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Abstract

Recent advancements in video generation have enabled the creation of high-quality,
visually compelling videos. However, generating videos that adhere to the laws of
physics remains a critical challenge for applications requiring realism and accuracy.
In this work, we propose PhysHPO, a novel framework for Hierarchical Cross-
Modal Direct Preference Optimization, to tackle this challenge by enabling fine-
grained preference alignment for physically plausible video generation. PhysHPO
optimizes video alignment across four hierarchical granularities: a) Instance Level,
aligning the overall video content with the input prompt; b) State Level, ensuring
temporal consistency using boundary frames as anchors; c) Motion Level, modeling
motion trajectories for realistic dynamics; and d) Semantic Level, maintaining
logical consistency between narrative and visuals. Recognizing that real-world
videos are the best reflections of physical phenomena, we further introduce an
automated data selection pipeline to efficiently identify and utilize "good data"
from existing large-scale text-video datasets, thereby eliminating the need for costly
and time-intensive dataset construction. Extensive experiments on both physics-
focused and general capability benchmarks demonstrate that PhysHPO significantly
improves physical plausibility and overall video generation quality of advanced
models. To the best of our knowledge, this is the first work to explore fine-grained
preference alignment and data selection for video generation, paving the way for
more realistic and human-preferred video generation paradigms. PhysHPO Page

1 Introduction
Video generation has recently achieved significant strides in producing high-quality, visually com-
pelling [39, 73, 90, 99, 64], and lengthy [28, 19, 60, 96] videos depicting real-world scenarios.
Despite these advancements, generating videos that adhere to the laws of physics remains a challeng-
ing and critical research problem. The ability to create physically plausible videos is essential for
applications ranging from virtual reality to simulations, where realism and accuracy are paramount.

Current efforts to enhance the physical fidelity of text-to-video (T2V) generation can be broadly
categorized into test-time reflection-based optimization and training-time tuning-based optimiza-
tion. Test-time reflection-based methods, such as PhyT2V [85], employ a large language model
(LLM) to iteratively refine initial T2V prompts. While effective, these methods significantly decrease
computational efficiency and are inherently limited by the upper bounds of the model’s capabilities in
self-correction paradigms. Conversely, recent tuning-based methods (e.g., WISA [75] and SynVideo
[98]) focus on traditional supervised fine-tuning (SFT) paradigms. Although effective, SFT relies
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Figure 1: PhysHPO significantly improves the physical plausibility of video generation. Text prompts
are adopted from VideoPhy [6]. (Top) Fluid-Fluid: Honey diffusing into warm milk. (Middle) Solid-Fluid:
An apple falls into a vat of red wine. (Bottom) Solid-Solid: Peeler peels an apple.

heavily on fixed supervisory signals, which show suboptimal effectiveness when targeting specific
capability optimization [43, 51, 23].

Emerging post-training techniques like Direct Preference Optimization (DPO) [61] have demonstrated
more efficient pair-wise optimization paradigms to discern differences between human-preferred and
non-preferred samples, enhancing specific aspects of visual generation models, e.g., safety [63, 50],
customization [43], super-resolution [9]. This indicates DPO holds potential for physically plausible
video generation, yet remains largely underexplored. However, recent DPO works in video generation
[51, 94, 36, 16] predominantly focus on coarse-grained alignment between videos at the instance
level, which may result in suboptimal preference alignment [31]. We emphasize that achieving
optimal alignment, particularly for physically plausible video generation, necessitates fine-grained
preference alignment that goes beyond visual appeal to incorporate detailed modeling.

Building on these insights, we propose a novel framework, Hierarchical Cross-Modal Direct Prefer-
ence Optimization for physically plausible video generation, namely PhysHPO. PhysHPO enhances
video preference alignment across hierarchical granularities. Specifically, we design four levels of
alignment: ❶ Instance Level: Ensuring comprehensive alignment by matching the overall prompt
content with the most suitable video. ❷ State Level: Leveraging boundary frames as critical anchors
for establishing plausible states. ❸ Motion Level: Modeling motion through structural information
within videos, enabling alignment beyond mere pixel appearance. ❹ Semantic Level: Ensuring
logical consistency between what is described and what is visually portrayed.

Moreover, compared to existing SFT methods [75, 98] for generating physically plausible videos,
which consume extensive resources in dataset construction, we argue that the popular "One-Model-
One-Dataset" paradigm may not be optimal. Unlike tasks like condition-guided (e.g., dancing
[103, 30]) or style-focused (e.g., cartoon [82, 19]) video generation, which demand additional data
annotations or domain-specific data, real-world videos inherently encapsulate rich physical dynamics,
suggesting potential for more efficient data utilization. To this end, we propose a novel automated
data selection pipeline to efficiently process existing large-scale text-video datasets, circumventing
exhaustive new data collection efforts for physically plausible video generation. Unlike existing data
processing pipelines for high-quality video large-scale pre-training (e.g., in Open-Sora [99]), our key
idea is to select a subset of "good data" from large, high-quality raw data that closely matches desired
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target requirements—intuitively, real-world videos where physical laws are prominently reflected.
To the best of our knowledge, no prior work has explored data selection in the domain of video
generation. To summarize, this work contributes in threefold:
• We introduce a novel Hierarchical Cross-Modal DPO (PhysHPO) framework for video generation,

a more fine-grained DPO strategy to enhance alignment between videos, optimizing for physically
plausible video generation.

• We advocate leveraging real-world videos rather than constructing datasets from scratch for
physically plausible video generation. This approach intuitively reflects physical phenomena and
introduces the data selection problem to video generation for the first time.

• Extensive experiments on both physics-focused (i.e., VideoPhy [6], PhyGenBench [54]) and general
capability (i.e., VBench [34]) benchmarks demonstrate that PhysHPO significantly improves the
physical plausibility and overall video generation capabilities of existing advanced models.

