
Can We Forecast And Detect Earthquakes From
Heterogeneous Multivariate Time Series Data?

Luke Cullen* 1 Asadullah Galib*† 2 Andrew Smith* 3 Debvrat Varshney* 4

Edward Brown 1 Peter Chi 5 Xiangning Chu 6 Filip Svoboda 1

1 University of Cambridge 2 Michigan State University
3 Northumbria University 4 University of Maryland Baltimore County

5 University of California Los Angeles 6 University of Colorado Boulder

*Equal contribution
†Correspondence to galibasa@msu.edu

Abstract

Earthquake forecasting is a topic of utmost societal importance, yet has represented
one of the greatest challenges to date. Case studies from the past show that seis-
mic activity may lead to changes in the local geomagnetic and ionospheric field,
which may operate as potential precursors and postcursors to large-magnitude
earthquakes. However, detailed and data-driven research has yet to support the
existence of precursors and postcursors. This work makes an attempt to build
data-driven deep learning networks that can learn the temporal changes in geo-
physical phenomena before and after large magnitude earthquake events. First,
we do numerous experiments using various machine learning and deep learning
models, but none of them are sufficiently generalizable to forecast earthquakes
from potential precursors. Our negative findings may make sense as there is not any
conclusive and comprehensive evidence yet supporting the existence of earthquake
precursors. We, therefore consider detecting earthquakes from postcursors data to
spot potential pitfalls and outline the scope of possibility. Our tests indicate that
while detecting earthquakes from postcursor data might be promising, it would
fall short. Poor performance could be brought on by a lack of data and extremely
complex relationships. However, we are leaving room for future research with
deeper networks and data augmentation.

1 Introduction

Forecasting earthquakes has been a longstanding and as yet unsuccessful scientific quest. Recent
circumstantial evidence emerging from case studies suggests the occurrence of detectable precursors
as well as postcursors in less obvious data sources, such as the variations in the geomagnetic field and
ionosphere. While not unambiguously confirmed - or accepted by the community - if such signatures
exist, then there is the exciting possibility of forecasting and detecting earthquakes using models that
monitor the ionosphere and geomagnetic field. The goal of this study, therefore, is to test whether
a model can be created to skillfully forecast and detect earthquakes based on the full range of data
available. Such a model, if skillful, would be of immense societal value.

In this work, we perform time series modeling to capture the relationship between surrounding
perturbations in the geomagnetic and ionospheric fields with the occurrence of earthquakes. As there
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is no established scientific relationship between these physical phenomena and seismic activity, we
take a data-driven approach to learn the effect of seismic activity on physical phenomena; observing
the changes which can in turn help us forecast and detect earthquakes. This problem is further
complicated by the overbearing effect of an extra-terrestrial phenomenon, principally the interaction
of the solar wind with the ionosphere. We incorporate solar wind data as well in our networks to
carry out multiple experiments with varying hyperparameters.

There are two aspects to our study. The heterogeneous multivariate time series data are first integrated
and aligned. Next, we concentrate on the primary challenge of forecasting and detecting earthquakes.
Our efforts with earthquake detection are somewhat more promising, despite the failure of earthquake
forecasting models. For our deep networks to learn from, we think that larger datasets with longer
time series would be helpful.

2 Problem Statement

Let the input time series of ionospheric data, solar wind data, geomagnetic data be
Xtec, Xsolar, Xgeomag, respectively, and the target be y, which denotes whether an earthquake
happens or not. The input time series can be multivariate. The spatial and temporal resolutions
of the input time series are different from each other. Our first task is to integrate and align these
large-scale, regionally, and temporally heterogeneous time series. After the alignment, the input and
target variables for the forecasting problem can be defined as:

Xtec = [ xtect−k xtect−k+1 . . . x
tec
t−2 xtect−1 ]

Xsolar = [ xsolart−k xsolart−k+1 . . . x
solar
t−2 xsolart−1 ]

Xgeomag = [ xgeomag
t−k xgeomag

t−k+1 . . . xgeomag
t−2 xgeomag

t−1 ]

y =

{
1, if earthquake happens at time t

0, otherwise
(1)

Then, with the assumption that earthquakes have nonlinear relationships with the input features, we
can model the following:

y = ⌊σ (nonlinear(Wtec(Xtec)T ) + nonlinear(Wsolar(Xsolar)T )+

nonlinear(Wgeomag(Xgeomag)T ))⌉ (2)

Our final task is to estimate y using the input variables (Xtec, Xsolar, Xgeomag).

