over
a longer horizon. In terms of the approximate regret, we
observe results similar to that of the full information setting.
Please refer to section B in the Appendix for the plot and
additional experimental results.

5. Conclusion and Future Work
In this paper, we considered the problem of learning ad-
versarial unstructured context-to-reward mapping and pro-
posed an approximately regret-optimal policy in the full-
information and bandit feedback setting. In the future, it
will be interesting to design efficient algorithms for the case
of structured contexts. Finally, similar to Chen et al. (2020),
designing α-fair bandit algorithms that guarantee a fixed
fraction of pulls to each arm would also be interesting to
investigate.
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A. Appendix
A.1. Proof of Lemma 2.1

Before proving the claim, we establish an auxiliary result that will be useful later.

Lemma A.1. Under any policy which updates the cumulative rewards of the ith user Ri(·) as in (1) ∀i ∈ [N ], the following
inequality holds:

ϕ′(Ri(t− 1))[Ri(t)−Ri(t− 1)] ≤
∫ Ri(t)−1

Ri(t−1)−1

ϕ′(R)dR. (26)

Proof. Since 0 ≤ α < 1, observe that the utility function ϕ(·) given by Eq. (2) is well-defined on [0,∞) and is differentiable
in (0,∞). Also, because Ri(·) is monotonically non-decreasing and Ri(0) = 1, we note that Ri(t − 1) − 1 ≥ 0 for all
t ∈ [1, T ]. By the fundamental theorem of calculus combined with the mean value theorem, we have∫ Ri(t)−1

Ri(t−1)−1

ϕ′(R)dR = ϕ′(c0)[Ri(t)−Ri(t− 1)] (27)

for some c0 ∈ (Ri(t − 1) − 1, Ri(t) − 1); in particular, we have c0 < Ri(t) − 1. Now, from the defintion (1) observe
that Ri(t) − Ri(t − 1) = xct

i (t)ri(t) ≤ 1, where we have used the fact that xct
i (t), ri(t) ≤ 1. This implies that

Ri(t)− 1 ≤ Ri(t− 1), and hence, c0 < Ri(t− 1).

Finally, since ϕ(·) is concave, ϕ′(·) is non-increasing; this implies that ϕ′(c0) ≥ ϕ′(Ri(t− 1)). Combining this with (27),
the claim follows.

We now establish Lemma 2.1.

Proof. The upper bound for RegretT (β
1−α) from Eq. (6) can be split into the difference of two terms A and B as defined

below:

RegretT (β
1−α) ≤ β−α[A− βB], (28)

where

A =
∑
i∈[N ]

ϕ′(Ri(T ))

T∑
t=1

ri(t)x
ct
∗,i, (29)

B =
∑
i∈[N ]

ϕ′(Ri(T ))

T∑
t=1

ri(t)x
ct
i (t). (30)

Also, let A′ and B′ denote the corresponding terms in the regret expression (7) for the surrogate OLO problem. We will now
bound the terms A and B in terms of A′ and B′, respectively.
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Proving A ≤ A′: Note that the utility function ϕ(·) is concave, and hence its derivative is non-increasing. Also, from the
recurrence equation for the cumulative rewards (1), it is clear that under any policy, Ri(·) is non-decreasing for any i ∈ [N ].
Hence, we see that ϕ′(Ri(t− 1)) ≥ ϕ′(Ri(T )) for all t ∈ [1, T ] and i ∈ [N ]. This implies that

A =
∑
i∈[N ]

ϕ′(Ri(T ))

T∑
t=1

ri(t)x
ct
∗,i

≤
∑
i∈[N ]

ϕ′(Ri(t− 1))

T∑
t=1

ri(t)x
ct
∗,i

= A′ (31)

Proving B′ ≤ (1− α)−1(B +N): We now argue that the following set of inequalities holds:

B′ =
∑
i

T∑
t=1

ϕ′(Ri(t− 1))ri(t)x
ct
i (t)

(a)
=
∑
i

T∑
t=1

ϕ′(Ri(t− 1))[Ri(t)−Ri(t− 1)]]

(b)

≤
∑
i

T∑
t=1

∫ Ri(t)−1

Ri(t−1)−1

ϕ′(R)dR

(c)

≤
∑
i

∫ Ri(T )

0

ϕ′(R)dR

(d)
=
∑
i

ϕ(Ri(T ))

(e)
= (1− α)−1

∑
i

ϕ′(Ri(T ))Ri(T )

(f)
= (1− α)−1

∑
i∈[N ]

ϕ′(Ri(T ))

(
1 +

T∑
t=1

xct
i (t)ri(t)

)
(h)

≤ (1− α)−1(B +N) (32)

where in (a), we have used the recurrence for Ri(·) as given in (1). In (b), we have used (26). In (c), we have simply used
the fact that Ri(0)− 1 = 0 and Ri(T )− 1 ≤ Ri(T ). In (d), we have used the fundamental theorem of calculus and the fact
that ϕ(0) = 0. In (e), we have used the fact that xϕ′(x) = (1− α)ϕ(x) which holds for the α-fair utility function ϕ(·). In
(f), we have used the definition of the cumulative rewards as in (1). In (h), we have used the definition of B and the fact
that ϕ′(x) = x−α ≤ 1 for all x ≥ 1.

