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ABSTRACT

Diffusion models have demonstrated remarkable performance in generating high-
dimensional samples across domains such as vision, language, and the sciences.
Although continuous-state diffusion models have been extensively studied both
empirically and theoretically, discrete-state diffusion models, essential for appli-
cations involving text, sequences, and combinatorial structures, they remain sig-
nificantly less understood from a theoretical standpoint. In particular, all existing
analyses of discrete-state models assume access to an empirical risk minimizer. In
this work, we present a principled theoretical framework analyzing diffusion mod-
els, providing a state-of-the-art sample complexity bound of O(e~*). Our struc-
tured decomposition of the score estimation error into statistical and optimization
components offers critical insights into how diffusion models can be trained effi-
ciently. This analysis addresses a fundamental gap in the literature and establishes
the theoretical tractability and practical relevance of diffusion models.

1 INTRODUCTION

Diffusion models have emerged as a powerful class of generative models, achieving impressive per-
formance across tasks such as image synthesis, molecular design, and audio generation. Central to
the training of these models is the estimation of the score function, which characterizes the reverse-
time dynamics in the diffusion process. Diffusion models are widely adopted in computer vision
and audio generation tasks (Ulhaq & Akhtar, [2022; |Bansal et al., [2023), text generation (Li et al.,
2022)), sequential data modeling (Tashiro et al.,|2021)), reinforcement learning and control (Zhu et al.,
2023)), and life sciences (Jing et al.|[2022; Malusare & Aggarwal, [2024). For a more comprehensive
exposition of applications, we refer readers to survey paper (Chen et al., 2024).

While diffusion models exhibit strong empirical performance, understanding their sample complex-
ity is essential to guarantee their efficiency, generalization, and scalability, enabling high-quality
generation with minimal data in real-world, resource-constrained scenarios. Some of the key works
studying the sample complexity are summarized in Table[I} A key limitation of sample complexity
analyses of diffusion models done thus far is the lack of the presence of finite-time sample complex-
ity results under reasonable assumptions. This makes the theoretical analysis of diffusion models
fall short of other machine learning areas such as reinforcement Learning (Kumar et al., 2023} |Gaur
et al.,[2024), bi-level-optimization (Grazzi et al.,|2023} |Gaur et al.,|2025) and graphical models (Fat-
tahi et al.l 2019; Tran et al., [2019). In this work we aim to bridge that gap and obtain a sample
complexity results on the same footing as results from the aforementioned areas. The iteration com-
plexity or convergence has been studied in [Li et al.|(2024b)); Benton et al.| (2024); |Li & Yan|(2024);
Huang et al.| (2024); Dou et al.| (2024); Liang et al. (2025aib), while they assume bounded score
estimates thus not providing the sample complexity which requires estimating the score function.

We note that works such as|Zhang et al.|(2024)); |Wibisono et al.|(2024); Oko et al.[(2023));|/Chen et al.
(2023) have sample complexity results that depend exponentially on the data dimension, making
the result less useful in high-dimensional settings. Recently, Gupta et al.| (2024)) improved upon
this by obtaining @(675) sample complexity without exponential dependence on data dimension

''We note that/Gupta et al.| (2024) claimed a sample complexity of @(6’3), while this claim does not account
for the accumulation of errors across discretization steps. Specifically, their bound at each step depends on
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Reference Sample. . ]‘En}pirical Risk .
Complexity Minimizer Assumption
Zhang et al.|(2024) o) (e Yes
Wibisono et al.(2024) O (e=(?) Yes
Oko et al.[(2023) O (e70@) Yes
Chen et al/(2023) O (e 9@) Yes
Gupta et al.[(2024)! o) (e7®) Yes
This work O(e™%) No

Table 1: Summary of sample complexity results for diffusion models, assuming no upper bound
on score estimation error. For further details on how the sample complexity bounds are derived for
Gupta et al.[(2024)), see Appendix

However, this work assumes access to the empirical risk minimizer (ERM) of the score estimation
loss, a significant restriction that was explicitly highlighted as an open problem in|Gupta et al.|(2024)
itself. While this assumption is present in all prior works, it is an unrealistic assumption regardless.

In this paper, we do not make this assumptions and establish an improved state-of-the-art sample
complexity bound of O(e~*). This represents a key step toward bridging the gap between the theory
and practice of diffusion models. Specifically, we address the following fundamental question.

How many samples are required for a sufficiently expressive neural network to estimate the score
function well enough to generate high-quality samples using a DDPM algorithm?

Our analysis directly connects the quality of the learned score function to the total variation distance
between the generated and target distributions, offering more interpretable and practically relevant
guarantees. Additionally, our work accounts for the unavailability of the empirical risk minimizer.
Using our novel analysis of the score estimation error, we obtain the sample complexity bounds
without exponential dependence on the data-dimension. Our principled analysis accounts for the
statistical and optimization errors while not assuming access to the empirical risk minimizer of the
score estimation loss, and achieves state-of-the-art sample complexity bounds.

The statistical error occurs due to the finite sample size used to obtain the score estimate. Existing
methods used to bound statistical errors assume bounded loss functions, which is not true in the case
of diffusion models. We thus use a novel analysis that uses the conditional normality of the score
function to obtain upper bounds for the statistical error.

Finally, the optimization error occurs due to a finite number of SGD steps during the estimation of
the score function. It is precisely the error that was not accounted for in the previous works due to
the assumption that they have access to the empirical risk minimizer. We use the quadratic growth
property implied by the Polyak-Eojasiewicz (PL) condition assumed in Assumption [2| and a novel
recursive analysis of the error at each stochastic gradient descent (SGD) step to upper bound this
error.

The main contributions of our work are summarized as:

* Finite time sample complexity bounds. We derive state-of-the-art sample complexity
bound of O(e~*) for score-based diffusion models, without exponential dependence on the
data dimension or neural network parameters. Our analysis avoids the unrealistic assump-
tions used in prior works such as access to an empirical loss minimizer.

* Principled error decomposition. We propose a structured decomposition of the score
estimation error into approximation, statistical, and optimization components, enabling the
characterization of how each factor contributes to sample complexity.

Unconditional and Conditional Diffusion Models. Diffusion models have emerged as leading
frameworks across vision, audio, and scientific domains. Foundational works such as|Sohl-Dickstein

O(1/€?) samples, and applying a union bound over O(1/¢?) steps yields a total sample complexity of O(e~°).
For more details, see AppendixlEl
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et al|(2015) and Ho et al.|(2020) introduced and refined Denoising Diffusion Probabilistic Models
(DDPMs), enabling high-quality sample generation. Subsequent advances include improved noise
schedules (Nichol & Dhariwall 2021)), score-based SDE formulations (Song et al., 2021}, and ef-
ficient latent-space generation via Latent Diffusion Models (LDMs) (Rombach et al.| 2022). Con-
ditional diffusion models extend these techniques for guided generation tasks, with applications
in time-series [Tashiro et al.| (2021), speech |Huang et al.| (2022), and medical imaging |Dorjsembe
et al.| (2023). Conditioning mechanisms range from classifier-based [Dhariwal & Nichol| (2021) to
classifier-free guidance Ho & Salimans| (2022), which enabled text-to-image models like Imagen
Saharia et al.| (2022) and Stable DiffusionRombach et al.[(2022). Recent innovations focus on adap-
tive control |Castillo et al.| (2025)), compositionality [Liu et al.| (2023)), and multi-modal conditioning
Avrahami et al.| (2022)).

