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Abstract
While deep learning (DL) models are state-of-
the-art in text and image domains, they have not
yet consistently outperformed Gradient Boosted
Decision Trees (GBDTs) on tabular Learning-To-
Rank (LTR) problems (Qin et al., 2021). Most
of the recent performance gains attained by DL
models in text and image tasks have used unsu-
pervised pretraining (Devlin et al., 2018; Chen
et al., 2020a), which exploits orders of magnitude
more unlabeled data than labeled data. To the
best of our knowledge, unsupervised pretraining
has not been applied to the LTR problem, which
often produces vast amounts of unlabeled data.
In this work, we study whether unsupervised pre-
training can improve LTR performance over GB-
DTs and other non-pretrained models. Using sim-
ple design choices–including SimCLR-Rank, our
ranking-specific modification of SimCLR (Chen
et al., 2020a) (an unsupervised pretraining method
for images)–we produce pretrained deep learn-
ing models that soundly outperform GBDTs (and
other non-pretrained models) in the case where
labeled data is vastly outnumbered by unlabeled
data. We also show that pretrained models also
often achieve significantly better robustness than
non-pretrained models (GBDTs or DL models) in
ranking outlier data.

1. Introduction
The learning-to-rank (LTR) problem aims to train a model
to rank a set of items according to their relevance or user
preference (Liu, 2009). An LTR model is typically trained
on a dataset of queries and associated query groups (i.e., a
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set of potentially relevant documents or items per query), as
well as an associated (generally incomplete) ground truth
ranking of the items in the query group. The model is
trained to output a ranking of documents or items in a query
group, given a query. LTR is a core problem in many real
world applications—most notably in search contexts includ-
ing Bing web search (Qin and Liu, 2013), Amazon product
search (Yang et al., 2022), and Netflix movie recommenda-
tions (Lamkhede and Kofler, 2021).

In many applications of LTR, models take as input tabular
features—numerical or categorical features—of queries and
documents (Chapelle and Chang, 2011; Qin and Liu, 2013;
Lucchese et al., 2016). Today, identifying deep models that
can achieve parity with gradient boosted decision trees (GB-
DTs) (Friedman, 2001) over tabular features is considered a
success (Jeffares et al., 2023; Qin et al., 2021), in contrast
to deep models’ success in domains like text (Devlin et al.,
2018) and images (He et al., 2016).

Recent breakthroughs in modeling non-tabular data like text
and images have been driven by unsupervised pretraining
(or self-supervised pretraining) of deep neural networks
(Devlin et al., 2018; Chen et al., 2020a), followed by su-
pervised finetuning. Models that are pretrained in this way
can perform significantly better than models that were only
trained on existing labeled data. The remarkable success of
SSL in the image and text domains over plain supervised
deep learning appears to arise in part from two factors: (1)
there exist large, available sources of unlabeled text and
image data, and (2) self-supervised models are able to take
advantage of unlabeled data.

It is easy to find settings in LTR where the amount of unla-
beled data outnumbers labeled data by orders of magnitude.
For example, in search ranking problems, users often search
for something but may not click or purchase any link or
item, which leads to a query group (i.e. a search and the
list of results) that has no supervision signal or label for the
relevance of the items.

A natural question is whether deep models can outperform
tabular methods like GBDTs on the LTR problem by mak-
ing use of unsupervised pretraining. Note that GBDTs (to
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the best of our knowledge) are unable to make use of unsu-
pervised pretraining. In this work, we show that the answer
to this question is yes, but so far only in extreme cases of la-
bel scarcity (i.e. unlabeled data greatly outnumbers labeled
data). We base our empirical conclusions off of experiments
on three well-known public datasets for ranking: MSLR-
WEB30K (Qin and Liu, 2013), Yahoo (Chapelle and Chang,
2011), and Istella (Lucchese et al., 2016).

Contributions. We make four contributions in this work.

• How to pretrain for LTR? We first adapt two unsuper-
vised pretraining methods to the LTR setting: SimCLR
(Chen et al., 2020a) and SimSiam (Chen and He, 2021).
Both are domain-agnostic methods that are strong base-
lines in the image domain.

