
CVPR
SynData4CV

Workshop
#8

-12pt

CVPR
SynData4CV

Workshop
#8CVPR SynData4CV Workshop 2025 Submission #8. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Synthesizing 3D Abstractions by
Inverting Procedural Buildings with Transformers

Anonymous CVPR SynData4CV Workshop submission

Paper ID 8

Abstract

We generate abstractions of buildings, reflecting the essen-001
tial aspects of their geometry and structure, by learning002
to invert procedural models. We first build a dataset of003
abstract procedural building models paired with simulated004
point clouds and then learn the inverse mapping through a005
transformer. Given a point cloud, the trained transformer006
then infers the corresponding abstracted building in terms007
of a programmatic language description. This approach008
leverages expressive procedural models developed for gam-009
ing and animation, and thereby retains desirable properties010
such as efficient rendering of the inferred abstractions and011
strong priors for regularity and symmetry. Our approach012
achieves good reconstruction accuracy in terms of geometry013
and structure, as well as structurally consistent inpainting.014

1. Introduction015

Abstract visual representations aim to capture the key geo-016
metric and structural properties of an object. Abstractions017
are useful in many applications as they facilitate perceptual018
comparisons and understanding. For buildings, use cases019
for abstract representations range from 3D mapping for nav-020
igation to the generation of synthetic environments for train-021
ing of deep learning agents. However, inferring abstractions022
based on sensor data at a desired level of detail is a chal-023
lenging problem. Traditional approaches are largely based024
on geometric simplification and optimization, while learn-025
ing approaches face a lack of training data.026

We here propose a model to infer abstractions from point027
cloud data. While manually labeled large-scale datasets for028
this task are costly and thus unavailable, there is an abun-029
dance of high-quality 3D building simulators. Specifically,030
the gaming and animation industries have developed models031
to sample synthetic environments and render correspond-032
ing 3D representations at various levels of complexity—033
the inverse direction of what we aim to achieve (Fig. 1).034
Our framework inverts such 3D models with a transformer035

model [47] which takes point clouds as input and predicts 036
corresponding abstractions (Sec. 2). Training is fully su- 037
pervised, based on a dataset of procedural buildings paired 038
with corresponding point cloud simulations. We develop 039
various technical components tailored to the generation of 040
abstractions. This includes the design of a programmatic 041
language to efficiently represent abstractions, its combina- 042
tion with a technique to guarantee transformer outputs con- 043
sistent with the structure imposed by this language, and an 044
encoder-decoder architecture for the inference model. 045

Our approach achieves accurate in-distribution geomet- 046
ric and structural reconstruction, and structurally consistent 047
inference for incomplete inputs (Sec. 3). We find that the 048
main limitations are attributed to constraints of the proce- 049
dural model, not the inference framework itself. While this 050
can be partially mitigated by data augmentation, our results 051
suggest that procedural model advancements will be crucial 052
for real-world applicability. Based on our analysis, we sug- 053
gest to make procedural models more flexible to better suit 054
inversion (Sec. 4). 055

Related Work. There is vast literature on 3D recon- 056
struction or abstraction from sensor data. A traditional ap- 057
proach to abstraction is geometry simplification—reducing 058
the number of geometric elements used to represent the 059
model [13, 20]. Other works perform geometry abstraction 060
by fitting geometric primitives (e.g., boxes or cylinders) to 061
raw data (e.g., point clouds) [9, 22, 23, 27, 51]. Several 062
works aim to detect symmetries and regularities [31, 37, 43] 063
or generate structure preserving abstractions [12, 21, 28, 064
48]. Finally, generative AI has been explored to create ge- 065
ometry from various inputs [2, 32, 38, 41]. In particular, 066
several works represent CAD models and procedural de- 067
scriptions with a structured, domain specific language—and 068
aim to use language tools for CAD generation [10, 36, 40]. 069

2. Method 070

We train an inference model that takes a building point 071
cloud x as input and infers a parametric description θ, an 072
abstraction, of the corresponding building. When training 073

1

CVPR
SynData4CV

Workshop
#8

-12pt

CVPR
SynData4CV

Workshop
#8CVPR SynData4CV Workshop 2025 Submission #8. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

point cloud renderer
point cloud transformer

transformer decoder

point cloud

height = 61 m storeys[1].elevation = 0.12

learned voxel embeddings

…

programmatic description
of the abstraction

procedural model height: 61.0

 footprints: {…}

 storeys: {…}

 storeys: {facade_index: 1, elevation: 0.12}

 …

(a) Dataset generation

point cloud renderer
point cloud transformer

transformer decoder

point cloud

height = 61 m storeys[1].elevation = 0.12

learned voxel embeddings

…

programmatic description
of the abstraction

procedural model height: 61.0

 footprints: {…}

 storeys: {…}

 storeys: {facade_index: 1, elevation: 0.12}

 …

(b) Inference model

point cloud renderer
point cloud transformer

transformer decoder

point cloud

height = 61 m storeys[1].elevation = 0.12

learned voxel embeddings

…

programmatic description
of the abstraction

procedural model height: 61.0

 footprints: {…}

 storeys: {…}

 storeys: {facade_index: 1, elevation: 0.12}

 …

(c) Inference result

Figure 1. (a) We generate a synthetic training dataset by first unconditionally sampling building abstractions with a procedural model and
then composing corresponding point clouds for each abstraction. (b) The inference model encodes the input with a point cloud transformer
operating on point cloud voxels (Sec. 2.3). It then employs a language transformer to predict the corresponding abstraction in terms of our
custom programmatic language (Sec. 2.1). (c) The transformer output is parsed as a Protocol Buffer and can be rendered in Unreal Engine 5.