Related Works: Despite the empirical success of diffusion models, theoretical understanding re-
garding the sample complexity remains limited. Assuming accurate score estimates, authors in/Chen
et al.| (2022) showed that score based generative models can efficiently sample from a sub-Gaussian
data distribution. Assuming a bounded score function, iteration complexity bounds have been ex-
tensively studied in recent works |Li et al.| (2024b); Benton et al.| (2024); |Li & Yan| (2024); Huang
et al.| (2024); Dou et al.[(2024); Liang et al.|(2025azb)). In particular, Benton et al.| (2024); L1 et al.
(2024b)) establishes iteration complexity guarantees for DDPM algorithms. Several studies propose
accelerated denoising schedules to improve these rates |Li et al.|(2024a); [Liang et al.| (2025b); [Dou
et al.| (2024). Additionally, improved convergence rates under low-dimensional data assumptions
are demonstrated in|Li & Yan|(2024)); Huang et al.|(2024)); Liang et al.|(2025a). In contrast to these
works, our analysis addresses the sample complexity of score-based generative models, where the
errors introduced by the neural network approximation, data sampling, and optimization are also
accounted for.

Sample complexity bounds for diffusion models have been studied via diffusion SDEs under
smoothness and spectral assumptions in |Chen et al.| (2023)); [Zhang et al.| (2024); |[Wibisono et al.
(2024); |Oko et al|(2023). However, these bounds are exponential in the data dimension. Further,
authors of (Gupta et al.| (2024) use the quantile-based approach to get the sample complexity bounds.
In this work, we further improve on these guarantees. The detailed comparison of sample complex-
ities with the key approaches mentioned above is provided in Table[T]

2 PRELIMINARIES AND PROBLEM FORMULATION

We begin by outlining the theoretical basis of score-based diffusion models. In particular, we adopt
the continuous-time stochastic differential equation (SDE) framework, which provides a principled
basis for modeling the generative process. We then outline its practical discretization and formally
define our problem.

Score-based generative models enable sampling from a complex distribution py by learning to re-
verse a noise-adding diffusion process. This approach introduces a continuous-time stochastic pro-
cess that incrementally perturbs the data distribution into a tractable distribution (typically Gaus-
sian), and then seeks to reverse that transformation.

A canonical forward process used in diffusion models is the Ornstein—Uhlenbeck (OU) pro-
cess (Dksendal, [2003)), defined by the following SDE

dry = —z4dt +V2dB,, xo ~ po,z C R, ()
where B, denotes standard Brownian motion. The solution of this SDE in closed form is given by

2y~ e twg+ /1 —e2e,  withe~ N(0,1). )

As t — oo, the process converges to the stationary distribution A(0, ). Let p; denote the marginal
distribution of x;. This defines a continuous-time smoothing of the data distribution, where p;
becomes increasingly Gaussian over time.

This is typically achieved using stochastic time-reversal theory (Anderson, [1982), which yields a
corresponding reverse-time SDE as follows.

drr_y = (27—t + 2V log pr—¢(x7_s)) dt + V2dBy, 3)
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where V logp:(z) is known as the score function of the distribution p;. Simulating this reverse
process starting from xp ~ pr &~ N(0, I) yields approximate samples from the original distribution
po- This motivates a sampling strategy where we begin from 7 ~ N (0, I) for sufficiently large T,
and then integrate the reverse SDE backward to ¢ = 0 using estimated score functions. In practice,
the backward process is run up to a fixed time point ¢y known as the early stopping time and not
t = 0. This is done in order to improve performance and training speed (Lyu et al.| 2022; [Favero
et al.l [2025).

The continuous-time reverse SDE (Equation [3) is discretized over a finite sequence of times 0 <
to < t1 < - tg,- < tg = (T'— k) < T. The score function s;(z) := Vlogp:(x) is
approximated at these discrete points using a learned estimator 5., . This discretization underlies
the DDPM framework (Ho et al., [2020), where the reverse process is implemented by iteratively
denoising the sample using the estimated scores at each time step. The detailed procedure is provided
in Algorithm [I]in the Appendix [C| We employ stochastic gradient descent (SGD) to learn the score
function at each ¢, using either a constant learning rate, as justified in our analysis later.

Problem formulation: Let the score function be approximated using a parameterized family of
neural networks Fo = {sy : § € O}, where each sp : R? x [0,7] — R is represented by a
neural network of depth D and width W with smooth activation functions. Given ny i.i.d. samples
{z;}?_, from the data distribution p;, , the score network is trained by minimizing the following
time-indexed loss:

ﬁk(e) = EINPtk [HSQ(.’I},tk) - VIngtk (x)HQ] : (4)

Objective. Our goal is to quantify how well the learned generative model p;, approximates the
true data distribution p in terms of total variation (TV) distance. Specifically, we aim to show the
number of samples needed so that with high probability, the TV distance TV (py,, Pz, ) is bounded
by O(e), where € is the L? estimation error of the score function. This reduces the generative
performance analysis to establishing tight sample complexity bounds on the score estimation error.
We additionally define the following probability distributions:

D, := Distribution obtained after backward process till time to steps starting form pr
pfzs := Distribution obtained by backward process till time t starting from pr
at discretized time steps
Dt := Distribution obtained by backward process till time to starting from pr
at discretized time steps using the estimated score functions
P, := Distribution obtained by backward process till time tg starting from N (0, I)

at discretized time steps using the estimated score functions

where ¢ denotes the early stopping time.

3 SAMPLE COMPLEXITY OF DIFFUSION MODELS

In this section, we derive explicit sample complexity bounds for diffusion-based generative models.
By leveraging tools from stochastic optimization and statistical learning theory, we provide bounds
on the number of data samples required to accurately estimate the time-dependent score function
st(x) := Vlogp:(x) across the forward diffusion process. Note that accurate score estimation is
critical for ensuring high-quality generation while sampling through the reverse-time SDE.

We first state the assumptions required throughout this work.

Assumption 1 (Bounded Second Moment Data Distribution.). The data distribution pg of the data
variable xq has an absolutely continuous CDF, is supported on a continuous set I' € R?, and there
exists a constant 0 < Cy < oo such that E(||xo||?) < C1.

Some works that analyze the convergence of score-based diffusion models, such as [Chen et al.
(2022); Oko et al.| (2023), assume that the data distribution is supported on a bounded set, thereby
excluding commonly encountered distributions such as Gaussian and sub-Gaussian families. In
contrast, our analysis only requires the data distribution to be sub-Gaussian, making our results
applicable to a significantly broader class of distributions.
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Assumption 2 (Polyak - Lojasiewicz (PL) condition.). The loss Ly (0) for all k € [0, K| satisfies
the Polyak—tLojasiewicz condition, i.e., there exists a constant p > 0 such that

1
SIVLLO)I = 1 (Lx(6) = Li(67)), VO €O, (5)
where 0* = arg mingeco L (0) denotes the global minimizer of the population loss.

