
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TRAINING-FREE EXPONENTIAL CONTEXT
EXTENSION VIA CASCADING KV CACHE

Anonymous authors
Paper under double-blind review

ABSTRACT

The transformer’s context window is vital for tasks such as few-shot learning and
conditional generation as it preserves previous tokens for active memory. How-
ever, as the context lengths increase, the computational costs grow quadratically,
hindering the deployment of large language models (LLMs) in real-world, long
sequence scenarios. Although some recent key-value caching (KV Cache) meth-
ods offer linear inference complexity, they naively manage the stored context,
prematurely evicting tokens and losing valuable information. Moreover, they
lack an optimized prefill/prompt stage strategy, resulting in higher latency than
even quadratic attention for realistic context sizes. In response, we introduce a
novel mechanism that leverages cascading sub-cache buffers to selectively retain
the most relevant tokens, enabling the model to maintain longer context histories
without increasing the cache size. Our approach outperforms linear caching base-
lines across key benchmarks, including streaming perplexity, question answering,
book summarization, and passkey retrieval, where it retains better retrieval accu-
racy at 1M tokens after four doublings of the cache size of 65K. Additionally,
our method reduces prefill stage latency by a factor of 6.8 when compared to
flash attention on 1M tokens. These innovations not only enhance the computa-
tional efficiency of LLMs but also pave the way for their effective deployment
in resource-constrained environments, enabling large-scale, real-time applications
with significantly reduced latency.

1 INTRODUCTION

Cascading KV Cache (Ours)

Sliding Window
(StreamingLLM)

Token SpanForgotten
Context

Longer Token Span
with Cascading KV Cache

Exponential Token Span

Cascade Borders

Figure 1: Attention matrices from
Streaming LLM (Xiao et al., 2023)
and Cascading KV Cache (Ours), both
with the same total cache size.

Large language models (LLMs) have become indispensable in
a wide range of applications, from natural language processing
to AI-driven content generation. However, their deployment is
often hindered by the significant computational resources re-
quired, particularly during the quadratic attention operation in
inference. Despite recent advancements like Flash Attention
2, which reduce memory overhead, the quadratic growth of
latency and compute costs with input size remains a bottle-
neck, especially when processing long input sequences. This
challenge is exacerbated in streaming applications, where high
latency directly impacts user experience and operational costs.

Existing methods, such as sliding window approaches (Belt-
agy et al., 2020; Jiang et al., 2023), attempt to manage long
sequences but impose a static limit on the model’s ability to
retain context due to the fixed window size. As a result, valu-
able tokens are naively discarded once they fall outside the window, leading to irreversible loss
of context. While some recent methods have tried to stabilize this process by preserving a small
number of initial tokens (Xiao et al., 2023) (Figure 3 top), they still operate within a rigid, static
framework with a naive eviction policy that fails to account for the relative importance of tokens
within the sequence. Additionally, the linear inference procedure from Xiao et al. (2023) processes
a single token per step which makes it impractical to apply the method during the prompting stage
when many tokens need to be processed together in parallel.

1
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Figure 3: Comparison of Streaming LLM (Xiao et al., 2023) and Cascading Cache (Ours). Top: Streaming
LLM stores fixed sink tokens (red) along with a sliding window of N recent tokens. Bottom: Our method
segments the cache into smaller cascading sub-caches, where each successive sub-cache conditionally accepts
a fraction of tokens based on the magnitude of past attention scores. This simple technique allows for important
tokens to remain in the cache for a longer time instead of being naively evicted too early Conversely, superfluous
tokens may be evicted before reaching the end of the cache, allowing for an intelligent eviction strategy.
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Figure 2: Passkey retrieval accuracy up
to 1M tokens given a cache size of 65K.
Our Cascading cache maintains higher accu-
racy even after four doublings of the context
length.

Our work addresses these critical limitations by propos-
ing a novel linear inference approach that extends the
effective context length of sliding windows without in-
creasing computational complexity or requiring addi-
tional training. We introduce a dynamic caching mech-
anism that organizes the key-value (KV) cache into cas-
cading sub-caches, each designed to selectively retain to-
kens based on their historical importance. As opposed to
a fixed sliding window which only evicts tokens at the
end, our method offers multiple eviction routes before
reaching the end while intelligently preserving older to-
kens which are likely to play a crucial role in future pre-
dictions.

To demonstrate the effectiveness of our method, we
present two compelling examples: First, we visualize the
attention matrix on the PG19 test set, showing how our cascading KV cache retains context far be-
yond the reach of a static sliding window while maintaining the same total cache size (Figure 1).
Second, we provide an example on passkey retrieval up to 1M tokens given a total cache size of 65K
(Figure 2), illustrating that our method consistently outperforms static window attention in terms of
retrieval accuracy, maintaining superior performance over prior work even after four doublings of
the context size. These results underscore the potential of our approach to transform the efficiency
and accuracy of LLMs in both research and real-world applications.

Our contributions are as follows:

• We introduce a simple yet powerful training-free linear attention modification to sliding
window attention on pretrained quadratic transformers that selectively retains important
tokens, significantly extending the effective context length.

• Given the same total KV cache size, our method delivers substantial improvements of
12.13% average in long context benchmarks (LongBench), 0.4% in streaming perplex-
ity (PG19), 4.48% in Book Summarization, and increases passkey retrieval accuracy by 24
percentage points (pp) at 1M token after four doublings of the context size and 18pp higher
accuracy after 5 doublings of the context size.

