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Abstract

At the core of self-supervised learning for vision
is the idea of learning invariant or equivariant
representations with respect to a set of data trans-
formations. This approach, however, introduces
strong inductive biases, which can render the rep-
resentations fragile in downstream tasks that do
not conform to these symmetries. In this work,
drawing insights from world models, we propose
to instead learn a general representation that can
adapt to be invariant or equivariant to different
transformations by paying attention to context —
a memory module that tracks task-specific states,
actions, and future states. Here, the action is the
transformation, while the current and future states
respectively represent the input’s representation
before and after the transformation. Our proposed
algorithm, Contextual Self-Supervised Learning
(CONTEXTSSL), learns equivariance to all trans-
formations (as opposed to invariance). In this way,
the model can learn to encode all relevant features
as general representations while having the versa-
tility to tail down to task-wise symmetries when
given a few examples as the context. Empirically,
we demonstrate significant performance gains
over existing methods on equivariance-related
tasks, supported by both qualitative and quantita-
tive evaluations.

1. Introduction

Self-supervised learning (SSL) of image representations
has made remarkable progress in recent years (Chen et al.,
2020a; Bardes et al., 2022; Zhou et al., 2022a; Larsson et al.,
2016; Gidaris et al., 2018; Bachman et al., 2019; Gidaris
et al., 2021; Grill et al., 2020; Shwartz-Ziv et al., 2022;
Misra and Maaten, 2020; Chen et al., 2020b; He et al., 2020;
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Chen and He, 2021; Zbontar et al., 2021; Tomasev et al.,
2022; Zhou et al., 2022b), achieving competitive perfor-
mance to its supervised counterparts on various downstream
tasks, such as image classification.

Most of these works are based on the joint-embedding ar-
chitecture (as shown in Figure 2(a)) which encourages the
representations of semantically similar (positive) pairs to be
close, and those of dissimilar (negative) pairs to be more
orthogonal. Typically, positive pairs are generated by classic
data augmentation techniques that correspond to common
pretext tasks, e.g., randomizing color, texture, orientation,
and cropping. The alignment of representations for positive
pairs can be guided by either invariance (Chen et al., 2020a;
Bardes et al., 2022; Chen and He, 2021; He et al., 2020;
Zbontar et al., 2021; Grill et al., 2020), which promotes
insensitivity to these augmentations, or equivariance (Gupta
et al., 2023b; Devillers and Lefort, 2023; Dangovski et al.,
2022; Garrido et al., 2023b; Assran et al., 2023; Garrido
et al., 2024), which maintains sensitivity to them. However,
enforcing invariance or equivariance to a pre-defined set
of augmentations introduces strong inductive priors which
are far from universal across a range of downstream tasks.
For example, invariance to image flipping is useful for im-
age classification but can significantly hurt performance on
image segmentation, where retaining sensitivity to flipping
is crucial. This often results in brittle representations that
necessitate retraining the model with different augmenta-
tions tailored to each downstream task (Xiao et al., 2021;
Dangovski et al., 2022).

This rigidity of traditional SSL. methodologies contrasts
sharply with human perceptual abilities, which are highly
adaptive, tuning into relevant features based on the context
of the environment or task at hand. For example, humans
focus more on color details when identifying flowers, and
on spatial orientation such as rotation angle when determin-
ing the time on analog clocks. It suggests that the required
feature invariances or equivariances should also vary across
different tasks or contexts, which motivates our central ques-
tion.

Can incorporating context into self-supervised vision
algorithms eliminate augmentation-based inductive priors
and enable dynamic adaptation to varying task symmetries?
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Figure 1: We apply a transformation (rotation or color) on a source image in latent space and retrieve the nearest neighbor
(NN) of the predicted representation when the context contains pairs of data transformed by (top row) 3D rotation
(R*, RY, R*); (bottom row) color transformation (8, ¢). In the top row, we see that CONTEXTSSL learns equivariance to
rotation and invariance to color as the NN representations match the target’s angle but not its color. In the bottom row, it
adapts to the color context and enforces the reverse, be equivariant to color and invariant to rotation.

This work suggests a positive answer to this question by
proposing to enhance the current joint embedding architec-
ture with a finite context — an abstract representation of
task, containing a few demonstrations that inform about
task-specific symmetries, as shown in Figure 2(c). Based on
this idea, we propose Contextual Self-Supervised Learning
(CONTEXTSSL), a contrastive learning framework that uses
a transformer module to adapt to selective invariance or
equivariance to transformations by paying attention to con-
text representing a task. Unlike previous approaches with
built-in symmetries, the ability of CONTEXTSSL to adapt
to varying data symmetries—all without undergoing any pa-
rameter updates—enables it to learn a general representation
across tasks, devoid of specific inductive priors.

This unique prospect makes our model a promising approach
to building world models (Hafner et al., 2020; 2023; Hu
et al., 2023; Sekar et al., 2020; Yang et al., 2024) for vision.
World models are essential for building representations of
the world based on past experiences, akin to how humans
form their internal world representations. Recently, efforts
have been made to adapt world modeling into vision through
Image World Models (IWM) (Garrido et al., 2024) ( Fig-
ure 2(b)), that consider transformations as actions and the
input and its transformed counterpart as world states at dif-
ferent time steps. However, these approaches also enforce
equivariance to a predefined set of actions, such as color
jitter. CONTEXTSSL addresses this challenge by enhancing
traditional IWMs with context, a model we refer to as Con-
textual World Models. We demonstrate that in the absence
of context, CONTEXTSSL learns a general representation
by encoding all relevant features and data transformations.
As the context increases, the model tailors its symmetries
to a task, encouraging equivariance to a subset of transfor-
mations and invariance to the rest (as shown in Figure 1).

This approach promotes learning a general representation
that can flexibly adapt to the symmetries relevant to vari-
ous downstream tasks, eliminating the need to learn sepa-
rate representations for each task. We empirically validate
our approach on the 3D Invariant Equivariant Benchmark
(3DIEBench) and CIFAR-10, extending to transformations
such as rotations, cropping, and blurring.

To summarize, the main contributions of our work are:

* We propose CONTEXTSSL, a self-supervised learning
algorithm that adapts to task-specific symmetries by
paying attention to context.

* We show that learning with context is prone to iden-
tifying shortcuts and subsequently propose two key
modules to address it: a context mask and an auxiliary
predictor.

* We demonstrate the efficacy of our approach on
3DIEBench and CIFAR10, showing its ability to se-
lectively learn invariance or equivariance to transfor-
mations such as color and rotation while maintaining
similar performance on invariant (classification) bench-
marks. We extend CONTEXTSSL to supervised learn-
ing, demonstrating its ability to effectively leverage
context to identify features defining a task.

2. Augmentation-based Inductive Bias in
Self-Supervised Learning

The goal of self-supervised learning (SSL) is to derive
meaningful data representations without relying on human-
labeled data. Given an unlabeled dataset D, SSL methods
learn a representation function fy : X — Z that maps input
data z € X to a latent space Z.
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Figure 2: Family of approaches in self-supervised learning (a) Joint Embedding methods (Chen et al., 2020a; Bardes et al.,
2022; Caron et al., 2021) encode invariances to input transformations a by aligning representations across views of the same
image; (b) Image World Models (Garrido et al., 2024; Assran et al., 2023) train a world model in the latent space and
encode equivariance to input transformations; (c) Contextual World Models (ours) selectively enforce equivariance or
invariance to a subset of input transformations based on context {(x;, a;, y;)}*_,

2.1. Role of data augmentations in Self-Supervised
Learning

Data augmentations are arguably the most important com-
ponent in modern SSL methods, where the representation
function is learned to map the augmented views of data
into latent space. The choice of data augmentations plays
a crucial role in the quality of the learned representations.
Formally, we define an augmentation A as a random vari-
able distributed over a set of N data transformations with
domain A = {ay,...,an}, where a; : R — R? denotes
an input mapping, and d, d’ are its input and output dimen-
sions, respectively. Among existing SSL methods, there are
generally two ways to utilize augmentations, either through
invariant learning or equivariant learning. In invariant learn-
ing, two random augmentations of the example are drawn
and their representations are pulled together during feature
learning to be invariant to the data augmentations as shown
in Figure 2(a). Instead, in equivariant learning, the features
are learned to be sensitive to data augmentations.' Formally,
for a representation Z, one can use H (A|Z) as a measure of
the degree of feature invariance or equivariance: if H(A|Z)
is relatively small, the representation Z is nearly equivariant
to the augmentation A; otherwise, if H(A|Z) is very large
(close to H(A)), Z is invariant to A. Recent SSL meth-
ods (Gupta et al., 2023b; Garrido et al., 2023b; Park et al.,
2022; Devillers and Lefort, 2023; Dangovski et al., 2022)
have shown that enforcing equivariance can often lead to

"Here, the concept of equivariance is used in a loose sense,
meaning that the learned features are sensitive to data augmenta-
tions. Note that since some augmentations are non-invertible (e.g.,
grayscale), they do not form a group, and exact equivariance is not
well-defined.

better representations compared to enforcing invariance, for
two key reasons: 1) Invariance restricts the expressive power
of the features learned as it removes information about fea-
tures or transformations that may be relevant in fine-grained
tasks (Lee et al., 2021; Xie et al., 2022a); 2) contrastive
learning benefits from partial invariance through implicit
equivariance of the projection head (Jing et al., 2022).