The Polyak-t.ojasiewicz (PL) condition is significantly weaker than strong convexity and is known to
hold in many non-convex settings, including overparameterized neural networks trained with mean
squared error losses (Liu et al.,[2022)). Prior works such as|Gupta et al.|(2024) and|Block et al.|(2020)
implicitly assume access to an exact empirical risk minimizer (ERM) for score function estimation,
as reflected in their sample complexity analyses (see Assumption A2 in|Gupta et al.| (2024) and the
definition of f in Theorem 13 of |Block et al.| (2020)). This assumption, however, introduces a major
limitation for practical implementations, where exact ERM is not attainable.

In contrast, the PL condition allows us to derive sample complexity bounds under realistic optimiza-
tion dynamics, without requiring exact ERM solutions. To our knowledge, this is the first theoretical
analysis of score-based generative models that explicitly accounts for inexact optimization, address-
ing a key gap in existing literature. Additionally, we establish convergence guarantees with both
constant and decreasing step sizes.

Assumption 3 (Approximation error of the Class of Neural Networks). For all t € [0,T), there
exists a neural network parameter 6 € © such that

EINPtHSe(xv t) -V logpt(x)Hz < €approzx (6)

This error is independent of the sampling algorithm, and describes the error due to neural network
parametrization. In learning theory, it is common to treat the approximation error of a model class
as a constant so that analyzes can focus on the estimation/ optimization terms dependent on the sam-
ple. This convention appears in standard excess-risk decompositions for fixed hypothesis classes
(Shalev-Shwartz & Ben-David,[2014). In PAC-Bayesian analyses, approximation errors are denoted
by a constant once the class is fixed (Mail 2025). In (NTK/RKHS) analyses of neural networks,
where it is assumed the target function lies in, or is well approximated by the specified function
class, the misspecification error is represented as a constant term (Bing et al., [2025)). In reinforce-
ment learning algorithm analysis such as policy gradient, a task-dependent “inherent Bellman” or
function-approximation error that remains constant while deriving performance rates (Mondal &
Aggarwal, 2024} |[Fu et al., 2021} |Gaur et al., 2024} |Ganesh et al.| 2025). Note that |Gupta et al.
(2024) also makes the same assumption implicitly, but assumes this constant to be zero (in Assump-
tion A2).

Note that in certain works such as (Jiao et al.| [2023), it is shown that the network size has to expo-
nential in data dimension in order to achieve a small approximation error. However, in practice that
would require an impractically large neural network size. In practice neural network size is of the
same order as the data dimension. Thus for a fixed neural network size that we assume in this work,
it makes sense to assume the approximation error as a constant.

Assumption 4 (Smoothness and bounded gradient variance of the score loss.). For all k € [0, K],
the population loss Ly, (0) is k-smooth with respect to the parameters 0, i.e., for all 6,0' € ©

IVLL(0) = VL) < k[0 — 0] )
We assume that the estimators of the gradients V L, (0) have bounded variance.
E|[VLL(0) = VLL(O)]| < 0. @®)

Together, these assumptions form a minimal yet sufficient foundation for analyzing score estimation
in practice. Smoothness and bounded gradient variance implied by the sub-Gaussian assumption are
mild and generally satisfied for standard neural architectures with ReLU or GELU activations and
well-behaved data distributions. The PL condition has been shown to emerge in over-parameterized
networks or under lazy training regimes, where the function class is expressive enough to approx-
imate the ground-truth score function (Liu et al., 2022). Notably, these conditions are not only
specific to our setting they have been widely adopted in recent works studying the optimization
landscape of deep diffusion models (Salimans & Hol 2022} Liu et al.l |2022). Note that in no prior
works were such assumptions stated since they assumed access to the empirical risk minimizer.
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Theorem 1 (Total Variation Distance Bound). Let p;, denote the distribution obtained by the back-
ward process till time tq starting form pr, and py, () be the distribution generated by the backward
process at discretized time steps {ty}, starting from N(0,I) using the estimated score functions
1, (x) where k € [0, K. Let d be the data dimension, and ny, be the number of samples for score
estimation at time step ty,.

Assume that the data distribution satisfies Assumption l 1| the loss function L (0) satisfies Assump-
tions 2| I.E] for all k € [0, K] and the learning rate for estimating L(0) using SGD satisfies
0<n< - forallke |0 K] Further assume

wmafm () ().

Then, with probability at least 1 — 0, the total variation distance between the p., and py, satisfies

TV(th,ﬁto) S O(QprT) —+ O <\/1[?> =+ O <6 . (T + IOg i)) —+ 6app7‘ox (10)

Furthermore, by setting T = €2 (log (1) ),k = Q(e) and K = Q(e~?), we obtain

Tv(ptoaﬁto) < O(E) + €approz; an
with probability at least 1 — §.

Theorem [I] establishes that the total variation distance between the true data distribution and the
diffusion model’s output can be made arbitrarily small specifically, O(¢) by properly scaling model
capacity and algorithmic parameters. To the best of our knowledge, these are the only known sample
complexity bounds for score-based diffusion models, improving upon the prior results as discussed
in the introduction without assuming access to empirical risk minimizer for the score estimation
loss.

Usage of p;, instead of p; in Theorem We have shown that the estimated distribution py, is O(e)-
close in total variation (TV) to p;,, where p;, denotes the data distribution py pushed forward by g
steps of the forward process. We do not claim that p;, is O(€)-close in TV to the true data distribution
po (i.e., we do not bound TV (pg, Pz, )), because doing so would require additional assumptions on
po. For example, Fu et al.| (2024) (in Lemma D.5) assumes a sub-Gaussian data distribution to show
that TV (po, pr,) < O (Vo log(1/t0)). We also note that all other works listed in Tablelsnmlarly

provide upper bounds on TV (py,, P, ), not on TV (pg, pr, )-

However, it is to be noted that using the sub-Gaussian assumption, our analyis can be extended to a
bound TV (po, pr,) via the triangle inequality:

TV (po,pe,) < TV(po,pey) + TV (pto,Dto)-

We formally present the data assumption and the resulting theorem as follows

Assumption 5 (Sub-Gaussian Data Distribution.). The data distribution pg of the data variable x

has an absolutely continuous CDF, is supported on a continuous set I' € R?, and there exists a
t2

constant 0 < Cy < oo such that for every t > 0 we have P(|zo| > 1) < 2-exp 3.

Theorem 2 (Total Variation Distance Bound Under Sub-Gaussian Assumption). Assume that the
data distribution satisfies Assumption 5| the loss function Ly, (0) satisfies Assumptions [Z]ll for all
k € [0, K] and the learning rate satisfies for estimating L, (0) using SGD satisfies 0 < n < for
all k € [0, K. Further assume

ng = O (WQD -d%.log (4§(> (0 4>) (12)
k

Then, with probability at least 1 — 0, the total variation distance between the po and p, satisfies

TV (0o, prg) < O (Vs log(1/t0)) + Oexp™T) + O (&)

1
+O (6 . (T —+ IOg l{)) + €approx (13)
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Furthermore, by setting to = Q(e?), T = Q (log ()).x = Q(e) and K = Q(e~2), we obtain
Tv(pOapto) =~ 0(6) + €approx; (14)

with probability at least 1 — 0.