• We provide a linear prefill strategy that avoids the restrictive quadratic prompt complexity
of previous works. Our strategy reduces latency on 1M tokens by a factor of 6.8 compared
to Flash Attention 2.

• We provide an efficient implementation of our KV cache, which achieves a more than two
order of magnitude speedup over Streaming LLM.

2
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2 RELATED WORK

Previous research has explored sparse attention patterns to reduce computational costs, such as in
BigBird (Beltagy et al., 2020), where a sliding window with random sparse context is applied.
While effective in reducing time complexity, this approach relies on uninformative random atten-
tion patterns that lack adaptability. Linear attention mechanisms, including locality-sensitive hash-
ing (Kitaev et al., 2020), kernel-based approximations (Choromanski et al., 2020), attention matrix
compression (Lee et al., 2023), and token compression techniques (Munkhdalai et al., 2024; Kim
et al., 2023; Mohtashami & Jaggi, 2023), offer promising alternatives but often require extensive
retraining, limiting their broad applicability to existing models.

Our work builds on insights from Streaming LLM (Xiao et al., 2023), which identified a key phe-
nomenon in transformers: as features progress through layers, attention scores increasingly concen-
trate on the initial tokens, referred to as ”sink tokens.” This phenomenon presents a challenge in
traditional fixed sliding windows, as evicting sink tokens from the cache disrupts the attention score
distribution, forcing the model to redistribute probability mass onto less ideal tokens. Xiao et al.
(2023) demonstrated that this distribution shift leads to significant performance degradation unless
the sink tokens are retained. We extend this insight by introducing an efficient, scalable method that
increases the effective context window while maintaining a static cache size, improving throughput
during the prompt stage, and enhancing performance on long-sequence tasks.

Subsequent approaches, such as SnapKV (Li et al., 2024) and H2O (Zhang et al., 2024b), have
introduced score-based KV cache eviction policies, but these focus primarily on quadratic prompts,
with cache utilization limited to the decoding phase. These methods lack a linear prefill strategy,
which results in the prefill attention operation remaining quadratic. Our method diverges from these
previous approaches by offering a fast linear prefill strategy that is compatible with a cache that
selectively retains important tokens through dynamic sparsity. This makes our approach not only
more adaptive but also significantly more efficient, providing a practical path to extend transformer
models’ context length with linear complexity and without incurring the high costs of retraining.

3 METHOD

Notation. We use the common notation of a boldface lowercase letter to denote a vector x and a
boldface uppercase letter to denote a matrix X . A superscript (l) denotes that an object belongs
to layer l, where l ∈ [1, 2, . . . , L]. To simplify notation for attention, we omit the head dimension,
output projections, and multi-layer perceptron (MLP) transformations, please see Vaswani et al.
(2017) for an overview regarding those topics. We refer to a generic cache as C, using subscripts
CK and CV to refer to key and value caches, respectively.

Attention. Let S ∈ N represent a token sequence length, where each token at layer l is represented
by a vector x(l)

i ∈ Rd. The collection of tokens in the sequence can be represented as a matrix
X(l) ∈ RS×d. With σ being the softmax function, and different learnable query, key, and value
matrices Q(l),K(l),V (l) ∈ Rd×d the standard attention operation is as follows:

X(l+1) = σ

(
1√
d

(
X(l)Q(l)

)(
X(l)K(l)

)⊤
)
X(l)V (l) ∈ RS×d (1)

Key-Value (KV) Caching. During LLM inference, a single token is generated at each time step.
Combined with a causality condition such that token xi cannot influence xj iff i > j, it becomes
more efficient to cache the K(l) and V (l) projected tokens in each layer l rather than recomputing the
full set of key, and value projections at each generation time step. Specifically, with ∪ representing
a concatenation operation along the S dimension, the calculation of the attention operation for the
current token xj during inference becomes,

x
(l+1)
j = σ

(
1√
d

(
x
(l)
j Q(l)

)(
C

(l)
K ∪

(
x
(l)
j K(l)

))⊤
)(

C
(l)
V ∪

(
x
(l)
j V (l)

))
∈ Rd (2)
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After the concatenation operation, x(l)
j K(l) and x

(l)
j V (l) are considered to be added to the CK and

CV caches for the next iteration in the sequence.

Sliding window attention, as used by Streaming LLM, treats the KV cache as a fixed size buffer
which must evict tokens from the cache when the cache reaches its storage limit. Considering a
cache which is fully populated (denoted by an overbar C

(t)

K and omitting the layer index l), when a
new token comes in, the cache must drop the oldest token in order to make space for the new token
such that,

C
(t+1)

K = C
(t)

K ∪ xjK = [{xiK,xi+1K, . . . ,xj−1K} ∪ {xjK}] \ {xiK} . (3)

The only difference between standard sliding window attention and sink cache of Streaming
LLM (Xiao et al., 2023) is that the sink cache perpetually retains the first α tokens in the sequence
such that if a full cache starts from the first token xiK, it is not token xiK which is evicted, but
token xi+αK, with α ∈ N being a fixed hyperparameter. Both sliding window attention and sink
cache have the benefit of linear complexity, and a fixed overhead computation and memory cost for
the window, as the size of the cache can only grow to a fixed, predetermined amount. However, this
has the downside of constraining the information available in the cache, which may be needed for
later predictions in the sequence. To illustrate, imagine streaming generation of an entire book with
an LLM. If the cache can only contain tokens representing the average length of one chapter, then
important information from previous chapters may be forgotten which could prove to be crucial for
later steps of generation.

