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Abstract

Recent work has demonstrated that neural lan-001
guage models encode syntactic structures in002
their internal representations, yet the deriva-003
tions by which these structures are built across004
layers remain poorly understood. In this pa-005
per, we introduce Derivational Probing to in-006
vestigate how micro-syntactic structures (e.g.,007
subject phrases) and macro-syntactic structures008
(e.g., the relationship between the root verb009
and its direct dependents) are progressively con-010
structed as word embeddings propagate upward011
across layers. Our experiments on BERT reveal012
a clear bottom-up derivation: micro-syntactic013
dependencies emerge in lower layers and are014
gradually integrated into a coherent macro-015
syntactic structure in higher layers. Further-016
more, an analysis on a subject-verb agreement017
task shows that the timing of macro-structure018
formation is critical for performance, suggest-019
ing an optimal intermediate range for integrat-020
ing global syntactic information.021

1 Introduction022

Neural language models have achieved remarkable023

success across a wide range of natural language024

processing tasks. However, significant uncertainty025

remains regarding what these models truly learn026

and how they represent linguistic knowledge. This027

has spurred extensive research aimed at probing028

the linguistic capabilities of neural language mod-029

els (Zhao et al., 2024; Chang and Bergen, 2024).030

A prominent line of inquiry is structural prob-031

ing, which directly analyzes word embeddings to032

uncover latent syntactic structures. For example,033

Hewitt and Manning (2019) demonstrated that the034

geometric organization of BERT’s word embed-035

ding space encodes syntactic distances defined over036

dependency parse trees, providing evidence that the037

model captures syntactic information. Yet, such038

work typically focuses on the static representations039

of the whole syntactic structures rather than the040

dynamic derivations by which these syntactic struc- 041

tures are built across layers. Understanding not just 042

the resulting representations but also how they are 043

built across layers is essential for a more compre- 044

hensive understanding and could also lead to better 045

insights into how these representations are used. 046

Meanwhile, Tenney et al. (2019) introduced the 047

expected layer metric and investigated how dif- 048

ferent layers in BERT encode different types of 049

linguistic information (e.g., part-of-speech tagging, 050

syntactic parsing, semantic role labeling, and coref- 051

erence resolution), revealing that the model en- 052

codes linguistic abstractions in a manner reflect- 053

ing a traditional NLP pipeline. However, their 054

approach primarily relied on coarse-grained task 055

accuracy measures, capturing only the overall ef- 056

fectiveness of each layer rather than examining the 057

detailed, layer-wise construction of specific syn- 058

tactic structures. Consequently, how the syntactic 059

structures are built across layers remains under- 060

explored. 061

In this paper, we fill this gap by introducing 062

Derivational Probing—a method that combines 063

structural probing with an expected layer metric 064

to trace the derivation process of syntactic struc- 065

tures in neural language models (Figure 1). Our 066

approach allows us to examine how micro-syntactic 067

structures (e.g., subject and object noun phrases, 068

prepositional phrases) and macro-syntactic struc- 069

tures (e.g., the relationship between the root verb 070

and its direct dependents) are built progressively 071

across the layers of a model. 072

Applying Derivational Probing to BERT (Devlin 073

et al., 2019), our experiments reveal a bottom-up 074

derivation strategy, in which micro-syntactic depen- 075

dencies emerge in lower layers and are gradually 076

integrated into a coherent macro-structure at higher 077

layers. Furthermore, our detailed analysis on a 078

subject-verb agreement task shows that even when 079

the final syntactic structure is correct, the specific 080

layers at which the macro-structure is constructed 081

1



Figure 1: Derivational Probing investigates how syntactic structures are progressively constructed across the layers
in neural language models. We illustrate three hypothesized strategies for layer-wise derivation. Bottom-up:
Micro-syntactic structures, such as subject or prepositional phrases, form in lower layers and the macro-syntactic
structure is formed at higher layers. Top-down: The macro-syntactic structure is identified first, with micro-syntactic
structures refined in subsequent layers. Parallel: Micro- and macro-syntactic structures emerge at roughly the same
timing.