2.2. Drawbacks of Hardcoding Symmetries in
Self-Supervised Pretraining

As discussed above, a common theme in existing SSL meth-
ods is to enforce invariance or equivariance to a specific
set of augmentations A. For instance, in SimCLR, A is
chosen to be a manually selected set of random augmen-
tations such as random cropping, flipping, and color jitter.
Therefore, the learned representations, either invariant or
equivariant to these augmentations, are tailored to the spe-
cific symmetry imposed during pretraining. However, in
real world scenarios, there is no single symmetry that is
universally applicable across all tasks. For example, object
recognition (e.g., a chair) often requires invariance to im-
age color, while certain tasks, e.g., flower recognition, need
sensitivity to color information instead. Either to include
or not to include color information as part of the augmenta-
tions can lead to suboptimal performance in certain tasks,
causing a fundamental dilemma in existing SSL. This leads
to brittle representations over a range of downstream tasks,
as the model needs to be retrained on different augmenta-
tions depending on the downstream tasks, as consistently
observed in previous works (Xiao et al., 2021; Dangovski
et al., 2022).
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3. Beyond Built-in Symmetry: Contextual
Self-Supervised Learning

Recognizing the limitations of existing augmentation-
specific SSL. methods, we propose a new paradigm: Con-
textual Self-Supervised Learning (CONTEXTSSL). Unlike
traditional methods, this approach learns a single model
that adapts to be either invariant or equivariant based on
context-specific augmentations, tailored to the needs of the
task or data at hand. Instead of enforcing a fixed set of
symmetries, CONTEXTSSL learns these symmetries from
contextual cues, thus capturing the unique set of features of
downstream tasks. This adaptability allows it to serve as a
general-purpose SSL framework, capable of learning from
a diverse array of pretraining tasks with varying symme-
try priors and seamlessly adapting to different downstream
tasks.

To design CONTEXTSSL, we draw inspiration from world
modeling (Hafner et al., 2020; 2023; Sekar et al., 2020; Yang
et al., 2024), a widely used framework in reinforcement
learning (RL). World modeling aims to build representations
of the world from past experience by predict the next state
r¢4+1 from the current state x; and action a;. This next
state prediction task captures the inherent mechanisms of
the system and facilitates decision making. Traditionally
applied in RL, the benefits of world modeling in vision have
been largely unexplored. Recently, Image World Models
(IWM) (Garrido et al., 2023a) established a parallel between
world models and the image-based SSL by considering
data transformations as actions, the representation of input
data as world state at time ¢ and that of the transformed
input as next world state. However, IWMs have two key
drawbacks: 1) similar to previous SSL approaches, they
rely on a predefined set of data augmentations, such as
color, which are not tailored to specific downstream tasks
and influence the learned features; 2) they lack the memory
module of world models that tracks previous experience in
terms of past states, actions and corresponding next states
and provides context to fully define the current state.

In light of these ideas and challenges, we model CON-
TEXTSSL in vision self-supervised learning as Contextual
World Models. In this way, CONTEXTSSL addresses the
key drawbacks of IWMs by 1) encouraging the model to
preserve all meaningful features to be able to adapt to sym-
metry from context, and 2) incorporating context to adapt
to different task-specific symmetries, removing the need
to re-train separate representations for each downstream
task. This general ability is akin to human perception that
captures versatile aspects of the input, while focusing on
specific details depending on the context at hand. For in-
stance, humans focus more on color details when identifying
flowers, and on spatial orientation such as rotation angle
when determining the time on analog clocks.

3.1. Contextual World Models

Drawing inspiration from the in-context learning (Brown
et al., 2020) of foundation models in natural language pro-
cessing, a natural way to incorporate the memory capa-
bilities of world models is by encoding these abilities as
contextual information. In this work, we propose an expres-
sive and efficient implementation of CONTEXTSSL through
Contextual World Models, where we design a transformer-
based module to encode the context and extract contextually
equivariant or invariant representations. We begin by baking
symmetries in the context — (x, a, y) using positive pairs
x and y transformed by a series of different augmentations.
The key intuition behind our approach is selective inclu-
sion of augmentation parameters for specific transformation
groups: excluding parameters enforces invariance, while
including them enforces equivariance. This is because pro-
viding augmentation parameters allows the model to learn
the impact of transformations (equivariance), whereas ex-
cluding them during alignment enforces invariance, akin to
invariant versus equivariant learning in SSL. We elaborate
on these ideas below.

Symmetries as Context. Given a set of groups of input
transformations {Gy, . .., G}, the goal of CONTEXTSSL
is to build a general representation that is adaptive to a
set of multiple symmetries corresponding to these different
groups. For example, each data augmentation, e.g., rota-
tion, translation, as well as their compositions, can serve
as different transformation groups. Each group G. can
be represented through the joint distribution P(z, a, y|G.),
where z is the input sample (sampled from an unlabeled
dataset), a represents the parameters of the transformation
drawn from G, and applied to x, and y is the transformed
input. In principle, = can be transformed by a composi-
tion of augmentations drawn from multiple transforma-
tion groups. For instance, in self-supervised learning, it
is common to enrich the learning process by transforming
an input image through rotations, crops, and blurring. In
such a case, a represents a subset of the transformation
parameters belonging to the group G, applied to z to pro-
duce y. We approximate this probability distribution by
drawing K samples from the joint distribution and form a
context C'(G.) = [(x1,a1,91),- .., (®K,ak,yk)], where
Ziyai, Yy ~ P(x,a,y|G.), 1 € [K]. Therefore, the goal of
ContextSSL is to learn data representations z = f(z, a|C)
and z = f(z|C) that are adaptive to the data symmetries
informed by the context C'. Specifically, our goal is to
train representations that become more equivariant to the
underlying transformation group G, with increasing context.
Further, if = and y are transformed by augmentations from
groups apart from G., we aim to learn more invariance to
these groups with increase in context C(G,.). The degree
of equivariance of a representation can be quantified by the
error in maintaining consistent transformations. Based on
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this, a representation Z is considered "more equivariant (in-
variant)" if it has a lower (higher) error in predicting the
transformation parameters i.e. H(A|Z).

Contextual World Models. To implement this broad goal,
we propose to adaptively learn the symmetries represented
by G. by training the model:

yi = h((z5,a:); (x1,01,91), -+, (Ti—1, @i—1,%i-1)). (1)

While the requested prediction y; concerns only the inputs
x; and a;, the model can now pay attention to the experience
so far, enforcing relevant symmetries for the augmentation
group G.. The predictor h is updated by minimizing the loss
at each context length Zfil (h((z,a;); Ci—1),y;) where
C; = {(z1,a1,v1),...,(xi—1,ai—1,Yi—1)} represents the
context before index i.

A natural way to facilitate such context-based training is
through attention mechanisms in transformer-based autore-
gressive models. Large language models exhibit a remark-
able capability of in-context learning — the ability to gener-
alize to unseen tasks on-the-fly merely by paying attention
to a few demonstrative examples of the task. Gupta et al.
(2023a) among others, have leveraged this capability to gen-
eralize to different distributions merely by paying attention
to unlabeled examples from a domain. Inspired by this,
we train a decoder-only transformer model in-context by
conditioning on the relevant context C'(G..) representing the
transformation group G..