• Empirical success of pretraining. We evaluate these un-
supervised pretraining approaches on three benchmark
datasets in the LTR space: MSLR-30k (Qin and Liu,
2013), Yahoo Set1 (Chapelle and Chang, 2011) and Istella-
S (Lucchese et al., 2016), which we modify for the unsu-
pervised pretraining setting by not using 99.9% of the la-
bels. We find that pretrained models, under the right train-
ing settings, outperform non-pretrained DL and GBDT
models across all datasets.

• Training choices recommendations. We find that un-
like in the image domain (where SimSiam and SimCLR
were proposed), linear probing—where one learns a linear
model on top of a frozen pretrained model—cannot be
used for finetuning and gives poor results. Further, typical
training choices for training neural ranking methods (as
found in the PT-ranking framework (Yu, 2020) and in neu-
ral ranking papers (Qin et al., 2021; Bruch et al., 2019))
can cause instability when pretraining. In this paper, we
identify training settings appropriate for unsupervised pre-
training in LTR, which include our ranking-aware modifi-
cation to SimCLR, SimCLR-rank.

• Robustness measurement for LTR. LTR models are
commonly evaluated on ranking metrics (e.g. normalized
discounted cumulative gain a.k.a. NCDG) uniformly av-
eraged across test queries (Burges, 2010). However, uni-
form average gives no insight into their behavior on outlier
queries. We propose measuring the average NDCG on the
outlier queries of a dataset (we call this robust-NDCG).
Using this, we show that pretrained methods have signif-
icantly better robustness than non-pretrained ones. We
suggest that robustness metrics should be studied when
evaluating any LTR model.

2. Background on Learning-To-Rank
The training data in LTR consists of n query groups D =
{{xi,j}Li

j=1, {yi,j}
Li
j=1}ni=1. The i-th query group consists

of Li items (e.g. products) represented by feature vectors
xi,j ∈ Rd, and relevance labels yi,j which could be binary,

ordinal, or real-valued measurements of relevance (Qin et al.,
2021). The objective is to learn a function that, given a
query group k, ranks the Lk items {xk,j}Lk

j=1 such that the
items with highest relevance are ranked at the top. In this
paper, we consider unsupervised pretraining, so we also
have a larger unlabeled dataset D′, which contains m query
groups where D′ = {{xi,j}Li

j=1}mi=1 where m ≥ n and the
query groups of D are a subset of those in D′. Most LTR
algorithms formulate the problem as learning a function
fθ : Rd → R that maps the feature vector associated with
an item to a score, and then ranks the items by the scores.

To measure the quality of a ranking induced by our scoring
function fθ on the k-th query group, a commonly-used
metric is NDCG:

NDCG(πs, {yk,j}Lk
j=1) =

DCG(πs, {yk,j}Lk
j=1)

DCG(π∗, {yk,j}Lk
j=1)

where πs πs : [Lk] → [Lk] is a permutation over the Lk

elements of the kth query group induced by the scoring
function fθ on {xk,j}Lk

j=1 while π∗ is the ideal ranked list
sorted by (real-valued relevance vector) y, and discounted
cumulative gain (DCG) is defined as DCG(π, {yk,j}Lk

j=1) =∑n
j=1

2yk,j−1
log2(1+π(j)) . Typically, a truncated version of NDCG

is used that only considers the top-u ranked items, denoted
as NDCG@u.

3. Unsupervised pretraining for ranking
We adapt two unsupervised pretraining approaches from
the class of contrastive learning methods; two of the best-
known variants are SimCLR (Chen et al., 2020a) and Sim-
Siam (Chen and He, 2021).

Intuitively, SimCLR (Chen et al., 2020a) takes each data
point xi,j and produces stochastically augmented versions
x
(1)
i,j and x

(2)
i,j which are called a positive pair. Augmenta-

tions are designed to preserve the semantics of the data (e.g.,
rotating or blurring an image). SimCLR then trains a neural
net to learn a common representation for two augmented
views of the data (i.e., maximizing similarity between pos-
itive pairs), while minimizing similarity to negative pairs,
which are augmentations of two semantically-different input
samples. Details can be found in Appendix B.

SimSiam (Chen and He, 2021) is similar, except it does
not use negative pairs. Instead, it only attempts to maxi-
mize similarity of representations of positive pairs. The full
details are in Appendix B.