Now, the inequality B′ ≤ (1−α)−1(B+N) implies that (1−α)B′−N ≤ B. Since β > 0, we have βB ≥ β(1−α)B′−βN .
Combining this with A ≤ A′, we have that

A− βB ≤ A′ − β(1− α)B′ + βN. (33)

Now, pick β = (1− α)−1 (which ensures that β ≥ 1), and hence we obtain

A− βB ≤ A′ −B′ + (1− α)−1N, (34)

and from Eq. (28), we see that

RegretT (cα) ≤ (1− α)α(A′ −B′) + cαN

= (1− α)αSurrogate RegretT + cαN, (35)

which completes the proof of the lemma.
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A.2. Proof of Lemma 2.2

For ease of notation, let (x1
∗, ...,x

M
∗ ) ∈ (∆N )M be the collection of distributions achieving the maximum in equation (7).

Now, observe that Surrogate RegretT defined in (7) for the surrogate problem can be split into the sum of regrets over each
of the contexts as follows:

Surrogate RegretT =

T∑
t=1

⟨ϕ′(R(t− 1))⊙ r(t),xct
∗ − xct(t)⟩

=
∑

j∈[M ]

∑
t:ct=j

⟨ϕ′(R(t− 1))⊙ r(t),xj
∗ − xj(t)⟩

(a)

≤
∑

j∈[M ]

max
xj

◦∈∆N

∑
t:ct=j

⟨ϕ′(R(t− 1))⊙ r(t),xj
◦ − xj(t)⟩︸ ︷︷ ︸

Regret for the jth context

(36)

where above in (a), we have simply used that the regret w.r.t xj
∗ for context j is upper bounded by the regret associated to

the best offline benchmark xj
◦ for context j.

Next, from the pseudocode of α-FAIRCB (Full Information Version, Algorithm 1), note that a Projected Online Gradient
Ascent (OGA) policy with adaptive step sizes (Theorem 4.14 of (Orabona, 2019)) controls the regret for each context
j ∈ [M ]. For the sake of completeness, we mention the complete statement of the regret guarantee of the OGA policy.

Theorem A.2 (Theorem 4.14 of (Orabona, 2019)). Let ∆ ⊂ Rd be a convex set with diameter D. Let us consider
a sequence of linear reward functions with gradients {gt}t≥1. Run the Online Gradient Ascent policy with step sizes

ηt =
D√

2
∑T

τ=1∥gτ∥2
, 1 ≤ t ≤ T . Then, the standard regret under the OGA policy can be upper bounded as follows:

RegretT ≤ D

√√√√2

T∑
t=1

∥gt∥2. (37)

Note that, for our case we have D =
√
2. So, by the regret bound of the OGA policy (37), for any j ∈ [M ] we have

max
xj

◦∈∆N

∑
t:ct=j

⟨ϕ′(R(t− 1))⊙ r(t),xj
◦ − xj(t)⟩

≤ D

√
2
∑

t:ct=j

∥ϕ′(R(t− 1))⊙ r(t)∥22

(a)

≤ D

√
2
∑

t:ct=j

∥ϕ′(R(t− 1))∥22

(b)
= D

√√√√2
∑

t:ct=j

∑
i∈[N ]

1

R2α
i (t− 1)

(38)

where above in (a), we have used the fact that r(t) ≤ 1 for all t, and in (b) we have used the fact that ϕ′(x) = x−α. Now,
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summing (38) over all the contexts j ∈ [M ] and combining this with (36), we see that

Surrogate RegretT ≤
∑

j∈[M ]

D

√√√√2
∑

t:ct=j

∑
i∈[N ]

1

R2α
i (t− 1)

= M
∑

j∈[M ]

1

M
D

√√√√2
∑

t:ct=j

∑
i∈[N ]

1

R2α
i (t− 1)

(a)

≤ DM

√√√√ 2

M

∑
j∈[M ]

∑
t:ct=j

∑
i∈[N ]

1

R2α
i (t− 1)

= D
√
M

√√√√2

T∑
t=1

∑
i∈[N ]

1

R2α
i (t− 1)

, (39)

where above in (a), we have used Jensen’s Inequality for the square root function. Using the fact that Ri(t− 1) ≥ 1 for all
t, bound (39) implies that

Surrogate RegretT ≤ O(
√
MNT ). (40)

In the following, we show that the above O(
√
T ) regret bound can be substantially improved using a novel bootstrapping

technique described below.