Later, we apply the same problem formulation and underlying assumptions to the detection of
earthquakes, but the time frame of the input variables is derived from subsequent time steps:

Xtec = [ xtect+1 xtect+2 . . . x
tec
t+k−1 xtect+k ]

Xsolar = [ xsolart+1 xsolart+2 . . . xsolart+k−1 xsolart+k ]

Xgeomag = [ xgeomag
t+1 xgeomag

t+2 . . . xgeomag
t+k xgeomag

t+k ]

(3)

So, we use input variables from pre-earthquake time steps (t− 1, · · · , t− k) to forecast earthquakes
at time t and we use input variables from post-earthquake time steps (t + 1, · · · , t + k) to detect
earthquakes at time t.

3 Methodology

This section presents the methodology for forecasting and detecting earthquakes from heterogeneous
multivariate time series data. Our method can be divided into two parts. First, we integrate and align
the heterogeneous time series data. Then, we focus on the main task of forecasting or detecting
earthquakes. The underlying architectures for earthquakes detection and forecasting are the same, the
only difference is the time frame of the input data: pre-earthquake time steps (t − 1, · · · t − k) to
forecast earthquakes and post-earthquake time steps (t+ 1, · · · t+ k) to detect earthquakes.
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Integrating and Aligning Heterogeneous Time Series Data

We are considering seismic ([1]), geomagnetic (SUPERMAG [2]), solar wind (OMNI [3]), and
ionospheric (TEC [4]) time series data as input variables. The spatial and temporal resolutions of
the data sets are different from each other. For instance, TEC data has a 5-minute interval compared
to a 1-minute interval for solar wind data. The spatial resolution of TEC data is also considerably
larger than that of geomagnetic data. Another consideration is the volume of data available including
over 110 million data points of TEC data per month. Integrating these large-scale, regionally and
temporally heterogeneous datasets is the first significant challenge. Each dataset comprises time
series from individual stations that require prepossessing to compensate for missing values.

We analyze the heterogeneous time series data based on their relative time to earthquakes, relative
distance to earthquakes, and different interpolation considerations. We experiment with these three
major parameters to integrate and align the input time series. The parameters that we change for the
input data are as follows:

• Relative Time Bounds (τ ) - We look at physical phenomena (geomagnetic and ionospheric
readings) that occur in a time window of ±1 hour to ±10 hours around the earthquake
occurrence time.

• Spatial Bounds (δ) - The spatial grid around the earthquake epicenter where we are looking
for data. This parameter is varied between [3°, 4°, 5°] (i.e. δ ∈ [3, 5]). So, in essence, for
an earthquake epicenter at (x,y), we collate all data sources present at locations (x±δ, y±δ).
The data sources are grouped together as per the following parameter.

• Group Type (g) - The input data sources which are filtered as above (with respect to τ and δ)
are then grouped together to a single reading with the τ time series. We perform two types
of these group-by operations: “median” and “range”.

After aligning the datasets we have machine learning-ready data that can be fed to any deep or
traditional network. Varying the parameters of τ , δ, and g, gives us a lot of room to learn the
spatio-temporal dependencies between seismic activity and surrounding geophysical phenomena.

3.1 Forecasting and Detecting Earthquakes

The goal of this research is to develop data-driven deep learning networks that can recognize the
temporal variations in geophysical phenomena before and after earthquakes of significant magnitude.
To begin, we conduct a number of experiments utilizing various machine learning and deep learning
models to forecast earthquakes from potential precursors. Later, to identify potential pitfalls and
define the range of possibilities, we explore detecting earthquakes from postcursor data.

We try to learn the relationship between a big seismic event and the preceding (for forecasting) and
succeeding (for detection) ionospheric, geomagnetic, and solar wind changes. As this relationship
may be complex and non-linear, deep learning methods can help to learn the relationship. But we
do not have enough data points due to the scarcity of earthquakes with a magnitude greater than 6.
So, we experiment with both conventional machine learning models as well as deep learning models.
In particular, we use Random Forest and AdaBoost as conventional machine learning models. In
terms of deep learning models, we employ Fully Connected Networks and Long Short Term Memory
(LSTM) [5] to learn the long time series. LSTMs, which are an upgraded form of recurrent neural
networks (RNNs), are deep learning models with hidden states. These hidden states can temporarily
store representations from a past event and use them to predict a future event.