significantly affect performance. This suggests the082

existence of an optimal intermediate stage for inte-083

grating macro-syntactic information.084

Overall, our findings offer new insights into the085

internal mechanisms by which neural language086

models construct syntactic trees and underscore087

the importance of examining syntactic structure088

formation across layers to improve model inter-089

pretability.090

2 Related Work091

Attention-based analyses (e.g., Clark et al., 2019;092

Vig and Belinkov, 2019) have demonstrated that093

certain transformer heads tend to align with de-094

pendency relations, providing evidence that Trans-095

former language models capture linguistic depen-096

dency relations in their attention weights.097

In contrast, Hewitt and Manning (2019) intro-098

duced a structural probe that learns a linear trans-099

formation from hidden representations into a space100

where Euclidean distances reflect dependency tree101

distances. This approach revealed that full syntac-102

tic trees are implicitly encoded in models such as103

BERT. Building on this, later work refined the ap-104

proach by incorporating non-linear mappings (e.g., 105

White et al., 2021), enforcing constraints such as 106

orthogonality (Limisiewicz and Mareček, 2021), 107

and using a controlled corpus to isolate the effect 108

of syntax (Maudslay and Cotterell, 2021). 109

Other studies have refined structural probing by 110

quantifying context-dependent syntactic signals in 111

deeper layers—for example, conditional probing 112

(Hewitt et al., 2021) and information gain metrics 113

(Kunz and Kuhlmann, 2022)—but these methods 114

focus on the performance of specific probing tasks 115

(e.g., POS-tagging) rather than where the syntactic 116

structures are constructed. 117

In contrast, our proposed method specifically 118

tracks how each subgraph in the syntactic tree de- 119

velops as information propagates through the net- 120

work layers. By analyzing the evolution of individ- 121

ual syntactic components—from micro-syntactic 122

structures to the assembly of the macro-syntactic 123

structure—we offer a more granular perspective 124

on the incremental construction of syntax, comple- 125

menting and extending previous layer-wise analy- 126

ses. 127
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3 Technical Preliminaries128

In this section, we review foundational methods129

from prior research: structural probing to assess the130

presence and quality of syntactic representations131

and the expected layer metric for quantifying how132

linguistic information gradually builds up across133

successive layers within language models.134

3.1 Structural Probing135

Hewitt and Manning (2019) introduced the struc-136

tural probe as a method to evaluate whether contex-137

tual word representations encode syntactic informa-138

tion. Given a sentence s = w1 · · ·wt, each token139

is represented by a contextual embedding hi ∈ Rd140

(e.g., the output embedding of a model like BERT).141

The goal of the structural probe is to find a linear142

transformation that maps these embeddings to a143

space where the Euclidean distances approximate144

the true syntactic distances between words.145

Specifically, for any two words wi and wj in a146

sentence, we define the transformed distance as:147

dB(hi,hj) = ∥Bhi −Bhj∥2, (1)148

where B ∈ Rd′×d is a learnable projection matrix.149

The true syntactic distance, ∆ij , is typically de-150

fined as the number of edges on the shortest path151

between wi and wj in the dependency parse tree of152

the sentence. The probe is trained by minimizing153

an objective that penalizes the discrepancy between154

the predicted distances and ∆ij :155

L =
1

|s|2

|s|∑
i=1

|s|∑
j=i+1

|∆ij − dB(hi,hj)| . (2)156

This formulation encourages the linear transfor-157

mation B to capture the syntactic structure encoded158

in the contextual representations, enabling the re-159

covery of parse trees via Prim’s (1957) algorithm,160

a greedy algorithm that constructs minimum span-161

ning trees by iteratively adding the lowest-weight162

edge connecting a new node to the growing tree.163

3.2 Expected Layer164

The expected layer metric introduced by Tenney165

et al. (2019) was initially developed to identify the166

layers within BERT responsible for solving various167

linguistic tasks. Specifically, the metric was used168

to capture at which layers broad linguistic abili-169

ties (e.g., part-of-speech tagging, syntactic parsing,170

semantic role labeling) emerge.171

Formally, Tenney et al. used a scalar mixing 172

technique, aggregating information from the bot- 173

tom layer up to a given layer: 174

m
(k)
i = γ

k∑
ℓ=0

softmax(a)(ℓ)h(ℓ)
i , (3) 175

where softmax(a)(ℓ)(a ∈ Rk+1) is scalar mixing 176

weights and γ is a learnable scaling factor, follow- 177

ing Peters et al. (2018). 178

By measuring performance improvements across 179

layers, S(ℓ), Tenney et al. defined the expected 180

layer to reflect the layer at which the relevant lin- 181

guistic task information is predominantly captured: 182

E[ℓ] =

∑L
ℓ=1 ℓ · (S(ℓ)− S(ℓ− 1))∑L
ℓ=1(S(ℓ)− S(ℓ− 1))