Bootstrapping: Note that the adaptive regret bound depends on the sum of the norm of gradients of the reward vectors,
which are controlled by the policy itself. This is in sharp contrast with the usual OCO setting where the policy does not
explicitly control the gradients, and the final regret bound is given in terms of the sum of the norm of gradients as given in
(37). The bootstrapping technique starts with a trivial upper bound on the gradient norms and then uses the regret bound
itself to improve the upper bounds on the gradient norms. This, in turn, improves the regret bound through the adaptive
regret bound (37). The process is repeated a few times to get the best possible bound.

We now apply the general bootstrapping method to our problem. Note that by the definition of Surrogate RegretT in (7), we
have the following inequality for any fixed collection (x1

0, ...,x
M
0 ) ∈ (∆N )M of distributions:

T∑
t=1

⟨ϕ′(R(t− 1))⊙ r(t),xct(t)⟩

≥
T∑

t=1

⟨ϕ′(R(t− 1))⊙ r(t),xct
0 ⟩ − Surrogate RegretT . (41)

Also, using the fact that xct
i (t)ri(t) = Ri(t)−Ri(t− 1) and following the same calculations up to step (d) of (32), we see

that

T∑
t=1

⟨ϕ′(R(t− 1))⊙ r(t),xct(t)⟩ ≤
∑
i∈[N ]

ϕ(Ri(T )). (42)

Combining the above inequality with (41), we have∑
i∈[N ]

ϕ(Ri(T ))

≥
T∑

t=1

⟨ϕ′(R(t− 1))⊙ r(t),xct
0 ⟩ − Surrogate RegretT . (43)

Next, we lower bound ϕ′(R(t− 1)) by ϕ′(R(T )) and pick xj
0 = 1

N 1 for all j ∈ [M ] (i.e., we pick the uniform distribution

14
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as an offline benchmark for each context). Doing so, and using the fact that r(t) ≥ δ1 for all t, we have

T∑
t=1

⟨ϕ′(R(t− 1))⊙ r(t),xct
0 ⟩ ≥

T∑
t=1

⟨ϕ′(R(T ))⊙ r(t),xct
0 ⟩

=
∑
i∈[N ]

T∑
t=1

ϕ′(Ri(T ))ri(t)
1

N

≥ T
∑
i∈[N ]

ϕ′(Ri(T ))
δ

N
. (44)

Plugging the last inequality in (43), we conclude that∑
i∈[N ]

ϕ(Ri(T )) ≥ T
∑
i∈[N ]

ϕ′(Ri(T ))
δ

N
− Surrogate RegretT . (45)

Now, noting that 0 < Ri(T ) ≤ T for all i, and that ϕ(·) is monotone non-decreasing, we see that for any i ∈ [N ] the above
inequality implies

NT 1−α

1− α
≥ Tϕ′(Ri(T ))

δ

N
− Surrogate RegretT , (46)

which implies the following inequality after dividing throughout by T and replacing ϕ′(Ri(T )) by 1
Rα

i (T ) :

N

(1− α)Tα
≥ 1

Rα
i (T )

δ

N
− Surrogate RegretT

T
, (47)

which is equivalent to

1

Rα
i (T )

≤ N

δ

[
N

(1− α)Tα
+

Surrogate RegretT
T

]
. (48)

Now, from Eq. (40), we have the following preliminary bound Surrogate RegretT ≤ O(
√
MNT ). We use the bootstrapping

technique by plugging this in (48) to derive the following improved bound on the cumulative reward accrued by the ith arm.

1

Rα
i (T )

≤ O

(
N2
√
MN

Tmin(1/2,α)

)
, ∀i ∈ [N ]. (49)

Now, we consider the following two cases:

Case 1: 0 ≤ α ≤ 1/2. In this case, from (49) we see that 1
Rα

i (T ) ≤ O(N
2
√
MN

Tα ), and hence 1
R2α

i (T )
≤ O(N

5M
T 2α ). Note that

this bound holds for all T . Hence, plugging this in (39), we get

Surrogate RegretT ≤ O

DN
5
2M

√√√√2

T∑
t=2

∑
i∈[N ]

1

(t− 1)2α

 (50)

If 0 ≤ α < 1/2, the above bound becomes Surrogate RegretT ≤ O
(
DN3MT

1
2−α

)
. If α = 1

2 , the above bound becomes

Surrogate RegretT ≤ O
(
DN3M

√
log T

)
.

Case 2: 1/2 < α < 1. In this case, bound (49) implies that 1
Rα

i (T ) ≤
(
N2
√
MN

T 1/2

)
, and hence

1

R2α
i (T )

≤ O

(
N5M

T

)
.