3.2. Contextual Self-Supervised Learning
(CONTEXTSSL)

Motivated by the above ideas, we begin by constructing
pairs of points {(z;, ;)X ;} by either 1) sampling a trans-
formation group G and transforming x; by augmentation
from G to y;; or 2) if available, sampling a meta-latent and
its transformation parameters as difference between their in-
dividual latent parameters. We use the former construction
in datasets such as CIFAR10 but use meta-latents such as 3D
pose, lighting etc. for datasets such as 3DIEBench (Garrido
et al., 2023b). Note that pairs of data can also be trans-
formed by a series of augmentations sampled from other
transformation groups. However, as previously discussed,
the transformation parameters used in the context C'(G) of
group G are solely those of the augmentations belonging to
the group.

Following this, as illustrated in Figure 2, each input sample
{(z4,y:)} X, from the context is independently transformed
by the encoder into its corresponding latent representation.
Next, representations of the input samples x; are concate-
nated with their corresponding transformation action a.
This concatenated vector (x;, a;) and the representation of
the corresponding transformed input y; collectively form the
context corresponding to the symmetry G. The correspond-

ing output embeddings are then aligned using the InfoNCE
loss, which is minimized at each context length. If a; is set
to zero for all tokens in a sequence, CONTEXTSSL enforces
invariance to G, since it aligns z; and y; without condition-
ing on the transformation parameters. Overall, we optimize
the following loss:

ﬁalgO(h) = Eg~{91,...,9M}EC(Q)

X exp (h((2i,a:)|Ci(9) T h(yi|Ci(G)) /7)
— I
2 [ % S exp (hl(21,a)ICH(G)) Th(y; 1G5 () /7)

where transformed data tokens y; (j # %) form the negatives.
We use a similar symmetric loss term using ¥; as the anchor,
(x;,a;) and (z;,a;) (j # ©) as the positive and negatives
respectively.

At inference, we tailor the extraction of representations to
match the specific requirements of the downstream task,
whether it benefits from equivariance or invariance to a
transformation group G. In particular, if the task benefits
from equivariance, we extract the representations of the test
data at the maximum context length used during training K,
by constructing {(z;, a;,y;) <, as its preceding context.
Here a; belongs to the group G and is used to transform
other unlabelled data from the test set z; into y;. On the
contrary, if the downstream task benefits from invariance to
the group, we use {(z;,0,y;)} | as the preceding context.
This notion can be generalized to enforce equivariance to
a subset of groups and invariance to another. Specifically,
including the augmentation parameters for transformations
in a group G in the context enforces equivariance, while ex-
cluding them enforces invariance. In both cases, the data are
still transformed using augmentations, regardless of the type
of symmetry desired. This flexibility of context creation in
CONTEXTSSL allows us to tailor the representations to dif-
ferent symmetries and optimize for the model’s performance
across a range of tasks. However, this implementation bears
two key challenges, as detailed below.

Context Masking. Given that (z;, a;) precedes y; in the
context sequence, a trivial solution to minimizing the align-
ment loss arises where the model treats the embeddings
of (z;,a;) identical to y; due to its access to ;. This phe-
nomenon, often referred to as shortcut learning, poses a
significant challenge as it leads the model to collapse to
constant representations for each pair (z;,y;), all while
perfectly minimizing the loss. We address this challenge
by masking out the input token (x;, a;) for each token y;
in the context. As a consequence, when encoding the to-
ken y;, the transformer only has access to past context

*In Table 1, both the CONTEXTSSL models are the same and
the performance is reported depending on whether the context
corresponds to rotation or color augmentation group.
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Table 1: Quantitative evaluation of learned representations on invariant (classification) and equivariant (rotation prediction,
color prediction) tasks. Additional metrics are reported in Appendix C.6

G Method Rotation prediction (R2) Color prediction (R?) Classification (top-1)
0 2 14 30 126 0 2 14 30 126 Representation

Invariant
SimCLR 0.506 0.148 85.3
SimCLR*(c=0) 0.478 0.070 83.4
SimCLR* 0.247 0.464 42.3
VICReg 0.371 0.023 76.3
VICReg ™ (c=0) 0.356 0.062 73.3

= Equivariant

2 . EquiMOD 0.512 0.097 824

£ £ SE 0.629 0.973 71.0

® +© SEN 0.585 0.932 80.7

= EquiMOD 0.512 0.097 82.4

= SIE 0.671 0.011 71.3

% SEN 0.633 0.055 81.5

R CoONTEXTSSL  0.734 0.740 0.743 0.743 0.744 0.908 0.664 0.037 0.023 0.046 80.4
EquiMOD 0.429 0.859 82.1

8 SIE 0.304 0.975 70.3

3 SEN 0.386 0.949 717.6
CONTEXTSSL? 0.735 0.614 0389 0.345 0.344 0.908 0.981 0.985 0.986 0.986 80.4

C; = {(1‘1, ai, yl), Cey (.231‘_1, ai—1, %‘—1)}, excluding its
corresponding positive sample (z;, a;).

This masking approach ensures that both the anchor and its
corresponding positive share the same context, thus promot-
ing the alignment of positive samples based on semantic
relationships rather than mere replication. However, as
shown in Figure 3 for p = 0, a residual challenge of short-
cut learning persists when distinguishing the positives from
the negatives. Since the context corresponding to each neg-
ative is different from that of the anchor and the positive,
the model could employ trivial solutions, such as using the
mean of the context vector to differentiate between positives
and negatives.

To mitigate this issue, we introduce an additional layer of
randomness to our masking strategy. Specifically, for each
token in the context vector, we implement random masking
with a probability p for tokens preceding it. This ensures
that for a given anchor token, both the positive and the
negatives have different contexts from the anchor, thereby
necessitating a deeper, semantic understanding to effectively
distinguish the positives from the negatives.

Avoiding collapse to Invariance. A trivial but undesirable
solution that minimizes our optimization objective is invari-
ance to the input transformations i.e. the trained model can
ignore the transformation parameters and collapse back to
behaviors associated with invariance-based methods. As
illustrated in Figure 4, naively training CONTEXTSSL leads
to poor equivariance with respect to the transformations.
Previous works (Garrido et al., 2023b) have also identi-

fied this concern and proposed specialized architectures
that incorporate transformation parameters directly into the
model, thereby outputting the predictor’s weights and ensur-
ing effective utilization of these parameters. For our setting,
we introduce a rather simple approach that involves jointly
training an auxiliary predictor. This predictor is designed
to predict the latent transformations of the target sample y;
from the concatenated input vector (x;, a;).

4. Experimental Results

4.1. Quantitative Assessment of Adaptation to
Task-Specific Symmetries

We use the 3D Invariant Equivariant Benchmark
(3DIEBench) (Garrido et al., 2023b) and CIFAR10 to test
our approach. We compare CONTEXTSSL with 1) VI-
CReg (Bardes et al., 2022) and SimCLR (Chen et al.,
2020a) among the invariant self-supervised approaches; 2)
EquiMOD (Devillers and Lefort, 2023), SEN (Park et al.,
2022) and SIE (Garrido et al., 2023b) amongst the equivari-
ant baselines. To discard the performance gains potentially
arising from CONTEXTSSL’s transformer architecture, for
each approach NV, we replaces the original projection head
or predictor with our transformer model, denoted as N/ 7.
We further test this at For all our equivariant baselines on
3DIEBench, we train equivariant approaches to be equivari-
ant to either only 3D rotation, color transformations, or both.
We report the test performance on context lengths 0, 2, 14,
30, and 126. To assess the quality of the invariant represen-
tations, we employ linear classification over frozen features.
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For the equivariant counterpart, we report R? on the task of
predicting the corresponding transformation. Additionally,
we use Mean Reciprocal Rank (MRR) and Hit Rate at k&
(H@k) to evaluate the performance of our context predictor.
More details about pretraining algorithms and training setup
are provided in Appendix B.