the model, we aim to combine structural knowledge (e.g.074
a building is made of storeys/floors, style and position of075
windows, etc.) and geometric fit.076

We formalize these notions in a Bayesian framework,077
and represent structural knowledge in the prior distribu-078
tion p(θ). We further represent the geometric fit in terms079
of the distribution over point clouds x conditional on ab-080
stractions θ—the likelihood p(x|θ). With these definitions,081
the Bayesian posterior p(θ|x) ∝ p(θ)p(x|θ) represents the082
distribution over abstractions θ for a given point cloud x.083
We solve this Bayesian inference problem by training an in-084
ference model q(θ|x) to approximate the posterior p(θ|x).085
An abstraction for a point cloud x can then be inferred by086
sampling from the trained model θ ∼ q(θ|x).087

Below, we define p(θ) in terms of a procedural build-088
ing model and p(x|θ) in terms of a renderer (Sec. 2.1),089
introduce the training objective for optimization of q(θ|x)090
(Sec. 2.2) and describe the architecture of q(θ|x) (Sec. 2.3).091

2.1. Synthetic training data092

Prior. We employ a procedural building model adapted093
from the Unreal Engine 5 City Samples [1] demo. This094
model samples abstract buildings θ by placing a collection095
of building assets (e.g., facade segments) according to a096
set of rules (appendix Fig. 4), and hence serves as our im-097
plicit prior distribution over buildings p(θ). Both, assets098
and rules, have been carefully designed to capture styles099
of buildings of San Francisco, Chicago and New York. In100
total there are 911 unique assets, and a typical building is101
composed of around 10− 40 different asset types. We rep-102
resent abstractions in a custom data format based on Pro-103
tocol Buffers [46] (Fig. 5), which we designed to facilitate104

representation of regularities and significantly minimize re- 105
dundancy, thereby simplifying inference. It is chosen as 106
a hierarchical format, starting from macroscopic structure 107
(height, footprints), and then goes into more detail (storeys, 108
facade description etc). Importantly, identical structures can 109
refer to the same description – e.g. different storeys can re- 110
fer to the same facade. For more details, see appendix A.2. 111

Likelihood. The likelihood p(x|θ) models the distribu- 112
tion over point clouds consistent with a given abstraction θ. 113
We represent the likelihood implicitly: for a given abstrac- 114
tion θ we sample x ∼ p(x|θ) by composing surface points 115
from all assets of a building into a joint point cloud, filter- 116
ing interior points, and adding Gaussian noise with mean 0 117
and variance σ2 to each point. As log-likelihood maximiza- 118
tion with Gaussian kernels corresponds to mean squared er- 119
ror minimization, this likelihood approximates a geometric 120
distance between point cloud and inferred geometry. 121

Dataset. We generate a dataset with 341721 pairs of ab- 122
stractions and point clouds, hence samples from the joint 123
distribution (θ, x) ∼ p(θ, x) (see Fig. 1a for examples). We 124
augment the asset colors in the dataset by adding uncorre- 125
lated Gaussian noise with a standard deviation of 0.15 in the 126
HSV color system to half of the dataset. 127

2.2. Training objective 128

We train the network q(θ|x) using simulation-based infer- 129
ence [6] ideas (see appendix A.1 for details) with the loss 130

131
L = Ex∼p(x|θ), θ∼p(θ) [− log q(θ|x)] , (1) 132

across the dataset of simulated buildings from Sec. 2.1. This 133
objective formally corresponds to minimization of the Kull- 134
back–Leibler divergence DKL (p(θ|x) ‖ q(θ|x)). With suf- 135

2

CVPR
SynData4CV

Workshop
#8

-12pt

CVPR
SynData4CV

Workshop
#8CVPR SynData4CV Workshop 2025 Submission #8. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

ficient training data and network capacity, the inference net-136
work q(θ|x) will therefore become an accurate estimator137
of p(θ|x) [33]. After training, the inference network thus138
inverts the forward model (i.e., the procedural model and139
point cloud renderer), and an abstraction for a point cloud x140
can be generated by sampling θ ∼ q(θ|x).141

2.3. Model Architecture142

We now define the density estimator q(θ|x) which maps a143
point cloud x to a conditional distribution over abstractions144
θ. We use a transformer-based encoder-decoder model.145

Tokenization of Protocol Buffers. To obtain a146
transformer-compatible data format for the abstraction pro-147
grams θ we convert these to sequences of tokens. We fol-148
low [11], which offers a method to bijectively map any Pro-149
tocal Buffer to a token sequence. Importantly, at inference150
time, this allows to mask invalid tokens, ensuring syntacti-151
cally valid Protocol Buffers. For details see appendix A.2.152

Encoder. We subdivide the point cloud into cubes153
of length 7 meters, resulting in nv smaller point clouds154
{x̂1, . . . , x̂nv}. Each voxel point cloud is embedded into a155
feature space zi = g(x̂i) ∈ R512, where g is a PointCloud-156
Transformer [17] (see Tab. 3 for hyperparameters) and x̂i157
includes point coordinates and color information. We pro-158
vide the voxel positions by adding sinusoidal positional em-159
beddings [29] to the PointCloudTransformer’s output.160

Decoder. We employ a standard transformer de-161
coder [47] (see Tab. 3 for hyperparameters). The decoder162
is conditioned on the embeddings zi via cross-attention,163
which enables spatially global information integration.164