For the conventional machine learning models (Random Forest and AdaBoost) and fully connected
networks, we flatten the multivariate time series before feeding it into the model. We consider the
following two data settings for each of the models: (ionospheric + solar wind data) and (ionospheric
+ solar wind + geomagnetic data).

For LSTMs, we primarily experiment with three architectures based on the data considered: Network
1 (ionospheric + solar wind data), Network 2 (ionospheric + solar wind + geomagnetic data), Network
3 (ionospheric + solar wind + geomagnetic data).

The basic idea behind these architectures is that seismic activity can result in changes in the physical
phenomena of the ionosphere and the geomagnetic field. The ionosphere, on the other hand, can
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(a) (b)

Figure 1: (a) Network 1: Built upon ionospheric and solar wind data (b) Network 2: Built upon all
three data sources i.e. (TEC, OMNI, & SuperMAG)

Figure 2: Network 3 - A modification on Network 2, where features from TEC and OMNI learn from
each other.

further be affected by the solar wind emanating from the sun. To capture the dynamic changes in
these physical phenomena, our deep learning models consist of an LSTM cell for each phenomenon.
The models are made up of multiple linear layers, with a fully connected layer as the final layer to
predict the magnitude of seismic activity.

In the Figure 1 and Figure 2, we show all the network architectures (Networks 1-3). Figure 1 shows
the architectures of Network 1 and Network 2. Both networks are primarily made up of LSTM cells.
Here, “FC” stands for a fully connected layer and the two numbers denote input and output nodes.
Figure 2 shows the architecture of Network 3, which is a modification of Network 2 where hidden
representations from TEC and OMNI data are concatenated first, and the output of which is later
concatenated with the hidden representation of SuperMAG data. The reason is that TEC is heavily
affected by the OMNI dataset, and a separate concatenation of these two LSTM cells should be able
to capture and learn this relationship.

All networks have a ReLU activation [6] after each layer and a sigmoid layer at the end of the
architecture as we are detecting earthquakes. They are trained using the Adam optimizer [7] with a
binary cross entropy loss. All architectures use a batch size of 8 and are trained for 200 epochs.

4 Experimental Evaluation

This section presents data, experimental setup, and results analysis.
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4.1 Data

Synthetic Data

The relationship between seismic events and the preceding (for forecasting) and succeeding (for
detection) ionospheric, geomagnetic, and solar wind changes can be very complex and non-linear.
Also, we have limited data due to the frequency of earthquakes with a magnitude greater than 6. So,
before working on the real-world data, we created a synthetic dataset to assess our model’s ability to
correctly forecast and detect earthquakes. It is typical to evaluate methods using synthetic data in this
way [8, 9]. For the synthetic data, the input time series is generated as follows:

Xtec,Xsolar,Xgeomag ∼ random (4)

Wtec,Wsolar,Wgeomag ∼ uniform (5)
(6)

Then, we calculate the target - y using the initial assumption as mentioned in Equation (2).

Real World Data

To forecast and detect earthquakes, we use the USGS earthquake catalog [1]. This catalog records
critical features such as the timing, magnitude, location, and depth of earthquakes, and has been
produced for a long time interval - albeit with increasing sensitivity as more stations and data
processing methods have come online.

Three open source data sets are used to search for physical changes linked to earthquake precursors.
First, to investigate ionospheric signals we use measurements of the total electron content (TEC)
which describes the state of the ionosphere. The Madrigal database [4] provides global maps of
vertical TEC, calculated from GNSS (Global Navigation Satellite Systems) data, and provided in
a 1° by 1° grid at a cadence of 5 minutes. Data is incomplete, with typical global completeness of
25 [10]. Second, to probe seismic effects on the geomagnetic field, the SuperMAG collection of
individual stations data is used [2]. Although 1-second resolution data is available in some instances,
the 1-minute resolution is used to vastly increase spatial and temporal coverage. Third, to explicitly
calibrate for the effects of space weather on the ionosphere and geomagnetic field, we use a series of
heliospheric data known as OMNI [3], at 1-minute resolution. OMNI collates a range of heliospheric
observations and derivatives describing the geomagnetic conditions near the Sun’s surface and in
near-Earth space.

