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Abstract

We study building embodied agents for open-
ended creative tasks. While existing methods build
instruction-following agents that can perform di-
verse open-ended tasks, none of them demonstrates
creativity — the ability to give novel and diverse so-
lutions implicit in the language instructions. This
limitation comes from their inability to convert ab-
stract language instructions into concrete goals and
perform long-horizon planning for such compli-
cated goals. Given the observation that humans per-
form creative tasks with imagination, we propose a
class of solutions, where the controller is enhanced
with an imaginator generating detailed imagina-
tions of task outcomes conditioned on language in-
structions. We introduce several approaches to im-
plementing the components of creative agents. We
implement the imaginator with either a large lan-
guage model for textual imagination or a diffusion
model for visual imagination. The controller can
either be a behavior-cloning policy or a pre-trained
foundation model generating executable codes in
the environment. We benchmark creative tasks
with the challenging open-world game Minecraft,
where the agents create diverse buildings given
free-form language instructions. We propose novel
evaluation metrics for open-ended creative tasks
utilizing GPT-4V, which holds many advantages
over existing metrics. We perform a detailed ex-
perimental analysis of creative agents, showing
that creative agents are the first Al agents accom-
plishing diverse building creation in the survival
mode of Minecraft. Our benchmark and models are
open-source for future research on creative agents
(https://github.com/PKU-RL/Creative-Agents).
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1 INTRODUCTION

Building open-ended embodied agents has been a longstand-
ing goal of Al research. Unlike many existing Al agents that
perform a fixed set of tasks specified with rewards |Arulku{
maran et al.| [2017]], Hafner et al.| [2023]], open-ended agents
can perform diverse arbitrary tasks without such speci-
fication. Existing research primarily focuses on learning
instruction-following agents |Brohan et al.| [[2023]], |Lifshitz
et al.| [2023]], Du et al.| [2023] that can solve open-ended
tasks given free-form language instructions, achieving suc-
cess in robotic domains [Brohan et al.| [2023]], [Jiang et al.
[2022]], Du et al.|[2023]] and open-world games |Cai et al.
[2023a], Wang et al.|[2023b], Lifshitz et al.|[2023]]. Among
these, some agents can only follow clear instructions that
represent specific goals or behaviors, and some other work
focuses on task decomposition |Ahn et al.|[2022], Khot et al.
[2022], L1 et al. [2022]], |Prasad et al.| [2023]], [Tuli et al.
[2022]], |Vaezipoor et al.|[2021]]. Creative tasks, where the
instructions describe abstract tasks and the agent is required
to generate complicated, novel, and diverse solutions, bring
new challenges to intelligent agents.

As an example, in the open-world game Minecraft, existing
agents can follow simple and clear instructions like ‘harvest
a stone’|Yuan et al.[[2023]] and ‘build a snow golem, which
stacks 2 snow blocks and 1 pumpkin’ |Cai et al.| [2023b],
but they cannot solve creative tasks like ‘build a sandstone
palace’. For the latter, the agent can struggle to understand
the target outcome of the task implied in the abstract in-
struction and plan actions for the long-horizon execution
where hundreds of blocks should be properly placed. How-
ever, empowered with the ability of imagination, humans
can first imagine the appearance and functionality of the
building, then plan for a proper order to build blocks and re-
alize the imagined house in the game. Such ability enhances
humans with strong creativity, enabling humans to create
novel and diverse outcomes. Imagination also enriches the
fuzzy instructions into refined task outcomes grounded in
the environment, making the task description more explicit
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Figure 1: Overview of creative agents for open-ended creative tasks. A creative agent consists of two components: an
imaginator and a controller. Given a free-form language instruction describing the creative task, the imaginator first generates
the imagination in the form of text/image by LLM with Chain-of-Thought (CoT)/diffusion model, then the controller fulfills
the imagination by executing actions in the environment, leveraging the code generation capability of vision-language
model (VLM) or a behavior-cloning (BC) policy learned from data. We implement three combinations of the imaginator and
controller: (1) CoT+GPT-4, (2) Diffusion+GPT-4V, and (3) Diffusion+BC.

and executable.

Motivated by this ability, we introduce a framework for cre-
ative agents, empowering open-ended agents with imagina-
tion to solve creative tasks. Figure[I|gives an overview of the
framework. Equipped with a text-conditioned imaginator,
creative agents can imagine the details of the task outcome
abstracted in the language instruction. These imaginations
serve as a blueprint for the controller to interpret and act
upon. We propose two variants of the imaginator, including a
large language model (LLM) [Brown et al.|[2020] generating
text imaginations and a finetuned diffusion model Rombach
et al.| [2022] generating grounded visual imaginations. We
also introduce two variants of the controller that transform
the imagination into executable plans. The first is a behavior-
cloning controller trained on an environment dataset and
maps imaginations to actions. The second method leverages
the strong abilities in vision-language understanding [Yang
et al.| [2023]] and code generation Wang et al.[[2023a]] of
the large vision-language model (VLM) GPT-4V [OpenAl
[2023b]]. The VLM controller receives the imagination as
the task goal and generates code to perform actions in the
environment.

Designing evaluation metrics for open-ended tasks remains
underexplored. Existing methods either use some surrogate
metrics [Wang et al.|[2023a] which may not reflect the lan-
guage instruction, or use human evaluation|Cai et al.|[2023b]
which is laborious. MineDojo [Fan et al.|[2022]] proposes to
use the similarity of the CLIP Radford et al.|[2021]] embed-
ding between vision and language, which however can only
provide some unknown correlation between the instruction
and task outcome. To address these limitations, we propose
novel evaluation metrics based on GPT-4V. Leveraging the
analytical strength of GPT-4V, our metrics offer an effec-
tive, general, and human-independent means of evaluation.

We verify that such metrics are consistent with human eval-
uations. Our proposed metrics are crucial for objectively
measuring the creativity and effectiveness of solutions gen-
erated by open-ended agents.

We benchmark creative tasks with challenging building cre-
ation in Minecrafl[l, following 20 diverse instructions. Sev-
eral variants of creative agents demonstrate their ability to
create diverse and visually appealing buildings in the sur-
vival mode of Minecraft, which has never been achieved in
previous studies. We give a detailed experimental analysis
of creative agents, discuss the strengths and weaknesses of
each variant, and provide insights for improving creative
agents in future work.

Our main contributions are threefold:

* We propose creative agents, the first framework that
endows open-ended agents with the ability to perform
creative tasks through imagination. Our method builds
the first instruction-following agent that can create di-
verse buildings in the survival mode of Minecraft.

¢ We establish novel evaluation metrics for creative tasks
in open-ended environments, in which GPT-4V is used
as the evaluator.

* By open-sourcing the datasets and models, our work
sets a new benchmark for future research in the field

"We select the open-world game Minecraft as the benchmark
platform because it is convenient to build various imaginators and
controllers and also supports creation in the game. Specifically, we
choose the survival mode of Minecraft, where it is difficult for the
agent to construct buildings since the agent has to move around
and go up/down to place the blocks with diverse materials and
colors, making the building process realistic. It is worth noting
that our framework for creative agents is general and can also be
applied to other environments.



of open-ended learning and creative Al agents.

2 PRELIMINARIES
2.1 OPEN-ENDED TASKS

We formalize the process of the agent interacting with the
environment as a Markov Decision Process (MDP) without
reward, defined by a tuple M = (S, A, P, p) representing
states, actions, the transition function of the environment,
and the initial state distribution, respectively. Starting from
the initial state, for each time step, the agent performs an
action based on the state, then the environment transitions
to the next state upon the action.

Compared with traditional reinforcement learning tasks de-
fined with reward functions, open-ended tasks have neither
fixed targets nor optimal solutions. We follow MineDojo |Fan
et al.|[2022], formulating open-ended tasks as instruction-
following problems T' = (£, M), where | € L is a free-
form language instruction. We aim to acquire an instruction-
following agent P(a|s,) which can exhibit behaviors con-
sistent with the instruction to perform the described task.