Training. We train the encoder-decoder model end-165
to-end for 105 steps, with batch size 16, employing166
AdamW [24] with β1 = 0.9, β2 = 0.98 and a learning167
rate of 5 · 10−4 after a linear warm up for 103 steps. We168
apply dropout on the voxel embeddings with rates varying169
between 0 and 0.8, to force the model to infer missing infor-170
mation based on regularity in the data. We regularize with171
additive Gaussian noise on the point cloud with standard172
deviations σ between 0 m and 0.5 m.173

3. Results174

We first evaluate our trained model on a hold-out subset of175
17086 point clouds from the simulated dataset. For each176
point cloud, we compare the inferred abstraction to the cor-177
responding ground truth, both in terms of structural prop-178
erties and geometric fit (Fig. 2). Structural high-level vari-179
ables, such has the predicted number of storeys of the build-180
ings, the number of facades, and asset precision and re-181
call, are inferred correctly with high accuracies of above182
95%. As color/materials are augmented for some assets of a183
building, the intersection over union (IoU) of the predicted184
and the ground truth modifications is calculated (94.2%),185
and the Euclidean distance in HSV color space is evaluated186

on the intersecting assets. The deviation between inferred 187
building geometries and the input point cloud is around 10 188
cm (in the absence of point cloud noise). We conclude that 189
our model achieves excellent in-distribution reconstruction. 190

We next test properties of the model under point cloud 191
modifications. Specifically, we drop large blocks of the 192
point clouds (a) at random or (b) systematically; and we 193
(c) split the point clouds and move both parts away from 194
each other (Fig. 3). These manipulations lead to miss- 195
ing information, and (c) additionally could lead to out-of- 196
distribution buildings. We find that the inference model 197
successfully reconstructs missing information by leveraging 198
regularity and symmetry priors from the procedural model. 199
We further observe that inferred buildings for (c) are not 200
simply stretched versions of the originals, but contain ad- 201
ditional asset instances (e.g., more windows). While all 202
buildings are visually neat, we observe occasional visual 203
artefacts and slight inaccuracies of asset placements. 204

4. Discussion 205

Our framework casts abstraction into an inverse problem, 206
with the forward direction defined by a procedural model 207
and a point cloud renderer. The inference network is trained 208
to invert this forward direction, thereby converting point 209
cloud data to the procedural model space. In this space, 210
buildings are composed of assets, which can directly serve 211
as abstract representations: they allow for high-level editing 212
and rendering at different levels of detail. 213

Limitations. As a central limitation, our approach is 214
constrained to the scope of the forward direction, hence 215
is limited to buildings that are captured by the procedural 216
model. While procedural models generate diverse build- 217
ings, they usually are not comprehensive, because for simu- 218
lation of realistic environments it is not necessary to capture 219
all buildings within the targeted distribution. Therefore, the 220
procedural model used here is limited to only a subset of 221
buildings. Application to real buildings further requires the 222
point clouds to be consistent with real point cloud measure- 223
ments (e.g., with photogrammetry, lidar). We designed our 224
renderer to capture some of the main features of realistic 225
point clouds (e.g., only rendering points from the surface, 226
added noise), but more realistic settings require further ex- 227
tension (e.g., local variation of noise levels). Additionally, 228
it may be necessary to explicitly account for domain shifts 229
between simulated and real data within our model [5, 49]. 230

Strengths. Our simulation-based approach has various 231
advantages compared to other methods. First, it enables 232
training without human annotations with large amounts of 233
synthetic data. Second, regularity priors implemented in 234
the procedural model are captured by the trained inference 235
model. Buildings are highly regular objects, and such pri- 236
ors enable inference of missing information. Third, our ap- 237
proach provides an inductive bias to prioritize structure over 238

3

CVPR
SynData4CV

Workshop
#8

-12pt

CVPR
SynData4CV

Workshop
#8CVPR SynData4CV Workshop 2025 Submission #8. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Accuracy number of storeys 97.9%
Accuracy number of facades 97.9%
Accuracy storeys structure 95.8%
Assets: precision 99.4%
Assets: recall 98.7%
IoU Material Variations 94.2%
L2 HSV Color Distance 0.083

(a) Structural evaluation

0 10 20 30 40 50

Point cloud noise level [cm]

10

20

30

R
ec

o
n
st

ru
ct

io
n

er
ro

r
[c

m
]

Inferred

Ground truth

(b) Geometric evaluation

Figure 2. Reconstruction performance of the transformer model. (a) Performance on various structural variables (see appendix Tab. 4
for definitions). (b) Reconstruction error as a function of the point cloud noise level, measured in terms of the mean deviation between
noisy input point clouds and building geometries. The reconstruction error of the inferred buildings (blue) is only slightly larger than the
reconstruction error of the ground truth buildings (black). Naturally, both grow with increasing point cloud noise level.

N
o

m
od

ifi
ca

tio
n

Bl
oc

k
dr

op
Ce

nt
er

 d
ro

p
Sp

lit

Figure 3. Inference results with modified point clouds. We drop random blocks (second row), a single large block in the center (third
row), or split the point cloud in the center and move both halves away from each other (fourth row). The inference model successfully
reconstructs the associated building. With the split modification, the missing information is filled with additional asset instances, resulting
in additional columns of windows. We occasionally observe artefacts (red), like gaps between assets or slight offsets in window positions.