. (4) 183

Thus, the expected layer metric was initially pro- 184

posed to broadly characterize the hierarchical pro- 185

gression of different linguistic capabilities within 186

transformer models, rather than to pinpoint the ex- 187

act layers at which specific syntactic structures are 188

built. 189

4 Derivational Probing 190

Building upon these prior techniques, we propose 191

Derivational Probing, a novel method explicitly 192

designed to investigate the dynamic construction 193

of syntactic structures across the layers of neural 194

language models. 195

Our approach effectively combines expected 196

layer metric (Tenney et al., 2019) with the structural 197

probing (Hewitt and Manning, 2019), enabling a 198

detailed analysis of how syntactic information ac- 199

cumulates across model layers. Specifically, for 200

each layer , we use scalar-mixed embeddings as 201

defined in Eq. (3) and compute pairwise distances: 202

dBk
(m

(k)
i ,m

(k)
j ) = ∥Bkm

(k)
i −Bkm

(k)
j ∥2. (5) 203

We then train the transformation matrix Bk to min- 204

imize discrepancies with true dependency parse 205

distances, analogous to structural probing. 206

This integration allows us to calculate the ex- 207

pected layer for each syntactic subgraph (micro- 208

and macro-syntactic structures defined in detail 209

later) and perform a fine-grained, quantitative anal- 210

ysis of their construction across model layers. We 211

use the Unlabeled Undirected Attachment Score 212

(UUAS) for each layer ℓ as S(ℓ), defined as the 213

proportion of correctly predicted edges to the total 214
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number of edges in the reference dependency parse,215

