
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TRAINING-FREE EXPONENTIAL CONTEXT
EXTENSION VIA CASCADING KV CACHE

Anonymous authors
Paper under double-blind review

ABSTRACT

The transformer’s context window is vital for tasks such as few-shot learning and
conditional generation as it preserves previous tokens for active memory. How-
ever, as the context lengths increase, the computational costs grow quadratically,
hindering the deployment of large language models (LLMs) in real-world, long
sequence scenarios. Although some recent key-value caching (KV Cache) meth-
ods offer linear inference complexity, they naively manage the stored context,
prematurely evicting tokens and losing valuable information. Moreover, they
lack an optimized prefill/prompt stage strategy, resulting in higher latency than
even quadratic attention for realistic context sizes. In response, we introduce a
novel mechanism that leverages cascading sub-cache buffers to selectively retain
the most relevant tokens, enabling the model to maintain longer context histories
without increasing the cache size. Our approach outperforms linear caching base-
lines across key benchmarks, including streaming perplexity, question answering,
book summarization, and passkey retrieval, where it retains better retrieval accu-
racy at 1M tokens after four doublings of the cache size of 65K. Additionally,
our method reduces prefill stage latency by a factor of 6.8 when compared to
flash attention on 1M tokens. These innovations not only enhance the computa-
tional efficiency of LLMs but also pave the way for their effective deployment
in resource-constrained environments, enabling large-scale, real-time applications
with significantly reduced latency.

1 INTRODUCTION

Cascading KV Cache (Ours)

Sliding Window
(StreamingLLM)

Token SpanForgotten
Context

Longer Token Span
with Cascading KV Cache

Exponential Token Span

Cascade Borders

Figure 1: Attention matrices from
Streaming LLM (Xiao et al., 2023)
and Cascading KV Cache (Ours), both
with the same total cache size.

Large language models (LLMs) have become indispensable in
a wide range of applications, from natural language processing
to AI-driven content generation. However, their deployment is
often hindered by the significant computational resources re-
quired, particularly during the quadratic attention operation in
inference. Despite recent advancements like Flash Attention
2, which reduce memory overhead, the quadratic growth of
latency and compute costs with input size remains a bottle-
neck, especially when processing long input sequences. This
challenge is exacerbated in streaming applications, where high
latency directly impacts user experience and operational costs.

Existing methods, such as sliding window approaches (Belt-
agy et al., 2020; Jiang et al., 2023), attempt to manage long
sequences but impose a static limit on the model’s ability to
retain context due to the fixed window size. As a result, valu-
able tokens are naively discarded once they fall outside the window, leading to irreversible loss
of context. While some recent methods have tried to stabilize this process by preserving a small
number of initial tokens (Xiao et al., 2023) (Figure 3 top), they still operate within a rigid, static
framework with a naive eviction policy that fails to account for the relative importance of tokens
within the sequence. Additionally, the linear inference procedure from Xiao et al. (2023) processes
a single token per step which makes it impractical to apply the method during the prompting stage
when many tokens need to be processed together in parallel.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Sink Attention

Cascade (Ours)

New Token

New Token

Key Value Caches

Evicted Tokens

Evicted Tokens

Sink Tokens

Token Acceptance Ratio1/2⁰1/2¹1/2²1/2³

.13 .08 .21 .16 .07 .03 .11 .21

Attention Score
(EMA)

Evict?/Keep?
(Conditional on Attn. Score)

Sink Tokens

Figure 3: Comparison of Streaming LLM (Xiao et al., 2023) and Cascading Cache (Ours). Top: Streaming
LLM stores fixed sink tokens (red) along with a sliding window of N recent tokens. Bottom: Our method
segments the cache into smaller cascading sub-caches, where each successive sub-cache conditionally accepts
a fraction of tokens based on the magnitude of past attention scores. This simple technique allows for important
tokens to remain in the cache for a longer time instead of being naively evicted too early Conversely, superfluous
tokens may be evicted before reaching the end of the cache, allowing for an intelligent eviction strategy.

0 200K 400K 600K 800K 1M
Context Size

20%

40%

60%

80%

100%

A
cc

u
ra

cy

C
a
ch

e
S

iz
e

(6
5
K

)

Cascade (Ours)

Streaming LLM

Figure 2: Passkey retrieval accuracy up
to 1M tokens given a cache size of 65K.
Our Cascading cache maintains higher accu-
racy even after four doublings of the context
length.

Our work addresses these critical limitations by propos-
ing a novel linear inference approach that extends the
effective context length of sliding windows without in-
creasing computational complexity or requiring addi-
tional training. We introduce a dynamic caching mech-
anism that organizes the key-value (KV) cache into cas-
cading sub-caches, each designed to selectively retain to-
kens based on their historical importance. As opposed to
a fixed sliding window which only evicts tokens at the
end, our method offers multiple eviction routes before
reaching the end while intelligently preserving older to-
kens which are likely to play a crucial role in future pre-
dictions.

To demonstrate the effectiveness of our method, we
present two compelling examples: First, we visualize the
attention matrix on the PG19 test set, showing how our cascading KV cache retains context far be-
yond the reach of a static sliding window while maintaining the same total cache size (Figure 1).
Second, we provide an example on passkey retrieval up to 1M tokens given a total cache size of 65K
(Figure 2), illustrating that our method consistently outperforms static window attention in terms of
retrieval accuracy, maintaining superior performance over prior work even after four doublings of
the context size. These results underscore the potential of our approach to transform the efficiency
and accuracy of LLMs in both research and real-world applications.

Our contributions are as follows:

• We introduce a simple yet powerful training-free linear attention modification to sliding
window attention on pretrained quadratic transformers that selectively retains important
tokens, significantly extending the effective context length.

• Given the same total KV cache size, our method delivers substantial improvements of
12.13% average in long context benchmarks (LongBench), 0.4% in streaming perplex-
ity (PG19), 4.48% in Book Summarization, and increases passkey retrieval accuracy by 24
percentage points (pp) at 1M token after four doublings of the context size and 18pp higher
accuracy after 5 doublings of the context size.

• We provide a linear prefill strategy that avoids the restrictive quadratic prompt complexity
of previous works. Our strategy reduces latency on 1M tokens by a factor of 6.8 compared
to Flash Attention 2.

• We provide an efficient implementation of our KV cache, which achieves a more than two
order of magnitude speedup over Streaming LLM.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORK

Previous research has explored sparse attention patterns to reduce computational costs, such as in
BigBird (Beltagy et al., 2020), where a sliding window with random sparse context is applied.
While effective in reducing time complexity, this approach relies on uninformative random atten-
tion patterns that lack adaptability. Linear attention mechanisms, including locality-sensitive hash-
ing (Kitaev et al., 2020), kernel-based approximations (Choromanski et al., 2020), attention matrix
compression (Lee et al., 2023), and token compression techniques (Munkhdalai et al., 2024; Kim
et al., 2023; Mohtashami & Jaggi, 2023), offer promising alternatives but often require extensive
retraining, limiting their broad applicability to existing models.

Our work builds on insights from Streaming LLM (Xiao et al., 2023), which identified a key phe-
nomenon in transformers: as features progress through layers, attention scores increasingly concen-
trate on the initial tokens, referred to as ”sink tokens.” This phenomenon presents a challenge in
traditional fixed sliding windows, as evicting sink tokens from the cache disrupts the attention score
distribution, forcing the model to redistribute probability mass onto less ideal tokens. Xiao et al.
(2023) demonstrated that this distribution shift leads to significant performance degradation unless
the sink tokens are retained. We extend this insight by introducing an efficient, scalable method that
increases the effective context window while maintaining a static cache size, improving throughput
during the prompt stage, and enhancing performance on long-sequence tasks.