geometric accuracy, as it is defined on the abstract descrip-239
tions (as opposed to a geometric reconstruction loss). In-240
deed, we observed that inferred buildings sometimes did not241
optimally capture the input point cloud, but always looked242
structurally self-consistent. This is desirable, as structure is243
typically more important than rigorous geometric accuracy244
for abstractions. Fourth, the native representation of proce-245
dural models is optimized for extremely efficient rendering,246
which is inherited by our framework. Fifth, our approach247
enables human-in-the-loop interaction between procedural248
modeling and its inversion. This could help to quantitatively249
assess procedural models at scale, validating how well they250

capture real buildings and identifying improvements. 251
Optimizing procedural models for inversion. Design- 252

ing procedural models with inversion in mind likely im- 253
proves the scope and performance of our framework. E.g., 254
our experiments suggest a need for more flexible asset se- 255
lection and placement. This could alleviate inconsistencies 256
between asset placement and augmented point clouds (e.g., 257
Fig. 3, split manipulation). Parametric assets, e.g. vari- 258
able window sizes, would further enhance flexibility, which 259
however also weakens the regularity prior. Such modifica- 260
tions to procedural models will be crucial for future appli- 261
cability of our framework to real data. 262

4

CVPR
SynData4CV

Workshop
#8

-12pt

CVPR
SynData4CV

Workshop
#8CVPR SynData4CV Workshop 2025 Submission #8. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

References263

[1] Epic Games, Inc.: City sample buildings, 2021. 2264
[2] Armen Avetisyan, Christopher Xie, Henry Howard-Jenkins,265

Tsun-Yi Yang, Samir Aroudj, Suvam Patra, Fuyang Zhang,266
Duncan Frost, Luke Holland, Campbell Orme, et al. Scene-267
script: Reconstructing scenes with an autoregressive struc-268
tured language model. arXiv preprint arXiv:2403.13064,269
2024. 1270

[3] Mark A Beaumont, Wenyang Zhang, and David J Balding.271
Approximate bayesian computation in population genetics.272
Genetics, 162(4):2025–2035, 2002. A1273

[4] Johann Brehmer, Kyle Cranmer, Gilles Louppe, and Juan274
Pavez. Constraining effective field theories with machine275
learning. Physical review letters, 121(11):111801, 2018. A1276

[5] Patrick Cannon, Daniel Ward, and Sebastian M Schmon.277
Investigating the impact of model misspecification278
in neural simulation-based inference. arXiv preprint279
arXiv:2209.01845, 2022. 3280

[6] Kyle Cranmer, Johann Brehmer, and Gilles Louppe. The281
frontier of simulation-based inference. Proceedings of the282
National Academy of Sciences, 117(48):30055–30062, 2020.283
2, A1284

[7] Maximilian Dax, Stephen R. Green, Jonathan Gair, Jakob H.285
Macke, Alessandra Buonanno, and Bernhard Schölkopf.286
Real-Time Gravitational Wave Science with Neural Poste-287
rior Estimation. Phys. Rev. Lett., 127(24):241103, 2021. A1288

[8] Maximilian Dax, Stephen R. Green, Jonathan Gair, Michael289
Pürrer, Jonas Wildberger, Jakob H. Macke, Alessandra Buo-290
nanno, and Bernhard Schölkopf. Neural Importance Sam-291
pling for Rapid and Reliable Gravitational-Wave Inference.292
Phys. Rev. Lett., 130(17):171403, 2023. A1293

[9] Tao Du, Jeevana Priya Inala, Yewen Pu, Andrew Spielberg,294
Adriana Schulz, Daniela Rus, Armando Solar-Lezama, and295
Wojciech Matusik. Inversecsg: Automatic conversion of 3d296
models to csg trees. ACM Trans. Graph., 37(6), 2018. 1297

[10] Yaroslav Ganin, Sergey Bartunov, Yujia Li, Ethan Keller, and298
Stefano Saliceti. Computer-aided design as language. Ad-299
vances in Neural Information Processing Systems, 34:5885–300
5897, 2021. 1301

[11] Yaroslav Ganin, Sergey Bartunov, Yujia Li, Ethan Keller, and302
Stefano Saliceti. Computer-aided design as language. Ad-303
vances in Neural Information Processing Systems, 34:5885–304
5897, 2021. 3, A2305

[12] Xifeng Gao, Kui Wu, and Zherong Pan. Low-poly mesh306
generation for building models. In ACM SIGGRAPH 2022307
Conference Proceedings, New York, NY, USA, 2022. Asso-308
ciation for Computing Machinery. 1309

[13] Michael Garland and Paul S. Heckbert. Surface simpli-310
fication using quadric error metrics. In Proceedings of311
the 24th Annual Conference on Computer Graphics and312
Interactive Techniques, page 209–216, USA, 1997. ACM313
Press/Addison-Wesley Publishing Co. 1314

[14] Tomas Geffner, George Papamakarios, and Andriy Mnih.315
Compositional score modeling for simulation-based infer-316
ence. In Proceedings of the 40th International Conference on317
Machine Learning, pages 11098–11116. PMLR, 2023. A1318

[15] Pedro J Gonçalves, Jan-Matthis Lueckmann, Michael 319
Deistler, Marcel Nonnenmacher, Kaan Öcal, Giacomo Bas- 320
setto, Chaitanya Chintaluri, William F Podlaski, Sara A Had- 321
dad, Tim P Vogels, et al. Training deep neural density esti- 322
mators to identify mechanistic models of neural dynamics. 323
Elife, 9:e56261, 2020. A1 324

[16] David Greenberg, Marcel Nonnenmacher, and Jakob Macke. 325
Automatic posterior transformation for likelihood-free infer- 326
ence. In International Conference on Machine Learning, 327
pages 2404–2414. PMLR, 2019. A1 328