2.2 CREATIVE AGENTS WITH IMAGINATION

Due to the abstract nature of language, language instructions
cannot describe the full details of complicated tasks, draw-
ing high uncertainty on the task completion and requiring
the agent to possess creativity. Though many open-ended
agents |Cai et al.| [2023a]], [Lifshitz et al.| [2023]], Du et al.
[2023] can follow clear instructions that refer to some spe-
cific task goals, none of them can follow such uncertain
instructions to perform complicated tasks.

We define creative tasks as a challenging case of open-ended
tasks, where language instructions lack information to de-
scribe the whole task and can refer to diverse, novel, and
complicated outcomes in the environment. Such instruc-
tions bring uncertainty for the agent and require the ability
to imagine the details unspecified by the instruction. In ad-
dition, a short instruction (e.g., ‘build a house’) may refer to
a long-horizon complicated task, increasing the challenge
for the action planning and execution.

To tackle the challenge, we propose to decompose the agent
into an imaginator and a controller:

P(a|s,l) - ZI<9|Z)W(G‘|879»Z)' (D

Here, g € G is an imagination of the task outcome, which
can be in the form of diverse modalities (e.g., text, image)
and serves as a description of the target environment state
of the task. The imaginator I converts the instruction into
an imagined outcome, providing the controller 7 with a de-
tailed task description. Therefore, we leave the uncertainty

and creativity brought from creative tasks to the imaginator,
providing the controller with richer task information to re-
duce its uncertainty. By disentangling these two models, we
can delve deeper into the design choices for each part and
combine them together to build creative agents.

3 GENERATIVE IMAGINATION

Generative models in natural language processing and com-
puter vision provide techniques to build the imaginator in
either text space or image space. In this section, we present
two variants for implementing the imaginator.

3.1 LANGUAGE MODELS FOR TEXTUAL
IMAGINATION

Large language models (LLMs) have shown marvelous abil-
ities in solving diverse tasks [Chang et al.| [2023]], We1 et al.
[2022a] as well as high plasticity with prompt engineer-
ing Brown et al.| [2020], White et al.| [2023]]. To tackle the
problems in reasoning logically, Wei et al. [Wei et al.|[2022b]
proposed Chain-of-Thought (CoT), aimed at enhancing the
emergence ability of LLMs.

Following the idea of zero-shot-CoT |Kojima et al.|[2022],
we design an imaginator using GPT-4 |OpenAl| [2023b]] as
the backbone, with zero-shot prompts for imagination in
Minecraft building-creation domain (please refer to Ap-
pendix). Specifically, we provide the initial text instruction
to GPT-4 and ask five questions relevant to the imagination,
including the material used for the building, the approximate
size, the significant features of the architecture, etc. After
GPT-4 generates answers to these questions indicating that
the imagination process has been finished, we then ask the
controller to execute actions accordingly to construct the
building (see Section ).

3.2 DIFFUSION MODELS FOR VISUAL
IMAGINATION

Diffusion models have achieved breakthrough performance
in generating diverse and high-quality images. Stable Diffu-
sion|Rombach et al.|[[2022] models data distribution as the
stationary state of a diffusion process, learning to generate
samples mirroring the true data distribution by reversing this
process. Noteworthy for its training stability, it addresses
issues like mode collapse.

To better align with the human conception of “imagination”,
we use images to be the imagination space and leverage
text-conditioned diffusion models to be the imaginator. We
finetune the Stable Diffusion|Rombach et al.|[2022]] using a
text-image dataset to achieve a reasonable and diverse imag-
ination of textual input. The text-image pairs in the dataset
are constructed by automatically annotating the Minecraft



buildings in CraftAssist|Gray et al.|[2019] using the multi-
modal Emu model [Sun et al.|[2023]]. After finetuning, we
obtain visually plausible and diverse imaginations that align
with both the textual descriptions and the Minecraft world.

4 DESIGNING CONTROLLERS

After the imaginator generates the imagination g, it is the
controller to take actions in the environment, conditioned
on the current state, the imagination, and the language in-
struction. In the following, two variants of the controller
are presented, including a behavior-cloning controller and a
controller based on GPT-4(V).

4.1 BEHAVIOR-CLONING CONTROLLER

To transform the imagination into a practical construction
process, we introduce a behavior-cloning controller that first
converts the image imagination into a blueprint and then
maps the blueprint into tangible actions.

For tasks related to constructing buildings in Minecraft, we
use voxel information as the basis for blueprints. To learn a
module generating voxel blueprints conditioned on images,
we adopt the methodology introduced by Pix2Vox++ Xie
et al.[[2019], utilizing the image-voxel dataset constructed
through data augmentation from original constructions in
CraftAssist |Gray et al.|[2019]] and ISM [for Minecraft by|
MaggiCraft [[2016]]. The module is trained to optimize a
combination of the voxel prediction loss and two regulariza-
tion terms, including the occupancy rate loss|Qi et al.| [2023]]
and the total variation loss [Wu et al.| [2023]], Rudin and
Osher [1994]]. Subsequently, for the construction process,
we employ ResNet3D-CNNHara et al.| [2018]] and train a
behavior-cloning (BC) policy on a collected voxel-action
dataset. After that, the final construction is executed by the
BC policy conditioned on the voxel information through
path-searching and block-placing within the MineDojo sim-
ulator [Fan et al.|[2022]. More details about our methods and
datasets are available in Appendix.

4.2 VISION-LANGUAGE MODELS AS
CONTROLLER

We also adopt a generative vision-language model (VLM)
to construct the controller, which can perceive both visual
imaginations and textual imaginations. Utilizing its abilities
in task reasoning and code generation, given an environment
code interface that wraps actions, the VLM can generate
executable code in the environment for task completion.

Specifically, we use GPT-4(V) which takes as input an image
generated by the diffusion imaginator or the textual imagina-
tion generated by the LLM with CoT. We ask GPT-4(V) to
generate code that can call Mineflayer |PrismarineJS| [2013]]

APIs to execute environment actions for building creation.
Mineflayer implements JavaScript APIs for diverse skill
primitives in the Minecraft world. Following the prompt de-
sign in Voyager [Wang et al.| [2023a], we provide GPT-4(V)
with API documentation to clarify the coding rules and a
one-shot example of code generation for in-context learning.
More details about the prompts are available in Appendix.

With this controller, we implement creative agents in both
two modalities of imaginations.

S EXPERIMENTS
5.1 BUILDING CREATION IN MINECRAFT

Inspired by the creative tasks in MineDojo |Fan et al.|[2022],
we set up an evaluation benchmark for constructing build-
ings in Minecraft, consisting of 20 diverse language instruc-
tions, such as “a huge Minecraft volcano built of ice” as
illustrated in Figure [ and[5] Following the text description,
the agent takes actions to move and place blocks in the game
simulator to create buildings. In the experiment, we aim to
investigate whether the agent can construct novel, diverse
buildings by just following language instructions, which
reflects the creativity of the agent. In the evaluation, we
take screenshots of its creations in the game. More details
can be found in Appendix [B] We setup various metrics to
evaluate the open-ended building creation tasks and apply
two evaluators, including human evaluators and a novel eval-
uator based on GPT-4V. Section |5.3|presents the evaluation
details.

5.2 IMPLEMENTATION

We implement several variants of creative agents using dif-
ferent combinations of imaginators and controllers (more de-
tails are provided in Appendix) and build a baseline method
to compare with:

 Vanilla GPT-4. This is the baseline method without
imagination using GPT-4 as the controller. We simply
use Voyager|Wang et al.|[2023a]] with the original task
instruction, and ask GPT-4 to perform code generation.

* CoT+GPT-4. We implement this agent by adding a
CoT-imagination on the basis of Vanilla GPT-4, which
means we use GPT-4 for both textual imagination and
code generation (method (1) in Figure E])

« Diffusion+GPT-4VPZl We use a finetuned Stable Diffu-
sion to generate images as imagination and use GPT-4V
as the controller to generate codes based on the visual
imagination (method (2) in Figure ).