Proof of Theorem/[ll

Recall that p;, is derived via score-based sampling, so using the triangle inequality repeatedly to
decompose the TV distance between the true distribution p;, and p,, we obtain

TV (pry, Bro) < TV (pto, pi*) + TV (DS, Bty ) + TV (o Pro) (15)

The bounds on TV (p,,, pfgs) and TV (p,, Pt, ) follow from Lemma B.4 of |Gupta et al.{(2024) and
Proposition 4 of [Benton et al.|(2024), respectively to get

TV (01, ) < O ( ) LTV ) + Ofexp(—T)) (16)

1
VK
Note that we have used results from (Gupta et al.|(2024) and Benton et al.| (2024) which assume a

bounded second moment for the data distribution. This is satisfied by Assumption [I] Now from
lemma@ TV(pt0 ,Dt,) is upper bounded as follows

K

~ 1
TV (D" Pro) < 54| 2 By, 181 (2 1) = Vogpy, (@)1 (br1 — 1) a7
k=0

In order to upper bound, TV (ps, py, ) we denote A(k) as

A(k) = Eyey,, |I50, (. tk) — Viogpy, ()| da (18)

Therefore, bounding the TV distance between p;, and p;, translates to bounding the cumulative
error in estimating the score function at different time steps. We now focus on bounding this term.
Specifically, we have that

) 1 1| &
TV(ptg, Dry) < O (\/E) +3 kZ:OAk'(L‘kH —tg)(tk+1 — i) + O(exp(=T)) (19)

Now, for each time step k, we decompose the total score estimation error, denoted by A(k), into
three primary components: approximation error, statistical error, and optimization error. Each of
these error corresponds to a distinct aspect of learning the reverse-time score function in a diffusion
model as described below.

~ 2
Eanp, |15, 06) = V1og pr, (@) 2] < 4By, o) [[|5%, (@, t0) = T log pr, (0)] ]

approx
Sk

4B, (o |[1%, (1) = ot 10) ]

gstat

FAE o [0 @) = s @) 7], @)

opt
&
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where, we define the parameters

. 2
0, = argminEorp,, [[lso(z, tx) = Viogpi(x, tx)°] 2D
6} = argmin = Zn: so (@, t) — Vlog pu (s, ti) || (22)

6c6 n
and denote s§, and sfk as the estimated score functions associated with the parameters 6¢ and 6%
respectively. Approximation error E;°*"* captures the error due to the limited expressiveness of

the function class {sg}oco. The statistical error E;*" is the error from using a finite sample size.

Finally, the optimization error £ ;;pt is due to not reaching the global minimum during training.

One of our key contributions lies in rigorously bounding each of these error components and show-
ing how their interplay governs the overall generative error. In particular, we derive novel bounds
that explicitly capture the dependencies on sample size, neural network capacity, and optimization
parameters, without any assumption on the access to the empirical risk minimizer of the score es-
timation loss. We formalize these results in the following lemmas. Detailed proofs are deferred to

Appendices and respectively.
Lemma 1 (Approximation Error). £;°*"” is defined as follows

ELPPT = mingeoBanp,, [||so(x,tr) — Viogpy(x,ty)]?] (23)
Then, under Assumption E] for all k € [0, K], we have

g;pprox < €approx (24)

This result directly follows from Assumption [3|and the definition of £, """

Lemma 2 (Statistical Error). Let ny denote the number of samples used to estimate the score func-
tion at time step ti. If the data distribution satisfies the Assumption (I|and the loss function L(0)
satisfies Assumptions E] for all k € [0, K|, then with probability at least 1 — 0, we have

log (2
gt <o (WP, Ln(é) (25)
k

This is the component of the error that accounts for the fact that we have a finite sample size and
thus we solve an empirical loss function given in equation [21] The proof of this lemma follows from
utilizing the definitions of s¢ and s?. Existing analyses of statistical errors, such as those given in
Shalev-Shwartz & Ben-David|(2014), only work when the loss function is bounded. This is not the
case for diffusion models. Thus, we use a novel analysis that uses the conditional normality of the
score function as well as the bounded second moment property of the data variable in Assumption
to obtain the upper bound on the statistical error. The details of the analysis are given in Appendix

D.1

Lemma 3 (Optimization Error). Let ny be the number of samples used to estimate the score function
at time step ty. Assume that the score loss function L(0) satisfies the Assumptions and for all
k € [0, K], and the learning rate for estimating Ly, using SGD satisfies 0 < 1 < % then with
probability at least 1 — §
log (2
&P <o | WP log (5) (26)
o

This is the component of the error that accounts for the fact that we do not have access to the
empirical risk minimizer. We leverage assumptions 2] 4] alongside our unique recursive at each
stochastic gradient descent (SGD) step, which captures the error introduced by the finite number of
SGD steps in estimating the score function. This is the first analysis of diffusion models to explicitly
account for this error. All prior works assumed no such error, treating the empirical loss minimizer
as if it were known exactly. The details of the analysis are given in Appendix
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Combining the decomposition in equation [20] along with Lemmas [IH3] we obtain the following
bound on A(k) ( equation[18)) with probability at least 1 — &

1 2 1 2
Ak) <0 [ WP.a. 98(5)) Lo (o, eE) + €appros 27)
Nk N
1 2
<0 WDd %@ + €approw) (28)
k

where in the second inequality we combine the first two terms appropriately. Setting the sample size

4
— (ww.d2.1og (4K> (Q)) , (29)
) o

2 2 . .
we ensure that A(k) < & = —=57—;y forall k € {0, ..., K'}. Summing over all time steps, we
k

obtain with probability at least 1 — &

K K 9
€
ZA(k)(tkH — 1) < Z m(%ﬂ —ty) (30)
k=0 k=0
T=r €2 9 1
S/o mdt§€ (T—FlogK). 3D

Note that the term (log2 (%)) appears in the upper bound for nj in equation E since we have to
take a union bound for Lemma[2land Lemma Bl and then take a union bound over K discretization
steps. Substituting this bound into equation[I8] and then substituting the result into equation we
obtain that with probability at least 1 — 6.

. _ 1 1
TV (psy, pr,) < Olexp™T) + O (JE) +0 <e. <T+ log K)) + Capprox (32)

Finally, by choosing T = Q (log (1)), k = Q(e) and K = Q(e~?2), we conclude that with proba-
bility at least 1 — §

Tv(ptoaﬁto) < O(E) + €approz) (33)
completing the proof of Theorem 1] O

In summary, our work provides a principled decomposition of the errors in score-based generative
models, highlighting how each component contributes to the overall sample complexity. This leads
to the first finite sample complexity bound of O(e~*) for diffusion models without assuming access
to the empirical minimizer of the score estimation function.

