
Synthesizing 3D Abstractions by
Inverting Procedural Buildings with Transformers

Maximilian Dax,1,∗ Jordi Berbel,2 Jan Stria,3 Leonidas Guibas,2 Urs Bergmann3

1Max Planck Institute for Intelligent Systems, Tübingen, Germany, 2Google DeepMind, 3Google
∗Work done at Google. Correspondence: maximilian.dax@tuebingen.mpg.de, ursbergmann@google.com

Abstract

We generate abstractions of buildings, reflecting the essen-
tial aspects of their geometry and structure, by learning
to invert procedural models. We first build a dataset of
abstract procedural building models paired with simulated
point clouds and then learn the inverse mapping through a
transformer. Given a point cloud, the trained transformer
then infers the corresponding abstracted building in terms
of a programmatic language description. This approach
leverages expressive procedural models developed for gam-
ing and animation, and thereby retains desirable properties
such as efficient rendering of the inferred abstractions and
strong priors for regularity and symmetry. Our approach
achieves good reconstruction accuracy in terms of geometry
and structure, as well as structurally consistent inpainting.

1. Introduction

Abstract visual representations aim to capture the key geo-
metric and structural properties of an object. Abstractions
are useful in many applications as they facilitate perceptual
comparisons and understanding. For buildings, use cases
for abstract representations range from 3D mapping for nav-
igation to the generation of synthetic environments for train-
ing of deep learning agents. However, inferring abstractions
based on sensor data at a desired level of detail is a chal-
lenging problem. Traditional approaches are largely based
on geometric simplification and optimization, while learn-
ing approaches face a lack of training data.

We here propose a model to infer abstractions from point
cloud data. While manually labeled large-scale datasets for
this task are costly and thus unavailable, there is an abun-
dance of high-quality 3D building simulators. Specifically,
the gaming and animation industries have developed models
to sample synthetic environments and render correspond-
ing 3D representations at various levels of complexity—
the inverse direction of what we aim to achieve (Fig. 1).
Our framework inverts such 3D models with a transformer

model [47] which takes point clouds as input and predicts
corresponding abstractions (Sec. 2). Training is fully su-
pervised, based on a dataset of procedural buildings paired
with corresponding point cloud simulations. We develop
various technical components tailored to the generation of
abstractions. This includes the design of a programmatic
language to efficiently represent abstractions, its combina-
tion with a technique to guarantee transformer outputs con-
sistent with the structure imposed by this language, and an
encoder-decoder architecture for the inference model.

Our approach achieves accurate in-distribution geomet-
ric and structural reconstruction, and structurally consistent
inference for incomplete inputs (Sec. 3). We find that the
main limitations are attributed to constraints of the proce-
dural model, not the inference framework itself. While this
can be partially mitigated by data augmentation, our results
suggest that procedural model advancements will be crucial
for real-world applicability. Based on our analysis, we sug-
gest to make procedural models more flexible to better suit
inversion (Sec. 4).

Related Work. There is vast literature on 3D recon-
struction or abstraction from sensor data. A traditional ap-
proach to abstraction is geometry simplification—reducing
the number of geometric elements used to represent the
model [13, 20]. Other works perform geometry abstraction
by fitting geometric primitives (e.g., boxes or cylinders) to
raw data (e.g., point clouds) [9, 22, 23, 27, 51]. Several
works aim to detect symmetries and regularities [31, 37, 43]
or generate structure preserving abstractions [12, 21, 28,
48]. Finally, generative AI has been explored to create ge-
ometry from various inputs [2, 32, 38, 41]. In particular,
several works represent CAD models and procedural de-
scriptions with a structured, domain specific language—and
aim to use language tools for CAD generation [10, 36, 40].

2. Method

We train an inference model that takes a building point
cloud x as input and infers a parametric description θ, an
abstraction, of the corresponding building. When training

point cloud renderer
point cloud transformer

transformer decoder

point cloud

height = 61 m storeys[1].elevation = 0.12

learned voxel embeddings

…

programmatic description
of the abstraction

procedural model height: 61.0

 footprints: {…}

 storeys: {…}

 storeys: {facade_index: 1, elevation: 0.12}

 …

(a) Dataset generation

point cloud renderer
point cloud transformer

transformer decoder

point cloud

height = 61 m storeys[1].elevation = 0.12

learned voxel embeddings

…

programmatic description
of the abstraction

procedural model height: 61.0

 footprints: {…}

 storeys: {…}

 storeys: {facade_index: 1, elevation: 0.12}

 …

(b) Inference model

point cloud renderer
point cloud transformer

transformer decoder

point cloud

height = 61 m storeys[1].elevation = 0.12

learned voxel embeddings

…

programmatic description
of the abstraction

procedural model height: 61.0

 footprints: {…}

 storeys: {…}

 storeys: {facade_index: 1, elevation: 0.12}

 …

(c) Inference result

Figure 1. (a) We generate a synthetic training dataset by first unconditionally sampling building abstractions with a procedural model and
then composing corresponding point clouds for each abstraction. (b) The inference model encodes the input with a point cloud transformer
operating on point cloud voxels (Sec. 2.3). It then employs a language transformer to predict the corresponding abstraction in terms of our
custom programmatic language (Sec. 2.1). (c) The transformer output is parsed as a Protocol Buffer and can be rendered in Unreal Engine 5.

the model, we aim to combine structural knowledge (e.g.
a building is made of storeys/floors, style and position of
windows, etc.) and geometric fit.