2We use GPT-4V here to indicate the agent additionally takes
an image imagination as input.



* Diffusion+BC. The finetuned Stable Diffusion is used
as the imaginator while the behavior-cloning controller
is used to convert images into voxel blueprints and
execute actions.(method (3) in Figure|[T).

5.3 EVALUATION METRICS

Based on existing evaluation methods in open-ended learn-
ing [Lin et al.|[2023]] and content generation in Minecraft
Salge et al.|[2018]], we introduce a set of evaluation aspects,
which are important criteria for creative agents:

¢ Correctness. Are the creations consistent with the lan-
guage instruction?

* Complexity. Can the agent create large and complex
buildings?

* Quality. Do the creations have a good visual appear-
ance from the perspective of aesthetics?

* Functionality. Do the created buildings have the nec-
essary functions and structures (such as windows and
entrances)?

It is worth noting that such evaluation metrics can directly
reflect the agents’ abilities of creating the buildings. In the
meanwhile, such metrics also reach the same connotation
of creativity - the ability to give novel and diverse task solu-
tions implicit in the language instructions. In other words,
in order to reach a higher level of performance, one agent
must possess much more creativity.

To quantitatively evaluate such metrics, recent work |Cai
et al.|[2023b]| requires humans to perform evaluation, which
however is labor-intensive and may be susceptible to sub-
ject preferences. To tackle these issues, we leverage the
strong capabilities of the recent VLMs in vision-language
reasoning and vision question answering and propose two
VLM-based evaluation methods.

In the first method, given a language instruction, we sample

a pair of creation results from two methods and fill in a

template to ask the VLM which one is better overall based

on all evaluation metrics:

You are a critic with high aesthetic
ability. I will provide you a text
instruction and two buildings created
by different agents following this
instruction in the game "Minecraft".

Please evaluate their overall performance
according to four aspects: $(
EVALUATION_ASPECT 1~4). Tell me which
building in the image is better (left
or right).

Text: $(INSTRUCTION)

Image of buildings: $(IMAGEl, IMAGE2)

Correctness

Compléxity Robustness

<~ Vanilla GPT-4
CoT+GPT-4
Diffusion+GPT-4V
«— Diffusion+BC

Figure 2: Comparison of all variants of creative agents in
Minecraft building creation. For each evaluation metric, the
number denotes the average score of the best agent over the
20 tasks. Diffusion+GPT-4V performs relatively better than
other variants.

We use the Elo Rating System [Elo| [1986] to measure the
relative strength of each agent.

In the second method, we fill in a template with the four

evaluation metrics above to ask the VLM to directly score

for each building. For each metric, the score is rated out
of 10, and the overall score is the sum of the four metrics,

which is out of 40.

You are a critic with high aesthetic
ability. I will provide you a text
instruction and a created building
following this instruction in the game
"Minecraft".

According to four aspects: $(
EVALUATION_ASPECT 1~4),
please evaluate the building with a score (
out of 10) on each aspect respectively,
then give a total score.

Text: $(INSTRUCTION)

Image of the building: $IMAGE

To verify the reliability of VLMs in evaluation, we also ask
humans to participate in both two evaluation methods and
compare the difference between VLM and human evalua-
tions.

5.4 RESULTS AND ANALYSIS

In the first evaluation method, every two agents are com-
pared by GPT-4V for each test task. With all these com-
parison results, we model the four agents into a four-player
zero-sum game and apply the Elo Rating System to compute
the ratings, as shown in Figure 3] (left).
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Figure 3: Evaluation results in Minecraft building creation. Left: The Elo Rating of all agents based on the evaluation of
GPT-4V. Right: The average overall score of each agent in all test tasks evaluated by GPT-4V and humans.

According to the second evaluation method, we record rat-
ings of each single test over the four metrics (correctness,
complexity, quality, and functionality), the sum of which is
the overall score. We calculate the standard deviation of the
overall scores of all test tasks for each agent, which repre-
sents Robustness, with a larger standard deviation standing
for weaker robustness. To align with the other four metrics
for better presentation, we properly transform the standard
deviation into a value such that a higher value indicates
better robustness. Note that better robustness does not neces-
sarily mean better performance since it merely indicates the
consistency of the performance on all test tasks. The results
are plotted as a polar chart shown in Figure 2] Furthermore,
the overall score averaged over all test tasks for each agent is
shown in Figure 3] (right). In Figure @] and [5]in Appendix [A]
we present qualitative results of the language description,
the generated visual imagination, and the created building
of each agent.

We also test the diversity using short language instructions
with minimal information provided. The results are shown in
Figure[7)in Appendix[E] With the same language instruction,
the diffusion imaginator can generate diverse images for
the controller, thus Diffusion+GPT-4V possesses a higher
diversity than Vanilla GPT-4 and CoT+GPT-4.

Analyzing the experimental results, we can draw the follow-
ing primal conclusions:

* CoT for textual imagination can effectively enrich
the detailed features of the target buildings.
Comparing CoT+GPT-4 with Vanilla GPT-4, the for-
mer outperforms the latter in terms of all metrics except
robustness in the polar chart by a large margin, and
CoT+GPT-4 obtains a higher score in the Elo Rating
results than Vanilla GPT-4. We assign this due to the
rich information brought by Chain-of-Thought, which
plays a role in self-reflection. Through this process, the
LLM gets a better understanding of the details of the
task, including but not limited to the materials used, the
size of the building, the significant features, efc. Within

the context of a conversation, when GPT-4 generates
the code in the second round, it can still perceive the
extra information from the first round, thus reaching a
better representation of the task goal.

For the controller, using VLM instead of LLM leads
to a marginally better performance in most metrics.
As shown in Figure 2] Diffusion+GPT-4V weakly sur-
passes CoT+GPT-4 in correctness, complexity, quality,
and robustness. However, Diffusion+GPT-4V strikes a
tie with CoT+GPT-4 in functionality. In terms of func-
tionality, Diffusion+GPT-4V behaves no better than
CoT+GPT-4, which can be owing to the weak ability of
GPT-4V in 3D reconstruction. Empirically, the images
passed to GPT-4V are usually a complete building gen-
erated by the diffusion-based imaginator, without the
sectional view to show the internal structures. There-
fore, sometimes GPT-4V tends to write code that leads
to a solid house instead of a hollow one. According to
the criteria of functionality, solid houses can result in
low ratings.

Diffsion+GPT-4V has the best performance overall,
showing a strong ability of anti-interference and
robustness.

In Figure[3] both the Elo Rating results and the average
score show that the three variants proposed in Figure|T]
outperform the baseline to varying degrees, among
which Diffsion+GPT-4V ranks the first. Combining the
previous two conclusions, Diffusion+GPT-4V has both
the advantage in visual imagination and the strengths
from CoT, thus having a better performance. Addition-
ally, we are surprised to find that Diffusion+GPT-4V
overcomes the misleading information of the diffusion-
based imaginator. In about half of the test tasks, the
images generated by the diffusion-based imaginator
tend to have obvious noises in the background to some
extent. However, GPT-4V seems to have the ability
of anti-interference, thus capturing the major essen-
tial factors of the images. In contrast, Diffusion+BC
may be susceptible to such noises, leading to weaker



robustness.

¢ The human-rating results coincide with the VLM-

rating results with a minor gap, indicating that eval-
uating by vision-language models is reliable.
We list the average scores by both VLM and human
evaluation in Figure [3] (right), from which we know
the human-rating results are generally in line with the
VLM-rating results. In both evaluations, the first two
in the ranking are the same - Diffusion+GPT-4V and
CoT+GPT-4. The last two are in the opposite order but
within a small gap. Overall, both two evaluations agree
that Diffusion+GPT-4V has the best performance.

The buildings created by agents are relatively sim-
ple, limited by the code written by language models
and the trained policy of the behavior-cloning con-
troller.