4 CONCLUSION AND FUTURE WORK

In this work, we investigate the sample complexity of training diffusion models via score estimation
using neural networks. We derive a sample complexity bound of O(¢~%), which, to our knowledge,
is the first such result that does not assume access to an empirical risk minimizer of the score esti-
mation loss. Notably, our bound does not depend exponentially on the number of neural network
parameters. For comparison, the best-known existing result achieves a bound of O(e~%), but it
crucially assumes access to an ERM. All prior results establishing sample complexity bounds for
diffusion models have made this assumption. Our contribution is the first to establish a sample com-
plexity bound for diffusion models under the more realistic setting where exact access to empirical
risk minimizer of the score estimation loss is not available.

While our analysis focuses on unconditional distributions, extending these guarantees to conditional
settings remains an important direction for future work.
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A APPENDIX

B COMPARISON WITH PRIOR WORKS

In this section, we provide a detailed comparison of our results with prior work. Specifically, we
analyze the sample complexity bounds presented in (Gupta et al.| (2024)), and show how combining
their results with those of Block et al.| (2020) leads to an alternative bound.

B.1 SAMPLE COMPLEXITY OF|GUPTA ET AL.|(2024))

We begin by examining the sample complexity claim of O(1/e3) reported in Gupta et al.| (2024).

A closer analysis reveals that the actual sample complexity is (5(1 /€%), once the error over all the
discretization steps is properly accounted for and a union bound is applied.

The main result regarding the sample complexity of estimating the score function as given in Theo-
rem C.2 of (Gupta et al.|(2024) is as follows. We re-iterate this Theorem here.

Theorem C.2 Gupta et al. (2024). Let q be a distribution of R? with second moment m%. Let
oo (+) be the fully connected neural network with ReLU activations parameterized by 0, with P total

2d 10g2 m2+1/m2)
24462 ¥
discretization times 0 = tg < --- < tx < T such that if for each ty, there exists some score function
So with ||0*|| 0o < © such that

parameters and depth D. Let © > 1. For any v > 0, there exist K = 1) (

§-e 1

< .
CK2U%7% log 7d+m2jl/m2

(34)

Eapy, [I50(@) = 51, (1) 3]

for sufficiently large constant C, then consider the score functions trained from

~ (K(d+logl) - PD .
m>(’)( (d+ ogé) log <max(m;,1) G)) log (mg +71/m2)>- 35)
€

i.i.d. samples of q, with 1 — & probability, DDPM can sample from a distribution e-close in TV to a
distribution yma-close in 2-Wasserstein to q in N steps.

Note that Lemma B.6 of |Gupta et al.| (2024) states that
1

VN

Here p and p are the true and learned data distributions, respectively.

TV (pey, Pry) <0+ O < ) +e- VT +O(exp™T) (36)

In order to achieve TV (p,p) < € we have to set § = e. This would imply N = O(e~2) and
T=0 (%) Putiing this value of IV in Equation equation |35 we obtain that for

m>6<(d+10g(1/5))~PD.log ((;))) -

5
we have with probability at least 1 — €
TV (pro,Pro) < € (33)

This reveals a discrepancy between the reported sample complexity and the actual bound derived
above, highlighting that the true complexity is significantly higher than what was originally reported.

In contrast, our analysis reduces the overall complexity by a factor of O(1/e), yielding the tightest
known bounds for neural score estimation in diffusion models, i.e., O(1/ 64). Further, unlike |Gupta
et al.| (2024)), our analysis avoids using the 1 — J-quantile bound on the score norm and instead
directly bounds the global L? score estimation error thus avoids applying a union bound across time
steps, and finally achieve tighter sample complexity guarantees.
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C SCORE ESTIMATION ALGORITHM

In this section, we provide a detailed description of the algorithm used for estimating the score
function in diffusion models.

Algorithm 1 Denoising Diffusion Probabilistic Model (DDPM)
1: Input: Dataset D, timesteps 7', stop time Zqp, schedule { Bt}thl, network €y, learning rate 7,
iterations K
2: Precompute: oy = 1 — B4, @y = Hizl o
Training (Score Estimation)

3: fori=1to N do
4:  Sample z; ~ D, k ~ Uniform([1,TY]), ex ~ N(0,I)fori =1,...,n
500 @y, =e 4+ /1 — e 2t
6:  Compute loss: L(0) = ||e; — eg(y,, 1) ||?
7. Update § < 6 — n, - Vo L(6)
8: end for
Sampling

9: Sample zp ~ N (0,1)
10: for ¢ = T down to tgep + 1 do
11: z~N(0,I)ift > 1lelse z =0
12: €= eg(xht)
Be

. P | 2
13: Mt = \/T—t (It - \/ﬁE)
14:  xpy = iy ++/Be- 2
15: end for
16: Return z;

D PROOFS OF INTERMEDIATE LEMMAS

In this section, we present the proofs of intermediate lemmas used to bound the statistical error and
optimization error in our analysis.

D.1 BOUNDING THE STATISTICAL ERROR

Proof. Let us define the population loss at time ¢, for k € [0, K] as
L£1(0) = Eanp,, lI50(x, 1) = Viogpy, ()], (39)

where sg denotes the score function estimated by a neural network parameterized by 6, and = denotes
samples at time ¢ used in Algorithm[I} The corresponding empirical loss is defined as:

—~ 1 &
Li(0) = = llsalas te) = Viogpo, ()] (40)
=1

Let 62 and 6% be the minimizers of £ (6) and Et(ﬂ), respectively, corresponding to score functions
sy, and sffk_. By the definitions of minimizers, we can write

Li(0F) — Li(07) < Li(0}) — Li(0F) + Li(07) — Li(0F) (41
< |Cu(6h) - Lu00)| + |£utp) - £:07)|. (“42)

O I

Note that the right-hand side of equation is greater than the left-handeft-hand side since we
have added the quantity £;(0¢) — L£(6%) which is strictly positive since #% is the minimizer of the
function L, (#) by definition. We then take the absolute value on both sides of the equationto get
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We now bound terms (I) and (II) using generalization results. From Lemma [5| (Theorem 26.5 of

Shalev-Shwartz & Ben-David (2014)), if the loss function 2(9) is uniformly bounded over the pa-
rameter space ©” = {0¢,6} }, then with probability at least 1 — d, we have

log %

L,(0) = Ly(0)| < RO )+ 0 , Ve 43)

where ]SL(@N) denotes the empirical Rademacher complexity of the function class restricted to ©".
Now since x is not bounded, this result does not hold. We then define the following two functions

L%(0) = Egmp,, llvo(, tr) — ve, (2)]1? (44)
and

ZHW i tr) — v, (@) - (45)

where we define the functions

(Viogpi(x)), if |25 2], <k
(ve(2)); = R (46)
0 if 2= 0| >
and
(so(z,1)), if [2=520); < k
vg(x, 1)), = J 7, 47
(vol. 1), {0 |t > 1 @)

Here (v¢(2));,(Vlogpi(z));, (vo(x,t)); and (sp(z,t)); denote the j*" co-ordinate of wv;(x),

(Vlogpi(x)), ve(x,t) and sg(x,t) respectively. Further, |2=<; Lo |; denotes the j** co-ordinate
of the i*" sample of the score function in £ (6) which is given by logp, () = \‘"”_Z#|