We formalize these notions in a Bayesian framework,
and represent structural knowledge in the prior distribu-
tion p(θ). We further represent the geometric fit in terms
of the distribution over point clouds x conditional on ab-
stractions θ—the likelihood p(x|θ). With these definitions,
the Bayesian posterior p(θ|x) ∝ p(θ)p(x|θ) represents the
distribution over abstractions θ for a given point cloud x.
We solve this Bayesian inference problem by training an in-
ference model q(θ|x) to approximate the posterior p(θ|x).
An abstraction for a point cloud x can then be inferred by
sampling from the trained model θ ∼ q(θ|x).

Below, we define p(θ) in terms of a procedural build-
ing model and p(x|θ) in terms of a renderer (Sec. 2.1),
introduce the training objective for optimization of q(θ|x)
(Sec. 2.2) and describe the architecture of q(θ|x) (Sec. 2.3).

2.1. Synthetic training data

Prior. We employ a procedural building model adapted
from the Unreal Engine 5 City Samples [1] demo. This
model samples abstract buildings θ by placing a collection
of building assets (e.g., facade segments) according to a
set of rules (appendix Fig. 4), and hence serves as our im-
plicit prior distribution over buildings p(θ). Both, assets
and rules, have been carefully designed to capture styles
of buildings of San Francisco, Chicago and New York. In
total there are 911 unique assets, and a typical building is
composed of around 10− 40 different asset types. We rep-
resent abstractions in a custom data format based on Pro-
tocol Buffers [46] (Fig. 5), which we designed to facilitate

representation of regularities and significantly minimize re-
dundancy, thereby simplifying inference. It is chosen as
a hierarchical format, starting from macroscopic structure
(height, footprints), and then goes into more detail (storeys,
facade description etc). Importantly, identical structures can
refer to the same description – e.g. different storeys can re-
fer to the same facade. For more details, see appendix A.2.

Likelihood. The likelihood p(x|θ) models the distribu-
tion over point clouds consistent with a given abstraction θ.
We represent the likelihood implicitly: for a given abstrac-
tion θ we sample x ∼ p(x|θ) by composing surface points
from all assets of a building into a joint point cloud, filter-
ing interior points, and adding Gaussian noise with mean 0
and variance σ2 to each point. As log-likelihood maximiza-
tion with Gaussian kernels corresponds to mean squared er-
ror minimization, this likelihood approximates a geometric
distance between point cloud and inferred geometry.

Dataset. We generate a dataset with 341721 pairs of ab-
stractions and point clouds, hence samples from the joint
distribution (θ, x) ∼ p(θ, x) (see Fig. 1a for examples). We
augment the asset colors in the dataset by adding uncorre-
lated Gaussian noise with a standard deviation of 0.15 in the
HSV color system to half of the dataset.

2.2. Training objective
We train the network q(θ|x) using simulation-based infer-
ence [6] ideas (see appendix A.1 for details) with the loss

L = Ex∼p(x|θ), θ∼p(θ) [− log q(θ|x)] , (1)

across the dataset of simulated buildings from Sec. 2.1. This
objective formally corresponds to minimization of the Kull-
back–Leibler divergence DKL (p(θ|x) ‖ q(θ|x)). With suf-

ficient training data and network capacity, the inference net-
work q(θ|x) will therefore become an accurate estimator
of p(θ|x) [33]. After training, the inference network thus
inverts the forward model (i.e., the procedural model and
point cloud renderer), and an abstraction for a point cloud x
can be generated by sampling θ ∼ q(θ|x).

2.3. Model Architecture
We now define the density estimator q(θ|x) which maps a
point cloud x to a conditional distribution over abstractions
θ. We use a transformer-based encoder-decoder model.

Tokenization of Protocol Buffers. To obtain a
transformer-compatible data format for the abstraction pro-
grams θ we convert these to sequences of tokens. We fol-
low [11], which offers a method to bijectively map any Pro-
tocal Buffer to a token sequence. Importantly, at inference
time, this allows to mask invalid tokens, ensuring syntacti-
cally valid Protocol Buffers. For details see appendix A.2.

Encoder. We subdivide the point cloud into cubes
of length 7 meters, resulting in nv smaller point clouds
{x̂1, . . . , x̂nv}. Each voxel point cloud is embedded into a
feature space zi = g(x̂i) ∈ R512, where g is a PointCloud-
Transformer [17] (see Tab. 3 for hyperparameters) and x̂i
includes point coordinates and color information. We pro-
vide the voxel positions by adding sinusoidal positional em-
beddings [29] to the PointCloudTransformer’s output.