[17] Meng-Hao Guo, Jun-Xiong Cai, Zheng-Ning Liu, Tai-Jiang 329
Mu, Ralph R Martin, and Shi-Min Hu. Pct: Point cloud 330
transformer. Computational Visual Media, 7:187–199, 2021. 331
3, A2 332

[18] Joeri Hermans, Volodimir Begy, and Gilles Louppe. 333
Likelihood-free mcmc with approximate likelihood ratios. 334
arXiv preprint arXiv:1903.04057, 10, 2019. A1 335

[19] Joeri Hermans, Nilanjan Banik, Christoph Weniger, Gian- 336
franco Bertone, and Gilles Louppe. Towards constrain- 337
ing warm dark matter with stellar streams through neural 338
simulation-based inference. Monthly Notices of the Royal 339
Astronomical Society, 507(2):1999–2011, 2021. A1 340

[20] Hugues Hoppe. Progressive meshes. In Proceedings of the 341
23rd Annual Conference on Computer Graphics and Inter- 342
active Techniques, page 99–108, New York, NY, USA, 1996. 343
Association for Computing Machinery. 1 344

[21] Jingwei Huang, Shanshan Zhang, Bo Duan, Yanfeng Zhang, 345
Xiaoyang Guo, Mingwei Sun, and Li Yi. Arrangementnet: 346
Learning scene arrangements for vectorized indoor scene 347
modeling. ACM Trans. Graph., 42(4), 2023. 1 348

[22] R. Kenny Jones, Paul Guerrero, Niloy J. Mitra, and Daniel 349
Ritchie. Shapecoder: Discovering abstractions for visual 350
programs from unstructured primitives. ACM Trans. Graph., 351
42(4), 2023. 1 352

[23] Lingxiao Li, Minhyuk Sung, Anastasia Dubrovina, Li Yi, 353
and Leonidas J. Guibas. Supervised fitting of geometric 354
primitives to 3d point clouds. In 2019 IEEE/CVF Confer- 355
ence on Computer Vision and Pattern Recognition (CVPR), 356
pages 2647–2655, 2019. 1 357

[24] Ilya Loshchilov and Frank Hutter. Decoupled weight decay 358
regularization. arXiv preprint arXiv:1711.05101, 2017. 3 359

[25] Jan-Matthis Lueckmann, Pedro J Gonçalves, Giacomo Bas- 360
setto, Kaan Öcal, Marcel Nonnenmacher, and Jakob H 361
Macke. Flexible statistical inference for mechanistic mod- 362
els of neural dynamics. In Proceedings of the 31st Inter- 363
national Conference on Neural Information Processing Sys- 364
tems, pages 1289–1299, 2017. A1 365

[26] Jan-Matthis Lueckmann, Giacomo Bassetto, Theofanis Kar- 366
aletsos, and Jakob H Macke. Likelihood-free inference with 367
emulator networks. In Symposium on Advances in Approxi- 368
mate Bayesian Inference, pages 32–53. PMLR, 2019. A1 369

[27] Eric-Tuan Lê, Minhyuk Sung, Duygu Ceylan, Radomir 370
Mech, Tamy Boubekeur, and Niloy J. Mitra. Cpfn: Cascaded 371
primitive fitting networks for high-resolution point clouds. In 372
2021 IEEE/CVF International Conference on Computer Vi- 373
sion (ICCV), pages 7438–7446, 2021. 1 374

5

CVPR
SynData4CV

Workshop
#8

-12pt

CVPR
SynData4CV

Workshop
#8CVPR SynData4CV Workshop 2025 Submission #8. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

[28] Ravish Mehra, Qingnan Zhou, Jeremy Long, Alla Sheffer,375
Amy Gooch, and Niloy J. Mitra. Abstraction of man-made376
shapes. ACM Trans. Graph., 28(5):1–10, 2009. 1377

[29] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,378
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:379
Representing scenes as neural radiance fields for view syn-380
thesis. Communications of the ACM, 65(1):99–106, 2021.381
3382

[30] Benjamin K Miller, Christoph Weniger, and Patrick Forré.383
Contrastive neural ratio estimation. Advances in Neural In-384
formation Processing Systems, 35:3262–3278, 2022. A1385

[31] Niloy J. Mitra, Leonidas J. Guibas, and Mark Pauly. Partial386
and approximate symmetry detection for 3d geometry. In387
ACM SIGGRAPH 2006 Papers, page 560–568, New York,388
NY, USA, 2006. Association for Computing Machinery. 1389

[32] Gen Nishida, Ignacio Garcia-Dorado, Daniel G. Aliaga,390
Bedrich Benes, and Adrien Bousseau. Interactive sketch-391
ing of urban procedural models. ACM Trans. Graph., 35(4),392
2016. 1393

[33] George Papamakarios and Iain Murray. Fast ε-free inference394
of simulation models with bayesian conditional density esti-395
mation. Advances in neural information processing systems,396
29, 2016. 3, A1397

[34] George Papamakarios, David Sterratt, and Iain Murray. Se-398
quential neural likelihood: Fast likelihood-free inference399
with autoregressive flows. In The 22nd International Confer-400
ence on Artificial Intelligence and Statistics, pages 837–848.401
PMLR, 2019. A1402

[35] George Papamakarios, Eric Nalisnick, Danilo Jimenez403
Rezende, Shakir Mohamed, and Balaji Lakshminarayanan.404
Normalizing flows for probabilistic modeling and inference.405
Journal of Machine Learning Research, 22(57):1–64, 2021.406
A1407