3.1 LINEAR PREFILL

Algorithm 1 Strided Prefill

Require: inputs, cache, model, stride size
for chunk in stride(inputs, stride size) do

for layer in model do
KV← cache.get()
output, scores← layer(chunk, KV)
cache.update(chunk, scores)

end for
end for

A crucial limitation of Streaming LLM (Xiao et al.,
2023), H2O (Zhang et al., 2024b), and SnapKV (Li
et al., 2024) lies in the handling of the prompt/prefill
stage of the LLM. Each of the aforementioned works
only considers that either 1) tokens are processed one-
by-one during the prompt or 2) the prompt is processed
with full quadratic attention and then proceeds to ap-
ply the relevant caching strategy during the genera-
tion phase. Being limited in this way, even a linear
model like Streaming LLM exhibits slower latency than
a quadratic prompt utilizing flash attention in the non-asymptotic regime (see Figure 6b). To bridge
this gap, our method utilizes an attention kernel which processes fixed-sized chunks (strides) of the
prompt in a single operation before adding the keys and values to our cascading cache. Specifically,
for a sequence length of S, quadratic attention can be seen as having a stride size of S, Streaming
LLM can be seen as having a stride size of 1, and our prefill method can be seen as having a stride
size K ∈ [1, S] that is somewhere in between. Algorithm 1 contains pseudocode for our strided pre-
fill process, and Figure 5 contains an illustration. Our strided prefill allows for a more than two order
of magnitude decrease in latency compares to single token processing and reduces latency by a fac-
tor of 6.8 over quadratic flash attention when processing 1M tokens. This significant improvement
delivers the benefits of linear attention on realistic, non-asymptotic sequence lengths.

3.2 CASCADING KV CACHE

Our cache is a generalization of sliding window attention which allows for important historical
tokens to be kept in the cache history for a longer period of time. To accomplish this, we view a
fixed sized sliding window KV cache C with cardinality |C| as a collection of sub-caches Ci for
i ∈ [1, . . . , N ], each with cardinality |Ci| ≤ |C| such that |⋃N

i=1 Ci| = |C|. Assuming a sub-
cache is full, each full sub-cache Ci evicts tokens when a new token is accepted into the sub-cache.
However, each sub-cache accepts new tokens at a different rate, which in turn means that tokens
may be discarded between the sub-caches and not solely at the end of the total cache window. An
example of this process is depicted in Figure 4 (top), where the blue cache accepts all new incoming
tokens. The green sub-cache, however, accepts only half of the tokens which are evicted from the
blue sub-cache (every 2nd iteration). The yellow sub-cache accepts half of the tokens evicted from
the green sub-cache (every 4th iteration) and so on.

4
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Sink Tokens (Fixed) Accepts ½ Tokens FromAccepts ½ Tokens From Accepts ½ Tokens From Accepts All Tokens

Case 1: Next sub-cache is not full → Eager add oldest token to next sub-cache. Case 2: Next sub-cache is accepting tokens → Add oldest token to next 
sub-cache

Case 3: Next sub-cache is not accepting tokens, and attention score of oldest 
token is lower → discard oldest token

New TokenAdd to next sub-cache New Token

0.5 0.1
New TokenDiscard Token

0.5 0.9
New Token

Case 4: Next sub-cache is not accepting tokens, and attention score of oldest 
token is higher → discard token with lower attention score

Add to next sub-cache

Discard Token  /  Add to next sub-cache

Figure 4: Top: Each successive sub-cache window accepts a fraction of tokens evicted from the previous
sub-cache. Bottom: At the boundaries between sub-caches, there are four possible cases where our method
takes a different conditional action, creating a dynamic attention pattern. Circular buffers are not depicted for
simplicity of visualization.
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Figure 5: Our strided prefill. We first
compute attention for a chunk (stride)
of new queries and new + cached
keys, forming a rectangular slice of the
attention matrix at each step.

As Xiao et al. (2023) discovered, the initial attention sink to-
kens are vital for the stability of generation. Therefore, we too
keep a fixed sub-cache of the initial tokens as attention sinks.
With our method, a sink cache is a special case of a cascad-
ing cache, where the number of cascades (sub-caches) is set to
1, and it accepts all incoming tokens (i.e. using only the blue
cache and red cache in Figure 4).

Token Selection. The process outlined in the preceding para-
graph would result in a fixed heuristic pattern of tokens being
dropped. However, such a heuristic pattern is not ideal, as it
may be the case that the model naively holds onto tokens with
limited value, while discarding important tokens. To remedy
this, instead of discarding tokens naively, we dynamically se-
lect the most important tokens to retain by tracking the average
attention score each token receives throughout time via an ex-
ponential moving average (EMA). We then selectively discard the token with the lower attention
score EMA where possible. Given a hyperparameter γ ∈ [0, 1], and a vector of attention scores
for all keys in the cache s

(t)
k at timestep t, we update the stored average attention scores µ(t) as,

µ(t+1) = γµ(t) + (1− γ)s
(t)
k .