3.0.1. ADAPTING THE METHODS TO RANKING

To adapt either of these methods to LTR, we must first
choose a stochastic augmentation technique. In the image
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setting, augmentations for SimSiam and SimCLR include
image flipping, cropping, and Gaussian blur (Chen and He,
2021; Chen et al., 2020a). In ranking, the choice of aug-
mentation is less obvious; changing the values of features
could change the entire nature of the data (which does not
preserve semantics). In Section 4 we investigate several
proposed augmentations, including randomly zeroing out
feature values, randomly swapping feature values within a
query group, and adding Gaussian noise.

Second, we should choose the unit of data to augment. In
ranking, one can consider a single data point either as the full
list of feature vectors in a query group or an individual fea-
ture vector in a query group. Viewing the entire query group
as a data point accounts for interactions between items in
the query group to get good representations–however, query
groups are of variable length, which makes it challenging
to adapt SimCLR and SimSiam to use query groups as the
data unit. Hence, we use individual feature vectors within
the query groups as the data points to augment.

4. Empirical Study
We study three main questions: (1) What is the right aug-
mentation strategy for unsupervised pretraining in rank-
ing? To understand this, we study a variety of augmentation
strategies on SimSiam and SimCLR performed on ranking
datasets. We find several augmentation strategies that can
outperform non-pretrained methods on both full dataset met-
rics and in particular on outlier metrics. (2) How should
we finetune for ranking? Typically in the unsupervised
pretraining literature, one freezes the pretrained model and
learns a linear model using the frozen pretrained representa-
tions on the labeled data. We find that this does not work in
ranking, and instead either deep models have to be learned
on top of the frozen representations or the entire network
should be finetuned end-to-end. (3) Where does the vari-
ance in test NDCG come from? We find that, across
multiple trials, deep methods (pretrained or otherwise) have
significant NDCG variance. We explore a variety of training
parameters and their effect on test NDCG variance. Finally,
we combine the lessons learned in our empirical study to
recommend the most consistently performant training
setting including some ranking-specific design choices.

Dataset. We conduct our evaluation on three widely used
public ranking datasets: MSLR-30k (Qin and Liu, 2013),
Set1 from Yahoo (Chapelle and Chang, 2011), and Istella
(Lucchese et al., 2016). Our experimental setup comes from
PT-ranking (Yu, 2020). For all three datasets, we assume
0.1% of query groups in the training set of each dataset is
labeled, while the rest is unlabeled. To evaluate our meth-
ods, we provide both the plain test NDCG@5 (measure of
performance on the entire dataset) and the robust-NDCG@5
(measure of performance on queries with outlier feature

values). We use the term NDCG to mean NDCG@5. We
provide the precise methodology used to measure robust-
NDCG in the following subsection.

Robust-NDCG. In interactive ML systems like search, per-
forming well on outlier queries is particularly valuable as it
empowers users to search for more outlier queries, which in
turn allows the practitioner to collect more data on outliers
and improve the model. To this end, we design a metric that
evaluates NDCG only on outlier datasets.

When the outliers are not already known, we select outliers
as follows: we generate a histogram with 100 bins for each
feature across the validation dataset. For example, MSLR
has 136 features, so we had 136 different histograms. For
each histogram, we scan from left to right on the bins until
we have encountered at least G empty bins in a row, and
if there is less than 1% of the validation set above this bin,
then all the feature values above this bin are considered
outliers. We also repeat this process right to left. Any test
query group with items that had outlier feature values were
determined to be outlier query groups, and placed in the
test outlier dataset. Robust-NDCG is then defined as the
NDCG on this outlier dataset. Because different datasets
have different sized typical gaps, we tune G for each dataset
(MSLR, Yahoo, Istella) such the resulting percentage of
outlier queries is as close to 1% of the test set as we can get.
MSLR has G = 5, with 0.65% (40/6072) outlier queries,
Yahoo has G = 20, with 1.4% (30/2147) outlier queries, and
Istella has G = 32, with 0.46% (34/7202) outlier queries.