Decoder. We employ a standard transformer de-
coder [47] (see Tab. 3 for hyperparameters). The decoder
is conditioned on the embeddings zi via cross-attention,
which enables spatially global information integration.

Training. We train the encoder-decoder model end-
to-end for 105 steps, with batch size 16, employing
AdamW [24] with β1 = 0.9, β2 = 0.98 and a learning
rate of 5 · 10−4 after a linear warm up for 103 steps. We
apply dropout on the voxel embeddings with rates varying
between 0 and 0.8, to force the model to infer missing infor-
mation based on regularity in the data. We regularize with
additive Gaussian noise on the point cloud with standard
deviations σ between 0 m and 0.5 m.

3. Results
We first evaluate our trained model on a hold-out subset of
17086 point clouds from the simulated dataset. For each
point cloud, we compare the inferred abstraction to the cor-
responding ground truth, both in terms of structural prop-
erties and geometric fit (Fig. 2). Structural high-level vari-
ables, such has the predicted number of storeys of the build-
ings, the number of facades, and asset precision and re-
call, are inferred correctly with high accuracies of above
95%. As color/materials are augmented for some assets of a
building, the intersection over union (IoU) of the predicted
and the ground truth modifications is calculated (94.2%),
and the Euclidean distance in HSV color space is evaluated

on the intersecting assets. The deviation between inferred
building geometries and the input point cloud is around 10
cm (in the absence of point cloud noise). We conclude that
our model achieves excellent in-distribution reconstruction.

We next test properties of the model under point cloud
modifications. Specifically, we drop large blocks of the
point clouds (a) at random or (b) systematically; and we
(c) split the point clouds and move both parts away from
each other (Fig. 3). These manipulations lead to miss-
ing information, and (c) additionally could lead to out-of-
distribution buildings. We find that the inference model
successfully reconstructs missing information by leveraging
regularity and symmetry priors from the procedural model.
We further observe that inferred buildings for (c) are not
simply stretched versions of the originals, but contain ad-
ditional asset instances (e.g., more windows). While all
buildings are visually neat, we observe occasional visual
artefacts and slight inaccuracies of asset placements.

4. Discussion
Our framework casts abstraction into an inverse problem,
with the forward direction defined by a procedural model
and a point cloud renderer. The inference network is trained
to invert this forward direction, thereby converting point
cloud data to the procedural model space. In this space,
buildings are composed of assets, which can directly serve
as abstract representations: they allow for high-level editing
and rendering at different levels of detail.

Limitations. As a central limitation, our approach is
constrained to the scope of the forward direction, hence
is limited to buildings that are captured by the procedural
model. While procedural models generate diverse build-
ings, they usually are not comprehensive, because for simu-
lation of realistic environments it is not necessary to capture
all buildings within the targeted distribution. Therefore, the
procedural model used here is limited to only a subset of
buildings. Application to real buildings further requires the
point clouds to be consistent with real point cloud measure-
ments (e.g., with photogrammetry, lidar). We designed our
renderer to capture some of the main features of realistic
point clouds (e.g., only rendering points from the surface,
added noise), but more realistic settings require further ex-
tension (e.g., local variation of noise levels). Additionally,
it may be necessary to explicitly account for domain shifts
between simulated and real data within our model [5, 49].

Strengths. Our simulation-based approach has various
advantages compared to other methods. First, it enables
training without human annotations with large amounts of
synthetic data. Second, regularity priors implemented in
the procedural model are captured by the trained inference
model. Buildings are highly regular objects, and such pri-
ors enable inference of missing information. Third, our ap-
proach provides an inductive bias to prioritize structure over

Accuracy number of storeys 97.9%
Accuracy number of facades 97.9%
Accuracy storeys structure 95.8%
Assets: precision 99.4%
Assets: recall 98.7%
IoU Material Variations 94.2%
L2 HSV Color Distance 0.083

(a) Structural evaluation

0 10 20 30 40 50

Point cloud noise level [cm]

10

20

30

R
ec

o
n
st

ru
ct

io
n

er
ro

r
[c

m
]

Inferred

Ground truth

(b) Geometric evaluation

Figure 2. Reconstruction performance of the transformer model. (a) Performance on various structural variables (see appendix Tab. 4
for definitions). (b) Reconstruction error as a function of the point cloud noise level, measured in terms of the mean deviation between
noisy input point clouds and building geometries. The reconstruction error of the inferred buildings (blue) is only slightly larger than the
reconstruction error of the ground truth buildings (black). Naturally, both grow with increasing point cloud noise level.