without considering edge labels or direction.216

To better understand the derivation strategy that217

models employ when constructing a syntactic tree,218

we introduce a distinction between macro-syntactic219

structures (the root verb with its direct dependents)220

and micro-syntactic structures (local components,221

such as subordinate phrases like nsubj) (Figure 2).222

This distinction is motivated by our interest in223

whether models construct syntactic trees top-down,224

bottom-up, or in a parallel fashion. To empirically225

evaluate which of these hypotheses is most plau-226

sible, we adopt the following methodological ap-227

proach: For both micro-syntactic structures and228

macro-syntactic structures, we (1) construct the229

full parse tree using a minimum spanning tree algo-230

rithm, (2) extract the relevant edges (as highlighted231

in Figure 2), and (3) compute the UUAS by compar-232

ing these edges to the reference parse. By tracking233

UUAS improvements across layers, we calculate234

the expected layer E[l] for each structure, revealing235

the layers at which different syntactic subgraphs236

are effectively constructed.237

We next provide detailed descriptions of each238

hypothesis.239

Bottom-up derivation. A bottom-up derivation240

first constructs micro-syntactic structures and sub-241

sequently integrates these into macro-syntactic242

structures, ultimately forming a complete depen-243

dency tree. We refer to this as a “bottom-up deriva-244

tion” because it resembles the construction order245

of the arc-standard transition-based dependency246

parser (Nivre, 2004). Arc-standard parsing utilizes247

a stack-based transition system where dependents248

must be fully processed and attached to their heads249

before those heads themselves are incorporated250

into macro-syntactic structures. Under this hy-251

pothesis, models initially identify micro-syntactic252

structures—such as the internal phrase structures253

of subjects and objects—in lower layers, which254

are then progressively combined into a coherent255

macro-syntactic hierarchy at higher layers.256

Top-down derivation. A top-down derivation, in257

contrast, begins by establishing macro-syntactic258

structures and subsequently refines these by in-259

corporating detailed micro-syntactic dependencies.260

We term this approach a “top-down derivation” be-261

cause its construction order aligns closely with the262

head-driven transition-based parser proposed by263

Hayashi et al. (2012). Their algorithm explicitly264

predicts dependent nodes from head nodes, progres-265

sively building syntactic structures from head to de- 266

pendent, thus genuinely following a top-down, pre- 267

dictive parsing order. Under this hypothesis, mod- 268

els prioritize the recognition of macro-syntactic 269

structures before refining micro-syntactic struv- 270

tures. 271

Parallel derivation. Finally, an alternative hy- 272

pothesis is that models construct micro- and macro- 273

syntactic structures concurrently, with local depen- 274

dencies and the global structure forming at roughly 275

the same rate across layers. This hypothesis is less 276

clearly aligned with traditional dependency parsing 277

algorithms, as most classical approaches tend to 278

favor either bottom-up or top-down derivations. 279

Notes on the term “derivation”. Here, we ex- 280

plicitly use the term derivation (strategy) through- 281

out this paper rather than “parsing strategy” to 282

clearly distinguish two related but distinct con- 283

cepts. While “parsing strategy” generally refers 284

to methodological choices for incrementally con- 285

structing a parse tree (such as bottom-up or top- 286

down), our use of “derivation” specifically cap- 287

tures an atemporal process describing how syn- 288

tactic structures progressively emerge across the 289

internal layers of a language model given the full 290

sentence context, emphasizing layer-wise structural 291

development rather than sequential, left-to-right in- 292

cremental processing. 293

Figure 2: Macro-syntactic structure (“Macro”) and
micro-syntactic structures (“nsubj” and “dobj”).

5 Experimental Setup 294

5.1 Data 295

We utilize the Wikitext-103 dataset (Merity et al., 296

2016) as our primary source of natural language, 297

parsing each sentence with spaCy’s dependency 298

parser (EN_CORE_WEB_LG) (Honnibal et al., 299

2020). To focus on the language model’s ability to 300

construct syntactic structures in a clear-cut setting, 301

we restrict our analysis to single-clause sentences 302

by excluding those with relative clauses or clausal 303
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subjects. Additionally, we filter out sentences con-304

taining dependency relations such as “dep” (un-305

classified dependents) and punctuation marks other306

than sentence-final punctuation to minimize noise.307

Following the definitions introduced in the pre-308

vious section (§4), we group sentences based on309

dependency relations emanating from the root verb,310

thereby distinguishing between the overall (macro-311

syntactic; Macro) structure and subordinate (micro-312

syntactic) structures. We retain only those groups313

that represent more than 10% of the data, focus-314

ing our analysis on the predominant structure sets.315

This filtering results in four primary structure sets316

(See App. A for examples): (1) Macro with micro317

relations nsubj and dobj; (2) Macro with micro318

relations nsubj and prep; (3) Macro with micro re-319

lations nsubj and attr; and (4) Macro with micro320

relations nsubj, prep, and dobj.321

From the resulting dataset, we randomly sample322

50,000 sentences, partitioning them into 40,000 for323

training, 5,000 for validation, and 5,000 for testing.324

5.2 Models325

We employ two pre-trained language models:326

BERT-base1 and BERT-large2 (cased) (Devlin et al.,327

2019). BERT-base uses 12 layers, 12 heads, and a328

768-dimensional hidden state, while BERT-large329

uses 24 layers, 16 heads, and a 1024-dimensional330

hidden state. These models provide a range of331

capacities, allowing us to investigate differences332

in how syntactic structures are constructed across333

models.334

We specifically focus on BERT models because335

our method is designed to examine the atempo-336

ral, layer-wise derivation of syntactic structures337

after observing an entire sentence. In contrast,338

autoregressive models like GPT-2 inherently con-339

struct syntactic information incrementally in a left-340

to-right manner, a fundamentally different setting341

from the layer-wise derivation we aim to study.342

Nevertheless, our method is also applicable to343

GPT-2, and we report GPT-2 results separately in344

App. B.345

For each model, we probe all layers to determine346

the progression of syntactic information and com-347

pute the expected layer at which specific structures348

emerge. We conduct training with five different349

random seeds and report the average performance350

1https://huggingface.co/google-bert/
bert-base-cased

2https://huggingface.co/google-bert/
bert-large-cased

Figure 3: Global UUAS by each layer for each model.
Error bars represent standard deviations across 5 random
seeds.