[36] Wamiq Para, Shariq Bhat, Paul Guerrero, Tom Kelly, Niloy408
Mitra, Leonidas J Guibas, and Peter Wonka. Sketchgen:409
Generating constrained cad sketches. In Advances in Neural410
Information Processing Systems, pages 5077–5088. Curran411
Associates, Inc., 2021. 1412

[37] Mark Pauly, Niloy J. Mitra, Johannes Wallner, Helmut413
Pottmann, and Leonidas J. Guibas. Discovering structural414
regularity in 3d geometry. In ACM SIGGRAPH 2008 Papers,415
New York, NY, USA, 2008. Association for Computing Ma-416
chinery. 1417

[38] Aleksander Płocharski, Jan Swidzinski, Joanna Porter-418
Sobieraj, and Przemyslaw Musialski. Neuro-symbolic trans-419
formation of architectural facades into their procedural rep-420
resentations. In ACM SIGGRAPH 2024 Posters, pages 1–2.421
2024. 1422

[39] Danilo Rezende and Shakir Mohamed. Variational inference423
with normalizing flows. In International Conference on Ma-424
chine Learning, pages 1530–1538, 2015. A1425

[40] Ari Seff, Wenda Zhou, Nick Richardson, and Ryan P Adams.426
Vitruvion: A generative model of parametric cad sketches.427
arXiv preprint arXiv:2109.14124, 2021. 1428

[41] M. Shabani, S. Hosseini, and Y. Furukawa. Housediffusion:429
Vector floorplan generation via a diffusion model with dis-430
crete and continuous denoising. In 2023 IEEE/CVF Confer-431
ence on Computer Vision and Pattern Recognition (CVPR),432

pages 5466–5475, Los Alamitos, CA, USA, 2023. IEEE 433
Computer Society. 1 434

[42] Louis Sharrock, Jack Simons, Song Liu, and Mark Beau- 435
mont. Sequential neural score estimation: Likelihood-free 436
inference with conditional score based diffusion models. 437
arXiv preprint arXiv:2210.04872, 2022. A1 438

[43] Zeyun Shi, Pierre Alliez, Mathieu Desbrun, Hujun Bao, and 439
Jin Huang. Symmetry and orbit detection via lie-algebra vot- 440
ing. Computer Graphics Forum, 35(5):217–227, 2016. 1 441

[44] Scott A Sisson, Yanan Fan, and Mark A Beaumont. 442
Overview of abc. In Handbook of approximate Bayesian 443
computation, pages 3–54. Chapman and Hall/CRC, 2018. 444
A1 445

[45] Owen Thomas, Ritabrata Dutta, Jukka Corander, Samuel 446
Kaski, and Michael U. Gutmann. Likelihood-free inference 447
by ratio estimation, 2020. A1 448

[46] Kenton Varda. Google protocol buffers: Google’s data inter- 449
change format. Technical report, 2008. 2 450

[47] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko- 451
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia 452
Polosukhin. Attention is all you need. Advances in neural 453
information processing systems, 30, 2017. 1, 3, A2 454

[48] Yael Vinker, Ehsan Pajouheshgar, Jessica Y. Bo, Ro- 455
man Christian Bachmann, Amit Haim Bermano, Daniel 456
Cohen-Or, Amir Zamir, and Ariel Shamir. Clipasso: 457
Semantically-aware object sketching. ACM Trans. Graph., 458
41(4), 2022. 1 459

[49] Antoine Wehenkel, Juan L Gamella, Ozan Sener, Jens 460
Behrmann, Guillermo Sapiro, Marco Cuturi, and Jörn- 461
Henrik Jacobsen. Addressing misspecification in simulation- 462
based inference through data-driven calibration. arXiv 463
preprint arXiv:2405.08719, 2024. 3 464

[50] Jonas Bernhard Wildberger, Maximilian Dax, Simon Buch- 465
holz, Stephen R Green, Jakob H. Macke, and Bernhard 466
Schölkopf. Flow matching for scalable simulation-based in- 467
ference. In Thirty-seventh Conference on Neural Information 468
Processing Systems, 2023. A1 469

[51] Q. Wu, K. Xu, and J. Wang. Constructing 3d csg models 470
from 3d raw point clouds. Computer Graphics Forum, 37 471
(5):221–232, 2018. 1 472

6

CVPR
SynData4CV

Workshop
#8

-12pt

CVPR
SynData4CV

Workshop
#8CVPR SynData4CV Workshop 2025 Submission #8. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Synthesizing 3D Abstractions by
Inverting Procedural Buildings with Transformers

Supplementary Material

(a) Procedural building (b) Assets in procedural building

Figure 4. A procedural building is generated by placing a set of
assets according to a set of handcrafted rules.

A.1. Relation to simulation-based inference473

Our framework for procedural inversion is closely related474
to simulation-based inference [6] (SBI). SBI is a paradigm475
for solving inverse problems entirely based on simulations476
from the forward model, without requiring access to under-477
lying densities. SBI has become a standard tool for scien-478
tific inference [4, 7, 15, 19], and a variety of methods have479
been developed in recent years [3, 8, 14, 16, 18, 25, 26, 30,480
33, 34, 42, 44, 45, 50]. Our approach can be seen as a vari-481
ant of neural posterior estimation [16, 25, 33] (NPE), an SBI482
method which directly targets the Bayesian posterior.483