N
o

m
od

ifi
ca

tio
n

Bl
oc

k
dr

op
Ce

nt
er

 d
ro

p
Sp

lit

Figure 3. Inference results with modified point clouds. We drop random blocks (second row), a single large block in the center (third
row), or split the point cloud in the center and move both halves away from each other (fourth row). The inference model successfully
reconstructs the associated building. With the split modification, the missing information is filled with additional asset instances, resulting
in additional columns of windows. We occasionally observe artefacts (red), like gaps between assets or slight offsets in window positions.

geometric accuracy, as it is defined on the abstract descrip-
tions (as opposed to a geometric reconstruction loss). In-
deed, we observed that inferred buildings sometimes did not
optimally capture the input point cloud, but always looked
structurally self-consistent. This is desirable, as structure is
typically more important than rigorous geometric accuracy
for abstractions. Fourth, the native representation of proce-
dural models is optimized for extremely efficient rendering,
which is inherited by our framework. Fifth, our approach
enables human-in-the-loop interaction between procedural
modeling and its inversion. This could help to quantitatively
assess procedural models at scale, validating how well they

capture real buildings and identifying improvements.
Optimizing procedural models for inversion. Design-

ing procedural models with inversion in mind likely im-
proves the scope and performance of our framework. E.g.,
our experiments suggest a need for more flexible asset se-
lection and placement. This could alleviate inconsistencies
between asset placement and augmented point clouds (e.g.,
Fig. 3, split manipulation). Parametric assets, e.g. vari-
able window sizes, would further enhance flexibility, which
however also weakens the regularity prior. Such modifica-
tions to procedural models will be crucial for future appli-
cability of our framework to real data.

References
[1] Epic Games, Inc.: City sample buildings, 2021. 2
[2] Armen Avetisyan, Christopher Xie, Henry Howard-Jenkins,

Tsun-Yi Yang, Samir Aroudj, Suvam Patra, Fuyang Zhang,
Duncan Frost, Luke Holland, Campbell Orme, et al. Scene-
script: Reconstructing scenes with an autoregressive struc-
tured language model. arXiv preprint arXiv:2403.13064,
2024. 1

[3] Mark A Beaumont, Wenyang Zhang, and David J Balding.
Approximate bayesian computation in population genetics.
Genetics, 162(4):2025–2035, 2002. A1

[4] Johann Brehmer, Kyle Cranmer, Gilles Louppe, and Juan
Pavez. Constraining effective field theories with machine
learning. Physical review letters, 121(11):111801, 2018. A1

[5] Patrick Cannon, Daniel Ward, and Sebastian M Schmon.
Investigating the impact of model misspecification
in neural simulation-based inference. arXiv preprint
arXiv:2209.01845, 2022. 3

[6] Kyle Cranmer, Johann Brehmer, and Gilles Louppe. The
frontier of simulation-based inference. Proceedings of the
National Academy of Sciences, 117(48):30055–30062, 2020.
2, A1

[7] Maximilian Dax, Stephen R. Green, Jonathan Gair, Jakob H.
Macke, Alessandra Buonanno, and Bernhard Schölkopf.
Real-Time Gravitational Wave Science with Neural Poste-
rior Estimation. Phys. Rev. Lett., 127(24):241103, 2021. A1

[8] Maximilian Dax, Stephen R. Green, Jonathan Gair, Michael
Pürrer, Jonas Wildberger, Jakob H. Macke, Alessandra Buo-
nanno, and Bernhard Schölkopf. Neural Importance Sam-
pling for Rapid and Reliable Gravitational-Wave Inference.
Phys. Rev. Lett., 130(17):171403, 2023. A1

[9] Tao Du, Jeevana Priya Inala, Yewen Pu, Andrew Spielberg,
Adriana Schulz, Daniela Rus, Armando Solar-Lezama, and
Wojciech Matusik. Inversecsg: Automatic conversion of 3d
models to csg trees. ACM Trans. Graph., 37(6), 2018. 1

[10] Yaroslav Ganin, Sergey Bartunov, Yujia Li, Ethan Keller, and
Stefano Saliceti. Computer-aided design as language. Ad-
vances in Neural Information Processing Systems, 34:5885–
5897, 2021. 1

[11] Yaroslav Ganin, Sergey Bartunov, Yujia Li, Ethan Keller, and
Stefano Saliceti. Computer-aided design as language. Ad-
vances in Neural Information Processing Systems, 34:5885–
5897, 2021. 3, A2

[12] Xifeng Gao, Kui Wu, and Zherong Pan. Low-poly mesh
generation for building models. In ACM SIGGRAPH 2022
Conference Proceedings, New York, NY, USA, 2022. Asso-
ciation for Computing Machinery. 1

[13] Michael Garland and Paul S. Heckbert. Surface simpli-
fication using quadric error metrics. In Proceedings of
the 24th Annual Conference on Computer Graphics and
Interactive Techniques, page 209–216, USA, 1997. ACM
Press/Addison-Wesley Publishing Co. 1

[14] Tomas Geffner, George Papamakarios, and Andriy Mnih.
Compositional score modeling for simulation-based infer-
ence. In Proceedings of the 40th International Conference on
Machine Learning, pages 11098–11116. PMLR, 2023. A1

[15] Pedro J Gonçalves, Jan-Matthis Lueckmann, Michael
Deistler, Marcel Nonnenmacher, Kaan Öcal, Giacomo Bas-
setto, Chaitanya Chintaluri, William F Podlaski, Sara A Had-
dad, Tim P Vogels, et al. Training deep neural density esti-
mators to identify mechanistic models of neural dynamics.
Elife, 9:e56261, 2020. A1