2 Related Work
Physics-aware Video Generation While generating visually compelling videos has advanced,
achieving physics plausibility remains challenging, as noted by users and benchmarks [6, 38, 56, 42,
54, 65]. Existing works [40, 55, 52, 88] in image-to-video (I2V) focus on parsing objects from images
and estimating their motion by considering physical properties, and Li et al. [41] explores solely
object freefall. However, these methods are limited to fixed physical categories or static scenarios,
which restricts their generalizability. Recent works [85, 75, 98] aim to enhance the broader physical
plausibility of T2V models. PhyT2V [85] introduces an LLM for iteratively prompt refinement
during test time. However, the hugely increased inference overhead and inherent performance
limitations restrict its effectiveness. Subsequent research has explored traditional SFT to improve
model performance. Specifically, WISA [75] constructs a 32K video dataset, and SynVideo [98] uses
a computer graphics pipeline to synthesize video data, both requiring substantial manual intervention,
which is resource-intensive. Intuitively, real-world videos naturally reflect physical phenomena.
Thus, efficiently utilizing existing datasets without unnecessary data inefficiency is an intriguing
problem. To this end, we introduce the concept of data selection for video generation for the first time,
automating the process to leverage available data resources effectively. While SFT has demonstrated
superior performance in pre-training, we propose adopting the DPO post-training paradigm to further
model differences between video pairs, enabling deeper exploration of physical information.

Data Selection for "Good Data" Data selection is a pivotal technique for efficiently training
models without sacrificing performance [3, 74], as highlighted in both pre-training [7, 70] and
post-training [14, 47] stages. Recent studies emphasize that the effectiveness of LMs stems from a
combination of large-scale pre-training and smaller, meticulously curated instruction datasets [69,
17, 18, 77, 101]. Various sophisticated approaches have been proposed for LMs, including quality-
based [45, 20, 46], diversity-aware [24, 53], complexity considerations [84, 67, 35], alongside simpler
heuristics like selecting longer responses and gradient-based coreset selection [80, 95, 59], collectively
demonstrating significant benefits in LM training. However, existing methods predominantly target
LMs, leaving their potential in video generation largely unexplored. In this work, we pioneer the
exploration of data selection strategies specifically for video generation in the post-training phase.
We propose a new automated data selection pipeline, explicitly emphasizing reality, physical fidelity,
and diversity to enhance the generation of physically plausible videos.

Direct Preference Optimization for Video Generation DPO [61] has emerged as a promising
alternative to traditional RLHF [58] for enhancing LMs [31, 27, 49] and image generative models
[72, 78] without needing an extra reward model. Recent efforts have applied DPO to video generation.
Pioneering work like VideoDPO [51] follows the Diffusion-DPO [72] paradigm, introducing OmniS-
core for adaptive video scoring, while HuViDPO [36] aligns outputs with human preferences using
feedback. OnlineVPO [94] optimizes off-policy with a video-centric model, and MagicID [43] uses
DPO for ID-conditioned customization. Cheng et al. [16] employs a discriminator-free approach for
direct optimization, and GAPO [102] introduces AnimeReward for anime video generation. Recent
foundation models like Seaweed-7B [64], SkyReels-V2 [10] also incorporate DPO in post-training,
further highlighting its potential. However, existing DPO works focus solely on coarse-grained
alignment at the video instance level, overlooking finer details. In this paper, we aim to enhance
DPO’s effectiveness, specifically for generating physically plausible videos by modeling fine-grained
alignment. To achieve this, we propose a novel hierarchical cross-modal preference optimization
framework, named PhysHPO, which effectively captures the fine-grained details of videos.
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3 Preliminaries
Direct Preference Optimization for Diffusion Models Diffusion-DPO [72] adapts human pref-
erence alignment to iterative generation processes, eliminating explicit reward modeling. Given a
diffusion model pθ(y|x, t) and reference model pref(y|x, t), the denoising objective with preference
constraints becomes

max
pθ

Et,x,y∼pθ
[r(x, y, t)]− βDKL (pθ(y|x, t) ∥ pref(y|x, t)) , (1)

where r(·) denotes the time-dependent reward function, x the input condition, y the generated sample,
and t the timestep. DPO establishes a trajectory-level reward mapping through denoising paths:

r(x, y, t) = β log
pθ(y|x, t)
pref(y|x, t)

+ β logZ(x, t), (2)

where β controls KL constraint strength, and Z(x, t) the time-dependent partition function.

The preference optimization objective is derived by substituting the reward parameterization and
applying negative log-likelihood loss:

LDPO = −E(x,yw,yl)∼D log σ (u(x, yw, yl, t)) , u = log
pθ(yw|x, t)
pref(yw|x, t)︸ ︷︷ ︸

Preferred path score

− log
pθ(yl|x, t)
pref(yl|x, t)︸ ︷︷ ︸

Non-preferred path score

. (3)

4 Data Selection: From Physical to Diverse
Existing text-video datasets have already been rigorously screened for quantity and quality [99, 57,
48, 15]. While creating specific datasets for different tasks is popular [93, 33, 19, 92], for physically
plausible video generation, real-world videos inherently reflect physical laws. Thus, selecting existing
data may be more optimal than constructing new datasets [75, 98]. In this section, we present an
initial exploration of the data selection in video generation, focusing specifically on identifying "good
data" that effectively reflects physical laws.

4.1 The Data Selection Problem
Video generation models undergo pre-training to learn world knowledge [8, 2]. Fine-tuning these
models aligns them with specific goals, analogous to instruction tuning in LMs [91]. Data selection
has proven effective for aligning LMs by identifying a small, high-quality dataset [53, 81, 25, 80].
Consider a large data pool D = {x1, x2, · · · , xn}, where each data point xi = (Vi, Ci) consists of a
video Vi and its corresponding caption Ci. The objective is to select a subset S(m) of size m that
maximizes the post-training performance P:

S∗ = argmaxP(S(m)). (4)

While there are various potential ways for data selection in a desired domain, our goal is to keep the
process as simple as possible to be practical, as shown in Figure 2 (Left). We next detail the process.

4.2 Selection for Real-World Physics

Table 1: Accuracy of two-stage real-
ity selection with 1, 000 samples.

Reality Selection Acc (%)
+ Qwen2.5-VL [4] 99.6
+ DeepSeek-VL2 [79] 100.0

Reality Given a large-scale high-quality text-video dataset
D (we adopt OpenVidHD-0.4M [57] in this work, which is
widely utilized for post-training [12, 87, 68, 13]), the first step
is to filter out real-world videos into a real-world data pool D′.
Specifically, considering the significant content differences
between real-world and virtual videos, we employ a vision-
language models (VLMs) (i.e., Qwen2.5-VL [4]) to determine whether a video Vi is a real-world
video. We further task DeepSeek-VL2 [79] for a double-check to ensure the accuracy. Table 1 shows
the accuracy from a random sample of 1,000 videos from D.