However, compared to common scientific use cases, our484
application of SBI to infer abstractions of buildings has var-485
ious distinct properties. First, our inference domain (i.e.,486
abstractions θ) is represented in terms of a programmatic487
language while in scientific applications it is typically a488
low-dimensional vector space. Our density estimator q(θ|x)489
is thus parameterized with a transformer model as opposed490
to a continuous density estimator such as a normalizing491
flow [35, 39]. Second, our prior is a complicated proce-492
dural model whereas in scientific applications it is typically493
a simple distribution and the complexity of the problem is494
dominated by the likelihood. Third, we are ultimately inter-495
ested in generating individual high-likelihood abstractions,496
not necessarily in the distributional properties of the poste-497
rior such as correlations and uncertainties.498

A.2. Technical details499

High-level Description of the Protocol Buffers. A build-500
ing is chosen to be represented in a hierarchical descrip-501
tion with a Protocol Buffer. This hierarchical format starts502
with the macroscopic structure in terms of the building503

Description Protocol Buffer fields

Noise level∗ noise level
Absolute coordinates∗ height,x, y,
Relative coordinates∗ offset, elevation
Asset scales∗ & rotations∗ scale x, scale y,

quaternion 3,
quaternion 4

Asset index cell type
Pointer index facade index,

footprint index

Table 1. Token groups for the fields of the Protocol Buffer rep-
resenting the programmatic language for abstractions θ (omitting
prefixes, see Fig. 5 and F for complete definitions). We use con-
tinuous groups (marked with asterisk) for absolute coordinates of
the building, for relative coordinates within a storey and for scale
and rotation parameters of assets. We use discrete integer groups
for determining asset types from an external asset index and for
pointer indices within the Protocol Buffer.

height and (possibly multiple) footprints layouts. It 504
then specifies a series of storeys. A storey is defined in 505
terms of its elevation and by linking to a facade. A 506
facade is specified by a sequence of cells patterns, 507
which in turn contain collections of asset instances. The 508
nested structure of this data format provides a natural way 509
of representing recurring patterns. For example, multiple 510
storeys can link to the same facade, and multiple facades 511
can link to the same footprint layout. Where appropriate, 512
we define coordinates relative to previously specified data 513
(Tab. 1). For example, asset positions are defined in relative 514
terms to the associated footprint line segment, and their hor- 515
izontal scales are computed as the difference to respective 516
previously placed assets, enforcing consistency between as- 517
set placements and the building footprints. To account for 518
(rare) cases, where asset properties differ from the derived 519
choice, we add a custom cell modifier. Finally, each 520
asset uses one or more materials, and the building Protocol 521
Buffer contains a set of color modifiers for material and as- 522
set pairs. If unset for an asset’s material, the standard color 523
of the material is used. 524

Complete definition of the Protocol Buffers. Fig. 5 525
defines the Protocol Buffer we used, and Fig. 6 displays 526
the additional omitted definitions. A Footprint is parameter- 527
ized as a planar polygon. The line segments of the footprint 528
determine the layout of the corresponding facades, along 529

A1

CVPR
SynData4CV

Workshop
#8

-12pt

CVPR
SynData4CV

Workshop
#8CVPR SynData4CV Workshop 2025 Submission #8. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Description Range Resolution

Noise level [m] [0, 1] 0.01
Absolute coordinates [m] [−100, 100] 0.1
Relative coordinates [0, 1] 0.005
Asset scales & rotations [−5, 5] 0.01

Table 2. Discretization of continuous variables for tokenization.
Noise level and absolute coordinates are specified in meters.

which the asset cells are arranged.530

A CellModifier can be used to change the scale and rota-531
tion of a Cell instance (which wraps a single asset instance).532
In most cases, scales and rotations can be uniquely deter-533
mined based on heuristic rules (e.g., using the cell position534
within the footprint and coordinates of neighbouring cells).535
In our definition of the Protocol Buffer, we thus do not spec-536
ify cell scales and rotation by default, and instead derive537
them based on such heuristics. This removes redundancy538
from the Protocol Buffer representation and also decreases539
the length of the corresponding tokenized sequences. How-540
ever, in some edge cases, these rules don’t provide a unique541
result. In such cases, the optional CellModifier can be used542
to overwrite scale and rotation parameters.543

Finally, MaterialVariation optionally modifies the mate-544
rial type and color parameters of a specific asset. When ap-545
plied, this modifies all asset instances of the specified type546
in the same way.547

Tokenization of Protocol Buffers. To obtain a548
transformer-compatible data format for the abstraction pro-549
grams θ we need to convert these to sequences of tokens.550
Following [11], we leverage the known structure of the Pro-551
tocol Buffers to obtain an efficient conversion scheme. We552
first define token groups for the different data types in the553
Protocol Buffer (Tab. 1) and assign to each group a set of554
tokens that covers all potential values. We further use a set555
of special tokens in the sequence to navigate within the Pro-556
tocol Buffer whenever the next step is not unique. This in-557
cludes end tokens for repeated fields and selector tokens558
for optional and oneof fields (see [11] for details).559

This scheme can convert any Protocol Buffer representa-560
tion to a sequence of tokens. Conversely, at inference time561
we can mask out invalid options for the next token at each562
step of the autoregressive transformer prediction, such that563
any inferred sequence can be converted back into the Proto-564
col Buffer representation. This bijective mapping between565
Protocol Buffers and token sequences enables straightfor-566
ward application of standard language modeling techniques567
for the estimation of the programs θ representing building568
abstractions.569

Conversion of the Protocol Buffers into the tokenized570
representation requires assignment of discrete tokens to571
each possible value for each Protocol Buffer field. Follow-572

Encoder (PointCloudTransformer [17])

Voxel size 7 m× 7 m× 7 m
Max. # points per voxel 300
attention layers 4
attention heads 4
Dimension of QKV 256
Output dimension 512

Decoder (Transformer [47])