[16] David Greenberg, Marcel Nonnenmacher, and Jakob Macke.
Automatic posterior transformation for likelihood-free infer-
ence. In International Conference on Machine Learning,
pages 2404–2414. PMLR, 2019. A1

[17] Meng-Hao Guo, Jun-Xiong Cai, Zheng-Ning Liu, Tai-Jiang
Mu, Ralph R Martin, and Shi-Min Hu. Pct: Point cloud
transformer. Computational Visual Media, 7:187–199, 2021.
3, A2

[18] Joeri Hermans, Volodimir Begy, and Gilles Louppe.
Likelihood-free mcmc with approximate likelihood ratios.
arXiv preprint arXiv:1903.04057, 10, 2019. A1

[19] Joeri Hermans, Nilanjan Banik, Christoph Weniger, Gian-
franco Bertone, and Gilles Louppe. Towards constrain-
ing warm dark matter with stellar streams through neural
simulation-based inference. Monthly Notices of the Royal
Astronomical Society, 507(2):1999–2011, 2021. A1

[20] Hugues Hoppe. Progressive meshes. In Proceedings of the
23rd Annual Conference on Computer Graphics and Inter-
active Techniques, page 99–108, New York, NY, USA, 1996.
Association for Computing Machinery. 1

[21] Jingwei Huang, Shanshan Zhang, Bo Duan, Yanfeng Zhang,
Xiaoyang Guo, Mingwei Sun, and Li Yi. Arrangementnet:
Learning scene arrangements for vectorized indoor scene
modeling. ACM Trans. Graph., 42(4), 2023. 1

[22] R. Kenny Jones, Paul Guerrero, Niloy J. Mitra, and Daniel
Ritchie. Shapecoder: Discovering abstractions for visual
programs from unstructured primitives. ACM Trans. Graph.,
42(4), 2023. 1

[23] Lingxiao Li, Minhyuk Sung, Anastasia Dubrovina, Li Yi,
and Leonidas J. Guibas. Supervised fitting of geometric
primitives to 3d point clouds. In 2019 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 2647–2655, 2019. 1

[24] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101, 2017. 3

[25] Jan-Matthis Lueckmann, Pedro J Gonçalves, Giacomo Bas-
setto, Kaan Öcal, Marcel Nonnenmacher, and Jakob H
Macke. Flexible statistical inference for mechanistic mod-
els of neural dynamics. In Proceedings of the 31st Inter-
national Conference on Neural Information Processing Sys-
tems, pages 1289–1299, 2017. A1

[26] Jan-Matthis Lueckmann, Giacomo Bassetto, Theofanis Kar-
aletsos, and Jakob H Macke. Likelihood-free inference with
emulator networks. In Symposium on Advances in Approxi-
mate Bayesian Inference, pages 32–53. PMLR, 2019. A1

[27] Eric-Tuan Lê, Minhyuk Sung, Duygu Ceylan, Radomir
Mech, Tamy Boubekeur, and Niloy J. Mitra. Cpfn: Cascaded
primitive fitting networks for high-resolution point clouds. In
2021 IEEE/CVF International Conference on Computer Vi-
sion (ICCV), pages 7438–7446, 2021. 1

[28] Ravish Mehra, Qingnan Zhou, Jeremy Long, Alla Sheffer,
Amy Gooch, and Niloy J. Mitra. Abstraction of man-made
shapes. ACM Trans. Graph., 28(5):1–10, 2009. 1

[29] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. Communications of the ACM, 65(1):99–106, 2021.
3

[30] Benjamin K Miller, Christoph Weniger, and Patrick Forré.
Contrastive neural ratio estimation. Advances in Neural In-
formation Processing Systems, 35:3262–3278, 2022. A1

[31] Niloy J. Mitra, Leonidas J. Guibas, and Mark Pauly. Partial
and approximate symmetry detection for 3d geometry. In
ACM SIGGRAPH 2006 Papers, page 560–568, New York,
NY, USA, 2006. Association for Computing Machinery. 1

[32] Gen Nishida, Ignacio Garcia-Dorado, Daniel G. Aliaga,
Bedrich Benes, and Adrien Bousseau. Interactive sketch-
ing of urban procedural models. ACM Trans. Graph., 35(4),
2016. 1

[33] George Papamakarios and Iain Murray. Fast ε-free inference
of simulation models with bayesian conditional density esti-
mation. Advances in neural information processing systems,
29, 2016. 3, A1

[34] George Papamakarios, David Sterratt, and Iain Murray. Se-
quential neural likelihood: Fast likelihood-free inference
with autoregressive flows. In The 22nd International Confer-
ence on Artificial Intelligence and Statistics, pages 837–848.
PMLR, 2019. A1

[35] George Papamakarios, Eric Nalisnick, Danilo Jimenez
Rezende, Shakir Mohamed, and Balaji Lakshminarayanan.
Normalizing flows for probabilistic modeling and inference.
Journal of Machine Learning Research, 22(57):1–64, 2021.
A1