In the analysis of the final creations of different agents,
we find that the buildings are relatively simple. For
those variants with GPT-4(V) controllers, this may be
limited by the code written by GPT-4(V). Due to lim-
ited APIs in Mineflayer, GPT-4(V) tends to generate
simple code. For instance, GPT-4(V) tends to use for-
loops in a piece of code that corresponds to a wall in
the building, resulting in the square shape of the build-
ing. Additionally, Mineflayer uses a rule-based algo-
rithm for path planning to place blocks in the Minecraft
world, and the agent will always destroy some blocks
when not able to find a proper path toward the goal.
Therefore, there can be many demolished walls in the
final creations. On the other hand, the trained policy of
the behavior-cloning controller has several limitations.
When reconstructing voxels from the images gener-
ated by the diffusion-based imaginator, the Pix2Vox
approach can only capture the RGB color for each
voxel and choose the most similar block in Minecraft,
which is not very accurate. To make things worse, the
plausible structure of a common building is missed out
during the reconstruction, which makes the voxel look
like “a mess”. Some blocks are even floating in the
voxel, so they cannot be placed correctly in the final ex-
ecution. This also provides a reason why Diffusion+BC
ranks the last in the human evaluation results.

5.5 THE VLM EVALUATOR VS. HUMAN
EVALUATORS

In human evaluation, for the first evaluation method (1v1
comparison), we use the majority vote among all humans
(49 human evaluators in total) to represent human preference
for each pair of buildings. For the second evaluation method,
the scoring data from each human is standardized in each
of the four evaluation metrics and the overall score. Then
we take the average score from all humans as the human
evaluation score for each building created by each agent.

Table 1: Linear regression analysis and T-test across scor-
ing metrics with statistical significance between GPT-4V
and human’s evaluation. Each row lists the coefficient, stan-
dard error, t-value, and p-value corresponding to the metric.
For each scoring metric, the correlation coefficient between
GPT-4V scores and human scores is significantly greater
than 0, with p-values well below 0.05. Therefore, the posi-
tive correlation between them is statistically significant.

Metric coef stderr t P> |t
Functionality | 1.0185 0.378 2.697 0.009
Quality [0.9774 0.342 2.858 0.006
Complexity [1.9722 0.281 7.021 0.001
Correctness | 1.4794 0.404 3.663 0.001
Total Score | 1.5910 0.315 5.048 0.001

Based on the data of evaluation results of both GPT-4V and
human, we conduct the linear regression analysis to test the
relevant correlation between them. As shown in Table
the results exhibit a high degree of correlation between the
two methods of ratings, thus indicating that our method of
evaluating via GPT-4V is reasonable and effective. For more
details, please refer to Appendix [D.3]

6 RELATED WORK

6.1 OPEN-ENDED AGENTS

In recent years, task learning in open-ended worlds has
attracted increasing attention, among which Minecraft|John{
son et al.|[2016] has become a marvelous test-bed for open-
ended learning. MineRL |Guss et al.|[2019]] and MineDojo
Fan et al.|[2022]] implemented simulated environments and
organized datasets of a relatively large scale, and the latter
provides tasks for agent training in the open-ended domain.
However, most previous work Baker et al.| [2022], Wang
et al.|[2023D]], | Yuan et al.|[2023]], Lifshitz et al.| [2023]], Yuan
et al.| [2024] mainly focused on unlocking numerous skills
and tackling long-horizon tasks in Minecraft, which how-
ever are mostly predefined, lacking the open-ended nature,
not to mention creativity.

The IGLU Competition Kiseleva et al.| [2022] was a giant
leap to solving tasks according to instructions in natural
language. Skrynnik et al. Skrynnik et al.| [2022]] proposed
a pipeline containing a T5-based language module, a rule-
based transfer module, and the downstream policy module
for execution. This agent could solve simple tasks of stack-
ing blocks in Gridworld [Zholus et al.|[2022]], a Minecraft-
like open-ended world. However, it depended on too many
step-by-step instructions, thus showing little creativity. In
general, there is a significant gap between previous work
and the true “creative agents”.



6.2 GENERATIVE MODELS

In recent years, many modern generative models have been
proposed and are used to produce high-quality samples in
various domains [Cao et al.| [2022]. Text-generative mod-
els have aroused much attention due to their wide range of
uses. Especially, large language models (LLMs) are play-
ing more and more significant roles in decision-making,
planning, and reasoning. Among LLMs, a representative
one is GPT-4 |OpenAll[2023b|], whose emergence has laid a
solid foundation for further research. Accompanied by the
appearance of LLMs, prompt engineering and tuning tech-
niques [Brown et al.| [2020], |White et al.|[2023[] have been
widely studied and applied, including Parameter-Efficient
Fine-Tuning (PEFT) He et al.| [2021]] and Chain-of-Thought
(CoT) Wei et al.| [2022b]]. In our work, LLMs with CoT are
adopted as textual imaginators, and we also construct the
text-based controller with LLM code generation.

In the field of computer vision, image-generative models are
becoming increasingly important. Prominent approaches in-
clude variational autoencoders (VAEs) [Kingma and Welling
[2013]], Generative Adversarial Networks (GANs) Goodfel4
low et al.|[2014], and flows|Ho et al.|[2019]], demonstrating
success in capturing image distributions and representations.
Recently, diffusion models |Ho et al.|[2020] and DALL-E
3 |OpenAll [2023a] are springing up, accelerating the re-
search in visual generation. In our work, a finetuned Stable
Diffusion |[Rombach et al.| [2022] is used for visual imagi-
nation, representing a concrete description of the building-
creation task.

In the Minecraft world, previous work Salge et al.| [2018]],
Awiszus et al.| [2021]], |Grbic et al.| [2021]] focuses on Pro-
cedural Content Generation (PCG). However, they usually
generate a pre-defined type of buildings with a lot of hu-
man prior knowledge. In our work, imagination for creative
agents is similar to content generation, but our imagina-
tor can generate with free-form instructions, in different
modalities, and requiring much less human prior.

6.3 EVALUATION FOR OPEN-ENDED TASKS

Recent work has gathered many evaluation methods for
open-ended tasks. Voyager [Wang et al.| [2023a]], STEVE-
1 |[Lifshitz et al.|[2023]], and DIP-RL Novoseller et al. [2023]]
use travel distance and collected items as surrogate metrics
to evaluate. GROOT |Cai et al.|[2023b] and BASALT com-
petition Milani et al.| [2023]] use human evaluation, which
is relatively labor-intensive and may be susceptible to sub-
ject preferences. Recent work [Fan et al.|[2022]], Ding et al.
[2023]] proposes to use the CLIP-like model to compute
alignment between the behaviors and instructions. We pro-
pose a novel evaluation method using VLMs, which can
either directly rate the performance in various aspects or
conduct pairwise comparisons.

In terms of evaluation aspects, previous studies have pro-
posed a variety of metrics. MCU |Lin et al.| [2023]] took
evaluations from the perspective of planning complexity,
time consumption, novelty, and creativity. GDMC Competi-
tion|Salge et al.|[2018]] required humans as judges, rating the
generated contents from adaptability, functionality, evoca-
tive narrative, as well as visual aesthetics. Stooke et al. [Team!
et al.| [2021] evaluated the results in both task coverage and
relative performance. Inspired by these studies, we adopt
the evaluation aspects in correctness, complexity, quality,
functionality, and robustness.

7 CONCLUSION AND LIMITATIONS

In this paper, we propose creative agents, which is the first
framework that can handle creative tasks in an open-ended
world. Using this framework, we implement various embod-
ied agents through different combinations of imaginators
and controllers. Additionally, we tap into the potential of
Vision-Language Models (VLMs), utilizing VLMs for eval-
uation as judges. By comparing the rating results from VLM
and humans, we illustrate the reliability of VLM evaluation.

In the meanwhile, we find a few limitations of these creative
agents, to be investigated in further work. First, there is
much room for improving the BC controller, especially for
the performance of Pix2Vox module. Another limitation
lies in the simplicity of the building created by the agents,
which means the capabilities of these agents are limited.
How to enhance the creativity of agents can be a challenging
problem.