Consider the two sub-caches depicted in cases 2-4 of Figure 4. The blue sub-cache must accept
all incoming tokens, while the green cache only accepts tokens every other iteration. Let the green
cache be accepting tokens at the current timestep (case 2). When a new token comes in, it is added
to the blue cache, which must then evict a token as the cache is full. The evicted token then goes
to the green cache which accepts it unconditionally. The same process repeats on the next iteration,
however, this time the green cache will not be accepting tokens (cases 3-4). At this step, when the
blue cache accepts and subsequently evicts a token, we compare the attention score of the token
evicted from the blue cache with the attention score of the newest token in the green cache. The
token with the higher attention score is set (or remains) as the newest token in the green cache,
while the token with the lower attention score is discarded. For a full pseudocode algorithm that
covers cases 1-4 in Figure 4, see Algorithm 2 in the appendix.

Positional Encoding. We use the same positional encoding strategy as Streaming LLM, which
reapplies positional encodings for each token relatively and consecutively, always starting with the
0 index. With PEindex : N 7→ N signifying a positional encoding index mutation function, and
i, j ∈ N representing the original token positions in the input sequence, it follows that i < j ⇐⇒
PEindex(i) < PEindex(j). For example, if our cascading cache holds the token indices from the
original sequence [0, 1, 3, 5, 7, 8], they would in turn receive positional encodings [0, 1, 2, 3, 4, 5].

Circular Buffers. Previous approaches have relied on tensor concatenation during cache add op-
erations. However, this results in excessive copying operations, as each concatenation requires re-
trieving and storing all entries into a block of memory. We utilize more efficient circular buffers by

5
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Figure 6: Latency. a) Our efficient cache implementation offers more than two orders of magnitude speedup
over naive concatenation for cache add operations. b) Our strided prefill strategy is the only linear caching
method which outperforms flash attention 2 latency on realistic sequence lengths (1M tokens). We fit a second
degree polynomial (dotted lines) to predict latencies after quadratic models run out of memory on a 49GB GPU.
c) Strided prefill latency for 1M tokens by different stride sizes.

tracking the location of the oldest token ξ(t) at timestep t (where insertion should occur). We then
increment ξ after each insertion to the buffer such that ξ(t+1) =

(
ξ(t) + 1

)
mod |Ci|. This way,

at timestep t, we know that the oldest token in the buffer resides at ξ(t). When it is time to remove
a token, we simply overwrite the content of the memory address of ξ(t) rather than performing a
costly concatenation.

Cache Token Span. Given previously outlined cascading cache, we have lengthened the span of
the tokens which currently reside in the cache. The process outlined above effectively extends
sliding window context length by allowing older tokens to remain as keys and values for a longer
time, with gaps between tokens. Assuming that each sub-cache has the same capacity (i.e. |C| =
|⋃N

i Ci| = N |C1|), and each will accept tokens with a different frequency function defined as 1
f(i) ,

then the approximate context length will be a summation over the cache sizes and the inverse of the
frequency functions. For example, if each successive sub-cache accepts half of the tokens evicted
from the previous cache, the total span of the cache S̃ becomes,

S̃ =

N∑
i=1

f(i)|Ci| = |C1|
N∑
i=1

2i−1 =
|C|
N

N∑
i=1

2i−1. (4)

We can then calculate the overall sparsity of the cache as 1− |C|/S̃.

4 EXPERIMENTS

Setup. We conduct experiments on streaming books (PG19) (Rae et al., 2019), Long Context Un-
derstanding (LongBench) (Bai et al., 2023b), book summarization (Booksum) (Kryściński et al.,
2021), and 1M token passkey retrieval. We evaluate our method with pretrained transformers from
the Llama3.1 (Dubey et al., 2024) and Qwen2 (Bai et al., 2023a) families of models. Please see Ta-
ble 5 for model paths. In all our experiments, we keep the first 64 initial tokens as attention sinks.
When considering the number of tokens in the cache, we always consider the sink tokens to be in
addition to the cache size. Therefore a window size of W has a total of W + 64 tokens when ac-
counting for the 64 sink tokens. We set the EMA parameter to γ = 0.9999. We use the cascade
token acceptance setting depicted in Figure 4 and Equation (4), where each sub-cache accepts half of
the tokens from the previous sub-cache. Unless otherwise indicated, our models use four cascading
sub-caches. For experiments utilizing 8B model sizes, we use one NVIDIA A6000 (49GB) GPU,
and for experiments utilizing 70B model sizes, we utilize 4 NVIDIA A100 GPUs. As Streaming
LLM is a special case of our model, and 1 token per step is prohibitively slow, all results involving
Streaming LLM results use our strided prefill strategy. Note that the strided prefill improves results
over the original Streaming LLM with one token per step as shown in Figure 11. Quadratic models
which use Flash Attention 2 (Dao, 2023) utilize the official cuda kernel, while our method utilizes a
modified triton (Tillet et al., 2019) Flash Attention 2 kernel.

6
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Table 1: PG19 Perplexity. Across all tested cache sizes, our cascading model maintains lower perplexity
than baselines. Flash Attention 2 and Bigbird operate by stepping through the entire sequence with a stride
equivalent to the total cache size. They perform attention at each step until reaching the end of the sequence.
The Qwen model is excluded from 65K cache size due to having only 32K positional embeddings.