Again, this is true for all T . So, plugging this in (39), we get

Surrogate RegretT ≤ O

DN
5
2M

√√√√2

T∑
t=2

∑
i∈[N ]

1

(t− 1)


= O(DN3M

√
log T ) (51)
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Plugging this back in (48), we get that 1
Rα

i (T ) ≤ O(N
5M
Tα ), and hence 1

R2α
i (T )

≤ O(N
10M2

T 2α ). Again, note that this holds for
all T . Hence, plugging this in (39), we see that

Surrogate RegretT ≤ O

DN5M
3
2

√√√√2

T∑
t=2

∑
i∈[N ]

1

(t− 1)2α


= O(1) (52)

where above, we have used the fact that 2α > 1.

A.3. Proof of Lemma 3.1

The proof of Lemma 2.1 works here with minor modifications. Again, the upper bound in (16) for RegretT (β
1−α) can be

split into the difference of two terms A and B as follows:

RegretT (β
1−α) ≤ β−αE[A− βB] (53)

where

A =
∑
i∈[N ]

ϕ′(Ri(T ))

T∑
t=1

ri(t)x
ct
∗,i (54)

B =
∑
i∈[N ]

ϕ′(Ri(T ))

T∑
t=1

ri(t)X
ct
i (t) (55)

Also, let A′ and B′ denote the corresponding terms in the surrogate regret for the OLO problem defined in (17). Following
the same argument as in the proof of Lemma 2.1, we can obtain A ≤ A′ and B′ ≤ (1− α)−1(B +N).

As before, the inequality B′ ≤ (1 − α)−1(B + N) implies that (1 − α)B′ − N ≤ B. Since β > 0, we have βB ≥
β(1− α)B′ − βN . Combining this with A ≤ A′, we see that

A− βB ≤ A′ − β(1− α)B′ + βN. (56)

Now, pick β = (1− α)−1 (ensuring that β ≥ 1), and hence, we obtain

A− βB ≤ A′ −B′ + (1− α)−1N. (57)

Taking expectations w.r.t the policy actions, we get

E[A− βB] ≤ E[A′ −B′] + (1− α)−1N. (58)

Finally, from (53), we get

Regret(cα) ≤ β−αE[A′ −B′] + β−α(1− α)−1N

= (1− α)αSurrogate RegretT + cαN, (59)

completing the proof of the lemma.

16



α-Fair Contextual Bandits

A.4. Proof of Lemma 3.4

Consider some context j ∈ [M ]. As before, for any t ∈ [1, T ] let gt := ϕ′(R(t− 1))⊙ r(t). Then, we have the following
set of inequalities considering the adaptive regret bound of the MAB policy handling context j:

Õ

E

√N
∑

t:ct=j

∥gt∥22 + max
t:ct=j

∥gt∥∞
√

N
∑

t:ct=j

∥gt∥1


(a)

≤ Õ

E

√N
∑

t:ct=j

∥gt∥22 +
√
N
∑

t:ct=j

∥gt∥1


(b)

≤ Õ

E

√N
∑

t:ct=j

∥ϕ′(R(t− 1))∥22 +
√
N
∑

t:ct=j

∥ϕ′(R(t− 1))∥1


(c)
= Õ

E

√√√√N
∑

t:ct=j

∑
i∈[N ]

1

R2α
i (t− 1)

+

√√√√N
∑

t:ct=j

∑
i∈[N ]

1

Rα
i (t− 1)




(d)

≤ Õ

E

√√√√N
∑

t:ct=j

∑
i∈[N ]

1

Rα
i (t− 1)




(e)

≤ Õ

√√√√N
∑

t:ct=j

∑
i∈[N ]

E
1

Rα
i (t− 1)

 . (60)

Above, in (a) we have used the fact that maxt:ct=j∥gt∥∞ ≤ 1, which follows because r(t) ≤ 1 and ϕ′(R(t − 1)) ≤ 1.
In (b), we have used the fact that r(t) ≤ 1. In (c), we have used ϕ′(x) = x−α. In (d), we have used the fact that for each
i ∈ [N ], Ri(t− 1) ≥ 1. Finally, in (e), we have applied Jensen’s Inequality to the concave square root function. So, from
the last inequality and Lemma 3.3, we get

E

 max
y∈{ek}N

k=1

∑
t:ct=j

⟨ϕ′(R(t− 1)⊙ r(t)),y −Xj(t)⟩


≤ Õ

2

√√√√N
∑

t:ct=j

∑
i∈[N ]

E
1

Rα
i (t− 1)

 (61)

Summing the above inquality over all contexts j ∈ [M ], we get the following inequality on ˆRegretT defined in (19):

ˆRegretT ≤
∑

j∈[M ]

Õ

√√√√N
∑

t:ct=j

∑
i∈[N ]

E
1

Rα
i (t− 1)


= M

∑
j∈[M ]

1

M
Õ

√√√√N
∑

t:ct=j

∑
i∈[N ]

E
1

Rα
i (t− 1)


(a)

≤ MÕ

√√√√ ∑
j∈[M ]

N

M

∑
t:ct=j

∑
i∈[N ]

E
1

Rα
i (t− 1)


=
√
MNÕ

√√√√ T∑
t=1

∑
i∈[N ]

E
1

Rα
i (t− 1)

 , (62)
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where in (a) above, we have used Jensen’s Inequality on the concave square root function. Note that this bound is similar to
the bound in (39) for the full information feedback setting, with the only difference being in the exponent of the cumulative
reward sequence (2α versus α).