Physical Fidelity To align with previous works, we adopt 17 physical phenomena across three
physics categories from WISA [75]: ❶ Dynamic (rigid body motion, collision, liquid motion, gas
motion, elastic motion, deformation), ❷ Thermodynamic (melting, solidification, vaporization,
liquefaction, combustion, explosion), and ❸ Optic (reflection, refraction, scattering, interference and
diffraction, unnatural light source). Unlike widely used heuristic classification-based data selection
methods in LMs that require a target dataset for reference [81, 89, 21], we follow the popular
LLM-as-a-Judge paradigm [53, 26, 102] to employ LLMs for automatic data evaluation.
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Figure 2: The overview of our proposed (Left) data selection and (Right) PhysHPO framework.

To minimize consumption, we then perform selections at the caption level. Given a video caption
Ci, a naive way is to task an LLM with evaluating whether the sample clearly reflects physical laws
by directly assigning a score. However, LLMs might assign similar scores to most samples due to
the lack of references [32]. To address this, we propose adopting in-depth evolving prompting [84]
to augment captions. Unlike previous works [53, 84] that augment samples in a single dimension
(e.g., complexity), we explore multiple dimensions. Specifically, as illustrated in Figure 2, we first
use the crafted evolving-dynamic prompts with an LLM (i.e., Qwen2.5 [86]) to augment the caption,
emphasizing each of the seven physical phenomena in the "Dynamic" category. This helps the model
distinguish differences in captions more precisely, achieving fine-grained scoring. We then ask the
LLM to rank and score these seven samples, obtaining the "Dynamic" scores sd corresponding to the
caption Ci. Similarly, the "Thermodynamic" score st and "Optic" score so can be obtained. This
strategy provides a more nuanced distinction of physical phenomena. Details are in Appendix §B.

The total score is calculated as s = sd × st × so. Then all samples in D′ are sorted based on s,
resulting in the sorted pool S′ = {x′

1, x
′
2, · · · , x′

k}, where x′
0 is the sample with the highest score.

4.3 Selection for Diversity

PhysHPO

Figure 3: Performance comparison
of different data strategies with our
PhysHPO on PhysGenBench [54].

To ensure an advanced generation model can handle varied
user prompts, it’s desirable for data to maintain maximum
diversity within a given budget m. However, real-world data
often exhibits redundancy [1]. To this end, we introduce an
iterative method to ensure diversity in selected real-world data
following Deita [53]. Briefly put, the key idea is to iteratively
select samples x′

i from the data pool S′, adding them to the
dataset S only if they contribute to its diversity. Formally,
we define an indicator function 1[F(x′

i, S
′)], which is 1 if

the diversity criterion F(x′
i, S

′) is met, otherwise 0. Using
LLaMA-1 13B [71], captions are encoded into embeddings,
and cosine distance d is calculated between each candidate
sample and its nearest neighbor in S. A sample contributes to
diversity if d < τ , with τ = 0.9.

We compare the performance of different data selection strate-
gies with vanilla DPO [72], along with our PhysHPO, as
demonstrated in Figure 3. Several key observations are summa-
rized: Obs.❶ Superiority of Data Selection. Our data (21K),
selected for reality and physical fidelity, demonstrates superior quality compared to other strategies
like direct score, random selection, or even the manually constructed dataset WISA-32K [75] and
unselected raw data (433K). "Our Data (21K)+DPO" outperforms "Direct Scoring (21K)+DPO",
"Random Selection (21K)+DPO", "WISA-32K+DPO", and "Raw Data (433K)+DPO", highlighting the
effectiveness of our selection. Obs.❷ Importance of Data Diversity. The comparison between "Our
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Data (21K)+DPO" and "Ours w/o diversity (59K)+DPO" underscores the critical role of diversity
in data selection. Despite fewer samples, the diverse dataset outperforms the larger one, indicating
that diversity enhances model capability. Obs.❸ Strategic Data and Optimization Synergy. The
integration of our selected data with PhysHPO ("Our Data (21K)+PhysHPO") achieves the high-
est performance, illustrating the powerful synergy between strategic data selection and advanced
optimization. More analysis is provided in Appendix §B. We next detail our PhysHPO framework.

5 Methodology
To tackle the challenging physically plausible video generation, we propose PhysHPO, which imple-
ments hierarchical preference optimization across four levels (Figure 2): (i) Instance-level Overall
Preference Optimization, aligning video-level preferences to ensure overall quality (§5.1); (ii) State-
level Boundary Preference Optimization, anchoring physical states at the start and end frames for
stability (§5.2); (iii) Motion-level Dynamic Preference Optimization, utilizing structural informa-
tion to accurately model and align motion representation (§5.3); (iv) Semantic-level Consistency
Preference Optimization, ensuring fine-grained coherence between the narrative and visuals (§5.4).

5.1 Instance-level Overall Preference Optimization
Unlike VideoDPO [51], which relies solely on its base model for preference pair video data (yw, yl),
limiting optimization to the model’s capabilities, our approach leverages data selected through our
data selection process as the preferred video yw and its text prompt x. For the non-preferred video yl,
recent works [102, 94] often generate these using the base model based on x, adhering to Eq.(3) as
the objective function. However, complex dependencies in non-preferred videos are often overlooked.
Typically, video generation faces two main issues: ➀ Imperfections or errors in physical aspects, e.g.,
motion; ➁ Failure to fully express the prompt’s information, e.g., missing objects. To mitigate this,
we introduce two types of non-preferred videos into the optimization process:

LInstance = −E(x,yw,yl)∼D log σ

(
β log

pθ(yw|x, t)
pref(yw|x, t)

− β log
pθ(yl|x, t)
pref(yl|x, t)

)
, (5)

where

log
pθ(yl|x, t)
pref(yl|x, t)

←
∑

i∈{err,gap}

βi log
pθ(y

i
l |x, t)

pref(yil |x, t)
. (6)

Here, yerrl denotes the error-prone or imperfect non-preferred video that aligns semantically with the
preferred sample. In contrast, ygapl represents non-preferred videos with semantic differences from
the preferred sample. Specifically, for constructing yerrl , we generate three videos per x using the
base model and select the one most visually similar by similarity calculation to the preferred video
yw as the rejected video yerrl . For ygapl , we introduce random masking in prompt x during generation
to create semantic differences from yw.