Subsequent approaches, such as SnapKV (Li et al., 2024) and H2O (Zhang et al., 2024b), have
introduced score-based KV cache eviction policies, but these focus primarily on quadratic prompts,
with cache utilization limited to the decoding phase. These methods lack a linear prefill strategy,
which results in the prefill attention operation remaining quadratic. Our method diverges from these
previous approaches by offering a fast linear prefill strategy that is compatible with a cache that
selectively retains important tokens through dynamic sparsity. This makes our approach not only
more adaptive but also significantly more efficient, providing a practical path to extend transformer
models’ context length with linear complexity and without incurring the high costs of retraining.

3 METHOD

Notation. We use the common notation of a boldface lowercase letter to denote a vector x and a
boldface uppercase letter to denote a matrix X . A superscript (l) denotes that an object belongs
to layer l, where l ∈ [1, 2, . . . , L]. To simplify notation for attention, we omit the head dimension,
output projections, and multi-layer perceptron (MLP) transformations, please see Vaswani et al.
(2017) for an overview regarding those topics. We refer to a generic cache as C, using subscripts
CK and CV to refer to key and value caches, respectively.

Attention. Let S ∈ N represent a token sequence length, where each token at layer l is represented
by a vector x(l)

i ∈ Rd. The collection of tokens in the sequence can be represented as a matrix
X(l) ∈ RS×d. With σ being the softmax function, and different learnable query, key, and value
matrices Q(l),K(l),V (l) ∈ Rd×d the standard attention operation is as follows:

X(l+1) = σ

(
1√
d

(
X(l)Q(l)

)(
X(l)K(l)

)⊤
)
X(l)V (l) ∈ RS×d (1)

Key-Value (KV) Caching. During LLM inference, a single token is generated at each time step.
Combined with a causality condition such that token xi cannot influence xj iff i > j, it becomes
more efficient to cache the K(l) and V (l) projected tokens in each layer l rather than recomputing the
full set of key, and value projections at each generation time step. Specifically, with ∪ representing
a concatenation operation along the S dimension, the calculation of the attention operation for the
current token xj during inference becomes,

x
(l+1)
j = σ

(
1√
d

(
x
(l)
j Q(l)

)(
C

(l)
K ∪

(
x
(l)
j K(l)

))⊤
)(

C
(l)
V ∪

(
x
(l)
j V (l)

))
∈ Rd (2)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

After the concatenation operation, x(l)
j K(l) and x

(l)
j V (l) are considered to be added to the CK and

CV caches for the next iteration in the sequence.

Sliding window attention, as used by Streaming LLM, treats the KV cache as a fixed size buffer
which must evict tokens from the cache when the cache reaches its storage limit. Considering a
cache which is fully populated (denoted by an overbar C

(t)

K and omitting the layer index l), when a
new token comes in, the cache must drop the oldest token in order to make space for the new token
such that,

C
(t+1)

K = C
(t)

K ∪ xjK = [{xiK,xi+1K, . . . ,xj−1K} ∪ {xjK}] \ {xiK} . (3)

The only difference between standard sliding window attention and sink cache of Streaming
LLM (Xiao et al., 2023) is that the sink cache perpetually retains the first α tokens in the sequence
such that if a full cache starts from the first token xiK, it is not token xiK which is evicted, but
token xi+αK, with α ∈ N being a fixed hyperparameter. Both sliding window attention and sink
cache have the benefit of linear complexity, and a fixed overhead computation and memory cost for
the window, as the size of the cache can only grow to a fixed, predetermined amount. However, this
has the downside of constraining the information available in the cache, which may be needed for
later predictions in the sequence. To illustrate, imagine streaming generation of an entire book with
an LLM. If the cache can only contain tokens representing the average length of one chapter, then
important information from previous chapters may be forgotten which could prove to be crucial for
later steps of generation.

3.1 LINEAR PREFILL

Algorithm 1 Strided Prefill

Require: inputs, cache, model, stride size
for chunk in stride(inputs, stride size) do

for layer in model do
KV← cache.get()
output, scores← layer(chunk, KV)
cache.update(chunk, scores)

end for
end for

A crucial limitation of Streaming LLM (Xiao et al.,
2023), H2O (Zhang et al., 2024b), and SnapKV (Li
et al., 2024) lies in the handling of the prompt/prefill
stage of the LLM. Each of the aforementioned works
only considers that either 1) tokens are processed one-
by-one during the prompt or 2) the prompt is processed
with full quadratic attention and then proceeds to ap-
ply the relevant caching strategy during the genera-
tion phase. Being limited in this way, even a linear
model like Streaming LLM exhibits slower latency than
a quadratic prompt utilizing flash attention in the non-asymptotic regime (see Figure 6b). To bridge
this gap, our method utilizes an attention kernel which processes fixed-sized chunks (strides) of the
prompt in a single operation before adding the keys and values to our cascading cache. Specifically,
for a sequence length of S, quadratic attention can be seen as having a stride size of S, Streaming
LLM can be seen as having a stride size of 1, and our prefill method can be seen as having a stride
size K ∈ [1, S] that is somewhere in between. Algorithm 1 contains pseudocode for our strided pre-
fill process, and Figure 5 contains an illustration. Our strided prefill allows for a more than two order
of magnitude decrease in latency compares to single token processing and reduces latency by a fac-
tor of 6.8 over quadratic flash attention when processing 1M tokens. This significant improvement
delivers the benefits of linear attention on realistic, non-asymptotic sequence lengths.

3.2 CASCADING KV CACHE

Our cache is a generalization of sliding window attention which allows for important historical
tokens to be kept in the cache history for a longer period of time. To accomplish this, we view a
fixed sized sliding window KV cache C with cardinality |C| as a collection of sub-caches Ci for
i ∈ [1, . . . , N], each with cardinality |Ci| ≤ |C| such that |⋃N

i=1 Ci| = |C|. Assuming a sub-
cache is full, each full sub-cache Ci evicts tokens when a new token is accepted into the sub-cache.
However, each sub-cache accepts new tokens at a different rate, which in turn means that tokens
may be discarded between the sub-caches and not solely at the end of the total cache window. An
example of this process is depicted in Figure 4 (top), where the blue cache accepts all new incoming
tokens. The green sub-cache, however, accepts only half of the tokens which are evicted from the
blue sub-cache (every 2nd iteration). The yellow sub-cache accepts half of the tokens evicted from
the green sub-cache (every 4th iteration) and so on.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Sink Tokens (Fixed) Accepts ½ Tokens FromAccepts ½ Tokens From Accepts ½ Tokens From Accepts All Tokens

Case 1: Next sub-cache is not full → Eager add oldest token to next sub-cache. Case 2: Next sub-cache is accepting tokens → Add oldest token to next
sub-cache

Case 3: Next sub-cache is not accepting tokens, and attention score of oldest
token is lower → discard oldest token

New TokenAdd to next sub-cache New Token

0.5 0.1
New TokenDiscard Token

0.5 0.9
New Token

Case 4: Next sub-cache is not accepting tokens, and attention score of oldest
token is higher → discard token with lower attention score

Add to next sub-cache

Discard Token / Add to next sub-cache

Figure 4: Top: Each successive sub-cache window accepts a fraction of tokens evicted from the previous
sub-cache. Bottom: At the boundaries between sub-caches, there are four possible cases where our method
takes a different conditional action, creating a dynamic attention pattern. Circular buffers are not depicted for
simplicity of visualization.

St
ri

de
 L

en
gt

h
(N

ew
 Q

ue
ri

es
)

New query attention with
cached keys

(sparse)

New query attention
with new keys

(dense)

Cache Size

Figure 5: Our strided prefill. We first
compute attention for a chunk (stride)
of new queries and new + cached
keys, forming a rectangular slice of the
attention matrix at each step.

As Xiao et al. (2023) discovered, the initial attention sink to-
kens are vital for the stability of generation. Therefore, we too
keep a fixed sub-cache of the initial tokens as attention sinks.
With our method, a sink cache is a special case of a cascad-
ing cache, where the number of cascades (sub-caches) is set to
1, and it accepts all incoming tokens (i.e. using only the blue
cache and red cache in Figure 4).