In the end, we declare that creative agents is an initial at-
tempt in this field, aimed at raising the awareness of building
intelligent agents with creativity. We hope this work can be
of inspiration for further research.
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A QUALITATIVE RESULTS

In this section, we present the showcases of the results of building creation (Figure [] and [3)), including the language
instruction, the generated visual imagination, and the created building of each variant of creative agents.

Text Description Diffusion Image  Vanilla GPT-4 CoT+GPT-4 Diffusion+GPT-4V  Diffusion+BC

“A huge Minecraft volcano built of ice.”

“A tall Minecraft tower with glass windows,
mainly built of leaves.”

“A big Minecraft house built of colorful
wools.”

“A slender Minecraft tower with crystal-
clear windows, predominantly crafted from
birch logs.”

“A yellow concrete Minecraft house with a
roof and windows.”

“A medieval-inspired fortress in Minecraft
built from cobblestone and mossy stone
bricks, complete with imposing towers and a
drawbridge.”

“A sandstone palace in Minecraft with
intricate details and towering minarets.”

“A mystical ice castle in Minecraft, sculpted
from packed ice and frosted blocks, adorned
with icicle chandeliers and frosty spires.”

“An enchanting Minecraft pagoda adorned
with bamboo and built primarily of jungle
wood planks.”

“A pyramid in Minecraft built of sandstone.”

Figure 4: Qualitative results of the language description, the generated visual imagination, and the created building of each
variant of creative agents. Visual imagination generated by the diffusion model has great diversity, which is an important
manifestation of creativity.

B BENCHMARK DETAILS

In this section, we present our Minecraft Building Creation benchmark for creative agents, including tasks, environment
simulators, and datasets.

We introduce a set of language instructions for test tasks. Each instruction is constructed by randomly picking a building
name and several building features and combining them into a natural language description. We list the 20 instructions here:



Text Description Diffusion Image  Vanilla GPT-4 CoT+GPT-4 Diffusion+GPT-4V  Diffusion+BC

“An artsy building in Minecraft built of
blue glass, red glass and yellow glass.”

“A modern-style building in Minecraft built
of quartz block, glass, and lantern.”

“A resplendent and magnificent building in
Minecraft, which is built of gold block,
glass block and iron block.”

“A majestic silver Egyptian pyramid in
Minecraft constructed from iron block.”

“A screenshot of a white pyramid-like house
in Minecraft with windows, which is built of
snow.”

“A cute Minecraft mansion featuring walls
constructed from red blocks and adorned with §
large glass windows.”

“An imposing fortress in Minecraft made of
obsidian blocks, with towering turrets and
ominous spikes.”

a sleek design using iron blocks and a
network of glass domes for observation.”

“An underwater observatory in Minecraft,
constructed with prismarine bricks and dark
prismarine, showcasing large windows made
of sea lanterns and light blue glass.”

“An enchanting forest cottage in Minecraft
crafted from dark oak logs.”

Figure 5: Additional results of the language description, the generated visual imagination, and the created building of each
variant of creative agents.

1. An artsy building in Minecraft built of blue_glass, red_glass and yellow_glass.
2. A pyramid in Minecraft built of sandstone.
3. A modern-style building in Minecraft built of quartz_block, glass, and lantern.

4. A resplendent and magnificent building in Minecraft, which is built of gold_block,
glass_block and iron_block.

5. A majestic silver Egyptian pyramid in Minecraft constructed from iron block.

6. A screenshot of a white pyrmaid-like house in Minecraft with windows, which is
built of snow.



7. A tall Minecraft tower with glass windows, mainly built of leaves.

8. A cute Minecraft mansion featuring walls constructed from red blocks and adorned
with large glass windows.

9. A big Minecraft house built of colorful wools.
10. A huge Minecraft volcano built of ice.

11. A slender Minecraft tower with crystal-clear windows, predominantly crafted from
birch logs.

12. An imposing fortress in Minecraft made of obsidian blocks, with towering turrets
and ominous spikes.

13. A futuristic Minecraft space station featuring a sleek design using iron blocks
and a network of glass domes for observation.

14. An underwater observatory in Minecraft, constructed with prismarine bricks and
dark_prismarine, showcasing large windows made of sea lanterns and
light_blue_glass.

15. An enchanting Minecraft pagoda adorned with bamboo and built primarily of jungle
wood planks.

16. A sandstone palace in Minecraft with intricate details and towering minarets.

17. A mystical ice castle in Minecraft, sculpted from packed ice and frosted blocks,
adorned with icicle chandeliers and frosty spires.

18. An enchanting forest cottage in Minecraft crafted from dark oak logs.
19. A yellow concrete Minecraft house with a roof and windows.

20. A medieval-inspired fortress in Minecraft built from cobblestone and mossy stone
bricks, complete with imposing towers and a drawbridge.

We adopt two environments for different creative agents, each providing a Minecraft simulator with action primitives for the
agent to place a block.

The first environment uses the MineDojo simulator [Fan et al.|[2022], which provides Gym wrappers for the Minecraft game
along with additional dictionary observations. We implement two primitive actions in this simulator: a path-search action
and a placing action. The path-search action, implemented with the A* algorithm, can use voxel information to determine
whether the agent can reach a given coordinate. The placing action can drive the agent towards a target coordinate given a
valid path and place a block on it. A creative agent can recursively output the plan for the next block to place and call the
action primitives to accomplish it.

In the second environment, we use the original Minecraft game (Java Edition 1.19). We use Mineflayer PrismarineJS|[2013|]
with JavaScript APIs to provide action primitives for building creation. The core function we use is placeltem(bot, block
name, position), which also performs path-search and placing to try to place a block at a given position.

The first environment with MineDojo simulator has the advantage of providing richer observation information, which is
beneficial for data collection and programmatic evaluation in future research. The second environment with Mineflayer APIs
provides more diverse action primitives, which may be helpful for future research on other creative tasks. In our study, we
test the method with BC controller in the first environment and test all other methods in the second environment.

For datasets, we release a text-image dataset for training diffusion imaginators, an image-voxel dataset, and a gameplay
dataset for training the BC controller. The text-image dataset consists of 14,180 paired language instructions and images.
Each RGB image has a resolution of 512 x 512. The image-voxel dataset comprises 1,009,044 paired images and 3D
voxels. Each 512 x 512 image shows a Minecraft building at a view angle. Each 32 x 32 x 32 voxel is the corresponding
ground-truth voxel of the building, labeled with voxel occupancy and block information. The gameplay dataset consists of



6M action-labeled samples. Each trajectory (V, {a;}7_) is an expert gameplay to construct a building, where V' denotes the
voxel of the target building and {a} denotes the sequence of action primitives to complete it.

C IMPLEMENTATION DETAILS

In this section, we present details of data collection and implementing imaginator and controller variants.

C.1 LLM PROMPTS FOR TEXTUAL IMAGINATION

To utilize GPT-4 as a textual imaginator and make it have a better understanding of the building task, we add Chain-of-
Thought (CoT) prompts in addition to the prompts for Vanilla GPT-4, following Wei ez al. Wei et al.|[2022b]]. Specifically,
we ask GPT-4 five questions in the first round within a conversation, using the following template:

You are an architect designing houses and buildings.

Here is a building you should design:

First, you should answer these questions below based on your design and imagination:

1. Please give a detailed description of the building.

2. Which kinds of blocks are used in the building? There might be several kinds of
materials, and you should report them all.

3. What is the probable size of the building? You should estimate the length, width
and height. Note that your inventory contains only 2304 blocks, so length, width
and height no more than 12 would be better.

4. Please list some components of the building, including but not limited to doors,
walls, windows and floors.

5. Are there any salient features of the building, e.g. gardens, swimming pools and
towers?

After GPT-4 answers these questions as imagination, in the second round of the conversation, we ask it to generate code to
construct the building. The prompts for the second round are presented in Appendix [C.4]

C.2 FINETUNING THE DIFFUSION MODEL FOR VISUAL IMAGINATION

To finetune the diffusion model for generating visual imaginations, we construct the text-image dataset by automatically
annotating the Minecraft buildings in CraftAssist|Gray et al.|[2019] using the multimodal Emu model [Sun et al.|[2023]]. The
labeled dataset consists of 14K text-image pairs.