5.2 State-level Boundary Preference Optimization
While the instance-level alignment captures overall content, fine-grained alignment is essential for
generating physically plausible videos, which previous approaches have often overlooked. In video
generation, maintaining a consistent physical state from the beginning to the end of a sequence is
essential for ensuring realism and coherence. The initial and final frames are particularly critical as
they anchor the video’s physical narrative. To this end, we propose the state-level boundary alignment
to enhance the model’s focus on the physical states at the start and end of videos. Specifically, we
replace the first and last N frames of the preferred video yw to construct the state-level non-preferred
sample ystatel . The state level objective function can be defined as

LState ∼ log σ
(
uState(x, yw, y

state
l , t)

)
. (7)

5.3 Motion-level Dynamic Preference Optimization
While the visual appearance of videos is crucial for quality, excessive focus on appearance may
obscure the model’s alignment with physical dynamics. To address this issue and enhance the
model’s learning of dynamic information such as motion, we propose the extraction of structural
information (e.g., optical flow) from both preferred yw and non-preferred yl (specifically yerrl )
videos. These structural features, commonly used in condition-guided video generation [83, 22, 100],
allow for a more explicit representation of the physical motion differences between preferred and
non-preferred samples. Following Eq.(7), the motion-level objective function LMotion is derived
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Table 2: Evaluation on physics-focused benchmarks, i.e., VideoPhy [6], PhyGenBench [54]; and
general quality benchmark, i.e., VBench [34]. Vanilla DPO is implemented with our selected data.
We bold the best results, and "↑" denotes that higher is better.

Method VideoPhy [6] PhyGenBench [54] VBench [34]

SS↑ SF↑ FF↑ Over.↑ Mechanics↑ Optics↑ Thermal↑ Materials↑ Overall↑ Total↑ Quality↑ Semantic↑
CogVideoX-2B [90] 12.7 21.9 25.4 18.6 0.38 0.43 0.34 0.39 0.39 81.6 82.5 77.8
+ PhyT2V [85] 14.1 19.9 28.6 18.9 0.45 0.48 0.34 0.50 0.45 82.0 82.9 78.4
+ Vanilla DPO [72] 15.5 19.2 28.6 19.2 0.43 0.50 0.40 0.50 0.46 82.2 83.1 79.0
+ PhysHPO (Ours) 20.4 24.7 42.9 25.9 0.50 0.56 0.47 0.58 0.53 82.5 83.3 79.3
CogVideoX-5B [90] 24.4 53.1 43.6 39.6 0.39 0.55 0.40 0.42 0.45 81.9 83.1 77.3
+ PhyT2V [85] 25.4 48.6 55.4 40.1 0.45 0.55 0.43 0.53 0.50 82.3 83.3 78.3
+ Vanilla DPO [72] 28.2 50.0 51.8 41.3 0.48 0.60 0.47 0.58 0.54 82.4 83.3 78.7
+ PhysHPO (Ours) 32.4 54.1 58.9 45.9 0.55 0.68 0.50 0.65 0.61 82.8 83.7 79.3

from uMotion(x, yw → ymotion
w , yl → ymotion

l , t), where ymotion
w and ymotion

l represent structural
information extracted from yw and yl, respectively.

5.4 Semantic-level Consistency Preference Optimization
Most prior DPO works in diffusion models primarily rely on visual alignment for optimization.
However, we propose leveraging language to describe visual differences more precisely, providing
specific referential information at the textual semantic level. Inspired by DPO in LMs [61], we
introduce the semantic-level consistency alignment by further modeling the semantic information of
videos at the textual level. Specifically, for each preference video pair yw and yl, we first consider the
prompt x as the preferred caption cw. A VLM (i.e., Qwen2.5-VL [4]) is then tasked to modify cw
based on yl, adjusting the inconsistent parts to generate cl. This process ensures that cw and cl only
differ in textual descriptions where the videos are inconsistent, thereby facilitating more targeted
optimization. The uSemantic(cw, cl, yw, t) within LSemantic is then formulated as:

uSemantic = log
pθ(yw|cw, t)
pref(yw|cw, t)

− log
pθ(yw|cl, t)
pref(yw|cl, t)

. (8)

By integrating instance, state, motion, and semantic-level preference optimization, the overall loss
function for PhysHPO is defined as follows:

LPhysHPO = LInstance + λLState + ρLMotion + µLSemantic, (9)
where λ, ρ, and µ denote the loss weights.

6 Experiments
In this section, we conduct extensive experiments to answer the following research questions: (RQ1)
Does PhysHPO enhance the physical plausibility of generated videos? (RQ2) Does PhysHPO
compromise other performance aspects? (RQ3) How sensitive is PhysHPO to its key components?
(RQ4) Is PhysHPO more advantageous than SFT for efficiency, effectiveness, and generalizability?

6.1 Experimental Settings
Baselines We apply PhysHPO to the advanced models, CogVideoX-2B and 5B [90]. Due to the
unavailability of open-sourced code and model weights for SFT-based methods, i.e., WISA [75]
and SynVideo [98], we focus our comparisons on the following baselines: PhyT2V [CVPR’25] [85],
vanilla DPO [CVPR’24] [72], SFT [90], and the respective base models. Implementation and results on
HunyuanVideo [39] are shown in Appendix §A.

Evaluations To evaluate the effectiveness of PhysHPO, we adopt benchmarks focusing on two key
aspects: ❶ Physics-focused: (i) VideoPhy [6] for interactions of solid-solid, solid-fluid, and fluid-fluid.
(ii) PhyGenBench [54] for mechanics, optics, thermal, and materials. ❷ General Capability: VBench
[34] for both overall quality and semantic.

Implementation Details We train base models on our selected dataset with a global batch size of 8,
using the AdamW optimizer and a learning rate of 2e− 5. Instance-level non-preferred weights are
set to βerr = 0.7 and βgap = 0.3, with N = 2 for state-level samples. The loss weights λ, ρ, and µ
are set to 0.4, 0.3, and 0.2, respectively. All experiments are conducted on 8 NVIDIA H100 GPUs.