Note that the functions v¢(x) and vg(x,t) are uniformly bounded. Thus using Theorem 26.5 of
Shalev-Shwartz & Ben-David| (2014) we have with probability at least 1 — 4,

~ ~ [log 1
L’k(e)—,c'k(e)]gR(é)Ho %, Voo (48)

Since ©” = {0,,0,} is a finite class (just two functions). We can apply Lemma E.5 to bound
the empirical Rademacher complexity R(6) in terms of the Rademacher complexity R() of the
function class ©”. Since R(f) = LK, [maxycqr Soiy f(#)o;], applying Lemma E.5, we have
with probability at least 1 — 26

+0 , Voeo (49)

‘L’k(e) . E/k(e)( <0 (

This yields that with probability at least 1 — § we have

~ log L
cu0) - En@)| <0 [d- WP [ 22 vhee” (50)

n

From this we have
log 5
n

[|20) - Zuo)|| <0 | d- 51)
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Now consider the probability of the event

>k (52)

Where

. — —t I . . . . .
zize (@o)i| denotes the k" co-ordinate of of the it" sample of the score function given

J
—t
Tr;—€ (:vo),,

Pl
T

by We have the probability of this event upper bounded as

PlE=S 2 >k =E.P | | 2520 > klx (53)
0} . O )
j j

<exp (—k*(1—e€")) (54

< exp (—,%2) (55)

We get equation [54]from equation [53] since the score variable is conditionally normal given .

Setting = = log (%), we have

x; — e txg

2
0%

P

)
> < — 56
" ~ dn (56)

J

If we denote the event A = {L/(6) = L(6)}, then by union bound we have P(A4) = P(U; ;A ;) <
Zi} ; P(A; ;) < 6. Let event B denote the failure of the generalization bound, i.e.,

’ Yy Do log%
Bi= ¢ |£4(0) = £1(0)| > RO") +0 [/ —2 | 1. (57)

From above, we know P(B) < § under the boundedness condition. Therefore, by the union bound,
we have

+P(B) < 2, (58)

P(AU B) < P(A)
1—-P(AUB) >1-26. (59)

— P(A°N B°) =

On this event (A° N B¢), we have £(6) = L£(6). Hence, with probability at least 1 — 25, we have

|£4(8)) — £(8)] < | £x(67) — Ze0D)| + | £x(60) - Z0)|. (60)
< |Lu(6}) = L)) | + | cal07) — 2407 61)
= |L(0k) = £7(00)] + 1£4(0F) — £4(67)]

+ | £utor) — £ | + | aio) - £0067)] (©2)

log &
< 1£/0(67) — Lu(07)| + | £0(0)) — Lu})| + O | d- WP [ 225 ) (63)
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In order to bound | £ (0) — L'¢(0)| we have the following

d
1Lk(6) = L'4(0)] < ZEx,-N(utk)j |(s0 (k) = (Viogpe, (2)I} — Eoru, | (ve(2))i — (vo (2, 1))[3

(64)
d
<Y Bajtu,), | [(Viogpe,) = (so(z, 1)) [71 (65)
ji=1 mfe;;(zg)i >k
j
d x — e () ’
- 0
<D Eaynuny) ‘ —— — (so(@, 1) 1 (66)
j=1 t j Ife;;(:cg) >k
i
d —t 2
x—e Y xg)
< 2ZEwJN(utk)j 2 1
j=1 t j :1;767;(1'0) >k
j
d
+ 3 2By, | (s60(2,1))71 (67)
j=1 QC*67;(1‘9) >k
It
d —t 2
x—e Hxo)
<2 ZExjN(utk)j ) 1
j=1 t jolemetlen | sy
d —t
x—e (xo)
+ Z O@// Exj"’(utk)j 0_2 c—e—t(xp) (68)
j=1 t j o7 2K
t
442040\
" 2
< <0_2> ZEJ)J'N(U,tk)]' |£L'|]1
t k=1 z—eTl@g) | S
o2 =r
I
2 2
= Esz(utk)j |m0‘j1 (69)
ot soemt@) | 5,
P =

Tt

J

11

We get Equation equation [67] from Equation equation [66| by using the identity (a — b)? < 2|a|? +
2|b|%. We get Equation equationfrom Equation equation by using Lemma(8] We get Equation
equation from Equation equation [68| by using the identity (a — b)? < 2|a|? + 2|b|? again. Now
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we separately obtain upper bounds for the terms [ and I as follows.

d
D B, | 271 (70)
j=1 wi*ﬂ’;(wo)i >k
d
_ 2
_ZEW(%)J_ |2;]%1 (71)
j=1 mre*;(wo)i >k
d
<Y Eao By muny )l | |251°1 (72)

<
Il
—

5 —t .
wi—e=t@g)i | 5
= K
7

VR

. —t .
IE-'L'OEsz(ut)klIO |l‘j|2 1 P ( 1721 =y l‘o) (73)
— z,—e—t . 0%
j=1 zi—e " (xg)4 >k
J
d
< GXp Z zow (ut)jlzo |xk|2 (74)
j=1 j 11*6;;(10% >k
2
2 P(k-0i)
< eXp I;EIO <Jt + Ut R0y . :[@((m.f))) (75)
< exp ( ZE (2.07) (76)
<0 (exp (—/12)) (77)

We get Equation equation [75] from Equation equation [74] by using Lemma [/} We get Equation
equation [77) from Equation equation @] from Assumption and by using the ur bound on the

Mill’s ration which implies that 1— @ O) < kK + =. We get Equation equation [77| from Equation
equation [7/6|from Assumption |1} which implies that the second moment of z is bounded.
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d
2
> Eujury), | 12151 (78)
j=1 wre*;(wo)i >k
d
= Eupun, | 20l (79)
Jj=1 wq‘,*e;;(ro)i >k
J
d
<Y EaoBapmuifao | |70l’1 (80)
j=1 Tifﬂ_;(-fo)i >k
J
d x tz
kE — k
<D EaBapn oo | 7021 P <] > /’v|170) 81)
- . 1—t |y
Jj=1 zize t(@0)i | 5,0
O't -
J
d
< exp (—+?) ZEwo‘xo‘Q (82)
j=1
< O (exp (—+7)) (83)

Setting k = log %” Plugging Equation equation equation [83| into Equation equation Then
we have

1L (0) — £1(0)] <O (exp (%)), VO ={05,07} (84)
)
<0 <dn> (85)

Now plugging Equation equation[84]into Equation equation[63|we get with probability at least 1 —24

log 1
C4(0F) = L0 < O | d- WP [ 225 (36)

Finally, using the Polyak-F.ojasiewicz (PL) condition for L (6), from Assumption we have from
the quadratic growth condition of PL functions the following,

167 — 63117 < 1o | L1 (65) — Lr(67)] (87)

and applying Lipschitz continuity of the velocity fields with respect to parameter x
0% . te) — 0% (. t0)|* < Lo - (165 — 641 (88)
< L | Co(05) — Lr(07))] (89)

log L
<0 d~WD~\/% . (90)
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Here L; is the Lipschitz parameter of the neural networks. It is always possible to obtain this
Lipschitz constant as the quantity ||v®(z,t) — v?(x,t)||* < L; is non-zero only over a finite domain
of x. Taking expectation with respect to z, we 0bta1n the following.