Total
Cache Size

Num.
Books

Token
Count Model

Methods / Perplexity (↓)
Flash Attn. 2

(strided)
Big Bird
(strided)

Streaming
LLM

Cascading KV
Cache (Ours)

16384 91 9.78M Qwen27B 9.50 (+0.36) 10.65 (+1.51) 9.18 (+0.04) 9.14
LLaMA3.17B 8.08 (+0.36) 12.76 (+5.04) 7.78 (+0.06) 7.72

32768 77 9.42M Qwen27B 9.26 (+0.26) 10.38 (+1.35) 9.05 (+0.02) 9.03
LLaMA3.18B 7.86 (+0.26) 11.33 (+3.73) 7.65 (+0.05) 7.60

65536 62 8.25M LLaMA3.18B 7.73 (+0.13) OOM (-) 7.61 (+0.01) 7.60

4.1 LATENCY

We compare the latency of our cascading cache to the implementation from Xiao et al. (2023)
which uses tensor concatenation to add/evict tokens from the cache. Our implementation utilizes
circular buffers and the Triton compiler (Tillet et al., 2019) to create an efficient CUDA kernel for
the caching operation. To perform this experiment, we initialize a cache with 64 sink tokens and a
total window size of |C| = 16K with 4 and 1 cascades, which are equivalent to our Cascading KV
Cache and Streaming LLM, respectively. We also initialize the original Streaming LLM that uses
concatenation. We then process a total of 16K tokens into the cache, and report the cumulative time
spent on caching operations. Our method with one cascade (equivalent to Streaming LLM) takes
just 0.01% = 1/10000 of the total caching time of the original Streaming LLM, and our method
with 4 cascades takes just 0.038% = 3.8/10000 of the total caching time in Figure 6a. In Figure 6b,
we show the overall attention latency, including caching, for a single attention layer processing 1M
tokens. Our model uses a strided prefill of 4K with a total cache size of 16K. Our method is the only
method which processes 1M tokens faster than flash attention 2, and takes only 14.8% of the time of
quadratic flash attention. In other words, flash attention is 6.8 times slower than ours for processing
1M tokens. We also study the effect of the size of our strided prefill on overall 1M token latency
in Figure 6b, finding that a stride of 4K delivers the lowest latency.

4.2 PG19

We measure perplexity on the PG19 (Rae et al., 2019) test set consisting of full-length books. Each
book is streamed independently from start to finish without concatenation. We compare against a
quadratic flash attention model, as well as BigBird and Streaming LLM, which are also training-
free inference adaptations. We use three cache sizes of 16K, 32K, and 65K with a strided prefill
of 1K. Since our cache is equivalent to Streaming LLM sequence lengths that are less than the
total cache size, we only run each experiment on the subset of books which exceed the given cache
size. Flash Attention 2 and Bigbird would exceed the GPU memory capacity, therefore, they are
limited to processing books in chunk sizes equivalent to the total cache size. Results are displayed
in Table 1. Our method delivers a consistently lower perplexity for all tested cache and model sizes.
Additionally, we show examples of how our model behaves during the streaming process in Figure 7.
After the cache size is exceeded, our eviction policy begins to differ from Streaming LLM, and our
model tends to show lower perplexity due to the increased total token span in our cascading cache.
Additional plots for Llama3.1 on all books exceeding 65K length can be seen in Figures 14 and 15.

4.3 PASSKEY RETRIEVAL

We perform passkey retrieval on both Streaming LLM and our Cascading KV Cache. For this
experiment, we generate a random 5 digit passkey which is hidden in a random uniform point in the
total sequence length. The rest of the text consists of random English words from the dictionary. We
perform 20 trials for each insertion location range and sequence length for a total of 600 retrievals.
We calculate accuracy for each digit, counting a correct digit prediction if it falls in the proper place
in the output sequence. Therefore, a model which outputs random digits would receive an accuracy
of 10%. We evaluate total cache sizes of 32K and 65K and sequence lengths with 8 cascades and a
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Figure 7: PG19. For Llama with a total cache size of 65K, our cascade model stays equivalent to Streaming
LLM until the cache size is exceeded and our eviction policy and token selection begin. Our intelligent eviction
policy leads to better perplexity for the total stream. Additional figures can be seen in Figures 14 and 15.
Table 2: Booksum book summarization. Among linear baseline models, our Cascading KV cache offers
a consistent improvement. Averaged over all models and metrics, ours performs 4.48% better than linear
baselines.

Method Complexity Llama 3.18B Qwen 27B
Rouge-1 Rouge-2 Rouge-L Rouge-1 Rouge-2 Rouge-L

Vanilla Transformer O(N2) 35.37 7.29 21.24 31.70 5.70 17.8
Snap KV O(N2) 36.80 8.11 21.63 - - -
H2O O(N2) 35.62 7.42 21.16 31.10 5.47 17.58

BigBird O(N) 33.36 6.55 18.59 20.83 2.31 12.62
Streaming LLM O(N) 33.04 6.04 19.85 29.14 4.51 16.91
Cascade (Ours) O(N) 34.47 6.63 20.52 30.34 5.02 17.54

strided prefill of 4K. Context lengths start from 32K and double until we reach 1M tokens. Results
are shown in Figure 8. For both 32K and 65K cache sizes, Streaming LLM begins to show near
random accuracy after the first doubling, while our Cascading KV Cache is still better than random
after 4 doublings of the context length.

4.4 LONGBENCH

We evaluate our method against other linear scaling models on the same subset of tasks as (Xiao
et al., 2023) in the LongBench long context understanding benchmark (Bai et al., 2023b). We
limit the total cache size of each model to be approximately 1/4 of the original prompt length L of
each input using the function L′ = 2⌊log2(L/4)⌋ and uses a strided prefill of 512. The results are
displayed in Figure 9. Averaged over all datasets and tested models, our cascading cache improves
performance over the next best model by 12.13%. For tabular results, please see Table 7.