along with the standard deviation. Additional hy- 351

perparameters and training details are provided in 352

App. C. 353

6 Results 354

6.1 Overall UUAS Performance 355

As a sanity check to verify whether our models 356

exhibit overall trends similar to those reported 357

in previous studies, we conducted an experiment 358

measuring the test set UUAS for overall sentence 359

structures across layers for each model (Figure 3). 360

BERT-base and BERT-large display similar trends, 361

with the UUAS score saturating around the middle 362

layers. BERT-large shows slightly slower improve- 363

ment, likely reflecting its deeper architecture and 364

larger capacity. These trends mostly align with 365

previous findings (Hewitt and Manning, 2019) that 366

neural language models tend to exhibit peak UUAS 367

performance in their middle layers. However, un- 368

like previous studies, we do not observe a decrease 369

in average UUAS in later layers, which we attribute 370

to our method of computing word embeddings as a 371

weighted average from layer 0 to layer k (Eq. (3)). 372

6.2 Expected Layer Across Structure Sets 373

Figure 4 summarizes the expected layers for each 374

syntactic structure within the four primary structure 375

sets (§5.1), for both BERT-base and BERT-large. 376

In both BERT-base and BERT-large, the macro- 377

syntactic structure consistently exhibits the high- 378

est expected layer across all sets, whereas micro- 379

syntactic structures such as nsubj, dobj, and 380

prep tend to appear in lower layers. This sug- 381

gests a bottom-up derivation process in which 382
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Figure 4: Expected layer for each model across different structure sets. Error bars represent standard deviation
across 5 random seeds.

Figure 5: Expected layers for syntactic structures in successful and failed subject-verb agreement cases. Error bars
show standard deviations across 5 random seeds.

micro-syntactic structures (e.g., subject or object383

phrases) are constructed earlier, and these com-384

ponents are gradually integrated into a coherent385

macro-syntactic structure in later layers. This ob-386

servation is consistent with prior work on BERT387

showing that local information (e.g., POS tags) is388

captured early while more abstract global structures389

emerge later (cf. Tenney et al., 2019). Our results390

extend these findings by demonstrating that BERT391

builds the full syntactic structure by first construct-392

ing micro-syntactic structures before assembling393

the macro-syntactic structure. Notably, this pat-394

tern holds for both BERT-base and BERT-large,395

although the overall expected layers are slightly396

higher in BERT-large—likely reflecting its deeper397

architecture and larger capacity.398

7 Detailed Analysis: Subject-Verb 399

Agreement Task 400

7.1 Experimental Setup 401

To investigate how the process and layers involved 402

in syntactic structure construction relate to model 403

performance, we conduct a detailed analysis on 404

subject-verb agreement using sentences with inter- 405

vening nouns (“attractors”), following the approach 406

of Marvin and Linzen (2018) with some modifica- 407

tion. We sampled 1,000 positive (grammatical) 408

and 1,000 negative (ungrammatical) sentences. In 409

our modification of their templates, each of the 410

subject noun phrase, prepositional phrase, and ver- 411

bal phrase is required to contain more than one 412

words. This ensures that we can extract meaning- 413
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Bertbaseの内部状態可視化

Successful Case
Layer0 Layer1

Failure Case

Layer5

Figure 6: Derivation process visualizations for BERT-base on subject-verb agreement for a successful case (“The
surgeon behind the guards attends exclusive art exhibitions.”) and an failure case (“The consultants behind the
architects avoid spicy dishes.”).

.