Next, we will derive a bound similar to (48). Note that by the definition of ˆRegretT in (19), we have the following inequality
for any fixed collection of distributions (x1

0, ...,x
M
0 ):

∑
j∈[M ]

E

 ∑
t:ct=j

⟨gt,Xj(t)⟩


≥
∑

j∈[M ]

E

 ∑
t:ct=j

⟨gt,xj
0⟩

− ˆRegretT . (63)

Using the linearity of expectation, the above inequality can be written as

E

[
T∑

t=1

⟨gt,Xct(t)⟩
]
≥ E

[
T∑

t=1

⟨gt,xct
0 ⟩
]
− ˆRegretT . (64)

Next, observing that Xct
i (t)ri(t) = Ri(t)−Ri(t− 1) and following the same calculations up to step (d) of (32) and taking

expectations w.r.t the policy actions, we get

E

[
T∑

t=1

⟨gt,Xct(t)⟩
]
≤ E

∑
i∈[N ]

ϕ(Ri(T ))

 (65)

Lower bounding ϕ′(Ri(t− 1)) by ϕ′(Ri(T )) yields

T∑
t=1

⟨gt,xct
0 ⟩ ≥

T∑
t=1

⟨ϕ′(R(T ))⊙ r(t),xct
0 ⟩. (66)

Finally, taking expectations w.r.t. the policy actions, we get

E

[
T∑

t=1

⟨gt,xct
0 ⟩
]
≥ E

[
T∑

t=1

⟨ϕ′(R(T ))⊙ r(t),xct
0 ⟩
]
. (67)

Now, let us take the offline benchmark policy to be the uniform distribution for all contexts, i.e., xj
0 = 1

N 1 for all j ∈ [M ],
which will imply that

∑T
t=1 ri(t)x

ct
0,i ≥ δT

N for all i ∈ [N ]. So, the RHS in the last equation can be lower bounded by∑
i∈[N ] E[ϕ′(Ri(T ))] · δTN . Hence, we get

E

[
T∑

t=1

⟨gt,xct
0 ⟩
]
≥
∑
i∈[N ]

E[ϕ′(Ri(T ))] ·
δT

N
(68)

So, from the last equation and equations (64) and (65), we get

E

∑
i∈[N ]

ϕ(Ri(T ))

 ≥ ∑
i∈[N ]

E[ϕ′(Ri(T ))] ·
δT

N
− ˆRegretT (69)

So from here, following the same steps as in the full information feedback setting, we obtain

E
[

1

Rα
i (T )

]
≤ N

δ

[
N

(1− α)Tα
+

ˆRegretT
T

]
(70)

Note the similarity between the above inequality and inequality (48) for the full information setting.
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Now, we know that Rα
i (t − 1) ≥ 1 for all i ∈ [N ] and t. Plugging this in (62), we get our first bound, which is

ˆRegretT ≤ Õ(N
√
MT ).

As before, we do a tighter analysis to get a better regret bound. So, let α0 ∈ [0, 1) be any number. As the result of Lemma
3.4 claims, we want to show that ˆRegretT = Õ(T

1−α0
2 ). Since α0 ∈ [0, 1), there is some positive integer N0 ≥ 0 such that

2N0 − 1

2N0
≤ α0 <

2N0+1 − 1

2N0+1
(71)

Now, let ϵ0 > 0 be a very small number which satisfies the following inequalities for all 0 ≤ n ≤ N0:

2n − 1

2n
<

2n+1 − 1

2n+1
−
(
2n+1 − 1

2n

)
ϵ0 (72)

α0 ≤
2N0+1 − 1

2N0+1
−
(
2N0+1 − 1

2N0

)
ϵ0 (73)

Note that, the above two conditions are equivalent to the following two conditions for all 0 ≤ n ≤ N0:

ϵ0 <
2n

2n+1 − 1

[
2n+1 − 1

2n+1
− 2n − 1

2n

]
(74)

ϵ0 <
2N0

2N0+1 − 1

[
2N0+1 − 1

2N0+1
− α0

]
(75)

Since all the quantities on the RHS in the two equations above are positive, ϵ0 can be taken to be something smaller than the
minimum of all the above quantities. Now, we have obtained ˆRegretT ≤ Õ(N

√
MT ) = O(log T ·N

√
MT ). Plugging

this in (70), we get the following:

E
[

1

Rα
i (T )

]
≤ O

(
N2

[
1

Tα
+

ˆRegretT
T

])

= O

(
N3
√
M

[
1

Tα
+

log T√
T

])
(a)
= O

(
N3
√
M

(
1

Tα
+

T ϵ0

√
T

))
= O

(
N3
√
M

Tmin(α, 12−ϵ0)

)
(76)

where above in (a), we have used the simple fact that log T = O(T ϵ0). Plugging the above bound in (62), we get the
following bound for any 0 ≤ α ≤ 1

2 − ϵ0:

ˆRegretT ≤ Õ

√MN

√√√√ T∑
t=1

∑
i∈[N ]

E
1

Rα
i (t− 1)


≤ Õ

M
1
2+

1
4N

1
2+

3
2

√√√√N

T∑
t=1

1

(t− 1)α


= Õ(M

1
2+

1
4N

1
2+

3
2+

1
2T

1−α
2 )

= Õ(M
3
4N

5
2T

1−α
2 ) (77)

By the same inequalities as above, for any 1
2 − ϵ0 ≤ α < 1 we will have the bound:

ˆRegretT ≤ Õ

(
M

3
4N

5
2T

1−( 1
2
−ϵ0)

2

)
= Õ(M

3
4N

5
2T

1
4+

ϵ0
2 ) (78)
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More generally, suppose for some 0 ≤ n < N0, we have

ˆRegretT ≤ Õ(M
2n+2−1

2n+2 N
2n+3−3

2n+1 T
1−α
2 ) (79)

ˆRegretT ≤ Õ(M
2n+2−1

2n+2 N
2n+3−3

2n+1 T
1

2n+2 + 2n+1−1

2n+1 ϵ0) (80)

where (79) holds for all α ∈
[
2n−1
2n , 2n+1−1

2n+1 −
(

2n+1−1
2n

)
ϵ0

]
, and (80) holds for all α ∈

[
2n+1−1
2n+1 −

(
2n+1−1

2n

)
ϵ0, 1

)
.

Note that, by our choice of ϵ0, both these intervals have non-negative measure (recall (72)). Also, note that we have shown
the base case for n = 0 via inequalities (77) and (78). We will now show that (79) and (80) continue to hold for n+ 1.

Now, since we know that (80) holds for all α ∈
[
2n+1−1
2n+1 −

(
2n+1−1

2n

)
ϵ0, 1

)
, we plug the bound (80) in (70) and get the

following for such α:

E
[

1

Rα
i (t)

]

≤ O

M
2n+2−1

2n+2 N
2n+3−3

2n+1 +2

 1

Tα
+

log T · T 1

2n+2 + 2n+1−1

2n+1 ϵ0

T


= O

(
M

2n+2−1

2n+2 N
2n+3−3

2n+1 +2

[
1

Tα
+

log T

T
1− 1

2n+2 −
(

2n+1−1

2n+1

)
ϵ0

])
(a)
= O

(
M

2n+2−1

2n+2 N
2n+3−3

2n+1 +2

[
1

Tα
+

T ϵ0

T
1− 1

2n+2 −
(

2n+1−1

2n+1

)
ϵ0

])

= O

(
M

2n+2−1

2n+2 N
2n+3−3

2n+1 +2

[
1

Tα
+

1

T
2n+2−1

2n+2 −
(

2n+2−1

2n+1

)
ϵ0

])

= O

(
M

2n+2−1

2n+2 N
2n+3−3

2n+1 +2

[
1

T
min

(
α, 2

n+2−1

2n+2 −
(

2n+2−1

2n+1

)
ϵ0

)
])

(81)

where in (a) above, we have simply used the fact that log T = O(T ϵ0). Note that by our choice of ϵ0 (recall inequality (72)),
we have

2n+1 − 1

2n+1
≤ 2n+2 − 1

2n+2
−
(
2n+2 − 1

2n+1

)
ϵ0 (82)

So, plugging the bound of (81) in (62), we can obtain

ˆRegretT ≤ Õ(M
2n+3−1

2n+3 N
2n+4−3

2n+2 T
1−α
2 ) (83)

ˆRegretT ≤ Õ(M
2n+3−1

2n+3 N
2n+4−3

2n+2 T
1

2n+3 + 2n+2−1

2n+2 ϵ0) (84)

where (83) holds for all α ∈
[
2n+1−1
2n+1 , 2n+2−1

2n+2 −
(

2n+2−1
2n+1

)
ϵ0

]
and (84) holds for all α ∈

[
2n+2−1
2n+2 −

(
2n+2−1
2n+1

)
ϵ0, 1

)
.

Hence, by induction, we see that (79) and (80) hold for all 0 ≤ n ≤ N0 in the respective intervals.