Invariant Classification and Equivariant transforma-
tion prediction task. As shown in Table 1, invariant self-
supervised learning methods such as SImCLR and VICReg
achieve high downstream classification accuracies but un-
derperform in equivariant augmentation prediction tasks.
Among the equivariant baselines, EquiMOD persistently
maintains its downstream classification accuracy but ex-
hibits improvements in augmentation prediction tasks only
when trained to be equivariant to color. SIE and SEN exhibit
sensitivity to the trained transformations and remain less
sensitive to the others. However, their degree of invariance
or equivariance is much worse compared to CONTEXTSSL.
In contrast, CONTEXTSSL exhibits equivariance to both
rotation and color in the absence of context. As seen from
the two rows corresponding to CONTEXTSSL in Table 1,
when the context corresponds to pairs of data with transfor-
mations sampled from the rotation (color) group, the model
adaptively learns to be invariant to color (rotation) while
improving equivariance to rotation (color). Appendix C.7
shows that CONTEXTSSL learns equivariance or invariance
to the same transformation based on the context.

4.2. Role of Context Mask and Auxiliary Predictor

— 1.0

9 N
s y 4 =08 N p=0.00
5 0.72 S !k K —— p=020
5 go06 —— p=0.50
@ 4 5 \ p=0.
a o4 % k= p=0.70
£ 070 s —— p=0.90
g 202 —— p=0.98
5 0.68 o b
“ 0.0 ==

02 14 30 126 02 14 30 126

Context Length (rotation) Context Length (rotation)

Figure 3: Role of context mask to avoid context based
shortcuts in CONTEXTSSL

Role of Context Mask. To illustrate how context mask-
ing effectively eliminates shortcuts, we conduct an ablation
study with varying masking probabilities, detailed in Fig-
ure 3. We observed that as masking probability increases,
performance on both classification and prediction tasks ini-
tially improves but later declines, reaching optimal perfor-
mance at a masking probability of 90%.

Role of Auxiliary Predictor. We demonstrate that the aux-
iliary predictor is crucial for the model to achieve equiv-
ariance. In its absence, as depicted in Figure 4, while the
model retains its performance on the invariant classification
task, it fails to learn equivariance, and cannot effectively
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Figure 4: Role of auxiliary predictor to avoid the trivial

solution of invariance.

adapt to different contexts.

4.3. Qualitative Assessment of Adaptation to
Task-Specific Symmetries

SimCLR VICReg EquiMOD  CoNTEXTSSL

Figure 5: Nearest neighbors of different methods taking as
input the source image and rotation angle. CONTEXTSSL
aligns best with the rotation angle of the target image

Source

1-NN

2-NN

Target

3-NN

We conduct a qualitative assessment of model performance
by taking the nearest neighbors of the predictor output when
inputting a source image and a transformation variable, as
shown in Figure 5. The nearest neighbors of invariance
models (SimCLR and VICReg) have random rotation an-
gles. Equivariance baselines (SEN, SIE, EquiMOD) cor-
rectly generate the target rotation angle for some of the
3-nearest neighbors but fail in others. CONTEXTSSL out-
performs by successfully identifying the correct angle in all
3-nearest neighbors while remaining invariant to color varia-
tions. Additional qualitative assessments for CONTEXTSSL
with varying context are provided in Appendix C.3.

4.4. Expanding to Diverse Data Transformations

Unlike 3DIEBench where meta-latents for each data are
available, we manually construct positives by applying aug-
mentations like crop and blur on CIFAR10. The results for
the combinations of crop and blur are reported in Table 2.
Consistent with our previous results, while almost retaining
the classification performance as SimCLR, CONTEXTSSL
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Table 2: Performance of CONTEXTSSL on invariant (classification) and equivariant (crop prediction, blur prediction) tasks
in CIFAR-10 under the environment of crop, i.e. CONTEXTSSL (crop), and blur, i.e. CONTEXTSSL (blur).

Method Crop prediction (R?) Blur prediction (R?) Classification (top-1)
0 2 14 30 126 0 2 14 30 126 Representation
SimCLR 0.459 0.371 89.1
SimCLR* (c=0) 0.448 0.361 88.9
SimCLR™ 0.362 0.444 59.9
CONTEXTSSL (crop) 0.608 0.607 0.607 0.608 0.608 0920 0.854 0.624 0.667 0.694 88.5
CONTEXTSSL (blur) 0.609 0.482 0.434 0417 0465 0920 0.923 0925 0925 0.925 88.5

Table 3: Performance of CONTEXTSSL on equivariant tasks (including classificaion) for context-dependent labels. CON-
TEXTSSL adapts to context-dependent labels with varying context.

Method Rotation prediction (R?) Color prediction (R?) Classification (top-1)

0 2 14 30 126 2 14 30 126 0 2 14 30 126
SimCLR (color) 0.537 0.056 72.0
SimCLR (rotation) 0.537 0.056 14.2
SimCLR* (c=0) (color) 0.427 -0.007 80.4
SimCLR™* (c=0) (rotation) 0.427 -0.007 52
SimCLR™ (color) 0.424 0.243 16.8 151 156 148 14.0
SimCLR™ (rotation) 0.424 0.243 56.1 582 584 584 59.1
CONTEXTSSL (color) 0.556 0.542 0.538 0.540 0.539 0913 0973 0981 0982 0982 89 824 827 828 830
CONTEXTSSL (rotation) 0.556 0.624 0.661 0.665 0.666 0913 0.379 0.111 0.095 0.093 735 827 826 826 83.0

learns to adaptively enforce equivariance to crop (blur) and
invariance to blur (crop) depending upon the context. Note
that the invariance performance initially improves with in-
creasing context length but then diminishes. This occurs
due to the 90% random masking ratio during training, which
necessitates out-of-distribution generalization when the con-
text length is large. Results on additional transformation
pairs are provided in Appendix C.4.

4.5. Context World Models Beyond Self-Supervised
Learning

While our analysis has primarily focused on self-supervised
learning, the concept of context is versatile and extends be-
yond representation learning. In principle, irrespective of
the task at hand, paying attention to context can learn and
identify features defined by it. To validate this, we consider
a supervised learning task where our transformer model is
trained to directly predict the labels corresponding to an
input image. We further corrupt the labels to be directly
influenced by the augmentation group transforming the data.
Specifically, we add a constant value of 10 to each label if
the context corresponds to the rotation group and leave it
unchanged otherwise. We report classification performance
along with rotation and color prediction equivariant mea-
sures. As shown in Table 3, CONTEXTSSL’s classification
accuracy improves with context, demonstrating its ability to
better identify the underlying symmetry group with increase
in context. Additional results are provided in Appendix C.5.

Further, CONTEXTSSL serves as a general framework that
can adapt to different training regimes

5. Conclusion and Future Perspectives

The field of language modeling has witnessed a significant
paradigm shift over the past decade, moving towards foun-
dation models that generalize across a variety of tasks either
directly or through distillation. However, this shift toward
generalization has been conspicuously absent in the vision
domain. This is largely because self-supervised approaches
for vision still heavily rely on inductive priors strongly in-
troduced by enforcing either invariance or equivariance to
data augmentations. This renders representations brittle in
downstream tasks that do not conform to these priors and
necessitates retraining the representation separately for each
task. This work forgoes any notion of pre-defined symme-
tries and instead trains a model to infer the task-relevant
symmetries directly from the context through what we term
Contextual Self-Supervised Learning (CONTEXTSSL). The
ability of our model to learn selective equivariances and in-
variances based on mere context opens up new avenues for
effectively handling a broader range of tasks, particularly
in dynamic environments where the relevance of specific
features may change over time.
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Appendix

A. Related Work

Self-Supervised Learning. Existing SSL methods gener-
ally belong to two categories: invariant learning (Chen et al.,
2020a; Bardes et al., 2022; Chen and He, 2021; He et al.,
2020; Zbontar et al., 2021; Grill et al., 2020) and equivariant
learning. The representative method for invariant learning
is contrastive learning, which draws the representations of
positive samples together in the latent space such that the
representations are invariant to data augmentation. Con-
trastive learning can learn highly discriminative features
at the cost of losing certain image information due to the
invariance constraint (Xiao et al., 2021). Motivated by this
limitation, recent works explore merging contrastive learn-
ing with equivariant learning tasks by separate embedding
(Xiao et al., 2021; Garrido et al., 2023b), augmentation-
conditioned predictor (Devillers and Lefort, 2023; Garrido
et al., 2024), and explicit equivariant transformation (Gupta
et al., 2023b). However, existing works still inherit the limi-
tations of contrastive learning: its symmetry prior is built on
a given set of manual augmentations and is not adaptive to
downstream tasks. In contrast, our method enables the con-
textual world model to adapt its symmetry to the contextual
data, which is more flexible and generalizable to various
tasks.