Token Selection. The process outlined in the preceding para-
graph would result in a fixed heuristic pattern of tokens being
dropped. However, such a heuristic pattern is not ideal, as it
may be the case that the model naively holds onto tokens with
limited value, while discarding important tokens. To remedy
this, instead of discarding tokens naively, we dynamically se-
lect the most important tokens to retain by tracking the average
attention score each token receives throughout time via an ex-
ponential moving average (EMA). We then selectively discard the token with the lower attention
score EMA where possible. Given a hyperparameter γ ∈ [0, 1], and a vector of attention scores
for all keys in the cache s

(t)
k at timestep t, we update the stored average attention scores µ(t) as,

µ(t+1) = γµ(t) + (1− γ)s
(t)
k .

Consider the two sub-caches depicted in cases 2-4 of Figure 4. The blue sub-cache must accept
all incoming tokens, while the green cache only accepts tokens every other iteration. Let the green
cache be accepting tokens at the current timestep (case 2). When a new token comes in, it is added
to the blue cache, which must then evict a token as the cache is full. The evicted token then goes
to the green cache which accepts it unconditionally. The same process repeats on the next iteration,
however, this time the green cache will not be accepting tokens (cases 3-4). At this step, when the
blue cache accepts and subsequently evicts a token, we compare the attention score of the token
evicted from the blue cache with the attention score of the newest token in the green cache. The
token with the higher attention score is set (or remains) as the newest token in the green cache,
while the token with the lower attention score is discarded. For a full pseudocode algorithm that
covers cases 1-4 in Figure 4, see Algorithm 2 in the appendix.

Positional Encoding. We use the same positional encoding strategy as Streaming LLM, which
reapplies positional encodings for each token relatively and consecutively, always starting with the
0 index. With PEindex : N 7→ N signifying a positional encoding index mutation function, and
i, j ∈ N representing the original token positions in the input sequence, it follows that i < j ⇐⇒
PEindex(i) < PEindex(j). For example, if our cascading cache holds the token indices from the
original sequence [0, 1, 3, 5, 7, 8], they would in turn receive positional encodings [0, 1, 2, 3, 4, 5].

Circular Buffers. Previous approaches have relied on tensor concatenation during cache add op-
erations. However, this results in excessive copying operations, as each concatenation requires re-
trieving and storing all entries into a block of memory. We utilize more efficient circular buffers by

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

0 5000 10000 15000
Step

0

25

50

75

100

125

150

175

C
u

m
u

la
ti

ve
C

ac
h

e
T

im
e

(m
s)

Streaming LLM (Original)

Streaming LLM (Ours, 1 cascade)

Cascade(Ours, 4 cascades)

0 5000 10000 15000

0.00

0.01

0.02

0.03

0.04

0.05

0.06

(a) Cache Latency

0 200K 400K 600K 800K 1M

Context Length

0

20

40

60

80

100

A
tt

en
ti

on
L

at
en

cy
(S

)

OOMOOMOOM

Ours

OOMOOMOOM

Ours

OOMOOMOOM

Ours

H2O

Streaming LLM (Original)

Flash Attention

SnapKV

Cascade (Ours) (4096 stride)

(b) Attention Latency

12
8

st
rid

e

25
6

st
rid

e

51
2

st
rid

e

10
24

st
rid

e

20
48

st
rid

e

40
96

st
rid

e

81
92

st
rid

e

16
38

4
st

rid
e

1M Tokens

0

10

20

30

40

50

A
tt

en
ti

on
L

at
en

cy
(S

)

(c) Strided Prefill Latency

Figure 6: Latency. a) Our efficient cache implementation offers more than two orders of magnitude speedup
over naive concatenation for cache add operations. b) Our strided prefill strategy is the only linear caching
method which outperforms flash attention 2 latency on realistic sequence lengths (1M tokens). We fit a second
degree polynomial (dotted lines) to predict latencies after quadratic models run out of memory on a 49GB GPU.
c) Strided prefill latency for 1M tokens by different stride sizes.

tracking the location of the oldest token ξ(t) at timestep t (where insertion should occur). We then
increment ξ after each insertion to the buffer such that ξ(t+1) =

(
ξ(t) + 1

)
mod |Ci|. This way,

at timestep t, we know that the oldest token in the buffer resides at ξ(t). When it is time to remove
a token, we simply overwrite the content of the memory address of ξ(t) rather than performing a
costly concatenation.

Cache Token Span. Given previously outlined cascading cache, we have lengthened the span of
the tokens which currently reside in the cache. The process outlined above effectively extends
sliding window context length by allowing older tokens to remain as keys and values for a longer
time, with gaps between tokens. Assuming that each sub-cache has the same capacity (i.e. |C| =
|⋃N

i Ci| = N |C1|), and each will accept tokens with a different frequency function defined as 1
f(i) ,

then the approximate context length will be a summation over the cache sizes and the inverse of the
frequency functions. For example, if each successive sub-cache accepts half of the tokens evicted
from the previous cache, the total span of the cache S̃ becomes,

S̃ =

N∑
i=1

f(i)|Ci| = |C1|
N∑
i=1

2i−1 =
|C|
N

N∑
i=1

2i−1. (4)

We can then calculate the overall sparsity of the cache as 1− |C|/S̃.

4 EXPERIMENTS

Setup. We conduct experiments on streaming books (PG19) (Rae et al., 2019), Long Context Un-
derstanding (LongBench) (Bai et al., 2023b), book summarization (Booksum) (Kryściński et al.,
2021), and 1M token passkey retrieval. We evaluate our method with pretrained transformers from
the Llama3.1 (Dubey et al., 2024) and Qwen2 (Bai et al., 2023a) families of models. Please see Ta-
ble 5 for model paths. In all our experiments, we keep the first 64 initial tokens as attention sinks.
When considering the number of tokens in the cache, we always consider the sink tokens to be in
addition to the cache size. Therefore a window size of W has a total of W + 64 tokens when ac-
counting for the 64 sink tokens. We set the EMA parameter to γ = 0.9999. We use the cascade
token acceptance setting depicted in Figure 4 and Equation (4), where each sub-cache accepts half of
the tokens from the previous sub-cache. Unless otherwise indicated, our models use four cascading
sub-caches. For experiments utilizing 8B model sizes, we use one NVIDIA A6000 (49GB) GPU,
and for experiments utilizing 70B model sizes, we utilize 4 NVIDIA A100 GPUs. As Streaming
LLM is a special case of our model, and 1 token per step is prohibitively slow, all results involving
Streaming LLM results use our strided prefill strategy. Note that the strided prefill improves results
over the original Streaming LLM with one token per step as shown in Figure 11. Quadratic models
which use Flash Attention 2 (Dao, 2023) utilize the official cuda kernel, while our method utilizes a
modified triton (Tillet et al., 2019) Flash Attention 2 kernel.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: PG19 Perplexity. Across all tested cache sizes, our cascading model maintains lower perplexity
than baselines. Flash Attention 2 and Bigbird operate by stepping through the entire sequence with a stride
equivalent to the total cache size. They perform attention at each step until reaching the end of the sequence.
The Qwen model is excluded from 65K cache size due to having only 32K positional embeddings.