4.1. Choosing augmentation for unsupervised
pretraining in ranking

We study three different choices of augmentation for rank-
ing: “zeros”, “qg”, and “Gaussian”. As a running exam-
ple, suppose the input to the augmentation module consists
of four 5-dimensional vectors [1, 2, 3, 4, 5], [6, 7, 8, 9, 10];
[11, 12, 13, 14, 15], [16, 17, 18, 19, 20] where the first two
vectors represent items in query group A and the last two
vectors represent items in query group B. In “zeros”, given
an input, we zero out a random selection of features indepen-
dently across samples. One possible output of applying the
zeros augmentation to the example input is: [1, 2, 0, 4, 0],
[6, 0, 8, 9, 10]; [0, 12, 0, 0, 15], [16, 0, 18, 19, 20]. In “qg”,
given an input we randomly select features to substi-
tute with values of the same column in the same query
group. An example output of applying qg to the example
input is: [1, 2, 3, 4, 10], [6, 2, 8, 9, 10]; [16, 12, 13, 14, 15],
[16, 12, 13, 19, 20]. Finally, in the Gaussian augmentation
we add zero mean Gaussian noise to all features and samples
independently. For zeros and qg, we introduce a tuneable
parameter c, which determines the probability that any given
value is swapped out with a zero (in the case of zeros) or an-
other value in the same column belonging to the same query
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group (in the case of qg). For the Gaussian augmentation
we use unit Gaussian noise.

4.2. Experimental results

We compare SimSiam and SimCLR with various augmenta-
tion choices against two baselines that do not use unsuper-
vised pretraining. The first is “GBDT”, which is a gradient
boosted decision tree implemented on lightgbm (Ke et al.,
2017), trained on the labeled training data. The second is
“No pretrain”, which is an MLP trained only on the labeled
training data. Training details are in Subsection C.2.

Test NDCG values are listed in Table 3. We bold the best
two entries for each metric, and underline the worst entry
for each metric. We observe the following takeaways:

Many augmentations outperform non-pretrained meth-
ods on all datasets. SimSiam qg with c = 0.7, SimCLR
Gaussian, and SimCLR zeros c = 0.2 all outperform the
non-pretrained models on every full dataset metric (some-
times significantly). SimSiam qg with c = 0.7 outperforms
non-pretrained models on every metric, full or outlier test
sets.

More augmentations outperform non-pretrained models
on all robust metrics. We find that unsupervised pretraining
increases robustness against real outlier data. Every Sim-
Siam experiment (except for SimSiam zeros c = 0.2) has
higher robust-NDCG values than non-pretrained methods
across all datasets, while SimCLR achieved higher robust-
NDCG values on Yahoo and Istella.

Variance can be high in neural ranking. The standard
errors for non-pretrained and pretrained models’ test NDCG
were relatively high, suggesting some training instability.

Our outlier detection algorithm has shortcomings. Our
outlier detection algorithm assumes that a small group of
data far away from 99% of the data should be considered out-
liers, and will be harder to rank. However, in Istella, robust-
NDCG values were higher than full dataset test-NDCG val-
ues for every method we tried. We found that in Istella there
are features where the vast majority of the data has a value
of zero (Figure 1). We hypothesize that zero represents
a missing data value in the feature while the nonzero val-
ues have meaning, which makes the outliers our algorithm
detects in Istella easier to rank than the “normal” values;
hence, our outlier detection technique does not capture the
samples that are hardest to rank.

4.3. How to finetune in ranking

Typically in unsupervised pretraining literature the preferred
way to compare pretraining methods against each other is
via linear probing; i.e., pretrain a model on unlabeled data
to produce embeddings, freeze it, and learn a linear model

using frozen embedding on the labeled data (Chen and He,
2021; Chen et al., 2020a; Grill et al., 2020; Chen et al.,
2020b). An alternative choice is to add a linear layer on top
of the embedder, but finetune the deep model end-to-end
without freezing weights. A third alternative is to freeze
the pretrained model and learn a model with possibly mul-
tiple layers using its frozen representations on the labeled
data, which we call non-linear probing. We compare these
three methods on our ranking problem. Training details in
Subsection C.3.

Results. In Table 4 we detail our results. We bold the best
entries for each metric, and underline the worst for each
metric for both SimSiam and SimCLR. The takeaways:

Neither SimSiam nor SimCLR can perform well using
linear probing. Both full dataset and robust metrics suffer
greatly compared to the no-pretrain baseline when we have
one finetuning layer.

End-to-end finetuning performs the best or close to the
best. Overall, we suggest to use full finetuning as it gener-
ally works for both SimSiam and SimCLR.