Finally, (71) and (73) imply that α0 ∈
[
2N0−1
2N0

, 2N0+1−1
2N0+1 −

(
2N0+1−1

2N0

)
ϵ0

]
. So, by what we’ve shown above, we conclude

that

ˆRegretT ≤ Õ(M
2N0+2−1

2N0+2 N
2N0+3−3

2N0+1 T
1−α0

2 ) (85)

and this completes the proof of the claim.

A.5. Proof of Lemma 3.3

Fix some context j ∈ [M ] and a time horizon T . Consider the sequence (gt)t:ct=j of all reward vector that context j sees.
Recall that gt = ϕ′(R(t− 1))⊙ r(t). By our assumption, the reward vectors r(t) are generated by an oblivious adversary,
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i.e they are fixed beforehand. However, the cumulative reward vectors R(t− 1) for t ∈ [1, T ] are policy-dependent, i.e they
are random. Also, note that at every time step t, our policy picks some arm It ∈ [N ] to be played; from equation (10) that
defines how cumulative rewards are updated, we see that there are only finitely many sequences (gt)t:ct=j that our policy
can see over the time horizon T .

So, let S be the set of all sequences (gt)t:ct=j that our policy can see. Let q ∈ ∆S be the probability distribution that
the policy induces over the set S of possible reward sequences. For a fixed reward sequence (lt)t:ct=t ∈ S, we have the
following by Theorem 3.2:

E

 max
{ek}N

k=1

∑
t:ct=j

⟨lt, ek −Xj(t)⟩


≤ Õ

√N
∑

t:ct=j

∥lt∥22 + max
t:ct=j

∥lt∥∞
√
N
∑

t:ct=j

∥lt∥1

 (86)

Above, the expectation in the first time is taken w.r.t the policy actions. Now, taking expectations in the above inequality
w.r.t the distribution q over S, we get

E

E
 max
{ek}N

k=1

∑
t:ct=j

⟨lt, ek −Xj(t)⟩


≤ E

Õ
√N

∑
t:ct=j

∥lt∥22 + max
t:ct=j

∥lt∥∞
√
N
∑

t:ct=j

∥lt∥1

 (87)

By the tower property of conditional expectations, the first term on the LHS in the above inequality is just

E

E
 max
{ek}N

k=1

∑
t:ct=j

⟨lt, ek −Xj(t)⟩


= E

 max
{ek}N

k=1

∑
t:ct=j

⟨gt, ek −Xj(t)⟩

 (88)

where the expectation on the RHS above is taken w.r.t the policy actions. Combining the above with (87), the claim follows.

B. Additional Experiments
Figure 8 shows that the α-FAIRCB policy achieves a better approximate contextual regret (12) even for a moderately large
time horizon in the bandit setting. Figures 9 and 10 show plots of the standard regret of all the policies in the full information
and the bandit information settings respectively. As before, it is clearly seen that the α-FAIRCB policy beats all the other
policies in terms of the standard regret in both the settings.

C. Extension to non-negative rewards
In this section, we will study the case when the reward vectors r(t) don’t necessarily satisfy the inequality δ1 ≤ r(t), and
we instead assume that 0 ≤ r(t) ≤ 1 holds for all t. Our trick will be to rescale all the reward vectors to the vector r′(t)
defined by

r′i(t) =
ϵ+ ri(t)

1 + ϵ
(89)

where ϵ > 0 is to be decided later. Note that we still assume that r(t) ≤ 1. It is easily seen that

ϵ

1 + ϵ
≤ r′i(t) =

ϵ+ ri(t)

1 + ϵ
≤ 1 (90)
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Figure 8. Approximate regret for the bandit informa-

tion setting.
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Figure 9. Standard regret for the full information set-

ting.
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Figure 10. Standard regret for the bandit information

setting.

Now, let R′(t) and R(t) be the usual cumulative reward vectors (with rewards r′, r respectively) and R′(0) = R(0) = 1.
Suppose we run our bandit policy for the rewards given by the vectors r′(0). In that case, we have

∑
i∈[N ]

ϕ(R′
i,∗(t))−

∑
i∈[N ]

ϕ(R′
i(t)) = O(MNT

1−α
α ) (91)

where as usual, the first term is computed w.r.t a fixed collection x∗ ≡ (x1
∗, ...,x

M
∗ ) of distributions. Now, we have the

following set of inequalities:

Regret′ :=
∑
i∈[N ]

ϕ(R′
∗,i(T ))−

∑
i∈[N ]

ϕ(R′
i(T ))

=
∑
i∈[N ]

ϕ

(
1 +

T∑
t=1

xct
i,∗(t)

ri(t) + ϵ

1 + ϵ

)
−
∑
i∈[N ]

ϕ

(
1 +

T∑
t=1

xct
i (t)

ri(t) + ϵ

1 + ϵ

)
(92)

Now, consider the first of the two terms in (92). We have

∑
i∈[N ]