World Models. World modeling has achieved notable suc-
cess in reinforcement learning (RL) for model-based plan-
ning (Ha and Schmidhuber, 2018; Sekar et al., 2020; Hafner
et al., 2020) and vision (Hafner et al., 2023; Hu et al., 2023;
Yang et al., 2024), where it involves predicting future states
based on current observations and actions. This concept,
however, has not yet been fully leveraged in visual rep-
resentation learning. Nevertheless, Garrido et al. (2024)
shows that several families of self-supervised learning ap-
proaches can be reformulated through the lens of world
modeling. Equivariant self-supervised learning methods.
Specifically, Masked Image Modeling approaches (He et al.,
2022; Bao et al., 2022; El-Nouby et al., 2024; Xie et al.,
2022b) consider masked pixels and target pixel reconstruc-
tion as their action and next state. Other equivariant learning
approaches (Devillers and Lefort, 2023; Park et al., 2022;
Garrido et al., 2023b) consider data transformations and
representation of the target image as their action and next
state pair. However, unlike true world modeling, these ap-
proaches do not track past experiences, a component critical
for generalization. Our method instead leverages context
to track past experiences in terms of state, action, and next-
state triplets, enabling it to adapt and generalize to varying
environments.

In-context Learning. Our work is inspired by and ex-
tends the concept of in-context learning (ICL) (Brown et al.,
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2020) to training. Initially studied in the context of lan-
guage, in-context learning has recently been adapted for
vision tasks (Gupta et al., 2023a; Wang et al., 2023; Bar
et al., 2022; Li and Liang, 2021), allowing models to infer
environmental features or tasks directly from input prompts
without predefined notions. For example, Visual Prompt-
ing (Wang et al., 2023; Bar et al., 2022) uses a task in-
put/output example pair and a query image at test time, and
uses inpainting to generate the desired output. Gupta et al.
(2023a) propose using unlabeled data as context at training
to extract environment-specific signals and address domain
generalization. ICL has been extensively explored in vari-
ous domains, including vision, language, and multimodal
tasks. However, our work is the first to apply ICL to vision
self-supervised representation learning.

B. Supplementary experimental details and
assets disclosure

To evaluate the efficacy of our proposed algorithm CON-
TEXTSSL, our experiments are designed to address the
following questions:

1. How does CONTEXTSSL fare against competitive in-
variant and equivariant self-supervised learning ap-
proaches in terms of performance across varying con-
text sizes and different sets of data transformations?

How effectively can CONTEXTSSL identify task-
specific symmetries, both within the scope of self-
supervised learning and beyond?

3. What roles do specific components such as selective
masking and the auxiliary latent transformation pre-
dictor play in facilitating the learning of general and
context-adaptable representations?

B.1. Assets

We do not introduce new data in the course of this work. In-
stead, we use publicly available widely used image datasets
for the purposes of benchmarking and comparison.

B.2. Hardware and setup

Each experiment was conducted on 1 NVIDIA Tesla V100
GPUs, each with 32GB of accelerator RAM. The CPUs
used were Intel Xeon E5-2698 v4 processors with 20 cores
and 384GB of RAM. All experiments were implemented
using the PyTorch deep learning framework.

B.3. Datasets

3D Invariant Equivariant Benchmark (3DIEBench).
To test equivariance and invariance to multiple data
transformations, we use the 3D Invariant Equivariant
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Benchmark (3DIEBench) (Garrido et al., 2023b) which
has been specifically designed to address the limitations
of existing datasets in evaluating invariant and equivariant
representations. It contains images of 3D objects along with
their latent parameters such as object rotation, lighting color,
and floor color. Since we have access available to individual
meta latent parameters, transformation parameters between
two views of an object are calculated as the difference
between their individual latents. We test our approach
on 3DIEBench under two settings 1) Considering two
transformation groups: rotation and color with the aim of
learning invariance to one and equivariance to another after
conditioning on context; 2) Considering one transformation
group, say rotation and learning to enforce invariance
or equivariance to rotation with context. As previously
mentioned, all methods are trained for 1000 epochs using
a batch size of 512 on 128 x128 resolution images. We
use the standard training, validation and test splits, made
publicly available by the authors (Garrido et al., 2023b).

CIFAR10. 3DIEBench dataset is limited to only rotations
and color as transformation groups. We extend our approach
to include more common self-supervised benchmarks, such
as CIFAR-10, incorporating transformations like blurring,
color jitter, and cropping. Unlike 3DIEBench, we manually
construct positive pairs by applying compositions of these
handcrafted augmentations. We consider three transforma-
tion groups: crop, blur and color. Similar to 3DIEBench,
we consider combinations of two groups for each training
run. We use the standard training, validation and test splits.

B.4. Baseline Algorithms

Among the invariant self-supervised approached, we com-
pare our approach to VICReg (Bardes et al., 2022) and and
SimCLR (Chen et al., 2020a). For each method, compar-
isons are drawn using their originally proposed architectures.
For the equivariant baselines, we consider EQuiMOD (Dev-
illers and Lefort, 2023), SIE (Garrido et al., 2023b) and
SEN (Park et al., 2022). Similar to Garrido et al. (2023b),
For SEN, we use the InfoNCE loss instead the original
triplet loss. To discard the performance gains potentially
arising from CONTEXTSSL’s transformer architecture, for
each approach, we consider an additional baseline that re-
places the original projection heads or predictor with our
transformer model. Given an algorithm name N, we re-
fer to this baseline as A/T. Amongst these, we report the
best performing variant in our results. For N't, we conduct
analysis in two distinct settings: 1) a 'no context’ or ¢ = 0
invariant condition, and 2) a fully contextualized setting
with a context length of 126.
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B.5. Training Protocol

To ensure a fair comparison across different algorithms
for each dataset, we use a standardized neural network
backbone. Precisely, for our encoder, we use a ResNet-
18 backbone pre-trained on ImageNet. For CONTEXTSSL,
output features from the encoder are transformed into the
context sequence, which is then processed by the decoder-
only Transformer (Vaswani et al., 2017) from the GPT-2
Transformer family (Radford et al., 2019). Our model con-
figuration includes 3 layers, 4 attention heads, and a 2048-
dimensional embedding space, consistently applied across
all datasets. Linear layers are utilized to convert the input
sequence into the transformer’s latent embedding of dimen-
sion 2048 and to map the predicted output vectors to the
output space of dimension 512.

We fix the maximum training context length to 128. Since
for every y, the corresponding token (z;, a;) is masked out,
context length L corresponds to effective context length
L — 2. Thus, we report CONTEXTSSL’s performance over
varying test context length of 0, 2, 14, 30 and 126. On all
datasets, we train CONTEXTSSL with the Adam optimizer
with a learning rate of 5¢~° and weight decay 1e—3. For
baseline self-supervised approaches, in their original archi-
tecture, we use a learning rate of 1e~2 with no weight decay.
However, when tested using the transformer architecture,
we choose one of the above two optimizer hyperpameters.
Consequently, performance of the best performing model
is reported among the two baselines. Similar to Garrido
et al. (2023b), we report hyper-parameters and architectures
specific to each method:

e SimCLR (Chen et al., 2020a) We train using a
2048-2048-2048 dimensional multi-layered perceptron
(MLP) based projection head with a temperature of
0.5.

* VICReg (Bardes et al., 2022) We train using a 2048-
2048-2048 MLP for the projection head and use weight
of 10 for both the invariance loss and variance loss and
1 for covariance loss.

e SEN (Park et al., 2022) Similar to other approaches
we use a projection head of dimension 2048-2048-2048
and temperature 0.1.

e EquiMod (Devillers and Lefort, 2023) We use the
standatd projection head of dimensions 1024-1024-
128 and use equal weighing of the invariance and the
equivariance loss.