4.4. Sources of variance in test NDCG results

In our earlier results, we found that the variance in the test
NDCG results for our methods was high relative to the
variance of GBDTs, which had a variance of zero on our
datasets. In this section, we identify the sources of variance
when utilizing pretraining methods in ranking. We do this by
performing ablation studies on weight initialization, batch
size, model architecture, the augmentation c parameter, and
training algorithm with respect to their effects on test NDCG
variance. Details are in Section C.4.

Overall, we find that there are two main sources of variance:
(1) Finetuning variance comes from random initialization
of added layers and finetuning data shuffling. These phe-
nomena can be reduced by increasing the batch size of
the finetuning phase and fixing the initialization of the ad-
ditional finetuning layers to the identity. (2) Pretraining
variance comes from augmentation, random initialization,
and shuffling of pretraining data, which is mainly reduced
by using more stable optimization algorithms and activation
functions. We make the following observations from our
experiments.

Finetuning is a source of variance, and fixing the initial-
ization to the identity largely removes this variance. The
evidence for this is summarized in Table 5. In summary, we
find that if we fix the pretrained model and finetune it with
default settings (random initialization, random batches, etc.)
the variance in results is similar to if the pretrained model
was not fixed. However, if we fix the finetuning layers’
initialization to the identity, we can decrease the stderr of
our results by an order of magnitude. And if in addition we
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Table 1. The first row contains our results for GBDTs, the second is the no pretrain baseline, third is the best numbers achieved by
SimSiam on all settings reported in Table 3, fourth is best numbers achieved by SimCLR-Rank (plus all the training recommendations in
Subsection 4.5) on all settings reported in Table 3, and the final set of numbers is the result after utilizing the training recommendations
in Section 4.5, which (1) obtains large performance improvements on MSLR30K and Istella full dataset NDCG, (2) achieves top-2
performance on every metric except for Yahoo’s robust-NDCG. We report numbers as averages over 5 trials.

Method MSLR30K robust Yahoo robust Istella robust

GBDT 0.2799 0.1599 0.5342 0.4721 0.5450 0.5473

No pretrain 0.3464 ± 0.0083 0.2572 0.5752 ± 0.0048 0.4922 0.5387 ± 0.0056 0.6084

Best SimSiam (Table 3) 0.3600 ± 0.0032 0.2953 0.6112 ± 0.0041 0.5224 0.5512 ± 0.0065 0.6494
Best SimCLR (Table 3) 0.3561 ± 0.0054 0.2547 0.6109 ± 0.0020 0.5174 0.5690 ± 0.0102 0.659
SimCLR-Rank (recommended) 0.3720 ± 0.0007 0.2867 0.6109 ± 0.0020 0.5164 0.5728 ± 0.0023 0.6719

do full batch training, the stderr in our results completely
disappears.

Reducing sources of variance in pretraining is not
enough to get rid of pretraining variance. The evidence
for this is summarized in Table 6. In summary, we find
that in pretraining, we can remove the stochasticity from
initialization, batch size, and decrease the augmentation
level to c = 0.01 (for SimSiam zeros) and still have high
stderr in results (even higher than what we had without
all these interventions!). We cannot remove all sources of
stochasticity in our pretraining because the pretraining re-
lies upon stochastic augmentation, so we must try to make
the pretraining process itself more robust against the noise
introduced during the pretraining.

We can reduce the effect of augmentation variance on
test NDCG results by properly choosing training and
model architecture settings. The evidence is summarized
in Table 6. While diagnosing sources of instability in the
pretraining, we observed two behaviors of SimSiam: (1)
output vectors during pretraining were often zero, which
prevented the model from learning about the unlabeled sam-
ples, and (2) even under full batch training the pretraining
loss could climb. To fix these two issues, we tried using
ELU gating (Clevert et al., 2015) (as opposed to the default
GeLU gating (Hendrycks and Gimpel, 2016)) to prevent
too many values from being zeroed out, and used the SGD
optimizer instead of Adam (Adam is known to potentially
not converge (Reddi et al., 2019) and finds sharper min-
ima (Keskar and Socher, 2017)). We find that these two
modifications, along with the identity initialization and full
batch training increased the stability of the results signifi-
cantly, even if we set c = 0.7 with zeros augmentation. We
conclude that model/training choices that do not directly
introduce variance into the training process can have a large
role in influencing the test NDCG variance.