6.2 Physical & General Performance of PhysHPO
To answer RQ1 and RQ2, we comprehensively compare PhysHPO with three baseline methods on
physics-focused and general benchmarks (Table 2), along with the qualitative results and user study
shown in Figure 1, 4 and Figure 5 (Left), respectively. Our observations are summarized as follows:
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Figure 4: Qualitative results of PhysHPO. Due to space limitations, results of other baselines are
provided in Appendix §D. Text prompts are sourced from PhyGenBench [54]. (1st) Materials: A
delicate, fragile egg is hurled with significant force towards a rugged, solid rock surface, where it collides upon
impact. (2nd) Mechanics: A vibrant, elastic tennis ball is thrown forcefully towards the ground, capturing its
dynamic interaction with the surface upon impact. (3rd) Optics: A magnifying glass is gradually moving closer
to a coin, revealing the intricate details and textures of the embossed design as it approaches. (4th) Thermal: A
timelapse captures the transformation of milk in a kettle as the temperature rapidly rises above 100◦C.

Obs.❹ PhysHPO demonstrates superior performance in enhancing both physical fidelity and
general quality. As illustrated in Table 2, our PhysHPO consistently outperforms baseline methods
(i.e., PhyT2V [85] and vanilla DPO [72]), which exhibit minimal or even negative performance gains,
across three physics-focus benchmarks, each targeting distinct dimensions of physical plausibility.
Table 2 further highlights its robustness on VBench [34] for general capabilities. Qualitative com-
parisons in Figure 1 and Figure 4 provide visual confirmation of PhysHPO’s ability, showcasing
clear advantages over the base model. Obs.❺ PhysHPO effectively align video generation with
human preference. Figure 5 (Left) shows the user study conducted on both physical and general
dimensions, where PhysHPO consistently outperforms baselines in aligning video generation with
human preferences, demonstrating its superiority in preference alignment.

6.3 Ablation Analysis
Table 3: Ablation study on level losses.
Method SS↑ SF↑ FF↑ Over.↑
PhysHPO 32.4 54.1 58.9 45.9
w/o LSemantic 31.7 53.4 57.1 45.1
w/o LSemantic, LMotion 30.3 52.1 55.4 43.6
Only w/ LInstance 28.9 50.7 51.8 41.9
Vanilla DPO w/ Our Data 28.2 50.0 51.8 41.3

To answer RQ3, we conduct evaluations on VideoPhy [6]
for the contributions of PhysHPO’s each level and their
combinations, as shown in Table 3. We give the follow-
ing observations: Obs.❻ Effectiveness of Hierarchical
Preference Optimization. Table 3 demonstrates a steady
performance decline as LSemantic, LMotion, and LState are
progressively removed. This underscores the effectiveness
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PhysHPO

PhysHPO

PhysHPO

PhysHPO

PhysHPO

Figure 5: (Left) User study across five dimensions: overall preference, semantic adherence, physical
commonsense, visual quality, and motion quality. (Middle) Performance comparison between
PhysHPO and SFT under varying data volumes. (Right) Robustness testing with IPV-TXT [5].

+ PhysHPO

Baseline

+ PhysHPO

Baseline
"A piece of paper” -> “steam” "A ceramic cup” -> “vanishes into thin air”

+ SFT + SFT

Figure 6: Robustness testing demonstration. Detailed prompts can be found in Appendix §C.

of the hierarchical preference optimization framework, where each level contributes uniquely to
improving physical fidelity. Obs.❼ Importance of Fine-grained Alignment. Fine-grained alignment,
both explicit and implicit, is critical for optimization: i) The removal of instance-level gap video
alignment ("Only w/ LInstance" vs. "Vanilla DPO w/ Our Data") highlights the importance of visu-
ally explicit modeling in bridging gaps between generated and real-world semantics and dynamics. ii)
The exclusion of LSemantic reveals the necessity of implicit text-video alignment for capturing nuanced
and coherent relationships between textual prompts and generated videos.

6.4 Analysis of PhysHPO vs. SFT
To answer RQ4, we compare PhysHPO and SFT using the same data on PhyGenBench for physical
fidelity and VBench for general quality, as shown in Figure 5 (Middle). Inspired by [5], we further as-
sess both methods with impossible prompts (e.g., "A car drives through the ocean as if it were flying")
to evaluate whether improvements in physical fidelity also enable better handling of imaginative or
physically impossible scenarios, with results presented in Figure 5 (Right) and Figure 6. We give the
following observations: Obs.❽ PhysHPO is a data-efficient video generation enhancer. Figure 5
(Middle) demonstrates that PhysHPO consistently outperforms SFT across varying data volumes
in both physics-focused and general quality metrics. This reflects PhysHPO’s ability to achieve
superior performance by leveraging training data more efficiently through fine-grained information
utilization. Obs.❾ PhysHPO enables creative generalization beyond physical laws. As shown in
Figure 5 (Right) and Figure 6, PhysHPO performs better on impossible prompts, generating videos
that align more closely with semantic intent while maintaining internal consistency. This suggests
that enhancing physical fidelity not only improves adherence to real-world physics but also equips
the model with a stronger ability to generalize and adapt to imaginative scenarios, demonstrating
learning beyond simple physical rules.