¢ SIE (Garrido et al., 2023b) We use two 1024-1024-
1024 projection heads, one for invariant latent space
and other for equivariant. When trained to learn equiv-
ariance to only rotation or only color, we use weight
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of 10 for both the invariance loss and variance loss,
1 for the covariance loss and 4.5 for the equivariant
loss. However, when trained to be equivariant to both
rotation and color jointly, we use 10 as the equivariant
weight.

B.6. Evaluation metrics

In line with established self-supervised learning method-
ologies, we begin by assessing the quality of the learned
representations through downstream tasks. For evaluating
invariant representations, we employ linear classification
over frozen features. To evaluate equivariant representa-
tions, we predict the corresponding data transformation.
This prediction takes representations from two differently
transformed views of the same object and regresses on the
applied transformation between them. Further, we use Mean
Reciprocal Rank (MRR) and Hit Rate at k¥ (H@k) to eval-
uate the performance for our context predictor. Given the
source data and the transformation action, we identify the k
nearest neighbors in the embedding space. MRR is calcu-
lated as the average reciprocal rank of the target embedding
within these nearest neighbors. Hit rate-k (H@Xk) assigns
a score of 1 if the target embedding is within the k-nearest
neighbors of the predicted embedding and 0 otherwise. Sim-
ilar to Garrido et al. (2023b), we restrict the search for
nearest neighbors to different views of the same object, thus
ensuring that the predictor is not penalized for retrieving an
incorrect object in a pose similar to the correct one.

C. Additional Experiments

C.1. Quantitative Assessment of Adaptation to
Task-Specific Symmetries

In this section, we present additional results on the quan-
titative assessment of model performance on 3DIEBench,
including the evaluation of learned representations on equiv-
ariant tasks (rotation and color prediction) to predict indi-
vidual latent values. In contrast, the results in Table 1 focus
on predicting relative latent values between pairs of image
embeddings as inputs.

C.1.1. INVARIANT CLASSIFICATION AND EQUIVARIANT
TRANSFORMATION PREDICTION TASK

As shown in Table 4, invariant self-supervised learning
methods such as SimCLR and VICReg underperform in
equivariant augmentation prediction tasks. The equivariant
baselines, EquiMOD, SIE, and SEN, exhibit improvements
compared to the invariant baselines in some of the augmenta-
tion prediction tasks. However, their degree of equivariance
is much worse compared to CONTEXTSSL. Besides, align-
ing them with different targeted symmetry groups requires
retraining the entire model. In contrast, CONTEXTSSL em-
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ploys a single model capable of learning equivariance to
rotation and invariance to color (or vice versa) based on the
given context. As seen from the two rows corresponding
to CONTEXTSSL Table 1, when the context corresponds to
pairs of data with transformations sampled from the rotation
(color) group, the model adaptively learns to be invariant
to color (rotation) while retaining equivariance to rotation
(color).

Results in Table 1 are the average value over three random
seeds. We provide the standard deviation for rotation and
color prediction of CONTEXTSSL in Table 5 and Table 6.

C.1.2. EQUIVARIANT MEASURES BASED ON NEAREST
NEIGHBOURS RETRIEVAL

Similar to ??, we provide the performance of CONTEXTSSL
on MRR and H@k compared to baseline methods with
trained equivariance to rotation. While ?? uses the val-
idation set data as the retrieval library, Table 7 provides
the results using the training set data. CONTEXTSSL out-
performs the baseline models, and its performance on all
the metrics consistently improves with increasing context
length, showing adaptation to rotation-specific features.

C.2. Role of Context Mask and Auxiliary Predictor

In this section, we provide additional results for the role of
context mask and auxiliary predictor.

C.2.1. ROLE OF CONTEXT MASK

In addition to Figure 3, we provide the performance of the
rotation and color prediction tasks with varying masking
probabilities under the environment of color in Figure 7.
We observed that as masking probability increases, perfor-
mance on both classification and prediction tasks initially
improves but later declines, reaching optimal performance
at a masking probability of 90%.

Results in Figure 3 and Figure 7 are the average value over
three random seeds. We provide the standard deviation for
rotation and color prediction of CONTEXTSSL in Table 8
and Table 9.

C.2.2. ROLE OF AUXILIARY PREDICTOR

We provide the complete results corresponding to Figure 4
in Table 10 to demonstrate that the auxiliary predictor is
crucial for the model to achieve equivariance. In its absence,
while the model retains its performance on the invariant
classification task, it fails to learn equivariance, performs
similarly to the invariant models, and cannot effectively
adapt to different contexts.
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Table 4: Quantitative evaluation of learned representations on equivariant (rotation prediction, color prediction) tasks to
predict individual latent values.

G Method Rotation prediction (R?) Color prediction (R?)
0 2 14 30 126 0 2 14 30 126
Invariant
SimCLR 0.791 0.137
SimCLR*+ (c=0) 0.773 0.061
SimCLR™* 0.544 0.498
VICReg 0.660 0.011
VICReg " (c=0) 0.615 0.061
o Equivariant
-g . EquiMOD 0.712 0.221
g 2 SIE 0.760 0.972
“ +© SEN 0.617 0.888
= EquiMOD 0.707 0.033
ke SIE 0.790 0.001
= SEN 0.723 0.437
~ CONTEXTSSL? 0.838 0.839 0.840 0.840 0.840 0.895 0.620 0.021 0.014 0.021
EquiMOD 0.660 0.855
§ SIE 0.560 0.974
S SEN 0.713 0.876

CONTEXTSSL* 0.838 0.800 0.699 0.666 0.685 0.895 0981 0985 0.985 0.986

Table 5: Performance of CONTEXTSSL in 3DIEBench in rotation prediction under the environment of rotation, i.e.
CONTEXTSSL (rotation), and color, i.e. CONTEXTSSL (color), with standard deviations over three random seeds.

Method Rotation prediction (R?)
0 2 14 30 126

CONTEXTSSL (rotation) 0.734 £ 0.002 0.740 £0.004 0.743 £0.001 0.743 £0.001 0.744 + 0.001
CONTEXTSSL (color) 0.735 +£0.001 0.614 +£0.108 0.389 +0.054 0.345 £ 0.040 0.344 £+ 0.003

Table 6: Performance of CONTEXTSSL in 3DIEBench in color prediction under the environment of rotation, i.e. CON-
TEXTSSL (rotation), and color, i.e. CONTEXTSSL (color), with standard deviations over three random seeds.

Method Color prediction (R?)
0 2 14 30 126

CONTEXTSSL (rotation) 0.908 £ 0.002 0.664 =0.166 0.037 +£0.010 0.023 £0.001 0.046 + 0.007
CONTEXTSSL (color) 0.908 +£0.002 0.981 £0.002 0.985+0.001 0.986+ 0.001 0.986 + 0.001

C.3. Qualitative Assessment of Adaptation to have random rotation angles. Equivariance baselines (SEN,
Task-Specific Symmetries SIE, EquiMOD) correctly generate the target rotation an-

gle for some of the 3-nearest neighbors but fail in others.

CONTEXTSSL outperforms by successfully identifying the

We provide additional results to the qualitative assessment ~ correct angle in all 3-nearest neighbors while remaining

comparing with different models in Figure 8. The near-  invariant to color variations.

est neighbors of invariance models (SimCLR and VICReg)

C.3.1. COMPARISON WITH BASELINE APPROACHES

15
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Table 7: Quantitative evaluation of learned predictors equivariant to only rotation based on Mean Reciprocal Rank (MRR)
and Hit Rate H@k on training dataset. CONTEXTSSL learns to be more equivariant to rotation with context.

Method MRR (1) Hel ®) H@5 ()

0 2 14 30 126 0 2 14 30 126 0 2 14 30 126
EquiMOD 0.17 0.06 0.24
SEN 0.17 0.06 0.24

CONTEXTSSL 0.282 0.321 0470 0498 0.531 0.132 0263 0.375 0.398 0.402 0436 0.495 0.650 0.669 0.680
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Figure 6: Role of context mask to avoid context based shortcuts in CONTEXTSSL under rotation context
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Figure 7: Role of context mask to avoid context based shortcuts in CONTEXTSSL under color context
C.3.2. NEAREST NEIGHBOUR RETRIEVAL WITH mentations like crop and blur on CIFAR10. The results for
P
VARYING CONTEXT the combinations of crop and blur are reported in Table 2.