ful subgraphs within each syntactic substructure.414

For instance, our dataset includes the following415

sentences:416

a. The senators behind the brilliant architect417

avoid spicy dishes.418

b. *The senators behind the brilliant architect419

avoids spicy dishes.420

We first evaluate model performance on this task421

by computing pseudo-whole-sentence probabilities.422

Specifically, we calculate the probability of each423

token by masking it one by one and then aggregate424

these token-level probabilities to derive an over-425

all sentence probability. We expect the model to426

assign higher pseudo-probabilities to grammatical427

sentences compared to ungrammatical ones. We428

then analyze how the syntactic construction process429

differs between cases where the model performs430

well and those where it fails.431

Furthermore, to qualitatively visualize the evolu-432

tion of syntactic structures across model layers, we433

employ Multidimensional Scaling (MDS). Specifi-434

cally, we apply scikit-learn’s MDS implementation435

(Pedregosa et al., 2011) with default parameters436

to word embeddings projected by our structural437

probe, allowing us to illustrate clearly how syntac-438

tic representations develop across different model439

layers.440

7.2 Results 441

Overall, BERT-base correctly assigned higher 442

pseudo-whole-sentence probabilities to grammat- 443

ical sentences in 984 out of 1,000 examples, 444

whereas BERT-large achieved correctness in 983 445

out of 1,000 cases. Despite their similar overall 446

accuracies, we observe distinct patterns between 447

BERT-base and BERT-large (Figure 5). 448

BERT-base. BERT-base frequently failed when 449

macro-syntactic structures were established pre- 450

maturely, potentially restricting the incorporation 451

of essential micro-syntactic details. As illustrated 452

in Figure 6, successful cases show a sequential 453

pattern where BERT-base first constructs micro- 454

syntactic structures within the subject phrase in 455

early layers, subsequently aligning the subject (au- 456

thors) with the verb (avoid) around layer 5 after 457

stabilizing the internal subject dependencies. In 458

contrast, failure cases reveal premature alignment 459

of macro-syntactic structures, with the subject (con- 460

sultants) prematurely linked to the verb (avoid) be- 461

fore fully establishing necessary micro-syntactic 462

details. This premature commitment might have 463

negatively impacted the overall syntactic represen- 464

tation, disrupting correct subject-verb agreement. 465

BERT-large. BERT-large exhibited higher ex- 466

pected layers for macro-syntactic structures in fail- 467

ure cases, suggesting delayed integration of macro- 468
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bertlargeの内部状態可視化

Layer0 Layer5

Failure Case

Layer12
Successful Case

Figure 7: MDS visualizations of syntactic structure evolution in BERT-large for subject-verb agreement for a
successful case (“The customers near the guard prefer quiet evenings.”) and an failure case (“The senators behind
the architects avoid spicy dishes.”). Red highlights indicate the correct subject.

syntactic information. Figure 7 illustrates represen-469

tative successful and unsuccessful cases for BERT-470

large. Successful predictions demonstrate early471

alignment of the subject (customers; highlighted in472

red) with the verb (prefer) around layer 5, facilitat-473

ing accurate subject-verb agreement. Conversely,474

in unsuccessful cases, this alignment emerged con-475

siderably later (around layer 12), highlighting de-476

layed macro-syntactic integration.477

Taken together, these analyses suggest an op-478

timal intermediate range of layers for integrat-479

ing macro-syntactic information. Forming macro-480

syntactic structures either prematurely or exces-481

sively late can negatively affect syntactic process-482

ing, highlighting the importance of appropriately483

timed integration for accurate predictions. These484

visualizations underscore how deviations from this485

optimal timing contribute to subject-verb agree-486

ment errors.487

8 Discussion and Conclusion488

In this paper, we introduced Derivational Probing—489

a method that integrates structural probing with490

an expected layer metric to trace the construction491

process of syntactic structures in neural language492

models. Our experiments revealed that BERT mod-493

els tend to build micro-syntactic dependencies first494

and gradually assemble them into a coherent macro-495

structure.496

BERT’s bidirectional context supports a step-497

wise, bottom-up construction—starting with the 498

formation of local, micro-syntactic structures and 499

culminating in a fully integrated macro representa- 500

tion. These findings offer valuable insights into the 501

internal mechanisms by which deep neural models 502

construct syntactic trees and highlight the impor- 503

tance of examining layer-wise structural formation 504

for improved model interpretability. 505

One promising avenue for future research is 506

the design of more controlled probing tasks and 507

datasets. By constructing minimal pairs that differ 508

only in specific grammatical properties (or by using 509

Jabberwocky-style sentences devoid of semantics; 510

Maudslay and Cotterell, 2021), future studies can 511

better isolate the abstract syntactic rules that mod- 512

els learn. Moreover, incorporating multilingual and 513

cross-domain probes will help determine whether 514

these syntactic features generalize beyond English 515

or are artifacts of a particular corpus. Finally, an- 516

other exciting direction is to explore left-to-right 517

parsing strategies as an alternative to tracking the 518

construction process through layers (e.g., Eisape 519

et al., 2022), which could yield further insights into 520

the role of processing order in syntactic representa- 521

tion. 522
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