Total
Cache Size

Num.
Books

Token
Count Model

Methods / Perplexity (↓)
Flash Attn. 2

(strided)
Big Bird
(strided)

Streaming
LLM

Cascading KV
Cache (Ours)

16384 91 9.78M Qwen27B 9.50 (+0.36) 10.65 (+1.51) 9.18 (+0.04) 9.14
LLaMA3.17B 8.08 (+0.36) 12.76 (+5.04) 7.78 (+0.06) 7.72

32768 77 9.42M Qwen27B 9.26 (+0.26) 10.38 (+1.35) 9.05 (+0.02) 9.03
LLaMA3.18B 7.86 (+0.26) 11.33 (+3.73) 7.65 (+0.05) 7.60

65536 62 8.25M LLaMA3.18B 7.73 (+0.13) OOM (-) 7.61 (+0.01) 7.60

4.1 LATENCY

We compare the latency of our cascading cache to the implementation from Xiao et al. (2023)
which uses tensor concatenation to add/evict tokens from the cache. Our implementation utilizes
circular buffers and the Triton compiler (Tillet et al., 2019) to create an efficient CUDA kernel for
the caching operation. To perform this experiment, we initialize a cache with 64 sink tokens and a
total window size of |C| = 16K with 4 and 1 cascades, which are equivalent to our Cascading KV
Cache and Streaming LLM, respectively. We also initialize the original Streaming LLM that uses
concatenation. We then process a total of 16K tokens into the cache, and report the cumulative time
spent on caching operations. Our method with one cascade (equivalent to Streaming LLM) takes
just 0.01% = 1/10000 of the total caching time of the original Streaming LLM, and our method
with 4 cascades takes just 0.038% = 3.8/10000 of the total caching time in Figure 6a. In Figure 6b,
we show the overall attention latency, including caching, for a single attention layer processing 1M
tokens. Our model uses a strided prefill of 4K with a total cache size of 16K. Our method is the only
method which processes 1M tokens faster than flash attention 2, and takes only 14.8% of the time of
quadratic flash attention. In other words, flash attention is 6.8 times slower than ours for processing
1M tokens. We also study the effect of the size of our strided prefill on overall 1M token latency
in Figure 6b, finding that a stride of 4K delivers the lowest latency.

4.2 PG19

We measure perplexity on the PG19 (Rae et al., 2019) test set consisting of full-length books. Each
book is streamed independently from start to finish without concatenation. We compare against a
quadratic flash attention model, as well as BigBird and Streaming LLM, which are also training-
free inference adaptations. We use three cache sizes of 16K, 32K, and 65K with a strided prefill
of 1K. Since our cache is equivalent to Streaming LLM sequence lengths that are less than the
total cache size, we only run each experiment on the subset of books which exceed the given cache
size. Flash Attention 2 and Bigbird would exceed the GPU memory capacity, therefore, they are
limited to processing books in chunk sizes equivalent to the total cache size. Results are displayed
in Table 1. Our method delivers a consistently lower perplexity for all tested cache and model sizes.
Additionally, we show examples of how our model behaves during the streaming process in Figure 7.
After the cache size is exceeded, our eviction policy begins to differ from Streaming LLM, and our
model tends to show lower perplexity due to the increased total token span in our cascading cache.
Additional plots for Llama3.1 on all books exceeding 65K length can be seen in Figures 14 and 15.

4.3 PASSKEY RETRIEVAL

We perform passkey retrieval on both Streaming LLM and our Cascading KV Cache. For this
experiment, we generate a random 5 digit passkey which is hidden in a random uniform point in the
total sequence length. The rest of the text consists of random English words from the dictionary. We
perform 20 trials for each insertion location range and sequence length for a total of 600 retrievals.
We calculate accuracy for each digit, counting a correct digit prediction if it falls in the proper place
in the output sequence. Therefore, a model which outputs random digits would receive an accuracy
of 10%. We evaluate total cache sizes of 32K and 65K and sequence lengths with 8 cascades and a

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Streaming LLM Cascade (Ours)

100K 200K 300K
Step

5.75

5.80

5.85

5.90

P
er

p
le

xi
ty

C
a
ch

e
S

iz
e

(6
5
K

)

PG19 Book 37

60K 80K 100K 120K
Step

5.7

5.8

5.9

6.0

6.1

P
er

p
le

xi
ty

C
a
ch

e
S

iz
e

(6
5
K

)

PG19 Book 64

100K 200K 300K
Step

6.5

6.6

6.7

P
er

p
le

xi
ty

C
a
ch

e
S

iz
e

(6
5
K

)

PG19 Book 80

Figure 7: PG19. For Llama with a total cache size of 65K, our cascade model stays equivalent to Streaming
LLM until the cache size is exceeded and our eviction policy and token selection begin. Our intelligent eviction
policy leads to better perplexity for the total stream. Additional figures can be seen in Figures 14 and 15.
Table 2: Booksum book summarization. Among linear baseline models, our Cascading KV cache offers
a consistent improvement. Averaged over all models and metrics, ours performs 4.48% better than linear
baselines.

Method Complexity Llama 3.18B Qwen 27B
Rouge-1 Rouge-2 Rouge-L Rouge-1 Rouge-2 Rouge-L

Vanilla Transformer O(N2) 35.37 7.29 21.24 31.70 5.70 17.8
Snap KV O(N2) 36.80 8.11 21.63 - - -
H2O O(N2) 35.62 7.42 21.16 31.10 5.47 17.58

BigBird O(N) 33.36 6.55 18.59 20.83 2.31 12.62
Streaming LLM O(N) 33.04 6.04 19.85 29.14 4.51 16.91
Cascade (Ours) O(N) 34.47 6.63 20.52 30.34 5.02 17.54

strided prefill of 4K. Context lengths start from 32K and double until we reach 1M tokens. Results
are shown in Figure 8. For both 32K and 65K cache sizes, Streaming LLM begins to show near
random accuracy after the first doubling, while our Cascading KV Cache is still better than random
after 4 doublings of the context length.

4.4 LONGBENCH

We evaluate our method against other linear scaling models on the same subset of tasks as (Xiao
et al., 2023) in the LongBench long context understanding benchmark (Bai et al., 2023b). We
limit the total cache size of each model to be approximately 1/4 of the original prompt length L of
each input using the function L′ = 2⌊log2(L/4)⌋ and uses a strided prefill of 512. The results are
displayed in Figure 9. Averaged over all datasets and tested models, our cascading cache improves
performance over the next best model by 12.13%. For tabular results, please see Table 7.

4.5 VISUALIZATION

To visualize the effect of our method on the attention matrices, we reconstruct the full attention
matrices of both Streaming LLM and our Cascading KV Cache using Llama3.1 8B on the first 8K
tokens of the first book of the PG19 test set. We use a total cache size of 2048 and 4 cascades
with a strided prefill of 256. The attention matrices are displayed in Figure 10. Naive sliding
window attention Figure 10 (a,c) forms short static barrier where tokens are evicted regardless of
their importance. Our method Figure 10 (b,d) maintains those tokens in the context history for
a longer time where they may retain influence over future predictions, effectively increasing the
available context.

We demonstrate the cascade boundaries of our proposed KV eviction policy in Figure 10(b), where
the sparsity of each cascade gradually increases with the size of the cascade. Additionally, our
method preserves the attention patterns more thoroughly than Streaming LLM, such as the annotated
preserved key value in Figure 10(d) which falls well outside of the range of the sliding window
pattern. For more attention visualizations, please see Figure 18 in the appendix.

4.6 ABLATION STUDY

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

32K 65K 131K 262K 524K 1M
Context Length

0-20

20-40

40-60

60-80

80-100In
se

rt
L

oc
(%

) 100 100 100 71 33 17
100 98 91 49 29 19
100 100 85 79 43 13
100 100 100 87 57 36
100 100 100 100 90 80

(a) Ours 32K Total Cache Size

32K 65K 131K 262K 524K 1M
Context Length

0-20

20-40

40-60

60-80

80-100In
se

rt
L

oc
(%

) 100 8 6 11 17 14
100 13 7 6 12 12
100 71 10 9 10 10
100 100 40 11 8 11
100 100 100 76 30 28

(b) Streaming LLM 32K Total Cache Size

32K 65K 131K 262K 524K 1M
Context Length

0-20

20-40

40-60

60-80

80-100In
se

rt
L

oc
(%

) 100 100 100 90 59 23
100 100 100 77 38 21
100 100 96 87 61 33
100 100 100 97 87 45
100 100 100 100 100 88

(c) Ours 65K Total Cache Size

32K 65K 131K 262K 524K 1M
Context Length

0-20

20-40

40-60

60-80

80-100In
se

rt
L

oc
(%

) 100 100 14 13 12 11
100 100 16 9 13 11
100 100 61 10 14 8
100 100 100 45 12 11
100 100 100 100 59 48

(d) Streaming LLM 65K Total Cache Size

Figure 8: Passkey Retrieval. For a total cache size of 65K, our Cascading KV Cache is able to maintain better
than random (10%) accuracy even after 4 doublings of the context length beyond the cache size.