4.5 VISUALIZATION

To visualize the effect of our method on the attention matrices, we reconstruct the full attention
matrices of both Streaming LLM and our Cascading KV Cache using Llama3.1 8B on the first 8K
tokens of the first book of the PG19 test set. We use a total cache size of 2048 and 4 cascades
with a strided prefill of 256. The attention matrices are displayed in Figure 10. Naive sliding
window attention Figure 10 (a,c) forms short static barrier where tokens are evicted regardless of
their importance. Our method Figure 10 (b,d) maintains those tokens in the context history for
a longer time where they may retain influence over future predictions, effectively increasing the
available context.

We demonstrate the cascade boundaries of our proposed KV eviction policy in Figure 10(b), where
the sparsity of each cascade gradually increases with the size of the cascade. Additionally, our
method preserves the attention patterns more thoroughly than Streaming LLM, such as the annotated
preserved key value in Figure 10(d) which falls well outside of the range of the sliding window
pattern. For more attention visualizations, please see Figure 18 in the appendix.

4.6 ABLATION STUDY

8
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Figure 8: Passkey Retrieval. For a total cache size of 65K, our Cascading KV Cache is able to maintain better
than random (10%) accuracy even after 4 doublings of the context length beyond the cache size.
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Figure 9: LongBench. Our cascade model consistently outperforms linear inference baselines. All models are
limited to a context window which is roughly 1/4 of the total original prompt length. Averaged over all models
and datasets, our Cascading KV cache results in an average performance gain of 12.3%. Please see Table 7 for
a tabular presentation of results.

Table 3: The token selection process
outlined in Section 3 is crucial for cre-
ating dynamic attention patterns.

|C| = 2048
KV Cache LLaMA3.18B

Streaming LLM 8.03
Ours w/o token selection 8.03

Ours w/ token selection 7.88

To study the effect of different parts of our model, we pro-
vide three ablation studies including the effect of the strided
prefill and token selection using the first book of PG19, and
the effect of sparsity induced by the number of cascades. The
effect of the strided prefill is shown in Figure 11. We find
a decrease in perplexity with an increasing stride size. Intu-
itively, this comes from the fact that a larger stride provides
a larger dense window at the leading edge of the attention
matrix as shown in Figure 5. We study the token selection process outlined in Section 3 in Ta-
ble 3 and find that without the token selection process, our model matches the performance of
Streaming LLM, which highlights the importance of selecting higher scoring tokens. Lastly, we
study the effect of the number of cascades, and thus overall sparsity, in Figure 12. For this
experiment, we use a total cache size of 4K and consider context lengths from 4K which dou-
ble until 262K. We average the passkey retrieval accuracy over all insertion locations. We find
that accuracy steadily increases until the number of cascades exceeds 8 (more than 98% sparse).
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Figure 11: Streaming LLM with
our strided prefill achieved a progres-
sively better perplexity and latency
(Figure 6c) when increasing the stride
due to a larger region of dense atten-
tion.

Interestingly, the token span in the cache remains a good pre-
dictor of accuracy for a moderate number of cascades. Given
a token span, we may roughly calculate the expected accuracy
in Figure 12b by considering the probability that the passkey
falls within the span of the tokens. For example, with a token
span of 1024, and a context size of 2048, we would expect an
accuracy of approximately 50%. We find the token span to be a
reliable predictor of accuracy until 4 cascades (73% sparsity).

5 LIMITATIONS & FUTURE WORK

As outlined in Equation (4) and visualized in Figure 12, our
model’s overall sparsity increases as the number of cascades N
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Figure 10: Attention matrix reconstruction for Sink Cache and our Cascading Cache. Both methods result in
O(n) inference time complexity with the same total cache size (|C| = 2048).
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Figure 12: The effect of more cascades. a) For a fixed cache size, increasing the number of cascades leads
to more sparsity. We find passkey retrieval accuracy increases until 8 total cascades. b) Expected accuracy
using total token span (Equation (4)) as a rough predictor. c) measuring the difference between predicted and
actual accuracy (Figure 12a - Figure 12b), we see that token span remains a strong predictor until the number
of cascades exceeds four.

grows. This introduces a trade-off, as demonstrated in Figure 12a, where performance improves up
to a point, but diminishes once the number of cascades exceeds eight. Therefore, while our method
enables substantial context length extrapolation, this process is not unbounded. Eventually, tokens
must be discarded to maintain linear inference complexity, which inherently limits the scope of
extrapolation. A promising direction for future work involves addressing the need to discard tokens
while preserving linear complexity. One potential solution could involve developing methods for
logarithmic complexity searches within the KV cache. By efficiently identifying the top-k relevant
key-value pairs, such an approach could eliminate the need for token eviction and allow the model
to maintain an overall complexity of O(N logN). This would open new avenues for expanding
transformer models’ context memory without compromising efficiency.