7 Conclusion
In this paper, we propose PhysHPO, a novel framework for Hierarchical Cross-Modal Direct
Preference Optimization, enhancing video fine-grained alignment across four levels: instance, state,
motion, and semantic. Recognizing real-world videos as the best reflections of physical phenomena,
we introduce an automated data selection pipeline to efficiently utilize large-scale text-video datasets,
removing the need for exhaustive dataset construction. Extensive evaluations on both physics-focused
and general benchmarks demonstrate that PhysHPO significantly improves the physical plausibility
and overall quality of existing video generation models, addressing key challenges in physically
plausible video generation.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Both the abstract and introduction effectively highlight the paper’s pioneering
exploration of fine-grained direct preference optimization modeling and data selection
techniques in the field of video generation. We also claim the contributions validated
through experimental results.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The paper includes a discussion of its limitations in Appendix §E, where we
outline the constraints of current work and propose potential directions for future research.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
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For example, a facial recognition algorithm may perform poorly when image resolution
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used reliably to provide closed captions for online lectures because it fails to handle
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• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.
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will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: This paper does not involve theoretical results. However, we clearly outline
the relevant formulas in the Methodology section.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
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by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility
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perimental results of the paper to the extent that it affects the main claims and/or conclusions
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to make their results reproducible or verifiable.
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For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
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to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: The complete code, based on the primary model CogVideoX, is provided
anonymously. The data used is from the open-source dataset OpenVid.
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• The answer NA means that paper does not include experiments requiring code.
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public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
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6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper provides detailed information on data selection, hyperparameter
settings, and the type of optimizer used, ensuring clarity in understanding the results.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Following previous works, the paper does not report error bars or provide
information about the statistical significance of the experiments. Besides, due to the long
training times and high computational costs associated with their experiments, we do not
conduct multiple runs to calculate error bars or perform statistical significance tests.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The paper provides sufficient information on the computer resources needed
to reproduce the experiments. The authors mention that all training for PhysHPO was
conducted on eight NVIDIA H100 GPUs.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conforms to the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
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Justification: This paper discuss the Broader Impacts in the Conclusion Section.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: The authors discuss Ethical Implications in Appendix §F.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper properly credits the creators of the datasets and models used, and it
mentions the licenses and terms of use, ensuring compliance with ethical guidelines and
legal requirements.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The new assets introduced in the paper are well documented, and the docu-
mentation is provided alongside the assets, ensuring clarity and reproducibility.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The User Study was conducted by recruiting participants within the institution
rather than through a crowdsourcing platform. However, this provides full text of instructions
given to participants of the user study in Appendix §C.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
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Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This research does not involve LLMs in terms of training or fine-tuning as
part of its core contributions. The use of LLMs is limited to the data selection process and
for tasks such as editing the manuscript. These uses do not impact the originality or core
methodology of the research, and therefore do not require detailed declaration.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A More Results on HunyuanVideo
To further validate the superiority of our proposed PhysHPO, in this section, we further apply
PhysHPO on HunyuanVideo-540p [39] implemented by FastVideo [97].

Method VideoPhy [6] PhyGenBench [54] VBench [34]

SS↑ SF↑ FF↑ Over.↑ Mechanics↑ Optics↑ Thermal↑ Materials↑ Overall↑ Total↑ Quality↑ Semantic↑
HunyuanVideo [39] 19.7 43.2 42.9 33.4 37.5 58.0 36.7 45.0 45.6 81.4 83.1 74.9
+ PhyT2V [85] 21.1 45.9 50.0 36.3 40.0 58.0 33.3 47.5 46.3 80.5 82.0 74.5
+ PhysHPO (Ours) 26.8 50.7 55.4 41.6 47.5 62.0 43.3 60.0 54.4 81.9 83.5 75.7

Table 4: Evaluation of PhysHPO on HunyuanVideo [39].

Quantitative Results Table 4 presents the quantitative results of PhysHPO on HunyuanVideo.
Consistent with our Obs.❹ in the main content, PhysHPO achieves superior performance in enhancing
both physical fidelity and overall video quality. These results further validate its effectiveness.

Qualitative Results We demonstrate results in Figure 7. More results on human action are shown
in Section §D.

“A bulldozer clears debris from a construction site, moving it into a dumpster."

“Multiple candles of varying heights and widths are blown out simultaneously by a single breath, some 
flames extinguishing faster than others."

“An apple submerging into a water."

“A volleyball is spiked, hitting the wooden floor of the court and producing a soundless bounce visible by 
its slight dip and subsequent rebound."

HunyuanVideo

+ PhysHPO

HunyuanVideo

+ PhysHPO

HunyuanVideo

+ PhysHPO

HunyuanVideo

+ PhysHPO

Figure 7: Qualitative demonstration of PhysHPO on HunyuanVideo [39].

24



B More Details of Data Selection

In-depth Evolving Prompting To achieve more fine-grained scoring for the physical fidelity
of real-world videos, we employ the in-depth evolving prompting strategy [84]. This approach
augments sample captions to emphasize specific physical phenomena. An example of our crafted
evolving-dynamic prompt is shown in Figure 8.

Figure 8: Demonstration of crafted evolving-dynamic prompt.

Similarly, the evolving-thermodynamic and evolving-optic prompts follow the same structure.

In addition to the performance comparison between our evolving-based scoring and direct scoring
shown in Figure 3, we also provide examples with detailed scores under different strategies in Figure 9.

Figure 9: Comparison of direct scoring vs. our evolving scoring.
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Specifically, we compare a sample of dynamic stirring (Top) with another sample where the camera
zooms out but the scene remains static (Bottom). As shown, the direct scoring strategy assigns similar
scores to these two distinct videos, while our evolving-based scoring provides more fine-grained
differentiation and accurate assessments.

Analysis of Caption-based Selection In our data selection process, we first performed video-based
filtering to ensure reality, followed by caption-based filtering to enhance physical fidelity and diversity.
Here, we further validate the efficiency and effectiveness of our caption-based selection strategy.

Figure 10: Efficiency comparison of video-based selection vs. our caption-based selection. (Left)
GPU Memory Consumption (GiB). (Middle) H100 GPU Hours (hrs). (Right) Cost (USD).

Figure 10 first demonstrates an efficiency comparison of our caption-based selection and video-based
selection. Specifically, ❶ GPU Memory Consumption (Left): Caption-based selection requires
significantly less GPU memory, reducing usage by 18.1% compared to video-based selection (15, 403
GiB vs. 18, 741 GiB). This reduction highlights the computational efficiency of our method in terms
of memory footprint. ❷ H100 GPU Hours (Middle): Video-based selection increases compute time
by 27.6% (3, 410 hrs vs. 2, 736 hrs), indicating that caption-based selection is more time-efficient
and better suited for large-scale processing. ❸ Cost (Right): At scale, video-based workflows
incur an additional $674.00 in cost compared to caption-based workflows, further emphasizing the
cost-efficiency of our approach.
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Figure 11: Adjacency accuracy (±0.3) of dif-
ferent scoring strategies with human scoring.

To further validate the effectiveness of our caption-
based selection, we randomly sampled 100 data
points from the reality-selected data pool for human
scoring. We then analyze the scoring accuracy by
comparing human scoring results with three scoring
methods: video-based scoring, caption-based direct
scoring, and our caption-based evolving scoring. As
demonstrated in Figure 11, our caption-based evolv-
ing scoring achieves the highest alignment with hu-
man scoring across all three evaluated dimensions.
These results further confirm that our method not only
improves computational efficiency but also ensures
superior scoring reliability.