B, 8% (2, th) = 8" (2, ) |2 < 2B, 5% (2, t4) = 8" (2, ti) = vf (2) = v} ()]

*(x,ty)
+2]Ez~ut||v (.’IJ, kr) ,UG (377 k)HQ (91)
< ARy, [[0% (2, t) — 8% (2, 1) |12 ©2)
+ 4B, |57 (2, 1) — 0% (2, 1) |
+ 4B, |07 (2) — o ()2 ©3)
log L
<O H+0|[d-wP. Oi 5 (94)
log 1
<o Xyr0(d-wr. |08 (95)

dn n

log 1
<0 d.WD.\/% . (96)

This completes the proof. Note that the quantities 4E, ., ||uf(z) — v (x)|? and 4E, ., [|ud(z) —
v@(x)|* are bounded in the same manner as is done in Equation equation |33

O
D.2 BOUNDING OPTIMIZATION ERROR
The optimization error (Eqp) accounts for the fact that gradient-based optimization does not neces-

sarily find the optimal parameters due to limited steps, local minima, or suboptimal learning rates.
This can be bounded as follows.

Proof. Let EZP[ denote the optimization error incurred when performing stochastic gradient descent
(SGD), with the empirical loss defined by

LL(0) = ||so(xs, tr) — Vog pe(zi)||” . 97)

The corresponding population loss is

L4(8) = Eump,, [Is0(z.ta) = Vlogpy, ()] ©98)

Thus, &/ P! captures the error incurred during the stochastic optimization at each fixed time step t.
We now derive upper bounds on this error.

From the smoothness of £ (6) throgh Assumption[d] we have

Li(0i1) < Li(0:) + (VLE(0:), 0011 — 0:) + H9z+1 - 0% 99)

Taking conditional expectation given 6;, and using the unbiased-ness of the stochastic gradient
VLi(6;), we get:

2
Ko ~
E[Lr(0i1) | 6:] < Li(8:) = culVLL(O)I + EIVLG)]* | 6] (100)
Now using the variance bound on the stochastic gradients using Assumptiond] we have

E(IVLL(0)]” | 6:] < [IVL(6:)]* + 07, (101)
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Using this in the previous equation, we have that

2
E[Le(br1) | 6] < £x(6) = nl[VLO)|? + = (IVLE)| +0?) (102)

Kkn? kn?o?
— L(0;) - <n - ’27) VL2 + “L7- (103)
Now applying the PL inequality (Assumption [2), [|[VL(6;)|? > 24 (L(6;) — L*), we substitute in
the above inequality to get

. Kn? o kNP0’
E[L(01) | 0] - £* < (1 2 (n - ;7)) (L(0:) = £7) + =L (104)
Define the contraction factor
Kn?
p=1-—2u 77—7 . (105)
Taking total expectation and defining §; = E[L(6;) — L*], we get the recursion:
kno?
Bt < p 0y + 7 (106)
When n < %, we have
2
n-->1=p<l-um (107)
Unrolling the recursion we have
K'/I’]QO'Q t—1
. ‘
b0 < (1= pu)'do + == 3 (1 = pum)’. (108)
7=0
Using the geometric series bound:
t—1 _
> (1 —pny < —, (109)
=0 Hn
we conclude that
2
8 < (1 — pn)téo + 207, (110)
2u
Hence, we have the convergence result
2
K
E[L1(0,) — £ < (1 — )" & + gZ . (111
2
< exp (=) 8o + 217 (112)
21
1
<0 () (113)
n

We get Equation equationfrom Equation equation by the identity (1 — x) < e~*. We get
Equation equation from Equation equationby setting the step size n = O (l)

n

Note that 5¢, and ék denote our estimate of the loss function and assosciated parameter obtained
from the SGD. Also note that £* is the loss function corresponding whose minimizer is the neu-
ral network s{ and the neural parameter 6} is our estimated score parameter. Thus applying the
quadratic growth inequality.

86, (2, t1) — 87, (. ta)|” < L0k — 081 < ||[£(0x) — L7]]] (114)
<0 <1> (115)
n

22



Under review as a conference paper at ICLR 2026

From lemma 2| we have with probability 1 — ¢ that

s (@, te) — st (@, te)[|* < L.]|6F — 67 (116)
< Lo | Ly (07) — L1(67)] (117)

log 2
<0 d~WD~\/% . (118)

Thus we have with probability at least 1 — §

[18¢ (2, tr) — s (2, ) ||? < 20180 (2, th) — s, (2, ta)l| + 2Isf, (2, 1) — 87, (2, t0)|| - (119)

log 2
go(log(1>)+0 |22, (120)
n n
log 2
<oldwP. |22 (121)
n

(122)

Taking expectation with respect to z ~ p;, on both sides completes the proof.

E INTERMEDIATE LEMMAS

Lemma 4 (TV bound via Girsanov for reverse diffusions). Let X and X on [0, T] solve
dXy = (f(Xe, t) =02 (t)sx (X, 1)) dt+o(t) dWr, dX; = (f(Xe,t)—02(t)so(Xe, t))dt+o(t) dWr,

with the same nondegenerate diffusion o(t) € R¥*4 (invertible for a.e. t) and the same initial law

at time T. Let P and Q be the path measures of X and X on C([0,T],R%). Assume Novikov’s
condition

T
Boexp(} [ llo(t)(sulent) — 5. (% 1) dt) < o
0
Then

. T 1/2
vie < 350 [ ottt —stun)lza)
0

Proof. Write the drift difference as

Ab(z,t) = —02(t) (s« (z, 1) — sp(z,1)).
By Girsanov’s theorem (under the stated Novikov condition), P < Q and the Radon-Nikodym
derivative is the exponential martingale driven by u, = o(t) ' Ab(Xy,t) = o(t)(se(Xy,t) —
s.(Xy, t)). The Cameron—Martin formula yields

T T
EE@/O ut|%dt]=;EQ/0 HU(t)(S@(Xnt)—S*(Xt,t))szt].

Applying Pinsker’s inequality TV(P, Q) < /KL(P||Q)/2 gives

. " 1/2
TV(P,Q) < 2<EQ/ ||a(t)(59 — @)Hidt) .
R4

Finally, the evaluation map C([0, 7], R?) — R?, w + w(0), is measurable, so by data processing
for f-divergences, TV (L(Xy), L(Xo)) < TV(P,Q). O

KL(P(Q) =

23



Under review as a conference paper at ICLR 2026

Let {z }_, and {Z} }2_, be Euler schemes with the same Gaussian noises,

Tp—1 = Tt (fr—0psu (@r, tr)) Atptor/ Aty &, Frm1 = T+ (fr—0pso (T, te)) Atitory/ Aty &,

& ~ N (0, 1) i.i.d. Then, with “traj” denoting trajectory measures,

N
1
KL(traj,[[trajy) = 3 ZEM% (so(zk,tr) — s(@k, tr)) Hz Atkk
k=1

and hence by Pinsker’s inequality we get,

1/2
RN Y
TV (traj,,trajy) < 2<;E|’ak(59—5*)”§Atk> :

Lemma 5 (Theorem 26.5 of |Shalev-Shwartz & Ben-David (2014)). Consider data z € Z, the
parametrized hypothesis class hg, 0 € ©, and the loss function £(h, z) : RY — R, where |((h, z)| <
c. We also define the following terms

Lp(h) = EL(h, z) (123)
1
Ls(h) = — > U(h, z) (124)
z; €S

which denote the expected and empirical loss functions respectively.