6 CONCLUSION

In this paper, we introduced a novel, training-free method for extending the context memory of
streaming LLMs, offering significant improvements without increasing computational complexity.
Our approach treats the fixed-size KV cache as a series of cascading sub-caches, allowing for dy-
namic token retention based on their historical importance. By selectively preserving high-impact
tokens and evicting less critical ones, our method effectively extends the context window far beyond
the limitations of traditional sliding windows. Our results demonstrate clear performance gains: a
12.13% average improvement on LongBench, a 4.48% boost in Book Summarization tasks, and
superior passkey retrieval accuracy at 1M tokens, maintaining a significant edge even after four
doublings of the context size. Additionally, our linear prefill strategy eliminates the quadratic com-
plexity of previous approaches, achieving latency reduction by a factor of 6.8 compared to flash
attention 2. These advancements highlight the potential of our method to significantly enhance the
efficiency and accuracy of LLMs, making it a practical and impactful solution for both research and
real-world applications that require long-context processing.
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7 REPRODUCIBILITY STATEMENT

In order to aid in reproducibility of our experiments, we have provided our code which has been
zipped into the supplementary file. We also provide exact pretrained model URL’s which are listed
in Table 5. We provide an algorithm for our strided prefill method in Algorithm 1 and a full algorithm
for our Cascading KV Cache in Algorithm 2. We have explained the parameters and computation
budgets for all experiments in Section 4. As our method is deterministic and requires no stochastic
training process, we have omitted error bars in our results.
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A APPENDIX

• Appendix B - Extra ablation study on head policy and head reduction function.
• Algorithm 2 - The algorithm of our cascading cache method
• Table 5 - Paths to exact pretrained models used in our experiments.
• Table 4 - MMLU experiment
• Table 7 - LongBench tabular data (displays the same data as Figure 9)
• Figures 14 and 15 - Extra PG19 plots for the subset of PG19 which exceeds 65K in length.
• Figure 16 - Quadratic Llama3.1 passkey results.
• Figure 18 - Additional attention matrix plots in higher resolution.

B HEAD POLICY AND HEAD REDUCTION.

When making a decision for token selection, we may either apply the same homogeneous decision
across all heads. Likewise, we may allow the heads to behave independently as illustrated in Fig-
ure 13a. Additionally, as models may make use of Grouped Query Attention (GQA) (Ainslie et al.,
2023), the number of attention heads may differ between queries and keys. Therefore, for both cases
of homogeneous and independent heads, we need to select a head reduction function which will
reduce the head dimension in the attention matrix to 1 (homogeneous heads) or K (key-value heads
in GQA). We perform an ablation on the PG19 dataset to explore different options of head reduction
functions and head policies in Figure 13b. We find that in all cases, independent heads outperform
homogeneous heads. Among the independent heads, we find that mean and max reductions resulted
in similar performance, while a median reduction resulted in slightly worse performance.
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Figure 13: Head Reduction Function and Head Policy Ablation

Table 4: MMLU. We find that our Cascading KV Cache outperforms all linear models overall.

Model Method Humanities Soc. Science Other STEM Overall

Llama 3.18B

Flash Attention 2(Full Context) 61.59 76.47 73.09 56.01 67.00
Vanilla (Truncated) 61.23 76.08 73.06 55.79 66.80
Streaming LLM 61.57 76.37 73.19 55.92 66.98
Cascade (Ours) 61.45 76.63 73.25 56.23 67.11

Qwen 27B

Flash Attention 2 (Full Context) 63.12 80.40 74.64 64.07 70.99
Vanilla (Truncated) 62.61 80.21 74.64 64.12 70.81
Streaming LLM 63.04 80.47 74.61 63.84 70.86
Cascade (Ours) 62.93 80.40 74.57 63.88 70.87

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Algorithm 2 Cascading Sink Cache Algorithm (repeat for keys and values)

Require: cascade cache buf array, sink cache buf, score cache, item to cache
if not sink cache buffer.is full() then

sink cache buffer ∪ item to cache
return

end if
for cache buf in cascade cache buf array do

if cache buf.is accepting tokens() then
if not cache buf.is full() then ▷ add item to cache which is not full

cache buf ∪ item to cache
update positional encoding()
return

else ▷ evict an item from the cache
cache buf ∪ item to cache
item to cache← cache buf.evict oldest() ▷ reset variable for next iteration
update positional encoding()

end if
else

if cache buf.is empty() then ▷ eager add to empty cache to avoid naively evicting
cache buf ∪ item to cache
update positional encoding()
return

else ▷ token selection (newest in cache vs. incoming token)
newest item← cache buf.get newest item()
newset score← score cache.get(newest item)
item score← score cache.get(item to cache)
if item score ¿ newest score then

cache buf.evict newest()
cache buf ∪ item to cache
update positional encoding()

end if
return

end if
end if

end for

Algorithm 3 Token Selection EMA Accumulation (in the context of Flash Attention 2 kernel)

Require: score cache, queries, keys, m, EMA beta
for i in chunk(queries) do

Load Qi from HBM to on-chip SRAM from queries
for j in chunk(keys) do

Load Kj , Vj from HBM to on-chip SRAM from keys
On Chip, Compute Sij = QiK

⊤
j , Vj

On Chip, update mi (update rolling max a la flash attention 2)
On Chip, update li (update normalization constant a la flash attention 2)
On Chip, update Oi (update normalization constant a la flash attention 2)
On Chip, calculate EMA coeff. for Qi,

CEMA = βk(1− β)∀k ∈ [len(queries) - q chunk indices]
On Chip, calculate inner loop steps completed γ and remaining ρ
Write, Atomic Sum to score cache += col sum((Sij/(li + li ∗ ρ

γ )) ∗ CEMA)

end for
end for
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Figure 14: Additional plots for all of the books in the subset of PG19 books which exceeds 65K in
length. The model used is Llama 3.1 8B. This chart is a complement to Figure 7
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Figure 15: Additional plots for all of the books in the subset of PG19 books which exceeds 65K in
length. The model used is Llama 3.1 8B. This chart is a complement to Figure 7
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Figure 16: Passkey results for vanilla Llama3.1 as measured on an NVIDIA A6000 GPU with
49GM memory. According to the llama whitepaper (Dubey et al., 2024), it was finetuned for 131K
positional embeddings until it achieved 100% accuracy on a passkey retrieval task. Therefore, given
enough memory, it should achieve 100 for one more doubling of the context. Our model however,
can extend high accuracy numbers past 131K with lower memory usage (see Figure 8).