Streaming LLM Big Bird Flash Attention (truncated) Cascade (Ours)

0.5

0.6

0.7

0.8

0.9

Narrative QA

H
ot

P
ot

Q
A

Q
asper

Multi News

2
W

ik
i M

Q
A

G
ov.

R
eport

(a) Llama 3.18B

0.6

0.7

0.8

0.9

Narrative QA

H
ot

P
ot

Q
A

Q
asper

Multi News

2
W

ik
i M

Q
A

G
ov.

R
eport

(b) Qwen 27B

0.5

0.6

0.7

0.8

0.9

Narrative QA

H
ot

P
ot

Q
A

Q
asper

Multi News

2
W

ik
i M

Q
A

G
ov.

R
eport

(c) Llama 3.170B

0.5

0.6

0.7

0.8

0.9

Narrative QA

H
ot

P
ot

Q
A

Q
asper

Multi News

2
W

ik
i M

Q
A

G
ov.

R
eport

(d) Qwen 272B

Figure 9: LongBench. Our cascade model consistently outperforms linear inference baselines. All models are
limited to a context window which is roughly 1/4 of the total original prompt length. Averaged over all models
and datasets, our Cascading KV cache results in an average performance gain of 12.3%. Please see Table 7 for
a tabular presentation of results.

Table 3: The token selection process
outlined in Section 3 is crucial for cre-
ating dynamic attention patterns.

|C| = 2048
KV Cache LLaMA3.18B

Streaming LLM 8.03
Ours w/o token selection 8.03

Ours w/ token selection 7.88

To study the effect of different parts of our model, we pro-
vide three ablation studies including the effect of the strided
prefill and token selection using the first book of PG19, and
the effect of sparsity induced by the number of cascades. The
effect of the strided prefill is shown in Figure 11. We find
a decrease in perplexity with an increasing stride size. Intu-
itively, this comes from the fact that a larger stride provides
a larger dense window at the leading edge of the attention
matrix as shown in Figure 5. We study the token selection process outlined in Section 3 in Ta-
ble 3 and find that without the token selection process, our model matches the performance of
Streaming LLM, which highlights the importance of selecting higher scoring tokens. Lastly, we
study the effect of the number of cascades, and thus overall sparsity, in Figure 12. For this
experiment, we use a total cache size of 4K and consider context lengths from 4K which dou-
ble until 262K. We average the passkey retrieval accuracy over all insertion locations. We find
that accuracy steadily increases until the number of cascades exceeds 8 (more than 98% sparse).

30K 40K 50K 60K
Step

6.6

6.7

6.8

P
er

p
le

xi
ty

PG19 Book 1

Stride 128

Stride 512

Stride 1

Stride 1024

Stride 256

Figure 11: Streaming LLM with
our strided prefill achieved a progres-
sively better perplexity and latency
(Figure 6c) when increasing the stride
due to a larger region of dense atten-
tion.

Interestingly, the token span in the cache remains a good pre-
dictor of accuracy for a moderate number of cascades. Given
a token span, we may roughly calculate the expected accuracy
in Figure 12b by considering the probability that the passkey
falls within the span of the tokens. For example, with a token
span of 1024, and a context size of 2048, we would expect an
accuracy of approximately 50%. We find the token span to be a
reliable predictor of accuracy until 4 cascades (73% sparsity).

5 LIMITATIONS & FUTURE WORK

As outlined in Equation (4) and visualized in Figure 12, our
model’s overall sparsity increases as the number of cascades N

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Layer 15 Layer 23

(a) Streaming LLM (b) Cascade (Ours) (c) Streaming LLM (d) Cascade (Ours)

8,1920

0
8,

19
2

Q
ue

ri
es

Keys 8,1920

0
8,

19
2

Q
ue

ri
es

Keys 8,1920

0
8,

19
2

Q
ue

ri
es

Keys 8,1920

0
8,

19
2

Q
ue

ri
es

Keys

Permanently
Lost Past Information

Permanently
Lost Past InformationCascade Borders

Short Token Span

Well Preseved Key-Value

Well Preseved
Strided Attention Pattern

Exponential Token Span

Figure 10: Attention matrix reconstruction for Sink Cache and our Cascading Cache. Both methods result in
O(n) inference time complexity with the same total cache size (|C| = 2048).

Streaming LLM 2 Cascades 4 Cascades 8 Cascades 16 Cascades 32 Cascades Expected

12 13 14 15 16 17 18
log2(Context Length)

20%

40%

60%

80%

100%

A
cc

u
ra

cy

C
a
ch

e
S

iz
e

(4
K

)

(a) Actual Accuracy

12 13 14 15 16 17 18
log2(Context Length)

20%

40%

60%

80%

100%
A

cc
u

ra
cy

C
a
ch

e
S

iz
e

(4
K

)

(b) Expected Accuracy

12 14 16 18
log2(Context Length)

−0.8

−0.6

−0.4

−0.2

0.0

0.2

D
iff

er
en

ce

C
a
ch

e
S

iz
e

(4
K

)

(c) Expected - Actual

Figure 12: The effect of more cascades. a) For a fixed cache size, increasing the number of cascades leads
to more sparsity. We find passkey retrieval accuracy increases until 8 total cascades. b) Expected accuracy
using total token span (Equation (4)) as a rough predictor. c) measuring the difference between predicted and
actual accuracy (Figure 12a - Figure 12b), we see that token span remains a strong predictor until the number
of cascades exceeds four.

grows. This introduces a trade-off, as demonstrated in Figure 12a, where performance improves up
to a point, but diminishes once the number of cascades exceeds eight. Therefore, while our method
enables substantial context length extrapolation, this process is not unbounded. Eventually, tokens
must be discarded to maintain linear inference complexity, which inherently limits the scope of
extrapolation. A promising direction for future work involves addressing the need to discard tokens
while preserving linear complexity. One potential solution could involve developing methods for
logarithmic complexity searches within the KV cache. By efficiently identifying the top-k relevant
key-value pairs, such an approach could eliminate the need for token eviction and allow the model
to maintain an overall complexity of O(N logN). This would open new avenues for expanding
transformer models’ context memory without compromising efficiency.

6 CONCLUSION

In this paper, we introduced a novel, training-free method for extending the context memory of
streaming LLMs, offering significant improvements without increasing computational complexity.
Our approach treats the fixed-size KV cache as a series of cascading sub-caches, allowing for dy-
namic token retention based on their historical importance. By selectively preserving high-impact
tokens and evicting less critical ones, our method effectively extends the context window far beyond
the limitations of traditional sliding windows. Our results demonstrate clear performance gains: a
12.13% average improvement on LongBench, a 4.48% boost in Book Summarization tasks, and
superior passkey retrieval accuracy at 1M tokens, maintaining a significant edge even after four
doublings of the context size. Additionally, our linear prefill strategy eliminates the quadratic com-
plexity of previous approaches, achieving latency reduction by a factor of 6.8 compared to flash
attention 2. These advancements highlight the potential of our method to significantly enhance the
efficiency and accuracy of LLMs, making it a practical and impactful solution for both research and
real-world applications that require long-context processing.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

7 REPRODUCIBILITY STATEMENT

In order to aid in reproducibility of our experiments, we have provided our code which has been
zipped into the supplementary file. We also provide exact pretrained model URL’s which are listed
in Table 5. We provide an algorithm for our strided prefill method in Algorithm 1 and a full algorithm
for our Cascading KV Cache in Algorithm 2. We have explained the parameters and computation
budgets for all experiments in Section 4. As our method is deterministic and requires no stochastic
training process, we have omitted error bars in our results.