Table 5: Statistics of data selection.
Data Selection Total Count
Raw Data 433,523
+ Reality 266,931
+ Physics 59,076
+ Diversity 21,085

Statistical Overview To provide a clearer understanding
of each stage in our data selection process, we present the
statistical breakdown in Table 5. The raw data is sourced
directly from OpenVidHD-0.4M [57]. Moving forward, we
will process more existing high-quality text-video datasets
(e.g., MiraData [37], InternVid [76]) using our data selection
pipeline to facilitate future research.

Data Sample Demonstration Real-world videos serve as direct reflections of physical phenomena.
Here, we present examples of our selected videos as illustrative examples, as shown in Figure 12.
These examples highlight diverse physical scenarios, providing a reference for the types of phenomena
captured in our dataset.

C More Experimental Settings and Analysis

C.1 More Details of Experimental Settings

Physics-focused Metric We evaluate the physical fidelity of generated videos using two widely
adopted physics-focused benchmarks: VideoPhy [ICLR’25] [6] and PhyGenBench [ICML’25] [54].
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Figure 12: Randomly sampled data demonstration from our selected dataset.

Following the evaluation protocol introduced in WISA [75], we leverage VideoCon-Physics from
VideoPhy [6] to assess two key metrics: Physical Law Consistency (PC) and Semantic Coherence
(SA) of the generated videos. Specifically, we use 344 carefully curated prompts from VideoPhy and
160 prompts from PhyGenBench, both designed to reflect a diverse range of physical principles and
scenarios.

To quantify performance, we follow the scoring criteria outlined in the respective benchmark papers.
For both VideoPhy and PhyGenBench, we consider PC and SA values greater than or equal to 0.5 as
PC = 1 and SA = 1, while values less than 0.5 are treated as PC = 0 and SA = 0. Specifically:
• For VideoPhy, we report the proportion of generated videos where both PC = 1 and SA = 1,

reflecting the alignment with physical laws and semantic intent simultaneously.
• For PhyGenBench, we focus exclusively on the Physical Commonsense Alignment (PCA) score,

which evaluates the consistency of physical reasoning under the condition that PC = 1.

This evaluation framework ensures consistency with prior work and provides a robust assessment of
the physical fidelity and semantic coherence of the generated videos.

Impossible Robustness Testing Inspired by Impossible Videos [ICML’25] [5], we further employ
prompts from IPV-TXT [5] to evaluate whether PhysHPO goes beyond merely fitting fixed physical
phenomena and demonstrates stronger generalization and robustness. The results are illustrated in
Figure 5 (Right) and Figure 6.

For the quantitative comparison shown in Figure 5 (Right), we follow the evaluation protocol in [5]
to assess the generated videos on two key metrics:
• Visual Quality (VQ): This metric is derived by combining six factors from VBench [34], including

Subject Consistency, Background Consistency, Motion Smoothness, Aesthetic Quality, Imaging
Quality, and Dynamic Degree. These factors are aggregated into a single score to reflect the overall
visual quality of the generated videos.

• Impossible Prompt Following (IPF): This metric evaluates how well the generated videos align
with the semantic intent of the impossible prompts. Following [5], we utilize GPT-4o to provide a
binary judgment for each video based on prompt adherence and calculate the proportion of positive
judgments as the final IPF score.

For the qualitative comparison presented in Figure 6, we further detail the prompts here:
• Left: "A piece of paper mysteriously transforms into steam on a wooden table. The surreal sequence

begins with someone placing the paper down, followed by a gentle touch from a human hand that
triggers an unexpected reaction - the solid paper instantly vaporizes into wisps of white steam that
dissipate into the air."

• Right: "A ceramic cup sitting on a plain table surface mysteriously vanishes into thin air in this
photo-realistic footage. The abrupt disappearance happens without any visible cause, defying
physics in an uncanny way. The scene is captured in crisp, lifelike detail with natural lighting."

User Study We conduct a user study to evaluate human preferences using both the mean opinion
score (MOS) and direct pairwise comparisons. Specifically, we design a user-friendly interface to
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facilitate the evaluation process and collect feedback from a total of 15 volunteers. The detailed
instructions provided to participants are shown below.

User Study: Physically Plausible Video Generation

Thank you for participating in our user study! Please follow these steps to complete your
evaluation:

1. Video Generation: Carefully read the target prompt provided, and then view the provided
videos.
2. Scoring Criteria: Assign a score to each generated video based on the following aspects
(1 being the lowest, 5 being the highest):

• Overall Preference: A holistic evaluation of your overall satisfaction with the generated
video, including aspects such as semantics, physical reasoning, visual quality, and motion
quality.

• Semantic Adherence: How accurately the video reflects the input semantic description
or textual instructions.

• Physical Commonsense: Whether the video content aligns with basic physical common-
sense, such as the laws of motion, object interactions, and logical behavior.

• Visual Quality: The visual appearance of the video, including resolution, clarity, color
representation, and texture details.

• Motion Quality: The smoothness and naturalness of motion in the video, including
object or character trajectories and speed variations.

3. Submission: Click the "Submit Scores" button to submit your scores.

Notations:
1. We observe that the edge browser is not fully compatible with our interface. Chrome is
recommended.
2. Remember to click the "Submit Scores" button after your evaluation.
3. If you see that videos and the score sliders are not aligned, shrinking your page usually
works.
4. If the video seems to be stuck, usually waiting for a few seconds will sovle this.
5. If the page is not responsive for a long time, please try to refresh it.
6. If you have any questions, please directly contact us. Thank you for your time and effort!

C.2 More Analysis

0.1/0.9 0.3/0.7 0.5/0.5 0.7/0.3 0.9/0.10.0 0.2 0.4 0.6 0.80.0 0.2 0.4 0.6 0.8 0.0 0.1 0.3 0.7 0.9

Figure 13: Hyperparameter analysis of PhysHPO on VideoPhy [6].