4.5. Practical recommendations and their synthesis

Based on empirical observation and past literature, in this
section, we first provide several recommendations for unsu-
pervised pretraining for LTR. Notably, we modify the Sim-
CLR loss (as SimCLR-Rank) for ranking datasets to reduce
training time and memory cost. We synthesize these recom-
mendations to produce a single pretraining and finetuning
strategy which achieves strong results in all our datasets and
metrics. We compare this “recommended setting” against
the best SimSiam and SimCLR results from our augmen-
tation study (Subsection 4.1) as well as against the non-
pretrained methods. Results are in Table 1.

Recommendation: Now we provide several recommenda-
tions for pretraining and finetuning an LTR model.

1. In terms of overall metrics, finetuning and non-linear
probing perform much better than linear probing for LTR
(Table 4). In contrast, in the image domain, all strategies
perform similarly, or under label scarcity linear probing out-
performs full finetuning (Chen et al., 2020b). However, full
finetuning is known to reduce robustness. Hence we recom-
mend and adopt a procedure of first non-linear probing with
three additional layers (100 epochs) and then full finetuning
(200 epochs). This is similar to LP-FT (Kumar et al., 2022),
except more layers are added.

2. Use SimCLR Gaussian pretraining. We observed that it
performed consistently well across datasets (Table 3).

3. Use larger models for SimCLR pretraining. In image
domain, SimCLR benefits from larger model size and batch-
esize (Chen et al., 2020b) as they are believed to digest more
information from the unlabeled data. Therefore, we added
15 more layers and increased the batchsize. We increased
the noise variance from 1 to 2 since the model has more
layers and hence it has larger capacity to de-noise and learn.

4. Use a large projection head for SimCLR (Section B.1)
and finetune from the first layer of this head to improve per-
formance. We adopt this practice from Chen et al. (2020b).
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5. Increase training stability to reduce the somewhat high
variance we observed in test-NDCG across different runs.
To remedy this, we added residual connections (He et al.,
2016), used the tabular variant of ResNet (Gorishniy et al.,
2021), and clipped the norm of the gradients to 2 and 1 for
pretraining and finetuning, respectively.

6. Although we wanted to use larger models and batch sizes,
we were significantly throttled by their slow training speed
and high GPU memory usage. To remedy this, we intro-
duce a new ranking-aware pretraining loss, SimCLR-Rank,
which simplifies the SimCLR loss to reduce its GPU mem-
ory and time cost. Instead of contrasting the embedding of
each item with the embeddings of all the other items in the
batch (containing multiple query groups), SimCLR-Rank
contrasts the item embedding with only the embeddings
of other items in the same query group. We give the pre-
cise SimCLR-Rank loss in Section D.1 and compare it to
SimCLR’s loss.

Effectively, SimCLR-Rank reduces memory and time com-
plexity from O((NL)2) to O(NL2) where N is the number
of query groups per batch and L is the number of items
per query group in that batch. SimCLR-Rank brought us
substantial savings in runtime (20x) and memory. It allowed
us to increase the number of model parameters by more
than 2x and increase the batchsize by more than 10x (with
more room to grow). We hypothesize that contrasting only
within a query group is likely sufficient for the LTR set-
ting, because in the downstream LTR task we need to only
distinguish between items within query groups.

Results. Finally, in Table 1, we compare the empirical
performance of the SimCLR-Rank model which incorpo-
rates all the above recommendations with the best SimCLR
and SimSiam numbers from Table 3 on the three datasets.
First, SimCLR-Rank with the same exact training choices
across datasets, is able to obtain large performance gains on
MSLR30K and Istella full dataset NDCGs. Second, consis-
tently across datasets and metrics, SimCLR-Rank is the best
or is amongst the top-2 best models for that metric (aside
from Yahoo’s robust-NDCG, where it is close). Further,
SimCLR-Rank achieves this with significantly lower stderr
when compared to our prior runs of SimCLR and SimSiam.