In order to obtain stable and high-quality image generation with such a small dataset, we choose to finetune the pre-trained
StableDiffusion V1.4 model Rombach et al.| [2022]. Table [2] shows the hyperparameters used for finetuning.

Table 2: Hyperparameters for finetuning Stable Diffusion.

Hyperparameter Value
Training epoch 100
Image resolution 512 x 512
Adam (0.9,0.999)
Adam weight decay 0.01
Learning rate 1x 1074
Max grad norm 1.0

C.3 BEHAVIOR-CLONING CONTROLLER

For the behavior-cloning (BC) Controller, we utilize the voxel representation as a blueprint. We transform images into
voxels, and subsequently convert the voxel blueprint into a sequence of actions.



For data collection, we perform data augmentation on the original voxel data obtained from CraftAssist|Gray et al.|[2019]
and use MineDojo [Fan et al.| [2022]] to construct the buildings and render the images. We collect 1M paired images and
voxels to construct the dataset and split a validation set with 3K samples. We employ the Pix2Vox++ architecture Xie et al.
[2019]], with an encoder of 30M parameters and a decoder of 70M parameters. The model hyperparameters are shown
in Table [3] It resizes the input image into 224 x224 pixels and generates a 32x32x32 voxel output. Each voxel has 4
dimensions, consisting of the probability of occupancy and RGB colors for the block.

Table 3: Hyperparameters for Pix2Vox++.

Hyperparameter Value
Encoder layers [3, 5,5, 3]
Encoder block inplanes  [64, 128, 256, 512]
Decoder layers [1,1,1,1, 1]
Decoder block inplanes [2048, 512, 128, 32, §]
Image resolution 224 x 224
Output shape 32x32x32x4
Learning rate 1x1073
Weight decay 1x 1074

For generating action plans given voxels, we collect a gameplay dataset for building creation and training a behavior-cloning
policy. We use voxels in the image-voxel dataset to construct diverse goals for building and collect a dataset of 6M steps. We
preprocess the dataset to provide rich observations for the BC policy. We construct the observation at each timestep with
32 X 32 x 32 x 3 voxels. Each channel represents the target voxel, the built voxel at the current step, and the last block,
respectively. The output shape is 32769 = 32 x 32 x 32 4 1, representing the action primitive for the position of the next
block to place and the termination probability. We adopt the ResNet3D Hara et al.| [2018]] architecture with 50M parameters.
The hyperparameters are shown in Table 4]

Table 4: Hyperparameters for the BC policy.

Hyperparameter Value
ResBlock Type BasicBlock
Layers [2,2,2,2]

Block inplanes [64, 128, 256, 512]
Input shape 32 x 32 x 32 x 3

Output shape 32769
Learning rate 1x1073
Weight decay 1x1074

C4 VLM CONTROLLER

Voyager Wang et al.| [2023a] uses Mineflayer APIs as action primitives to solve tasks in the Minecraft world. For building
creation tasks, we mainly utilize the function position.offset (x, y, z) to convert planned coordinates into
positions and use placeItem (bot, blockName, targetPosition) to place a block at the target position.

After textual imagination or visual imagination in the first round, we ask GPT-4(V) to generate executable code in the
environment according to the imagination and context. The prompts mainly consist of three parts: (1) Mineflayer APIs and
their usage. (2) Explanations on the coding format, the task, etc. (3) An example of the correct code for in-context learning.

We present the prompts used in the second round of the conversation here.
Based on (the image and) your answers to the questions above, please design a method
to build a house like that.

Now you are a helpful assistant that writes Mineflayer Jjavascript code to complete any
Minecraft task specified by me.



Here are some useful programs written with Mineflayer APIs:

await bot.pathfinder.goto(goal); // A very useful function. This function may change
your main-hand equipment.

// Following are some Goals you can use:

new GoalNear (x, y, z, range); // Move the bot to a block within the specified range of
the specified block. 'x‘ y', ‘z', and ‘range‘' are ‘number®

new GoalXz(x, z); // Useful for long-range goals that don’t have a specific Y level.

\

\

\

x' and ‘z' are ‘number?

new GoalGetToBlock(x, y, z); // Not get into the block, but get directly adjacent to
it. Useful for fishing, farming, filling bucket, and beds. ‘x‘, ‘y', and ‘z‘ are
number

new GoalFollow (entity, range); // Follow the specified entity within the specified
range. ‘entity' is ‘Entity‘, ‘range‘ is ‘number’

new GoalPlaceBlock (position, bot.world, {}); // Position the bot in order to place a
block. ‘position' is ‘Vec3‘

new GoalLookAtBlock (position, bot.world, {}); // Path into a position where a
blockface of the block at position is visible. ‘position' is ‘Vec3‘

\

// These are other Mineflayer functions you can use:
bot .isABed (bedBlock); // Return true if ‘bedBlock' is a bed
bot.blockAt (position); // Return the block at ‘position‘. ‘position' is ‘Vec3‘

// These are other Mineflayer async functions you can use:
await bot.equip(item, destination); // Equip the item in the specified destination.
item' is ‘Item‘, ‘destination' can only be "hand", "head", "torso", "legs", "feet
", "off-hand"
await bot.consume(); // Consume the item in the bot’s hand. You must equip the item to
consume first. Useful for eating food, drinking potions, etc.
await bot.fish(); // Let bot fish. Before calling this function, you must first get to
a water block and then equip a fishing rod. The bot will automatically stop
fishing when it catches a fish
await bot.sleep (bedBlock); // Sleep until sunrise. You must get to a bed block first
await bot.activateBlock (block); // This is the same as right-clicking a block in the
game. Useful for buttons, doors, etc. You must get to the block first
await bot.lookAt (position); // Look at the specified position. You must go near the
position before you look at it. To fill bucket with water, you must lookAt first.
‘position' is ‘Vec3‘'
awailt bot.activateItem(); // This is the same as right-clicking to use the item in the
bot’s hand. Useful for using buckets, etc. You must equip the item to activate
first
await bot.useOn(entity); // This is the same as right-clicking an entity in the game.
Useful for shearing sheep, equipping harnesses, etc. You must get to the entity

\

first

At each round of conversation, I will give you
Nearby blocks:

Position:

Task:

Context:

You should then respond to me with

Explain (if applicable): Are there any steps missing in your plan? Why does the code
not complete the task? What does the chat log and execution error imply?

Plan: How to complete the task step by step. You should pay attention to Inventory
since it tells what you have. The task completeness check is also based on your
final inventory.



1) Write an async function taking the bot as the only argument.
2) Reuse the above useful programs as much as possible.
— Use '‘mineBlock (bot, name, count) ‘' to collect blocks. Do not use ‘bot.dig?
directly.
— Use craftItem(bot, name, count) to craft items. Do not use bot.craft or bot.
recipesFor directly.
— Use ‘smeltItem(bot, name count) ‘' to smelt items. Do not use ‘bot.openFurnace
‘' directly.
— Use ‘placeltem(bot, name, position) ‘' to place blocks. Do not use ‘bot.
placeBlock" directly.
— Use ‘killMob (bot, name, timeout) ' to kill mobs. Do not use ‘bot.attack?
directly.
3) Your function will be reused for building more complex functions. Therefore,
you should make it generic and reusable. You should not make strong assumption
about the inventory (as it may be changed at a later time), and therefore you
should always check whether you have the required items before using them. If
not, you should first collect the required items and reuse the above useful
programs.
4) Anything defined outside a function will be ignored, define all your variables
inside your functions.
5) Call ‘bot.chat' to show the intermediate progress.
6) Do not write infinite loops or recursive functions.
7) Do not use ‘bot.on‘' or ‘bot.once' to register event listeners. You definitely
do not need them.
8) Name your function in a meaningful way (can infer the task from the name) .