Then,
With probability of at least 1 — 0, for all h € H,

Lp(h) — Ls(h) < 2R(f0© 0 §) 4 4c w. (125)

where 2R({ 0 © o S) denotes the empirical Radamacher complexity over the loss function ¢, hypoth-
esis parameter set © and the dataset S

Lemma 6 (Extewnsion of Massart’s Lemma Bousquet et al.| (2003)). Let 0" be a finite function
class. Then, for any 0 € @”, we have

n
L
E, [max " f(0)oi| < |If(0)]]2 < (BW)* (d+ ) (126)
00" — w
where o; are i.i.d random variables such that P(o; = 1) = P(0; = —1) = 5. We get the second

inequality by denoting L as the number of layers in the neural network, W and B a constant such
all parameters of the neural network upper bounded by B.
Proof. Let hg = x,and for £ = 0,..., L — 1 define the layer recursion
hey1 = o(Wehg 4 be),
where W, € R™+1*" b, € R™+1 and ny, < W for hidden layers. We work with the ¢, operator
norm:
[Wellow = mgxz |(We)i;| < Bng < BW = o
J
Since o is 1-Lipschitz with o(0) = 0, we have ||o(u)]|co < ||u]|cc and thus

[Petilloc < Welloo 1helloo + llbelloe < af|Pelloc + B-
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With ||holleo < d, iterating this affine recursion yields the standard geometric-series bound

L—1 L
Ihelle < afd + BY a' = atd + BI—F (a#1)
=0

and for « = 1, ||hr||cc < d+ BL. The scalar output f(z) is either a coordinate of Ay, or obtained
by applying the same 1-Lipschitz activation to a linear form of h; in either case, | f(x)| < ||hL | c0s
giving the stated bound.

For the o > 1 simplification, use ZiL*l o < LaX =1 to obtain

(@) < abd+ BLal! = (BW)L(d+ 5/)

For o < 1, since ot < 1, ZiL;Ol a' < L and hence |f(z)] < d + BL. Finally, substituting
W = S/ L gives the size-based form

IN

£(@) (BS/L)L<d+ g) |

O

Lemma 7 (Second Moment of a Symmetrically Truncated Normal). Let X ~ N(u,02), and let a >
0. Then the second moment of X conditioned on being outside the symmetric interval [ — a, o+ a)
is given by

¢ ()
E[X? | |X —p| > a] = p* + 0° : Y
(X< | pl >al=p°+o°+oa =0 (%)
where ¢(z) = —L_e=%/2 i5 the standard normal probability density function (PDF), and ®(z) is

V2r
the standard normal cumulative distribution function (CDF).

Proof. Let X ~ N (u,02). We aim to compute the second moment of X conditioned on the event
that it lies outside an interval centered at its mean

E[X?| X - u| > q]
This represents the expected squared value of X, given that X is in the tails of the distribution (i.e.,
more than a units away from the mean).

By definition, the conditional expectation is

E[X? 1{x—u>a)]

E[X?||X —pu| >d =

The numerator integrates X 2 over the tail regions (—o0, 1 —a) U (u+ a, 00), while the denominator
is the probability mass in those same regions.

To simplify the integrals, we standardize X . Define the standard normal variable

_X-p
N g

Z

~N(0,1) = X=u+oZ

Define o = % Then

X —pl>a & |Z]>a«

Our conditional second moment becomes
E[X? | |X —p| > al =E[(p+02)* | |Z] > a
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Expanding the square inside the expectation
(n+02)* = p*+2u0Z + %22
Taking the conditional expectation

El(p+02)?||Z| > o] = p? + 2uoR[Z | |Z| > a] + 0°E[Z? | |Z]| > o]

Since the standard normal distribution is symmetric and the region |Z| > « is also symmetric, we
have

E[Z||Z]>a]=0
Thus, the expression simplifies to
E[X? [ |X — pl > a] = p* + 0°E[Z? | |Z] > o]

By definition

Joza 02V dz 2 [ 2g(z)dz [ 22(2) dz
P(|Z] > a) 2(1 — ®(a)) 1—®(a)

E[Z%||Z] > a] =

Using Intergration by Parts we get,

/OO 22¢(2)dz = p(a)a+ 1 — &(a)
Therefore

dla)a+1—P(a)

BZ° 121> o= =5 =1 g

Substitute back into the expression for E[X? | | X — u| > a]
E X2 X — > — 2 2 1 OL¢<O{)
XX > 0] =y o® (14 1200

Recall that o = g, so the final expression becomes

E[X?||X —p| >a] =p* +0*+0a-

O

Lemma 8 (Linear Growth of Finite Neural Networks). Let fy : R — R be the output of a feedfor-
ward neural network with a finite number of layers and parameters and 0 € © where © has a finite
number of elements. Suppose that each activation function o : R — R satisfies the growth condition

lo(z)] < A+ Blz|, forallz€eR,
for constants A, B > 0. Then there exists a constant Co > 0 such that for all x € R4,

|f(@)] < Co(l+ |x]).

Proof. We proceed by induction on the number of layers in the network.

26



Under review as a conference paper at ICLR 2026

Base case: One-layer network. Let the network be a single-layer function
k
flx) = Zai o(w] z +b;),
i=1
where w; € R%, b; € R, and a; € R. Then

k
@] < lail - |o(w] @+ b)),
i=1

Using the growth condition on o, we get
lo(w x4 )| < A+ Blw/x +bi| <A+ B(||wi][|] + [b:]).
Hence

k
[f(@)] <D lasl (A+ B(Jwilll]| + [bi])) = Co + Ch|]),
i=1
where Cy, C; are constants depending only on the network parameters. Therefore

[f(@)] < C(+ ||z||) with C = max{Cy,C1}.

Inductive step. Assume the result holds for all networks with L layers, i.e., for any such network

fr(z),
|fo(z)] < Cp(1+|z])).

Now consider a network with L + 1 layers, defined by

k
froa(@) = ajo(f(2)),
j=1

where each féj ) (x) is an output of a depth-L subnetwork. By the inductive hypothesis
@) < O+ ).
Applying the activation bound
(£ @) < A+ Bf (@) < A+ BC;(1 + |l«])).
Then
k 4 k
@] < lal - lo(F @) < 3 las|(A+ BC; (1 + [j2]))) = Craa (1 + |Jal),
j=1 j=1

for some constant C', 1 > 0. This completes the induction.

EXAMPLES OF VALID ACTIVATION FUNCTIONS
The condition |o(z)| < A + B|z| holds for most common activations

* ReLU: 0(z) = max(0,z2) = |o(z)| < |7|

Leaky ReLU: bounded by linear function of |z|
e Tanh: boundedby 1 = A=1,B=0

* Sigmoid: bounded by 1
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