Analysis of Hyperparameters Figure 13 presents a detailed analysis of the impact of various
hyperparameters on the performance of PhysHPO on the VideoPhy [6] benchmark. a) The first plot
examines the state-level loss weight (λ), showing that accuracy improves as λ increases, peaking at
λ = 0.4, before declining. This suggests that moderate emphasis on state-level consistency enhances
performance, while excessive weighting may lead to overfitting to low-level details. b) Similarly, the
motion-level loss weight (ρ) in the second plot demonstrates a comparable trend, with performance
reaching its best at ρ = 0.3. This highlights the importance of capturing motion dynamics, but also the
potential detriment of overemphasizing this aspect. c) The third plot explores the semantic-level loss
weight (µ), where accuracy improves with increasing µ up to µ = 0.2, after which the performance
plateaus or slightly declines. This underscores the necessity of aligning semantic-level information
to ensure coherent and contextually accurate video generation. d) Finally, the fourth plot analyzes
the balance between error (βerr) and gap (βgap) samples in instance-level negative sampling. Results
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indicate that the weighting (βerr/βgap = 0.7/0.3) achieves the highest accuracy, as both sample types
contribute to model robustness. Overemphasizing either error (βerr/βgap = 0.9/0.1) or gap samples
(0.1/0.9) diminishes performance, likely due to an imbalanced training signal.

Analysis of Non-preferred Samples The choice of non-preferred samples determines their contrast
with preferred samples and significantly impacts the model’s focus on preference learning. Here, we
further explore the selection strategies for non-preferred samples at the instance, state, and motion
levels, while ensuring consistency with the corresponding preferred sample configurations in the
main text. Specifically, i) Instance-level: The number of generated error videos corresponding to a
preferred video, i.e., how many videos are generated to select the error video; ii) State-level: The
number of boundary frames swapped to construct non-preferred samples; iii) Motion-level: The
choice of structural representations, e.g., depth map, optical flow, and Canny edge.

(a) Instance-level (b) State-level (c) Motion-level

Figure 14: Non-preferred samples analysis of (a) Instance-level, (b) State-level, and (c) Motion-level.

Figure 14 illustrates the impact of different non-preferred sample selection strategies on model
performance: (a) Instance-level: We observe that selecting three generated samples achieves the
best performance. While increasing the number of samples can lead to slight performance gains, it
also incurs higher computational costs, making three a practical balance. (b) State-level: Swapping
a moderate number of boundary frames yields optimal results, as excessive or insufficient frame
swapping diminishes the contrast between preferred and non-preferred samples. (c) Motion-level:
Optical flow achieves the highest overall score, demonstrating its effectiveness in capturing motion
dynamics. In contrast, depth maps and Canny edge representations show relatively lower performance,
likely due to their less detailed motion information. These results emphasize the importance of
carefully balancing computational efficiency and performance when selecting non-preferred samples.
Proper configurations at each level ensure effective and robust model performance.

D Exhibition Board
We provide more comparison results here in Figure 15 (with baselines) and Figure 16 (with physically
focused prompts), along with results on human action/motion in Figure 17 (HunyuanVideo [39])
and Figure 18 (CogVideoX [90]). We would highly recommend watching the Webpage.

E Limitation and Future Works
While PhysHPO excels at aligning videos with fine-grained precision, the substantial computational
cost required for training large-scale video generation models remains a potential limitation, particu-
larly for individuals and organizations with limited resources. Future research should explore more
lightweight architectures (e.g., FramePack [96]) or further explore test-time preference alignment
to achieve greater performance improvements with reduced computational overhead. Additionally,
the data selection strategy introduced in this paper is designed to be relatively simple for practicality.
Future work should further optimize it based on specific task requirements.

F Ethical Implications
PhysHPO is developed as a hierarchical preference optimization strategy for RESEARCH ONLY. It
may still raise important ethical considerations, particularly around content generation. The ability to
generate high-quality videos can potentially be misused for creating misleading or harmful content.
To mitigate this risk, we recmmend incorporating safeguards such as adding watermarks to generated
videos to ensure transparency and authenticity. Additionally, guidelines on responsible use should be
established, emphasizing its application in ethical and creative contexts, such as educational, artistic,
or research-based scenarios, while discouraging its use for deceptive or harmful purposes.
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CogVideoX

+ PhysDPO

CogVideoX

+ PhysHPO

“A whisk mixes an egg in a bowl.”

CogVideoX+ PhyT2V

CogVideoX+ DPO

“A black pen is used to write on the smooth, white surface of a notebook, showcasing the interaction 
between the pen and the notebook surface.”

CogVideoX

+ PhysHPO

CogVideoX+ PhyT2V

CogVideoX+ DPO

“A vibrant, elastic beach ball is thrown forcefully towards the ground, capturing its dynamic interaction 
with the surface upon impact.”

CogVideoX

+ PhysHPO

CogVideoX+ PhyT2V

CogVideoX+ DPO

Figure 15: More comparison demonstrations with baselines.
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CogVideoX

+ PhysHPO

“A swimmer glides through the calm ocean waves.”

“An airplane zooms through a patch of fluffy clouds.”

CogVideoX

+ PhysHPO

“A bucket scoops up sea water at the beach.”

CogVideoX

+ PhysHPO

“A French fry dipping into tangy ketchup.”

CogVideoX

+ PhysHPO

“Knife slices the tomato.”

“A collection of prisms is arranged in a pattern with sunlight shining through them.”

CogVideoX

+ PhysHPO

CogVideoX

+ PhysHPO

Figure 16: More results demonstrations with prompts sourced from VideoPhy [6].
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“A group of friends dancing energetically at a party."

“A person skiing down a snowy mountain slope with speed and control."

“A person gracefully ice skating on a frozen lake."

“A person doing push-ups in a gym with perfect form."

“A runner stretching their legs before starting a race."

“A boxer throwing punches and dodging during a training session."

HunyuanVideo

+ PhysHPO

HunyuanVideo

+ PhysHPO

HunyuanVideo

+ PhysHPO

HunyuanVideo

+ PhysHPO

HunyuanVideo

+ PhysHPO

HunyuanVideo

+ PhysHPO

Figure 17: More results demonstrations with human action/motion-focused prompts.
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CogVideoX

+ PhysHPO

“A martial artist practicing slow and controlled Tai Chi movements."

“A person opening a book and flipping through its pages in a library."

CogVideoX

+ PhysHPO

“A runner sprinting through a forest trail during sunset."

CogVideoX

+ PhysHPO

“A skateboarder performing a kickflip on a ramp in an urban skatepark."

CogVideoX

+ PhysHPO

“A child flying a kite on a windy beach.”

“A person swimming underwater in a clear blue pool."

CogVideoX

+ PhysHPO

CogVideoX

+ PhysHPO

Figure 18: More results demonstrations with human action/motion-focused prompts.
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