REFERENCES

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head check-
points. arXiv preprint arXiv:2305.13245, 2023.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023a.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. Longbench: A bilingual,
multitask benchmark for long context understanding. arXiv preprint arXiv:2308.14508, 2023b.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking attention
with performers. arXiv preprint arXiv:2009.14794, 2020.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Jang-Hyun Kim, Junyoung Yeom, Sangdoo Yun, and Hyun Oh Song. Compressed context memory
for online language model interaction. arXiv preprint arXiv:2312.03414, 2023.

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. arXiv
preprint arXiv:2001.04451, 2020.

Wojciech Kryściński, Nazneen Rajani, Divyansh Agarwal, Caiming Xiong, and Dragomir Radev.
Booksum: A collection of datasets for long-form narrative summarization. 2021.

Heejun Lee, Jina Kim, Jeffrey Willette, and Sung Ju Hwang. Sea: Sparse linear attention with
estimated attention mask. arXiv preprint arXiv:2310.01777, 2023.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle
Cai, Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before
generation. arXiv preprint arXiv:2404.14469, 2024.

Amirkeivan Mohtashami and Martin Jaggi. Landmark attention: Random-access infinite context
length for transformers. arXiv preprint arXiv:2305.16300, 2023.

Tsendsuren Munkhdalai, Manaal Faruqui, and Siddharth Gopal. Leave no context behind: Efficient
infinite context transformers with infini-attention. arXiv preprint arXiv:2404.07143, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jack W Rae, Anna Potapenko, Siddhant M Jayakumar, Chloe Hillier, and Timothy P Lillicrap.
Compressive transformers for long-range sequence modelling. arXiv preprint, 2019. URL
https://arxiv.org/abs/1911.05507.

Philippe Tillet, Hsiang-Tsung Kung, and David Cox. Triton: an intermediate language and compiler
for tiled neural network computations. In Proceedings of the 3rd ACM SIGPLAN International
Workshop on Machine Learning and Programming Languages, pp. 10–19, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. arXiv preprint arXiv:2309.17453, 2023.

Xinrong Zhang, Yingfa Chen, Shengding Hu, Zihang Xu, Junhao Chen, Moo Hao, Xu Han, Zhen
Thai, Shuo Wang, Zhiyuan Liu, et al. Infinite bench: Extending long context evaluation beyond
100k tokens. In Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 15262–15277, 2024a.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient gen-
erative inference of large language models. Advances in Neural Information Processing Systems,
36, 2024b.

12

https://arxiv.org/abs/1911.05507

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A APPENDIX

• Appendix B - Extra ablation study on head policy and head reduction function.
• Algorithm 2 - The algorithm of our cascading cache method
• Table 5 - Paths to exact pretrained models used in our experiments.
• Table 4 - MMLU experiment
• Table 7 - LongBench tabular data (displays the same data as Figure 9)
• Figures 14 and 15 - Extra PG19 plots for the subset of PG19 which exceeds 65K in length.
• Figure 16 - Quadratic Llama3.1 passkey results.
• Figure 18 - Additional attention matrix plots in higher resolution.

B HEAD POLICY AND HEAD REDUCTION.

When making a decision for token selection, we may either apply the same homogeneous decision
across all heads. Likewise, we may allow the heads to behave independently as illustrated in Fig-
ure 13a. Additionally, as models may make use of Grouped Query Attention (GQA) (Ainslie et al.,
2023), the number of attention heads may differ between queries and keys. Therefore, for both cases
of homogeneous and independent heads, we need to select a head reduction function which will
reduce the head dimension in the attention matrix to 1 (homogeneous heads) or K (key-value heads
in GQA). We perform an ablation on the PG19 dataset to explore different options of head reduction
functions and head policies in Figure 13b. We find that in all cases, independent heads outperform
homogeneous heads. Among the independent heads, we find that mean and max reductions resulted
in similar performance, while a median reduction resulted in slightly worse performance.

0
0
0
0
0
0
0
0

Token Dimension

H
ea

d
D

im
en

si
on

Homogeneous Head Policy

0 Positional Encoding Index

0
0

0
0

0
0

0

Token Dimension

0

H
ea

d
D

im
en

si
on

Independent Head Policy

(a) Head Policy Illustration

mean median max
Head Reduction Function (Llama 3.18B)

Homogeneous

Independent

H
ea

d
P

ol
ic

y

7.73 7.75 7.72

7.70 7.71 7.70
7.70

7.71

7.72

7.73

7.74

7.75

mean median max
Head Reduction Function (Qwen 27B)

Homogeneous

Independent

H
ea

d
P

ol
ic

y

9.15 9.18 9.13

9.12 9.15 9.12
9.12
9.13
9.14
9.15
9.16
9.17
9.18

(b) Llama 3.18B Perplexity (↓)

Figure 13: Head Reduction Function and Head Policy Ablation

Table 4: MMLU. We find that our Cascading KV Cache outperforms all linear models overall.

Model Method Humanities Soc. Science Other STEM Overall

Llama 3.18B

Flash Attention 2(Full Context) 61.59 76.47 73.09 56.01 67.00
Vanilla (Truncated) 61.23 76.08 73.06 55.79 66.80
Streaming LLM 61.57 76.37 73.19 55.92 66.98
Cascade (Ours) 61.45 76.63 73.25 56.23 67.11

Qwen 27B

Flash Attention 2 (Full Context) 63.12 80.40 74.64 64.07 70.99
Vanilla (Truncated) 62.61 80.21 74.64 64.12 70.81
Streaming LLM 63.04 80.47 74.61 63.84 70.86
Cascade (Ours) 62.93 80.40 74.57 63.88 70.87

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Algorithm 2 Cascading Sink Cache Algorithm (repeat for keys and values)

Require: cascade cache buf array, sink cache buf, score cache, item to cache
if not sink cache buffer.is full() then

sink cache buffer ∪ item to cache
return

end if
for cache buf in cascade cache buf array do

if cache buf.is accepting tokens() then
if not cache buf.is full() then ▷ add item to cache which is not full

cache buf ∪ item to cache
update positional encoding()
return

else ▷ evict an item from the cache
cache buf ∪ item to cache
item to cache← cache buf.evict oldest() ▷ reset variable for next iteration
update positional encoding()

end if
else

if cache buf.is empty() then ▷ eager add to empty cache to avoid naively evicting
cache buf ∪ item to cache
update positional encoding()
return

else ▷ token selection (newest in cache vs. incoming token)
newest item← cache buf.get newest item()
newset score← score cache.get(newest item)
item score← score cache.get(item to cache)
if item score ¿ newest score then

cache buf.evict newest()
cache buf ∪ item to cache
update positional encoding()

end if
return

end if
end if

end for

Algorithm 3 Token Selection EMA Accumulation (in the context of Flash Attention 2 kernel)

Require: score cache, queries, keys, m, EMA beta
for i in chunk(queries) do

Load Qi from HBM to on-chip SRAM from queries
for j in chunk(keys) do

Load Kj , Vj from HBM to on-chip SRAM from keys
On Chip, Compute Sij = QiK

⊤
j , Vj

On Chip, update mi (update rolling max a la flash attention 2)
On Chip, update li (update normalization constant a la flash attention 2)
On Chip, update Oi (update normalization constant a la flash attention 2)
On Chip, calculate EMA coeff. for Qi,

CEMA = βk(1− β)∀k ∈ [len(queries) - q chunk indices]
On Chip, calculate inner loop steps completed γ and remaining ρ
Write, Atomic Sum to score cache += col sum((Sij/(li + li ∗ ρ

γ)) ∗ CEMA)

end for
end for

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

70K 80K
Step

15.2

15.4

15.6
P

er
p

le
xi

ty

C
a
ch

e
S

iz
e

(6
5
K

)

PG19 Book 1

65K 70K 75K
Step

9.40

9.45

9.50

9.55

P
er

p
le

xi
ty

C
a
ch

e
S

iz
e

(6
5
K

)

PG19 Book 2

65K 70K 75K
Step

14.50

14.55

14.60

14.65

P
er

p
le

xi
ty

C
a
ch

e
S

iz
e

(6
5
K

)