[36] Wamiq Para, Shariq Bhat, Paul Guerrero, Tom Kelly, Niloy
Mitra, Leonidas J Guibas, and Peter Wonka. Sketchgen:
Generating constrained cad sketches. In Advances in Neural
Information Processing Systems, pages 5077–5088. Curran
Associates, Inc., 2021. 1

[37] Mark Pauly, Niloy J. Mitra, Johannes Wallner, Helmut
Pottmann, and Leonidas J. Guibas. Discovering structural
regularity in 3d geometry. In ACM SIGGRAPH 2008 Papers,
New York, NY, USA, 2008. Association for Computing Ma-
chinery. 1

[38] Aleksander Płocharski, Jan Swidzinski, Joanna Porter-
Sobieraj, and Przemyslaw Musialski. Neuro-symbolic trans-
formation of architectural facades into their procedural rep-
resentations. In ACM SIGGRAPH 2024 Posters, pages 1–2.
2024. 1

[39] Danilo Rezende and Shakir Mohamed. Variational inference
with normalizing flows. In International Conference on Ma-
chine Learning, pages 1530–1538, 2015. A1

[40] Ari Seff, Wenda Zhou, Nick Richardson, and Ryan P Adams.
Vitruvion: A generative model of parametric cad sketches.
arXiv preprint arXiv:2109.14124, 2021. 1

[41] M. Shabani, S. Hosseini, and Y. Furukawa. Housediffusion:
Vector floorplan generation via a diffusion model with dis-
crete and continuous denoising. In 2023 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),

pages 5466–5475, Los Alamitos, CA, USA, 2023. IEEE
Computer Society. 1

[42] Louis Sharrock, Jack Simons, Song Liu, and Mark Beau-
mont. Sequential neural score estimation: Likelihood-free
inference with conditional score based diffusion models.
arXiv preprint arXiv:2210.04872, 2022. A1

[43] Zeyun Shi, Pierre Alliez, Mathieu Desbrun, Hujun Bao, and
Jin Huang. Symmetry and orbit detection via lie-algebra vot-
ing. Computer Graphics Forum, 35(5):217–227, 2016. 1

[44] Scott A Sisson, Yanan Fan, and Mark A Beaumont.
Overview of abc. In Handbook of approximate Bayesian
computation, pages 3–54. Chapman and Hall/CRC, 2018.
A1

[45] Owen Thomas, Ritabrata Dutta, Jukka Corander, Samuel
Kaski, and Michael U. Gutmann. Likelihood-free inference
by ratio estimation, 2020. A1

[46] Kenton Varda. Google protocol buffers: Google’s data inter-
change format. Technical report, 2008. 2

[47] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017. 1, 3, A2

[48] Yael Vinker, Ehsan Pajouheshgar, Jessica Y. Bo, Ro-
man Christian Bachmann, Amit Haim Bermano, Daniel
Cohen-Or, Amir Zamir, and Ariel Shamir. Clipasso:
Semantically-aware object sketching. ACM Trans. Graph.,
41(4), 2022. 1

[49] Antoine Wehenkel, Juan L Gamella, Ozan Sener, Jens
Behrmann, Guillermo Sapiro, Marco Cuturi, and Jörn-
Henrik Jacobsen. Addressing misspecification in simulation-
based inference through data-driven calibration. arXiv
preprint arXiv:2405.08719, 2024. 3

[50] Jonas Bernhard Wildberger, Maximilian Dax, Simon Buch-
holz, Stephen R Green, Jakob H. Macke, and Bernhard
Schölkopf. Flow matching for scalable simulation-based in-
ference. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023. A1

[51] Q. Wu, K. Xu, and J. Wang. Constructing 3d csg models
from 3d raw point clouds. Computer Graphics Forum, 37
(5):221–232, 2018. 1

Synthesizing 3D Abstractions by
Inverting Procedural Buildings with Transformers

Supplementary Material

(a) Procedural building (b) Assets in procedural building

Figure 4. A procedural building is generated by placing a set of
assets according to a set of handcrafted rules.

A.1. Relation to simulation-based inference

Our framework for procedural inversion is closely related
to simulation-based inference [6] (SBI). SBI is a paradigm
for solving inverse problems entirely based on simulations
from the forward model, without requiring access to under-
lying densities. SBI has become a standard tool for scien-
tific inference [4, 7, 15, 19], and a variety of methods have
been developed in recent years [3, 8, 14, 16, 18, 25, 26, 30,
33, 34, 42, 44, 45, 50]. Our approach can be seen as a vari-
ant of neural posterior estimation [16, 25, 33] (NPE), an SBI
method which directly targets the Bayesian posterior.

However, compared to common scientific use cases, our
application of SBI to infer abstractions of buildings has var-
ious distinct properties. First, our inference domain (i.e.,
abstractions θ) is represented in terms of a programmatic
language while in scientific applications it is typically a
low-dimensional vector space. Our density estimator q(θ|x)
is thus parameterized with a transformer model as opposed
to a continuous density estimator such as a normalizing
flow [35, 39]. Second, our prior is a complicated proce-
dural model whereas in scientific applications it is typically
a simple distribution and the complexity of the problem is
dominated by the likelihood. Third, we are ultimately inter-
ested in generating individual high-likelihood abstractions,
not necessarily in the distributional properties of the poste-
rior such as correlations and uncertainties.