We additionally provide the results for the combinations of
crop and color in Table 12 and crop and blur in Table 2.
Consistent with our previous results, while almost retaining
the classification performance as SimCLR, CONTEXTSSL
learns to adaptively enforce equivariance and invariance to
different environments depending upon the context.

In this section, we conduct a qualitative assessment of model
performance by taking the nearest neighbors of the predictor
output when inputting a source image and a transformation
variable, and show the change in retrieving quality in Fig-
ure 9, Figure 10, and Figure 11. We observe that the nearest
neighbors have a closer rotation angle (color) to the target

image under rotation (color) context as context length in-  In addition to the results for predicting relative latent values
creases, indicating CONTEXTSSL’s ability to adapt to the ~ between pairs of image embeddings as input in Table 2,
given context as context length increases. Table 12, and Table 11, we provide the evaluation of learned

representations on equivariant tasks (rotation and color pre-
C.4. Expanding to Diverse Data Transformations diction) to predict individual latent values, as shown in

Table 13, Table 15, and Table 14 respectively. Both results
lead to the same conclusion, that CONTEXTSSL is able to
adaptively enforce equivariance and invariance to different

Unlike 3DIEBench where meta-latents for each data are
available, we manually construct positives by applying aug-

16
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Table 8: Performance of CONTEXTSSL rotation prediction tasks in 3DIEBench under different random masking probabilities,

with standard deviations over three random seeds.

Context  Probability Rotation prediction (R?)
0 2 14 30 126
0.00 0.677 £ 0.004 0.677 +£0.002 0.673 +0.009 0.682 + 0.003 0.683 + 0.003
0.20 0.710 £ 0.002 0.721 £ 0.006  0.727 £ 0.002 0.729 £ 0.001 0.729 £ 0.001
Rotation 0.50 0.725 £ 0.001 0.738 £ 0.005 0.743 + 0.001 0.743 + 0.001 0.744 + 0.001
0.75 0.734 + 0.002 0.738 +0.006 0.742 +0.004 0.741 £0.004 0.741 £ 0.002
0.90 0.734 + 0.002 0.740 = 0.004 0.743 = 0.001 0.743 = 0.001 0.744 + 0.001
0.98 0.726 £ 0.002  0.725 £ 0.003 0.726 = 0.002 0.726 = 0.003  0.726 =+ 0.003
0.00 0.677 + 0.004 0.676 +0.005 0.620 £ 0.019 0.569 £ 0.019 0.655 £ 0.010
0.20 0.710 £ 0.002 0.689 +0.013 0.427 +£0.031 0.336 £ 0.007 0.282 + 0.022
Color 0.50 0.725 £ 0.001 0.683 + 0.006 0.390 + 0.031 0.282 + 0.013 0.287 + 0.002
0.75 0.734 £0.002 0.718 £0.002 0.499 +0.035 0.378 £0.054 0.472 £0.015
0.90 0.735 £ 0.001 0.614 +0.108 0.389 + 0.054 0.345 +=0.040 0.344 + 0.003
0.98 0.726 £ 0.002  0.508 + 0.127 0.529 +0.141 0.571 £0.125 0.665 + 0.023

Table 9: Performance of CONTEXTSSL color prediction tasks in 3DIEBench under different random masking probabilities,

with standard deviations over three random seeds.

Context  Probability Color prediction (R?)
0 2 14 30 126
0.00 0.981 £0.002 0.940 +£0.033 0.613 £0.123 0.406 £ 0.125 0.807 £ 0.080
0.20 0.975 £0.001 0.866 +0.171 0.465 £0.113 0.194 +£0.057 0.124 £ 0.027
Rotation 0.50 0.971 £0.002 0.904 +0.086 0.699 + 0.028 0.205 £ 0.054 0.091 £ 0.016
0.75 0.980 £0.001 0.727 £0.351 0.358 £0.233  0.162 £ 0.021 0.076 £ 0.009
0.90 0.908 £ 0.002 0.664 = 0.166 0.037 £ 0.010 0.023 £ 0.001 0.046 + 0.007
0.98 0.982 £0.001 0.674 £0.368 0.309 £0.139 0.303 £0.118 0.253 £0.033
0.00 0.981 £0.002 0.986 + 0.002 0.989 £ 0.001 0.989 + 0.001 0.989 £ 0.001
0.20 0.975 £ 0.001 0.984 +£0.002 0.987 £0.001 0.987 £0.001 0.987 £ 0.001
Color 0.50 0.971 £0.002 0.982 +0.002 0.986 £ 0.002 0.987 £ 0.002 0.988 £ 0.001
0.75 0.980 £0.001 0.983 +£0.001 0.987 £0.001 0.987 +0.001 0.988 £ 0.001
0.90 0.908 £0.002 0.981 +0.002 0.985 £ 0.001 0.986 & 0.001 0.986 £ 0.001
0.98 0.982 £ 0.001 0.982 +0.001 0.981 £0.001 0.981 £0.001 0.981 £ 0.001

Table 10: Performance of CONTEXTSSL on classification, rotation and color prediction tasks in 3DIEBench with and

without the auxiliary predictor

Method Rotation prediction (R?) Color prediction (R?) Classification (top-1)
0 2 14 30 126 0 2 14 30 126 Representation
SimCLR 0.227 -0.004 853
SimCLR* (c=0) 0.230 -0.004 834
SimCLR* 0.245 0.028 423
CONTEXTSSL (w/o) (rotation) 0.227 0.227 0226 0.226 0.227 -0.003 -0.003 -0.003 -0.004 -0.004 80.8
CONTEXTSSL (w/o) (color) 0.227 0227 0226 0226 0227 -0.003 -0.003 -0.003 -0.004 -0.004 80.8
CONTEXTSSL (rotation) 0.734 0.740 0.743 0.743 0.744 0908 0.664 0.037 0.023 0.046 80.4
CONTEXTSSL (color) 0.735 0.614 0389 0345 0344 0908 0981 0.985 0986 0.986 80.4

environments depending upon the context.

17



In-Context Symmetries: Self-Supervised Learning through Contextual World Models

SimCLR VICReg EquiMOD  CoNTEXTSSL

1-NN

2-NN

3-NN

Source ......

Figure 8: Nearest neighbors of different methods taking as input the source image and rotation angle. CONTEXTSSL aligns

best with the rotation angle of the target image.
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v
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Figure 9: Nearest neighbors of CONTEXTSSL taking as input the source image and rotation angle at different context
lengths. As context increases, CONTEXTSSL aligns better with the rotation angle (color) of the target image when the

context is based on rotation (color).

Table 11: CIFAR-10 Color-Blur. Performance of CONTEXTSSL on invariant (classification) and equivariant (color
prediction, blur prediction) tasks in CIFAR-10 under the environment of color, i.e. CONTEXTSSL (color), and blur, i.e.

CONTEXTSSL (blur).

Method Color prediction (R?) Blur prediction (R?) Classification (top-1)
0 2 14 30 126 0 2 14 30 126 Representation
SimCLR 0.154 0.371 89.1
SimCLR™ (c=0) 0.054 0.361 88.9
SimCLR™* 0.318 0.444 59.9
CONTEXTSSL (color) 0.518 0.519 0.519 0.519 0.519 0916 0.793 0.699 0.735 0.823 88.9
CONTEXTSSL (blur)  0.518 0.353 0.241 0.259 0.333 0916 0916 0916 0916 0917 88.8
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Figure 10: Nearest neighbors of CONTEXTSSL taking as input the source image and rotation angle at different context
lengths. As context increases, CONTEXTSSL aligns better with the rotation angle (color) of the target image when the
context is based on rotation (color).
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Figure 11: Nearest neighbors of CONTEXTSSL taking as input the source image and rotation angle at different context
lengths. As context increases, CONTEXTSSL aligns better with the rotation angle (color) of the target image when the
context is based on rotation (color).

C.5. Context World Models Beyond Self-Supervised

Learning

We report classification performance along with rotation
and color prediction equivariant measures. The results for
predicting relative values are shown in Table 3 and the re-
sults for predicting individual latent values are shown in
Table 16. The equivariance (invariance) performance of
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CONTEXTSSL improves with increased context.