PG19 Book 3

60K 80K 100K
Step

6.80

6.85

6.90

P
er

p
le

xi
ty

C
a
ch

e
S

iz
e

(6
5
K

)

PG19 Book 6

70K 80K
Step

9.30

9.35

9.40

9.45

9.50

P
er

p
le

xi
ty

C
a
ch

e
S

iz
e

(6
5
K

)

PG19 Book 8

60K 80K 100K 120K
Step

9.0

9.2

9.4

P
er

p
le

xi
ty

C
a
ch

e
S

iz
e

(6
5
K

)

PG19 Book 10

60K 80K 100K 120K
Step

7.6

7.8

8.0

8.2

P
er

p
le

xi
ty

C
a
ch

e
S

iz
e

(6
5
K

)

PG19 Book 12

70K 80K
Step

8.3

8.4

8.5

8.6

P
er

p
le

xi
ty

C
a
ch

e
S

iz
e

(6
5
K

)

PG19 Book 13

60K 80K 100K 120K
Step

7.2

7.4

7.6

7.8

P
er

p
le

xi
ty

C
a
ch

e
S

iz
e

(6
5
K

)

PG19 Book 14

60K 80K 100K
Step

7.9

8.0

8.1

P
er

p
le

xi
ty

C
a
ch

e
S

iz
e

(6
5
K

)

PG19 Book 16

70K 80K
Step

8.75

8.80

8.85

8.90

8.95

P
er

p
le

xi
ty

C
a
ch

e
S

iz
e

(6
5
K

)

PG19 Book 17

100K 150K 200K
Step

7.8

7.9

8.0

P
er

p
le

xi
ty

C
a
ch

e
S

iz
e

(6
5
K

)

PG19 Book 18

200K 400K 600K
Step

8.5

9.0

9.5

P
er

p
le

xi
ty

C
a
ch

e
S

iz
e

(6
5
K

)

PG19 Book 21

100K 150K 200K
Step

8.50

8.75

9.00

9.25

P
er

p
le

xi
ty

C
a
ch

e
S

iz
e

(6
5
K

)

PG19 Book 23

60K 80K 100K 120K
Step

7.9

8.0

8.1

P
er

p
le

xi
ty

C
a
ch

e
S

iz
e

(6
5
K

)

PG19 Book 29

60K 80K 100K 120K
Step

8.3

8.4

8.5

P
er

p
le

xi
ty

C
a
ch

e
S

iz
e

(6
5
K

)

PG19 Book 30

60K 70K 80K 90K
Step

7.65

7.70

7.75

7.80

7.85

P
er

p
le

xi
ty

C
a
ch

e
S

iz
e

(6
5
K

)

PG19 Book 31

60K 80K 100K
Step

6.26

6.28

6.30

6.32

6.34

P
er

p
le

xi
ty

C
a
ch

e
S

iz
e

(6
5
K

)

PG19 Book 32

65K 70K 75K
Step

7.56

7.58

7.60

7.62

P
er

p
le

xi
ty

C
a
ch

e
S

iz
e

(6
5
K

)

PG19 Book 33

70K 80K
Step

5.82

5.84

5.86

P
er

p
le

xi
ty

C
a
ch

e
S

iz
e

(6
5
K

)

PG19 Book 35

100K 200K 300K
Step

5.75

5.80

5.85

5.90

P
er

p
le

xi
ty

C
a
ch

e
S

iz
e

(6
5
K

)

PG19 Book 37

60K 80K 100K 120K
Step

10.0

10.2

10.4

10.6

P
er

p
le

xi
ty

C
a
ch

e
S

iz
e

(6
5
K

)

PG19 Book 43

100K 150K 200K
Step

9.2

9.4

9.6

P
er

p
le

xi
ty

C
a
ch

e
S

iz
e

(6
5
K

)

PG19 Book 44

60K 70K 80K 90K
Step

8.0

8.1

8.2

8.3

P
er

p
le

xi
ty

C
a
ch

e
S

iz
e

(6
5
K

)

PG19 Book 45

62K 64K 66K 68K
Step

8.90

8.95

9.00

9.05

9.10

P
er

p
le

xi
ty

C
a
ch

e
S

iz
e

(6
5
K

)

PG19 Book 48

75K 100K 125K 150K
Step

6.85

6.90

6.95

7.00

P
er

p
le

xi
ty

C
a
ch

e
S

iz
e

(6
5
K

)

PG19 Book 49

Streaming LLM Cascade (Ours)

Figure 14: Additional plots for all of the books in the subset of PG19 books which exceeds 65K in
length. The model used is Llama 3.1 8B. This chart is a complement to Figure 7

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

70K 80K
Step

6.900

6.925

6.950

6.975

7.000
P

er
p

le
xi

ty

C
a
ch

e
S

iz
e

(6
5
K

)

PG19 Book 50

62K 65K 67K 70K
Step

6.06

6.08

6.10

P
er

p
le

xi
ty

C
a
ch

e
S

iz
e

(6
5
K

)

PG19 Book 53

65K 70K 75K
Step

6.60

6.65

6.70

6.75

P
er

p
le

xi
ty

C
a
ch

e
S

iz
e

(6
5
K

)

PG19 Book 54

100K 150K 200K
Step

8.4

8.6

8.8

P
er

p
le

xi
ty

C
a
ch

e
S

iz
e

(6
5
K

)

PG19 Book 55

100K 150K 200K
Step

6.75

6.80

6.85

6.90

P
er

p
le

xi
ty

C
a
ch

e
S

iz
e

(6
5
K

)

PG19 Book 56

500K 1000K 1500K
Step

5.6

5.8

6.0

6.2

6.4

P
er

p
le

xi
ty

C
a
ch

e
S

iz
e

(6
5
K

)

PG19 Book 61

65K 70K 75K
Step

9.2

9.3

9.4

P
er

p
le

xi
ty

C
a
ch

e
S

iz
e

(6
5
K

)

PG19 Book 63

60K 80K 100K 120K
Step

5.7

5.8

5.9

6.0

6.1

P
er

p
le

xi
ty

C
a
ch

e
S

iz
e

(6
5
K

)

PG19 Book 64

70K 80K 90K
Step

6.6

6.7

6.8

P
er

p
le

xi
ty

C
a
ch

e
S

iz
e

(6
5
K

)

PG19 Book 65

70K 80K
Step

8.5

9.0

9.5

10.0

10.5

P
er

p
le

xi
ty

C
a
ch

e
S

iz
e

(6
5
K

)

PG19 Book 68

60K 70K 80K 90K
Step

6.9

7.0

7.1

7.2

7.3

P
er

p
le

xi
ty

C
a
ch

e
S

iz
e

(6
5
K

)

PG19 Book 69

60K 70K 80K 90K
Step

5.80

5.82

5.84

P
er

p
le

xi
ty

C
a
ch

e
S

iz
e

(6
5
K

)

PG19 Book 71

62K 64K 66K
Step

6.5050

6.5075

6.5100

6.5125

6.5150

P
er

p
le

xi
ty

C
a
ch

e
S

iz
e

(6
5
K

)

PG19 Book 73

70K 80K
Step

10.20

10.22

10.24

P
er

p
le

xi
ty

C
a
ch

e
S

iz
e

(6
5
K

)

PG19 Book 74

70K 80K
Step

5.300

5.325

5.350

5.375

5.400

P
er

p
le

xi
ty

C
a
ch

e
S

iz
e

(6
5
K

)
PG19 Book 75

100K 150K 200K
Step

9.6

9.7

9.8

P
er

p
le

xi
ty

C
a
ch

e
S

iz
e

(6
5
K

)

PG19 Book 76

100K 150K 200K
Step

8.5

8.6

8.7

8.8

P
er

p
le

xi
ty

C
a
ch

e
S

iz
e

(6
5
K

)

PG19 Book 79

100K 200K 300K
Step

6.5

6.6

6.7

P
er

p
le

xi
ty

C
a
ch

e
S

iz
e

(6
5
K

)