A.2. Technical details

High-level Description of the Protocol Buffers. A build-
ing is chosen to be represented in a hierarchical descrip-
tion with a Protocol Buffer. This hierarchical format starts
with the macroscopic structure in terms of the building

Description Protocol Buffer fields

Noise level∗ noise level
Absolute coordinates∗ height,x, y,
Relative coordinates∗ offset, elevation
Asset scales∗ & rotations∗ scale x, scale y,

quaternion 3,
quaternion 4

Asset index cell type
Pointer index facade index,

footprint index

Table 1. Token groups for the fields of the Protocol Buffer rep-
resenting the programmatic language for abstractions θ (omitting
prefixes, see Fig. 5 and F for complete definitions). We use con-
tinuous groups (marked with asterisk) for absolute coordinates of
the building, for relative coordinates within a storey and for scale
and rotation parameters of assets. We use discrete integer groups
for determining asset types from an external asset index and for
pointer indices within the Protocol Buffer.

height and (possibly multiple) footprints layouts. It
then specifies a series of storeys. A storey is defined in
terms of its elevation and by linking to a facade. A
facade is specified by a sequence of cells patterns,
which in turn contain collections of asset instances. The
nested structure of this data format provides a natural way
of representing recurring patterns. For example, multiple
storeys can link to the same facade, and multiple facades
can link to the same footprint layout. Where appropriate,
we define coordinates relative to previously specified data
(Tab. 1). For example, asset positions are defined in relative
terms to the associated footprint line segment, and their hor-
izontal scales are computed as the difference to respective
previously placed assets, enforcing consistency between as-
set placements and the building footprints. To account for
(rare) cases, where asset properties differ from the derived
choice, we add a custom cell modifier. Finally, each
asset uses one or more materials, and the building Protocol
Buffer contains a set of color modifiers for material and as-
set pairs. If unset for an asset’s material, the standard color
of the material is used.

Complete definition of the Protocol Buffers. Fig. 5
defines the Protocol Buffer we used, and Fig. 6 displays
the additional omitted definitions. A Footprint is parameter-
ized as a planar polygon. The line segments of the footprint
determine the layout of the corresponding facades, along

Description Range Resolution

Noise level [m] [0, 1] 0.01
Absolute coordinates [m] [−100, 100] 0.1
Relative coordinates [0, 1] 0.005
Asset scales & rotations [−5, 5] 0.01

Table 2. Discretization of continuous variables for tokenization.
Noise level and absolute coordinates are specified in meters.

which the asset cells are arranged.
A CellModifier can be used to change the scale and rota-

tion of a Cell instance (which wraps a single asset instance).
In most cases, scales and rotations can be uniquely deter-
mined based on heuristic rules (e.g., using the cell position
within the footprint and coordinates of neighbouring cells).
In our definition of the Protocol Buffer, we thus do not spec-
ify cell scales and rotation by default, and instead derive
them based on such heuristics. This removes redundancy
from the Protocol Buffer representation and also decreases
the length of the corresponding tokenized sequences. How-
ever, in some edge cases, these rules don’t provide a unique
result. In such cases, the optional CellModifier can be used
to overwrite scale and rotation parameters.

Finally, MaterialVariation optionally modifies the mate-
rial type and color parameters of a specific asset. When ap-
plied, this modifies all asset instances of the specified type
in the same way.

Tokenization of Protocol Buffers. To obtain a
transformer-compatible data format for the abstraction pro-
grams θ we need to convert these to sequences of tokens.
Following [11], we leverage the known structure of the Pro-
tocol Buffers to obtain an efficient conversion scheme. We
first define token groups for the different data types in the
Protocol Buffer (Tab. 1) and assign to each group a set of
tokens that covers all potential values. We further use a set
of special tokens in the sequence to navigate within the Pro-
tocol Buffer whenever the next step is not unique. This in-
cludes end tokens for repeated fields and selector tokens
for optional and oneof fields (see [11] for details).

This scheme can convert any Protocol Buffer representa-
tion to a sequence of tokens. Conversely, at inference time
we can mask out invalid options for the next token at each
step of the autoregressive transformer prediction, such that
any inferred sequence can be converted back into the Proto-
col Buffer representation. This bijective mapping between
Protocol Buffers and token sequences enables straightfor-
ward application of standard language modeling techniques
for the estimation of the programs θ representing building
abstractions.

Conversion of the Protocol Buffers into the tokenized
representation requires assignment of discrete tokens to
each possible value for each Protocol Buffer field. Follow-

Encoder (PointCloudTransformer [17])

Voxel size 7 m× 7 m× 7 m
Max. # points per voxel 300
attention layers 4
attention heads 4
Dimension of QKV 256
Output dimension 512

Decoder (Transformer [47])

Size of context window 2048
attention layers 12
attention heads 8
Dimension of QKV 512

Table 3. Hyperparameters of the inference model.

ing [11], we group fields with similar functions together
(Tab. 1; e.g., {facade index,footprint index},
which are both used to cross-reference objects within the
Protocol Buffer, or {height, x, y}, which all refer to spa-
tial coordinates). Continuous values further need to be dis-
cretized (Tab. 2).