Size of context window 2048
attention layers 12
attention heads 8
Dimension of QKV 512

Table 3. Hyperparameters of the inference model.

ing [11], we group fields with similar functions together 573
(Tab. 1; e.g., {facade index,footprint index}, 574
which are both used to cross-reference objects within the 575
Protocol Buffer, or {height, x, y}, which all refer to spa- 576
tial coordinates). Continuous values further need to be dis- 577
cretized (Tab. 2). 578

A.3. Additional results 579

Tab. 4 defines the structural evaluation quantities from 580
Tab. 2. Fig. 7 expands over Fig. 2, also showing the re- 581
construction accuracy for input point clouds with voxel 582
dropout. The reconstruction error is a bit higher in case 583
of dropout, which indicates that the inference model uses 584
global point cloud information, which also improves its lo- 585
cal estimates. 586

0 10 20 30 40 50

Point cloud noise level [cm]

10

20

30

R
ec

o
n
st

ru
ct

io
n

er
ro

r
[c

m
] 0%

50%

80%

Figure 7. Reconstruction error as a function of the point cloud
noise level. Compared to Fig. 2, this also shows results for input
point clouds with 50% and 80% dropout augmentation of point
cloud voxels.

A2

CVPR
SynData4CV

Workshop
#8

-12pt

CVPR
SynData4CV

Workshop
#8CVPR SynData4CV Workshop 2025 Submission #8. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

1 // A cell wraps a single asset instance, adding a positional parameter and optional modifiers.
2 message Cell {
3 int32 cell_type; // Enumeration into an external index
4 float offset; // Offset along the corresponding linesegment
5 optional CellModifier cell_modifier; // Modifier that overwrites scales and roations
6 }
7

8 // A cell pattern combines a sequence of asset cells along one line segment of the footprint
9 message CellsPattern {

10 repeated Cell cells; // Sequence of cells
11 }
12

13 // A facade is made by defining the cells along all line-segments of a footprint
14 message Facade {
15 repeated CellsPattern cells_pattern; // A pattern of asset instances
16 int32 footprint_index; // Index to the footprint array
17 }
18

19 // A storey is made by combining a footprint layout with a facade pattern
20 message Storey {
21 int32 facade_index; // Sets which facade to use for this storey
22 float elevation; // Relative in [0, 1] * Building.height
23 }
24

25 message Building {
26 float noise_level;
27 float height; // Total height of the building
28 repeated Footprint footprints; // Footprint polygons
29 repeated Storey storeys; // Building storeys
30 repeated Facade facades; // Unique facade patterns
31 repeated MaterialVariation material_variations; // Material variation (colors, material type)
32 }

Figure 5. Custom format for the representation of abstract buildings. This hierarchically combines asset instances (“Cells”) into recurring
patterns (“CellsPattern”). These patterns are combined into facade instances, which can in turn be linked by the building storeys. Finally, a
building is composed by combining such storeys along with variables characterizing the high-level geometry (height, footprint polygons)
and the point cloud noise level. Definitions of CellModifier, Footprint and MaterialVariation are provided in Fig. 6.

Name Description

Accuracy number of storeys Fraction of inferred buildings with correct number of storeys.
Accuracy number of facades Fraction of inferred buildings with correct number of distinct facades.
Accuracy storeys structure Fraction of storeys which link to the correct facade.
Assets: precision Fraction of distinct assets in inferred building, which are also present in ground truth building.
Assets: recall Fraction of distinct assets in ground truth building, which are also present in inferred building.
IoU Material Variations Intersection over union of modified materials in inferred and ground truth building.
L2 HSV Color Distance L2 distance between ground truth and inferred material colors in HSV basis.

Table 4. Description of metrics used in Fig. 2.

A3

CVPR
SynData4CV

Workshop
#8

-12pt

CVPR
SynData4CV

Workshop
#8CVPR SynData4CV Workshop 2025 Submission #8. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

1 // 2D vector
2 message Vector2d {
3 double x;
4 double y;
5 }
6

7 // 2D polygon for building footprints (different building storeys can have different footprints)
8 message Footprint {
9 repeated Vector2d points;

10 }
11

12 // Cell modifier to overwrite default scales and rotations of assets
13 message CellModifier {
14 float scale_x_overwrite; // Used only if can't predict.
15 float scale_y_overwrite; // Used only if can't predict.
16 float quaternion_3_overwrite; // In case orientation is wrong.
17 float quaternion_4_overwrite; // In case orientation is wrong.
18 }
19

20 // List of material types for assets
21 enum MaterialBaseType {
22 UNSPECIFIED;
23 GLASS;
24 BRICK;
25 PAINTEDMETAL;
26 LIMESTONE;
27 PAINTEDSTONE;
28 GRANITE;
29 WOOD;
30 METAL;
31 COPPER;
32 BRASS0;
33 BRUSHED1;
34 ASPHALT2;
35 DIRTY3;
36 ROOFTOP4;
37 SIDEWALK5;
38 BLOCK6;
39 }
40

41 // Material variation, defining modifications to specific asset types
42 message MaterialVariation {
43 int32 cell_type; // Which asset type to modify
44 MaterialBaseType material_base_type; // Optional change of asset material
45 float hue; // Color hue in HSV
46 float saturation; // Color saturation in HSV
47 float brightness; // Color brightness in HSV
48 }

Figure 6. Protocol Buffer definition of base objects referred to in Fig. 5.

A4

	Introduction
	Method
	Synthetic training data
	Training objective
	Model Architecture

	Results
	Discussion
	Relation to simulation-based inference
	Technical details
	Additional results