Model Huggingface Path Experiment

LLaMA3.18B (Dubey et al., 2024) meta-llama/Meta-Llama-3-8B PG19
LLaMA3.18B Instruct (Dubey et al., 2024) meta-llama/Meta-Llama-3-8B-Instruct Booksum,Longbench,Ablation,Passkey
LLaMA3.170B Instruct (Dubey et al., 2024) meta-llama/Meta-Llama-3-70B-Instruct Longbench
Qwen27B (Bai et al., 2023a) Qwen/Qwen2-7B PG19
Qwen27B Instruct (Bai et al., 2023a) Qwen/Qwen2-7B-Instruct Booksum,Longbench
Qwen272B Instruct (Bai et al., 2023a) Qwen/Qwen2-72B-Instruct LongBench

Table 5: Huggingface model paths used in our experiments.

Model 16K 32K 65K 131K 262K 524K 1M

Minference 5.11 12.84 28.41 60.47 OOM OOM OOM
Cascading KV Cache 9.58 19.71 40.11 80.84 164.47 334.17 665.33

Table 6: Latency (S) as compared to Minference for 1M tokens. This table shows latency throughout all layers,
which differs from that shown in Figure 6b which shows attention latency for a sinlge layer. Minference goes
OOM after 131K on a 49GB GPU due to requiring all tokens in cache for the forward pass. Our model uses a
cache size of 16K with a stride of 4K, which are the same settings used in Figure 6b.

Table 7: Tabular display of radar plot results from Figure 9. Higher scores are better (↑). Total cache sizes are
based on the length of the original prompt L.

Total Cache Size Model Cache Narrative QA HotPot QA Qasper Multi News 2 Wiki MQA Gov. Report Mean

2⌊log2(L/4)⌋ LLaMA3.18B Instruct

Streaming LLM 22.57 40.78 23.89 20.69 23.46 26.82 26.37
Flash Attention 2 (truncated) 18.67 36.59 15.77 17.24 19.62 20.46 21.39
Big Bird 21.78 39.46 21.33 22.23 20.13 26.15 25.18
Minference 20.90 39.79 19.77 23.19 21.52 29.15 25.72
Pyramid KV 20.99 39.79 19.86 22.20 21.77 29.20 25.63
Cascade (Ours) 26.43 47.26 33.12 23.33 32.33 28.32 31.8

2⌊log2(L/4)⌋ Qwen27B

Streaming LLM 18.95 38.54 20.97 17.65 32.15 24.96 25.54
Flash Attention 2 (truncated) 15.01 34.4 17.28 15.64 30.21 17.47 21.67
Big Bird 17.78 28.68 20.05 12.9 25.36 18.64 20.57
Cascade (Ours) 20.55 37.36 28.65 19.57 34.35 26.22 27.78

2⌊log2(L/4)⌋ LLaMA3.170B

Streaming LLM 25.72 42.39 24.5 20.93 31.78 27.67 28.83
Flash Attention 2 (truncated) 24.62 39.77 19.93 17.26 24.23 20.51 24.39
Big Bird 27.02 52.0 28.63 23.0 31.51 27.53 31.61
Cascade (Ours) 30.3 52.61 36.97 23.04 46.82 29.3 36.51

2⌊log2(L/4)⌋ Qwen272B

Streaming LLM 20.8 50.08 20.68 17.97 43.83 27.83 30.2
Flash Attention 2 (truncated) 17.69 43.25 14.96 15.68 40.08 21.35 25.5
Big Bird 23.55 48.41 25.89 18.54 44.58 30.35 31.89
Cascade (Ours) 25.0 53.78 29.48 20.17 48.22 29.4 34.34

Table 8: InfiniteBench (Zhang et al., 2024a) results.

Total Cache Size Model Cache en.MC en.QA en.Sum Mean

32768 LLaMA3.18B Instruct

Streaming LLM 46.72 13.98 30.8 30.5
Minference 46.72 14.96 32.25 31.31
Cascade (Ours) 56.77 17.69 31.50 35.32
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Figure 17: Attention matrix reconstructions for Streaming LLM Figures 17a to 17c and our Cascad-
ing KV Cache Figures 17d to 17f on first 8K tokens of the first book of (PG19).

Streaming LLM
(single token per step)

Cascading Cache
(N tokens per step)

24 Steps 6 Steps

Figure 18: Illustration contrasting the prefill strategy of Streaming LLM vs our Cascading KV
Cache. The original Streaming LLM does a complete forward pass for every row of the attention
matrix which causes the poor latency of Streaming LLM in Figure 6b. Our method, however, can
process a chunk of tokens during each forward pass of the prefill leading to a reduction in the number
of forward passes necessary to process the entire prompt.
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