C.6. Performance on Encoder Representations and
Predictor Embedding

We analyze the difference between the performance on rep-
resentation and the performance on predictor embedding
for both the invariance (classification) task and equivariance
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Table 12: CIFAR-10 Crop-Color. Performance of CONTEXTSSL on invariant (classification) and equivariant (crop
prediction, color prediction) tasks in CIFAR-10 under the environment of crop, i.e. CONTEXTSSL (crop), and color, i.e.
CONTEXTSSL (color).

Method Crop prediction (R?) Color prediction (R?) Classification (top-1)
0 2 14 30 126 0 2 14 30 126 Representation
SimCLR 0.459 0.154 89.1
SimCLR™ (c=0) 0.448 0.054 88.9
SimCLR™* 0.362 0.318 59.9
CONTEXTSSL (crop)  0.606 0.606 0.607 0.607 0.607 0.522 0.378 0.253 0.264 0.301 87.5
CONTEXTSSL (color) 0.605 0.467 0.387 0466 0.511 0.523 0.525 0.527 0.527 0.527 87.5

Table 13: CIFAR-10 Crop-Blur. Performance of CONTEXTSSL on equivariant (crop prediction, blur prediction) tasks
in CIFAR-10 under the environment of crop, i.e. CONTEXTSSL (crop), and blur, i.e. CONTEXTSSL (blur), to predict
individual latent values.

Method Crop prediction (R?) Blur prediction (R?)
0 2 14 30 126 0 2 14 30 126
SimCLR 0.382 0.122
SimCLR™ (c=0) 0.375 0.111
SimCLR™ 0.202 0.322

CONTEXTSSL (crop) 0.576 0575 0.576 0.576 0.576 0.835 0.795 0.630 0.644 0.663
CONTEXTSSL (blur) 0.575 0.504 0.463 0443 0474 0.835 0.835 0.836 0.837 0.837

Table 14: CIFAR-10 Color-Blur. Performance of CONTEXTSSL on equivariant (color prediction, blur prediction) tasks
in CIFAR-10 under the environment of color, i.e. CONTEXTSSL (color), and blur, i.e. CONTEXTSSL (blur), to predict
individual latent values.

Method Color prediction (R?) Blur prediction (R?)
0 2 14 30 126 0 2 14 30 126
SimCLR 0.121 0.122
SimCLR™ (c=0) 0.039 0.111
SimCLR™* 0.242 0.322

CONTEXTSSL (color) 0.488 0.483 0.488 04838 0.488 0.837 0.711 0.628 0.672 0.730
CONTEXTSSL (blur)  0.488 0.376 0.286 0.309 0362 0.837 0.838 0.838 0.838 0.837

Table 15: CIFAR-10 Crop-Blur. Performance of CONTEXTSSL on equivariant (crop prediction, color prediction) tasks
in CIFAR-10 under the environment of crop, i.e. CONTEXTSSL (crop), and color, i.e. CONTEXTSSL (color), to predict
individual latent values.

Method Crop prediction (R?) Color prediction (R?)
0 2 14 30 126 0 2 14 30 126
SimCLR 0.382 0.121
SimCLR ™ (c=0) 0.375 0.039
SimCLR ™ 0.202 0.242

CONTEXTSSL (crop) 0570 0.572 0.572 0.572 0572 0495 0417 0342 0356 0373
CONTEXTSSL (color) 0.570 0.490 0.447 0.492 0515 0495 0496 0497 0497 0497
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Table 16: Context-Dependent Labels Classification Task. Performance of CONTEXTSSL on equivariant (rotation
prediction, color prediction) tasks for context-dependent labels to predict individual latent values. As context length
increases, CONTEXTSSL becomes more equivariant to color (or rotation) and more invariant to rotation (or color) within
the respective environment.

Method Rotation prediction (R?) Color prediction (R?)
0 2 14 30 126 0 2 14 30 126
SimCLR 0.781 0.058
SimCLR™ (¢c=0) 0.478 -0.003
SimCLR™ 0.695 0.267

CONTEXTSSL (color) 0.751 0.751 0.750 0.750 0.749 00915 0973 0980 0.981 0.981
CONTEXTSSL (rotation) 0.750 0.778 0.797 0.795 0.795 0915 0.375 0.104 0.091 0.090

(rotation prediction) task in Table 17 and Table 18. CON-
TEXTSSL maintains almost the same performance for rota-
tion prediction using either representations or embeddings,
while the performance of all other baselines drops signif-
icantly when using the embeddings. Similar conclusions
apply to the classification case, except for SimCLR ™, for
which the classification accuracy for both representations
and embeddings is low.

C.7. Enforcing Invariance or Equivariance to the Same
Transformation Using Context

Apart from adaptively learning equivariance to a subset of
transformation groups and invariance to the rest as shown
in Table 1, we extend CONTEXTSSL to operate within
environments characterized by a single transformation. Mo-
tivated by this, we ask the question: Can CONTEXTSSL
adapt to learn equivariance or invariance to the same trans-
formation depending on the context?. At training, we ran-
domly sample one of these environments. If the environ-
ment corresponds to enforcing equivariance, we construct
our context in the same way as before i.e. pairs of positives
transformed using augmentations sampled from the trans-
formation group. However, if the environment corresponds
to enforcing invariance, we maximize alignment between
positives transformed by augmentation sampled from the
transformation group without conditioning on that augmen-
tation. Take rotation in 3DIEBench as an example. As
shown in Table 19, similar to our results in two transforma-
tion setting (rotation and color) in Table 1, CONTEXTSSL
effectively adapts to enforce invariance and equivarance to
rotation depending on the context. Results for predicting
individual latents are provided in Table 20.
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Table 17: Model performance in rotation prediction task, within the rotation-equivariant environment. The R? values
are calculated for both the representations and the embeddings (output of projection head for invariant models (VICReg,
SimCLR) or predictor for equivariant models (SEN, EquiMod, SIE, CONTEXTSSL). Unlike other models, which experience
a significant performance drop between representations and embeddings, CONTEXTSSL maintains consistent performance.

Method Rotation prediction (R?)
Representations Embeddings Change

VICReg 0.37 0.23 -0.14
SimCLR 0.51 0.23 -0.28
SEN 0.63 0.39 -0.24
EquiMod 0.51 0.39 -0.12
SIE 0.67 0.60 -0.07
CONTEXTSSL (rotation) 0.74 0.74 -0.00

Table 18: Performance of CONTEXTSSL on accuracy of predictor embeddings for context-dependent labels.

Method Classification (top-1)

0 2 14 30 126 Representation Change
SimCLR 52.7 85.3 -32.6
SimCLR™ (¢c=0) 72.4 83.4 -11.0
SimCLR™* 41.8 423 -0.5
CONTEXTSSL (rotation) 76.6 769 756 769 775 80.4 -2.9
CONTEXTSSL (color) 76.6 753 T1.7 72.6 765 80.4 -3.9

Table 19: Single Transformation Setting. Performance of CONTEXTSSL in 3DIEBench under the equivariant environment,
i.e. CONTEXTSSL (rotation), and the invariant environment, i.e. CONTEXTSSL (none), with respect to rotation.

Method Rotation prediction (R2) Classification (top-1)
0 2 14 30 126 Representation
SimCLR 0.506 85.3
SimCLR ™ (c=0) 0.478 83.4
SimCLR™* 0.247 423
CONTEXTSSL (rotation) 0.737 0.737 0.736 0.737 0.738 80.6
CONTEXTSSL (none) 0.737 0.717 0477 0377 0473 80.6

Table 20: Single Transformation Setting. Performance of CONTEXTSSL in 3DIEBench under the equivariant environment,
i.e. CONTEXTSSL (rotation), and the invariant environment, i.e. CONTEXTSSL (none), with respect to rotation, to predict

the individual latent values.

Method Rotation prediction (R?)

0 2 14 30 126
SimCLR 0.791
SimCLR* (c=0) 0.773
SimCLR* 0.544
CONTEXTSSL (rotation) 0.778 0.777 0.767 0.768 0.777
CONTEXTSSL (none) 0.839 0.829 0.721 0.667 0.698
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