ϕ

(
1 +

T∑
t=1

xct
i,∗(t)

ri(t) + ϵ

1 + ϵ

)
≥
∑
i∈[N ]

ϕ

(
1 +

T∑
t=1

xct
i,∗(t)

ri(t)

1 + ϵ

)
(ϕ is monotone)

≥
∑
i∈[N ]

ϕ

(
1

1 + ϵ
+

T∑
t=1

xct
i,∗(t)

ri(t)

1 + ϵ

)
(ϕ is monotone)

=
1

(1 + ϵ)1−α

∑
i∈[N ]

ϕ

(
1 +

T∑
t=1

xct
i,∗(t)ri(t)

)

=
1

(1 + ϵ)1−α

∑
i∈[N ]

ϕ(Ri,∗(t)) (93)
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Now, consider the second term in (92). We have the following set of inequalities:

∑
i∈[N ]

ϕ

(
1 +

T∑
t=1

xct
i (t)

ri(t) + ϵ

1 + ϵ

)

=
∑
i∈[N ]

ϕ

(
1 +

T∑
t=1

xct
i (t)

ri(t)

1 + ϵ
+

T∑
t=1

xct
i (t)

ϵ

1 + ϵ

)

≤
∑
i∈[N ]

ϕ

(
1 +

T∑
t=1

xct
i (t)

ri(t)

1 + ϵ
+ T

ϵ

1 + ϵ

)
(ϕ is monotone)

≤
∑
i∈[N ]

ϕ

(
1 +

T∑
t=1

xct
i (t)

ri(t)

1 + ϵ

)
+Nϕ

(
Tϵ

1 + ϵ

)
(ϕ(a+ b) ≤ ϕ(a) + ϕ(b))

=
∑
i∈[N ]

ϕ

(
ϵ

1 + ϵ
+

1

1 + ϵ
+

T∑
t=1

xct
i (t)

ri(t)

1 + ϵ

)
+Nϕ

(
Tϵ

1 + ϵ

)

≤ Nϕ

(
ϵ

1 + ϵ

)
+
∑
i∈[N ]

ϕ

(
1

1 + ϵ
+

T∑
t=1

xct
i (t)

ri(t)

1 + ϵ

)
+Nϕ

(
Tϵ

1 + ϵ

)
(ϕ(a+ b) ≤ ϕ(a) + ϕ(b))

= Nϕ

(
ϵ

1 + ϵ

)
+

1

(1 + ϵ)1−α

∑
i∈[N ]

ϕ (Ri(t)) +Nϕ

(
Tϵ

1 + ϵ

)
(94)

So, combining (93) and (94), we get the following:∑
i∈[N ]

ϕ(R′
∗,i(T ))−

∑
i∈[N ]

ϕ(R′
i(T ))

≥ 1

(1 + ϵ)1−α

∑
i∈[N ]

ϕ(Ri,∗(T ))−
∑
i∈[N ]

ϕ(Ri(t))

−Nϕ

(
ϵ

1 + ϵ

)
−Nϕ

(
Tϵ

1 + ϵ

)
(95)

For convenience, this inequality can be written as

Regret′ ≥ 1

(1 + ϵ)1−α
Regret− N

(1− α)

(
ϵ

1 + ϵ

)1−α

− NT 1−α

1− α

(
ϵ

1 + ϵ

)1−α

(96)

Multiplying throughout by (1 + ϵ)1−α and rearranging, we get

Regret ≤ (1 + ϵ)1−αRegret′ +
Nϵ1−α

(1− α)
+

NT 1−αϵ1−α

1− α
(97)

The trick now is to fine-tune the parameter ϵ optimally, which we do by equating the first and the last terms in the RHS
of (97), since these two are the dominating terms. Note that Regret′ (in equation (97)) is inversely proportional to δ (see
(48)), and for our case we have δ = ϵ

1+ϵ ; hence, we see that Regret′ is inversely proportional to ϵ. Note that, for both the

full information and bandit information settings, we have a bound of Õ(T
1−α
2 ) on Regret′ (infact, the bound for the full

information setting is better). So, the optimal value of ϵ is computed by equating

Õ

(
T

1−α
2

ϵ

)
= (ϵT )1−α (98)

and solving for ϵ, this gives us

ϵ = O
(
T− 1−α

2(2−α)

)
(99)

23



α-Fair Contextual Bandits

Substituting this bound back in (97), we obtain the bound

Regret ≤ O
(
T

(3−α)(1−α)
2(2−α)

)
(100)

Finally, recall that we have α < 1. Hence, it’s easy to see that

(3− α)(1− α)

2(2− α)
< 1− α (101)

So, although the bound is worse than the ones given in Theorem 2.3 and Theorem 3.5, it is still sublinear w.r.t T 1−α, and
hence the bound is still non-trivial and meaningful.
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