You should only respond in the format as described below:
RESPONSE FORMAT:

Explain:

Plan:

1)

2)

3)

Code:

javascript

// helper functions (only if needed, try to avoid them)

// main function after the helper functions

async function yourMainFunctionName (bot) ({

1/

Now I will give you information:

Nearby blocks: dirt, grass_block

Position: x=16.5, y=-60.0, z=-127.5

Task: build a house

Context: Build a house according to the figure. Your building should be similar to the

one in the image.

Here is an example of java script code:
Code Example:
javascript



// helper function to build a house
async function buildHouse (bot, position, size, blockName) {
for (let y = 0; vy < size; y++) {
for (let x = 0; x < size; x++) {
for (let z = 0; z < size; z++) {
const targetPosition = position.offset(x, vy, z);
await placeItem(bot, blockName, targetPosition);

}
bot.chat ("House built.");

// main function
async function buildWoodenHouse (bot) {
const position = bot.entity.position.offset(l, 0, 1); // offset to avoid building
at the bot’s position
const size = 5; // size of the house
const blockName = ’'oak_planks’; // material to build the house
await buildHouse (bot, position, size, blockName) ;

Please note that:

1) You should not use only one for-loop. Different walls should be built by different
for-loops.

2) Never check whether you have enough blocks in inventory. I will garantee that you
will be given enough blocks.

3) Always use const position = bot.entity.position.offset (1, 0, 1); // offset to avoid
building at the bot’s position.

4) Never define placeltem(bot, blockName, targetPosition) by yourself. We already
provide a defined function.

5) Always use const targetPosition = position.offset(...) before placeltem(bot,
blockName, targetPosition).

4) Additionally, y axis always start from 0 rather than 1 in a for-loop.

5) In terms of the size of the house, the kind of blocks of your selection and other
details, please refer to the image and your answers to those questions above.

Here are the names of the commonly used blocks that you can choose from but not
limited to:

["ice", "packed_ice", "blue_ice", "beacon", "white_concrete", "quartz_block", "
smooth_sandstone", "sandstone", "sandstone_slab", "sandstone_stairs", "oak_door",
"polished_andesite", "glass", "glass_pane", "lantern", "sea_lantern", "glowstone",

"blue_glazed_terracotta", "white_glazed_terracotta", "green_glazed_terracotta", "
yvellow_glazed_terracotta", "red_glazed_terracotta", "lime_glazed_terracotta", "
cyan_glazed_terracotta”]

You should not misspell them in your code.

One last important thing: you should write your code within maximum length of tokens.

Then, the generated code is passed to Mineflayer for execution in the game. We recursively restart the conversation until the
generated code does not throw an exception.

D EVALUATION METRIC

In this section, we present detailed prompts for all the evaluation metrics and the protocol for human evaluation.



D.1 VLM EVALUATION

We use GPT-4V for the two evaluation methods: 1v1 comparison and scoring.

For 1v1 comparison, the prompts are as follows:
You are a critic with high aesthetic abilities. I will provide you a text instruction
and two buildings created by different agents following this instruction in the
game "Minecraft".

Please evaluate their overall performance according to four aspects:

Correctness. Are the creations consistent with the language instruction?

Complexity. Can the agent create large and complex buildings?

Quality. Do the creations have good visual appearance?

Functionality. Do the created buildings have necessary structures for houses (rooms
and entrances)?

Sw N

Tell me which building in the image is better (left or right).

Instrution: $ (INSTRUCTION)
Image of buildings: $(IMAGEl, IMAGE2)

For scoring, the prompts are as follows.

You are a critic with high aesthetic abilities. I will provide you a text instruction
and a building created by an agent following this instruction in the game "
Minecraft"

Please evaluate their overall performance according to four aspects:

Correctness. Are the creations consistent with the language instruction?
Complexity. Can the agent create large and complex buildings?
Quality. Do the creations have good visual appearance?

Sw N

Functionality. Do the created buildings have necessary structures for houses (rooms
and entrances)?

please evaluate the building with a score (out of 10) on each aspect respectively,
then give a total score.

instruction: $ (INSTRUCTION)
Image of building: $ (IMAGE)

D.2 HUMAN EVALUATION

We conducted the human evaluation in a similar way as the VLM evaluation, while we converted prompts into questionnaires.
In total, we received 49 valid questionnaires evaluating the results of the four methods for all the test tasks. Figure [§]
demonstrates the questionnaires for both evaluation methods.

D.3 LINEAR REGRESSION AND ANALYSIS

In the scoring process, we collected human ratings and GPT4 scores for the four different methods and four metrics,
respectively. Due to data collection constraints, human ratings were divided into four groups for separate assessments.
Consequently, in the Ordinary Least Squares (OLS) regression, we incorporated three agent dummy variables to distinguish
between the four methods and three group dummy variables to account for the four groups of raters. The results obtained
from the OLS linear regression using the aforementioned approach are presented in Table 5} [6] [7] [8] [O]

Heteroscedasticity in the data can violate the assumptions of the classical linear regression model (MLR) as well as
statistical significance. Therefore we conduct Breusch-Pagan testBreusch and Pagan|[1979]] to examine the presence of
heteroscedasticity issues. The F-value and p-value for different metrics are presented in Table[T0]



Each question has an instruction and a picture. The instruction Each question has an instruction and a picture. The instruction describes the shape,

describes the shape, style, material and other characteristics of a style, material and other characteristics of a building, and the corresponding
building, and the corresponding pictures are two buildings built pictures are two buildings built according to the instruction. Now, please judge
according to the instruction, which are divided into left and right parts. from the following four aspects through your own judgment:
Now, please judge from the following four aspects through your own
judgment: 1. Correctness: Does the building match the text?

2. Complexity: Whether the building is overall simple or complex.
1. Correctness: Does the building match the text? 3. Aesthetics: Whether the appearance of the building is aesthetically pleasing.
2. Complexity: Whether the building is overall simple or complex. 4. Functionality: Whether the building meets its intended function, such as the
3. Aesthetics: Whether the appearance of the building is aesthetically necessary structure of the house (rooms and entrances).
pleasing.
4. Functionality: Whether the building meets its intended function, For each aspect, give a score between 0~10, the higher the better.

such as the necessary structure of the house (rooms and entrances).

* 1. Aslender Minecraft tower with crystal-clear windows, predominantly crafted
Please evaluate the left and right buildings and choose the one you from birch logs.
think is better.

* 1. A sandstone palace in Minecraft with intricate details and
towering minarets.

Correctness
)

Complexity
.

Quality
.

Functionality

O 1. left O 2. right :

Figure 6: An example of the questionnaires for human evaluation. Left: 1v1 comparison between different methods; Right:
directly score the test sample.

Table 5: In the assessment of quality, coefficient, standard errors, t-value, and p-value correspond to each independent
variable.

Quality | coef stderr ¢t P> [t

const | 5.6957 0423 13.463 0.001
human | 0.9774 0342 2.858  0.006
agentl |-0.4709 0484 -0.973 0.334
agent2 | 0.2293 0492 0.466  0.643
agent3 | 0.1305 0.551 0237 0.813
typel | 0.1497 0462 0324 0.747
type2 | 0.1069 0.442 0242 0810
type3 |10.1187 0.442 0269 0.789

Table 6: In the assessment of functionality, coefficient, standard errors, t-value, and p-value correspond to each independent
variable.

Functionality | coef stderr ¢ P > [{

const 4.5400 0.471 9.647 0.001
human 1.0185 0.378 2.697 0.009
agentl -0.4817 0.531 -0.907 0.367
agent2 -0.1709 0.558 -0.306 0.760
agent3 -0.5622 0.614 -0.916 0.363
typel -0.4929 0.507 -0.971 0.335
type2 0.1458 0.485 -0.300 0.765
type3 -0.5684 0.484 -1.174 0.244




Table 7: In the assessment of complexity, coefficient, standard errors, t-value, and p-value correspond to each independent
variable.