A.3. Additional results
Tab. 4 defines the structural evaluation quantities from
Tab. 2. Fig. 7 expands over Fig. 2, also showing the re-
construction accuracy for input point clouds with voxel
dropout. The reconstruction error is a bit higher in case
of dropout, which indicates that the inference model uses
global point cloud information, which also improves its lo-
cal estimates.

0 10 20 30 40 50

Point cloud noise level [cm]

10

20

30

R
ec

o
n
st

ru
ct

io
n

er
ro

r
[c

m
] 0%

50%

80%

Figure 7. Reconstruction error as a function of the point cloud
noise level. Compared to Fig. 2, this also shows results for input
point clouds with 50% and 80% dropout augmentation of point
cloud voxels.

1 // A cell wraps a single asset instance, adding a positional parameter and optional modifiers.
2 message Cell {
3 int32 cell_type; // Enumeration into an external index
4 float offset; // Offset along the corresponding linesegment
5 optional CellModifier cell_modifier; // Modifier that overwrites scales and roations
6 }
7

8 // A cell pattern combines a sequence of asset cells along one line segment of the footprint
9 message CellsPattern {

10 repeated Cell cells; // Sequence of cells
11 }
12

13 // A facade is made by defining the cells along all line-segments of a footprint
14 message Facade {
15 repeated CellsPattern cells_pattern; // A pattern of asset instances
16 int32 footprint_index; // Index to the footprint array
17 }
18

19 // A storey is made by combining a footprint layout with a facade pattern
20 message Storey {
21 int32 facade_index; // Sets which facade to use for this storey
22 float elevation; // Relative in [0, 1] * Building.height
23 }
24

25 message Building {
26 float noise_level;
27 float height; // Total height of the building
28 repeated Footprint footprints; // Footprint polygons
29 repeated Storey storeys; // Building storeys
30 repeated Facade facades; // Unique facade patterns
31 repeated MaterialVariation material_variations; // Material variation (colors, material type)
32 }

Figure 5. Custom format for the representation of abstract buildings. This hierarchically combines asset instances (“Cells”) into recurring
patterns (“CellsPattern”). These patterns are combined into facade instances, which can in turn be linked by the building storeys. Finally, a
building is composed by combining such storeys along with variables characterizing the high-level geometry (height, footprint polygons)
and the point cloud noise level. Definitions of CellModifier, Footprint and MaterialVariation are provided in Fig. 6.

Name Description

Accuracy number of storeys Fraction of inferred buildings with correct number of storeys.
Accuracy number of facades Fraction of inferred buildings with correct number of distinct facades.
Accuracy storeys structure Fraction of storeys which link to the correct facade.
Assets: precision Fraction of distinct assets in inferred building, which are also present in ground truth building.
Assets: recall Fraction of distinct assets in ground truth building, which are also present in inferred building.
IoU Material Variations Intersection over union of modified materials in inferred and ground truth building.
L2 HSV Color Distance L2 distance between ground truth and inferred material colors in HSV basis.

Table 4. Description of metrics used in Fig. 2.

1 // 2D vector
2 message Vector2d {
3 double x;
4 double y;
5 }
6

7 // 2D polygon for building footprints (different building storeys can have different footprints)
8 message Footprint {
9 repeated Vector2d points;

10 }
11

12 // Cell modifier to overwrite default scales and rotations of assets
13 message CellModifier {
14 float scale_x_overwrite; // Used only if can't predict.
15 float scale_y_overwrite; // Used only if can't predict.
16 float quaternion_3_overwrite; // In case orientation is wrong.
17 float quaternion_4_overwrite; // In case orientation is wrong.
18 }
19

20 // List of material types for assets
21 enum MaterialBaseType {
22 UNSPECIFIED;
23 GLASS;
24 BRICK;
25 PAINTEDMETAL;
26 LIMESTONE;
27 PAINTEDSTONE;
28 GRANITE;
29 WOOD;
30 METAL;
31 COPPER;
32 BRASS0;
33 BRUSHED1;
34 ASPHALT2;
35 DIRTY3;
36 ROOFTOP4;
37 SIDEWALK5;
38 BLOCK6;
39 }
40

41 // Material variation, defining modifications to specific asset types
42 message MaterialVariation {
43 int32 cell_type; // Which asset type to modify
44 MaterialBaseType material_base_type; // Optional change of asset material
45 float hue; // Color hue in HSV
46 float saturation; // Color saturation in HSV
47 float brightness; // Color brightness in HSV
48 }

Figure 6. Protocol Buffer definition of base objects referred to in Fig. 5.

	Introduction
	Method
	Synthetic training data
	Training objective
	Model Architecture

	Results
	Discussion
	Relation to simulation-based inference
	Technical details
	Additional results