4.2 Experimental Setup

We have tested conventional machine learning models (Random Forest and AdaBoost) and other
deep learning models (Fully Connected Networks, LSTMs) for their capability of learning non-linear
and complex relationships. For LSTM models, we have tested using three customized architectures
as mentioned before. For all experiments, we use 8:1:1 for train, validation, test split. We performed
hyper-parameter tuning on all the models and on the parameter space for large-scale data integration.
We tune different learning rates in the range [10−2, 10−5], batch size, model-specific hyperparameters,
and data-specific parameters. Accuracy, precision, recall, and F-1 score are considered for model
performance. Google Cloud high memory CPUs and GPUs were used for training.

4.3 Results Analysis

According to experiments for forecasting earthquakes, none of the models converge. The mod-
els/architectures themselves are not an issue since the models converged perfectly and performed
excellently when tested on the synthetic data.

For the earthquake detection part, the LSTM models did not converge easily on the real dataset. Since
the models converged smoothly and performed well when tested on the synthetic data (See Figure ??),
the models themselves are not a concern. The lack of seismic data (i.e., insufficient training events)
would be the main factor contributing to the failure of the models on real-world data. However,
conventional machine learning models such as Random Forest and AdaBoost converge on real data,
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as do other deep learning models (fully connected networks). Models’ performance is better than
random chance, but not exceptional (see Table 1). We also test our LSTM models on synthetic data
to get an accuracy of 0.963, which suggests that either the signals are not uniquely identifiable in the
data, or that there is insufficient data for the task.

5 Discussion and Limitation

All of the models employed in this study to forecast earthquakes from precursory signals fail on real-
world data. Our negative findings on real data may make sense as there is not any comprehensive and
convincing evidence to date in favor of earthquake precursors. There is circumstantial evidence from
previous studies has indicated the presence of precursory changes in the ionosphere and geomagnetic
field linked to individual earthquakes [11, 12, 13]. But, those studies are specific cases rather than
comprehensive and are not unambiguously confirmed or accepted by the community. Also, a major
limitation of case studies is the major contribution of external factors, primarily space weather, to
fluctuations in ionospheric and geomagnetic properties, which can lead to misinterpretation of external
signals as earthquake-related [14, 15]. Using all available events, our study is the first to employ
a data-driven methodology that can account for all external influences, allowing us to demonstrate
consistency within earthquake precursor signatures and present a comprehensive outlook.

Given the scarcity of real-world data and the complexity of the underlying relationships, the per-
formance of the models for earthquake detection from postcursors data is fair. Our findings show
that while trying to detect earthquakes using postcursor data may seem intriguing, it is not that
convincing. It is possible that a lack of data and incredibly intricate relationships are to blame for
poor performance. We are, however, leaving space for additional data augmentation and deeper
network analysis in the future.

There may be problems in this data assimilation process, despite the fact that we integrate and align
heterogeneous multivariate time series data based on recommendations and insights from literature
and domain experts. Additionally, we did not take into account alternative deep learning models,
such as convolutional neural networks, graph neural networks, etc. We ought to have tried out
deeper and more complicated designs. We should have experimented with more complex and deeper
architectures.

M>7 M>6
Model Accuracy Recall F1 Accuracy Recall F1

Random Forest 0.66 0.83 0.71 0.55 0.61 0.57
AdaBoost 0.64 0.73 0.66 0.54 0.58 0.56

Fully Connected 0.63 0.71 0.65 0.59 0.63 0.60
LSTM (Network 1) 0.57 0.64 0.60 0.54 0.59 0.55

Table 1: Model performance on real-world data for earthquake detection. ‘M’ denotes earthquake
magnitude.

6 Conclusion

Earthquakes can be hard to forecast and detect due to the unknown relationships between the
associated geophysical phenomena. This work explores the power of machine learning algorithms in
forecasting and detecting earthquake occurrence patterns. The networks capture different intuitive
approaches and are able to learn randomly generated dummy data. Though earthquake forecasting
models fail, our experiments with earthquake detection are somewhat more promising. We believe
that bigger datasets with a longer time series might be useful for our deep networks to learn from.
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