Complexity | coef stderr ¢t P > |[¢

const | 45340 0366 12385 0.001
human | 1.9722 0281 7.021 0.001
agentl  |-0.0042 0.448 -0.009 0.993
agent2 | 0.5004 0428 1.169 0.246
agent3  |-0.1349 0417 -0.323 0.747
typel  |-0.2672 0424 -0.630 0.531
type2 | 0.0028 0.408 0.007 0.995
type3  |-0.1376 0.408 -0.337 0.737

Table 8: In the assessment of correctness, coefficient, standard errors, t-value, and p-value correspond to each independent
variable.

Correctness| coef stderr ¢ P> |t

const 5.9786 0.585 10.227 0.001
human 1.4794 0.404 3.663 0.001
agentl -0.9468 0.660 -1.435 0.156
agent2 -0.4817 0.691 -0.698 0.488
agent3 -0.1575 0.723 -0.218 0.828
typel 0.8687 0.649 1339 0.185
type2 0.5536 0.624 0.887 0.378
type3 0.7495 0.623 1204 0.233

Table 9: In the assessment of overall score, coefficient, standard errors, t-value, and p-value correspond to each independent
variable.

Overall | coef stderr ¢ P> |t

const |21.5103 1.491 14.428 0.001
human | 1.7015 0.335 5.078 0.001
agentl |-2.7559 1.673 -1.648 0.104
agent2 |-0.9451 1.732 -0.546 0.587
agent3 |-2.2048 1.894 -1.164 0.248
typel | 0.5965 1.659 0.360 0.720
type2 | 0.5053 1.598 0.316 0.753
type3 | 0.1334 1.596 0.084 0.934

Table 10: Breusch Pagan Test. For data with p-values less than 0.2, we fail to reject the null hypothesis, hence it can be
considered that there is no significant heteroscedasticity. There is a higher possibility of heteroscedasticity in the correctness
metric. However, the remaining metrics are not affected by heteroscedasticity and do not damage statistical significance.

Metrics F-value p-value

quality 2.7215 0.0019
functionality | 1.5435 0.1762
complexity | 1.8602 0.0993
correctness | 1.1991  0.3165
overall 1.8619 0.0989
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Figure 7: Examples showing the diversity of created buildings, using short language instructions as prompt with minimal
information.

E ADDITIONAL RESULTS

The results showing diversity are listed in Figure[7] We use short language instructions containing little information, and
some agents manage to give diverse solutions to these creative tasks.

To study the difference between textual imagination and visual imagination, here we provide an example of the intermediate
output after the first round from CoT+GPT-4 and Diffusion+GPT-4V. The language instruction of this test task is “A



modern-style building in Minecraft built of quartz block, glass, and lantern.”

The textual imagination from CoT+GPT-4 is:
Designing a modern-style building in Minecraft with a limited inventory of blocks is
an interesting challenge. Here’s a detailed description based on your
specifications:

Description of the Building:

- Style: The building is designed in a contemporary, minimalist style, emphasizing

clean lines and an open layout.

— Exterior: The facade is predominantly made of quartz blocks, creating a sleek, white
appearance. Large glass panels are used to bring in natural light and offer views
of the surrounding landscape.

— Interior: The interior features an open-plan design, with minimal partitions to

create a sense of space and fluidity. Lanterns are strategically placed for
ambient lighting.

Materials Used:

1. Quartz Block: Primarily used for the exterior walls and some interior elements.
2. Glass: Used for windows and in some areas for floor-to-ceiling glass walls.
3. Lanterns: Used for lighting both indoors and outdoors.

Probable Size of the Building:

- Length: Approximately 10 blocks

- Width: Approximately 10 blocks

— Height: Approximately 10 blocks

This size ensures that the total number of blocks used remains within the limit of
2304, accounting for the use of different materials.

Components of the Building:

— Doors: Modern, minimalist doors made primarily of glass with quartz frames.

— Walls: Mainly quartz blocks, with large sections of glass walls.

- Windows: Large, glass panels, some of which extend from floor to ceiling.

— Floors: Quartz blocks with some areas featuring glass flooring for a contemporary
feel.

- Roof: A flat roof made of quartz blocks, incorporating a few glass elements for
natural lighting.

Salient Features:

- Garden Area: A small zen-style garden at the rear, visible through the glass walls,
adding a touch of greenery.

— Terrace: A rooftop terrace accessible via a staircase, providing a panoramic view of
the surroundings.

- Swimming Pool: A small, elegant infinity pool on the rooftop, lined with quartz
blocks.

- Interior Courtyard: A small, open-air courtyard in the center of the building,
bringing in natural light and air.

- Lighting: Lanterns are used both inside and outside to create a warm, welcoming
ambiance during the night.

This building, with its modern design and thoughtful use of materials, would stand out
in a Minecraft world, providing both functionality and aesthetic appeal.

The diffusion visual imagination of this task is shown in Figure 8] Given this imagination, the intermediate reasoning results
of Diffusion+GPT-4V are:
The building in the image appears to be a modern Minecraft structure with the
following characteristics:

1. Detailed Description: The building has a distinctive step pyramid or ziggurat
shape with a tiered structure, each level smaller than the one below it, creating
a terraced effect. The design is minimalist and geometric, featuring clean lines



Figure 8: The diffusion visual imagination of the task “A modern-style building in Minecraft built of quartz block, glass, and
lantern.”

and a symmetrical layout. It sits on what seems to be a grassy terrain with a
clear sky above, suggesting an open and possibly peaceful setting.

2. Blocks Used:

— Quartz Blocks: These are the predominant material and give the building its white
and clean look. They are used for the main structure.

— Glass Blocks/Panes: These are used for windows and possibly for some decorative
elements, allowing for natural light to enter the building and providing a
transparent look.

— Leaves: There seems to be foliage incorporated into the building, likely for
decorative purposes, suggesting the use of leaf blocks.

- Lanterns: If there are sources of light visible, they might be lantern blocks, used
to illuminate the structure.

3. Probable Size:

- Length and Width: It’s difficult to give exact measurements since the image
perspective doesn’t show the full base. However, if we assume each block is 1
meter, as is standard in Minecraft, we can estimate based on the visible tiers. If

each tier is approximately 5 blocks less in length and width than the one below,
and there are 4 visible tiers, the base could be around 20 blocks wide and long.

— Height: The building appears to have at least 4 levels. If each level is around 3
blocks in height, the total height could be around 12 blocks.

4. Components:
— Doors: There is no visible door from this angle, but there could be an entrance on a
side not shown.

— Walls: The walls are primarily made of quartz blocks, with glass blocks likely used
for windows.

- Windows: Large, square windows can be seen, made out of glass blocks or panes.

— Floors: Each level acts as a floor for the structure, likely made of quartz blocks
as well.

5. Salient Features:
No gardens, swimming pools, or towers are visible in this image. The most salient
feature is the building’s model architectural style with its stepped, pyramid-like
structure. There could be additional features on the other sides of the building
not visible in this image.

Without seeing all sides of the building, this description is based on the visible
elements in the provided image.



By comparing the two imaginations, we have the following observations:

¢ In terms of the blocks and materials used to build houses, CoT+GPT-4 usually captures block types from the raw input
(text description of the building task), while Diffusion+GPT-4V tends to identify blocks and materials based on the
images generated by the diffusion model. This also means that the error from the Diffusion-based imaginator will be
inherited and amplified, sometimes resulting in GPT-4V’s wrong recognition.

* In terms of conventional structures and components of the building, CoT+GPT-4 can always design such structures
including doors, windows, and roofs. However, Diffusion+GPT-4V answers truthfully based on the diffusion images,
making a difference from CoT+GPT-4. For instance, if there are only windows appearing in the image, GPT-4V will
not respond with structures like doors.

* When it comes to other salient features, CoT+GPT-4 can give an imagination with descriptions of gardens, towers,

and swimming pools, though these are never implemented in the code generated in the second round. In contrast,
Diffusion+GPT-4V denies the existence of such features, since it answers truthfully based on the diffusion images.
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