PG19 Book 80

75K 100K 125K
Step

6.00

6.25

6.50

6.75

P
er

p
le

xi
ty

C
a
ch

e
S

iz
e

(6
5
K

)

PG19 Book 82

60K 80K 100K
Step

6.525

6.550

6.575

6.600

P
er

p
le

xi
ty

C
a
ch

e
S

iz
e

(6
5
K

)
PG19 Book 89

100K 150K 200K
Step

9.1

9.2

9.3

9.4

9.5

P
er

p
le

xi
ty

C
a
ch

e
S

iz
e

(6
5
K

)

PG19 Book 90

100K 200K
Step

9.00

9.25

9.50

9.75

P
er

p
le

xi
ty

C
a
ch

e
S

iz
e

(6
5
K

)

PG19 Book 91

100K 150K 200K
Step

9.4

9.5

9.6

9.7

P
er

p
le

xi
ty

C
a
ch

e
S

iz
e

(6
5
K

)

PG19 Book 92

100K 200K
Step

10.5

10.6

10.7

P
er

p
le

xi
ty

C
a
ch

e
S

iz
e

(6
5
K

)

PG19 Book 93

62K 64K 66K
Step

6.695

6.700

6.705

6.710

6.715

P
er

p
le

xi
ty

C
a
ch

e
S

iz
e

(6
5
K

)

PG19 Book 96

60K 80K 100K 120K
Step

8.8

9.0

9.2

P
er

p
le

xi
ty

C
a
ch

e
S

iz
e

(6
5
K

)

PG19 Book 99

Streaming LLM Cascade (Ours)

Figure 15: Additional plots for all of the books in the subset of PG19 books which exceeds 65K in
length. The model used is Llama 3.1 8B. This chart is a complement to Figure 7

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

32K 65K 131K 262K 524K 1M
Context Length

0-20

20-40

40-60

60-80

80-100In
se

rt
L

oc
(%

) 100 100 OOM OOM OOM OOM
100 100 OOM OOM OOM OOM
100 100 OOM OOM OOM OOM
100 100 OOM OOM OOM OOM
100 100 OOM OOM OOM OOM

Figure 16: Passkey results for vanilla Llama3.1 as measured on an NVIDIA A6000 GPU with
49GM memory. According to the llama whitepaper (Dubey et al., 2024), it was finetuned for 131K
positional embeddings until it achieved 100% accuracy on a passkey retrieval task. Therefore, given
enough memory, it should achieve 100 for one more doubling of the context. Our model however,
can extend high accuracy numbers past 131K with lower memory usage (see Figure 8).

Model Huggingface Path Experiment

LLaMA3.18B (Dubey et al., 2024) meta-llama/Meta-Llama-3-8B PG19
LLaMA3.18B Instruct (Dubey et al., 2024) meta-llama/Meta-Llama-3-8B-Instruct Booksum,Longbench,Ablation,Passkey
LLaMA3.170B Instruct (Dubey et al., 2024) meta-llama/Meta-Llama-3-70B-Instruct Longbench
Qwen27B (Bai et al., 2023a) Qwen/Qwen2-7B PG19
Qwen27B Instruct (Bai et al., 2023a) Qwen/Qwen2-7B-Instruct Booksum,Longbench
Qwen272B Instruct (Bai et al., 2023a) Qwen/Qwen2-72B-Instruct LongBench

Table 5: Huggingface model paths used in our experiments.

Model 16K 32K 65K 131K 262K 524K 1M

Minference 5.11 12.84 28.41 60.47 OOM OOM OOM
Cascading KV Cache 9.58 19.71 40.11 80.84 164.47 334.17 665.33

Table 6: Latency (S) as compared to Minference for 1M tokens. This table shows latency throughout all layers,
which differs from that shown in Figure 6b which shows attention latency for a sinlge layer. Minference goes
OOM after 131K on a 49GB GPU due to requiring all tokens in cache for the forward pass. Our model uses a
cache size of 16K with a stride of 4K, which are the same settings used in Figure 6b.

Table 7: Tabular display of radar plot results from Figure 9. Higher scores are better (↑). Total cache sizes are
based on the length of the original prompt L.

Total Cache Size Model Cache Narrative QA HotPot QA Qasper Multi News 2 Wiki MQA Gov. Report Mean

2⌊log2(L/4)⌋ LLaMA3.18B Instruct

Streaming LLM 22.57 40.78 23.89 20.69 23.46 26.82 26.37
Flash Attention 2 (truncated) 18.67 36.59 15.77 17.24 19.62 20.46 21.39
Big Bird 21.78 39.46 21.33 22.23 20.13 26.15 25.18
Minference 20.90 39.79 19.77 23.19 21.52 29.15 25.72
Pyramid KV 20.99 39.79 19.86 22.20 21.77 29.20 25.63
Cascade (Ours) 26.43 47.26 33.12 23.33 32.33 28.32 31.8

2⌊log2(L/4)⌋ Qwen27B

Streaming LLM 18.95 38.54 20.97 17.65 32.15 24.96 25.54
Flash Attention 2 (truncated) 15.01 34.4 17.28 15.64 30.21 17.47 21.67
Big Bird 17.78 28.68 20.05 12.9 25.36 18.64 20.57
Cascade (Ours) 20.55 37.36 28.65 19.57 34.35 26.22 27.78

2⌊log2(L/4)⌋ LLaMA3.170B

Streaming LLM 25.72 42.39 24.5 20.93 31.78 27.67 28.83
Flash Attention 2 (truncated) 24.62 39.77 19.93 17.26 24.23 20.51 24.39
Big Bird 27.02 52.0 28.63 23.0 31.51 27.53 31.61
Cascade (Ours) 30.3 52.61 36.97 23.04 46.82 29.3 36.51

2⌊log2(L/4)⌋ Qwen272B

Streaming LLM 20.8 50.08 20.68 17.97 43.83 27.83 30.2
Flash Attention 2 (truncated) 17.69 43.25 14.96 15.68 40.08 21.35 25.5
Big Bird 23.55 48.41 25.89 18.54 44.58 30.35 31.89
Cascade (Ours) 25.0 53.78 29.48 20.17 48.22 29.4 34.34

Table 8: InfiniteBench (Zhang et al., 2024a) results.

Total Cache Size Model Cache en.MC en.QA en.Sum Mean

32768 LLaMA3.18B Instruct

Streaming LLM 46.72 13.98 30.8 30.5
Minference 46.72 14.96 32.25 31.31
Cascade (Ours) 56.77 17.69 31.50 35.32

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

0 2000 4000 6000 8000

0

2000

4000

6000

8000

(a) Layer 6

0 2000 4000 6000 8000

0

2000

4000

6000

8000

(b) Layer 11

0 2000 4000 6000 8000

0

2000

4000

6000

8000

(c) Layer 14

0 2000 4000 6000 8000

0

2000

4000

6000

8000

(d) Layer 6

0 2000 4000 6000 8000

0

2000

4000

6000

8000

(e) Layer 11

0 2000 4000 6000 8000

0

2000

4000

6000

8000

(f) Layer 14

Figure 17: Attention matrix reconstructions for Streaming LLM Figures 17a to 17c and our Cascad-
ing KV Cache Figures 17d to 17f on first 8K tokens of the first book of (PG19).

Streaming LLM
(single token per step)

Cascading Cache
(N tokens per step)

24 Steps 6 Steps

Figure 18: Illustration contrasting the prefill strategy of Streaming LLM vs our Cascading KV
Cache. The original Streaming LLM does a complete forward pass for every row of the attention
matrix which causes the poor latency of Streaming LLM in Figure 6b. Our method, however, can
process a chunk of tokens during each forward pass of the prefill leading to a reduction in the number
of forward passes necessary to process the entire prompt.

18

	Introduction
	Related Work
	Method
	Linear Prefill
	Cascading KV Cache

	Experiments
	Latency
	PG19
	Passkey Retrieval
	LongBench
	Visualization
	Ablation Study

	Limitations & Future Work
	Conclusion
	Reproducibility Statement
	Appendix
	Head Policy and Head Reduction.