5. Conclusion
Through a comprehensive empirical study, we have found
the training strategies and settings–including SimCLR-
Rank–that are best able to make unsupervised pretraining
with SimSiam and SimCLR on ranking data successful. We
hope that our work will encourage adoption of unsupervised
pretraining in the ranking domain and provide more un-
derstanding on the nuances of applying machine learning
methods to the LTR problem.
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Figure 1. Histogram across all samples in Istella in feature 174. Note that nearly all the values are zero, while the vast minority of values
with nonzero values have a lot of variation in them. We hypothesize that zero represents a missing data value while the nonzero values
have a data value, which makes the outliers actually easier to rank than the “normal” values.

A. Related work
Classical LTR work. The current state-of-the-art for problems with tabular data is tree-based learners. In particular, the
dominant model currently used in tabular LTR problems is gradient boosted decision trees (GBDTs) (Friedman, 2001).
GBDT models, which perform well on tabular data, are adapted to the LTR setting via losses that are surrogates for ranking
metrics like NDCG. Surrogate losses (including LambdaRank/RankNet (Burges, 2010) and PiRank (Swezey et al., 2021))
are needed because many important ranking metrics (like NDCG) are non-differentiable. The combination of tree-based
learners and ranking losses has become the de-facto standard in ranking problems, and deep models have yet to outperform
them convincingly (Qin et al., 2021).

Deep tabular models. Given the success of neural methods in many other domains, there have been many attempts to
adapt deep models to the tabular domain. TANGOS introduced special tabular-specific regularization to try to improve deep
models’ performance (Jeffares et al., 2023). FT-transformer and TabTransformer were introduced as transformer-based
approaches to tabular data (Gorishniy et al., 2021; Huang et al., 2020). All these models have failed to convincingly
outperform tree-based methods based on their own evaluations.

Self-supervised learning. Self-supervised learning (SSL) has improved performance in settings where there is a significant
source of unlabeled data like text (Devlin et al., 2018) and images (Chen et al., 2020a). In SSL, deep models are first
pretrained on unlabeled data to learn useful representations for the data, and are then finetuned on labeled data. The core
idea behind prominent SSL approaches like SimSiam and SimCLR is to carefully perturb input training samples, and train a
representation that is consistent for transformations of the same sample. This provides robustness to natural perturbations
and noise in data (Hendrycks et al., 2019). SSL has recently been applied to the tabular domain (Majmundar et al., 2022;
Ucar et al., 2021) (MET, SubTab). Neither were evaluated in the ranking setting, and both were unable to convincingly and
consistently outperform GBDTs in their experimental evaluations on real tabular data. Hence, it is unclear how to apply SSL
to tabular LTR problems.

B. Background
B.1. SimCLR

We first summarize the original SimCLR (Chen et al., 2020a). First, for a data point xi,j , we produce stochastically
augmented versions x(1)

i,j and x
(2)
i,j which are called a positive pair. Second, a base encoder h(·) and projection head g(·)

map x
(1)
i,j to z

(1)
i,j = g(h(x

(1)
i,j )) and x

(2)
i,j to z

(2)
i,j = g(h(x

(2)
i,j )). Then we optimize the InfoNCE loss (Oord et al., 2018) to

push z
(1)
i,j and z

(2)
i,j closer to each other in cosine similarity, and z

(1)
i,j farther from other augmented data points (also in cosine
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Table 2. Comparison of augmentations across datasets on test NDCG (higher is better). Averaged over 5 trials. We bold the best two
values on each metric, and underline the worst value. GBDT is the GBDT baseline, “no pretrain” is the deep model baseline without
pretraining. The GBDT baseline has no variance because the labeled training dataset is small. We observe two methods that outperform
non-pretrained methods on all metrics: SimSiam qg with c = 0.7, and SimCLR zeros c = 0.2.

Method MSLR30K robust Yahoo robust Istella robust

GBDT 0.2799 0.1599 0.5342 0.4721 0.5450 0.5473

No pretrain 0.3464 ± 0.0083 0.2572 0.5752 ± 0.0048 0.4922 0.5387 ± 0.0056 0.6084

SimSiam zeros c = 0.2 0.3559 ± 0.0086 0.2953 0.6140 ± 0.0058 0.5197 0.5252 ± 0.0077 0.6052
SimSiam qg c = 0.2 0.3345 ± 0.0333 0.2615 0.6095 ± 0.0079 0.5145 0.5335 ± 0.0059 0.6204

SimSiam zeros c = 0.7 0.3600 ± 0.0032 0.2685 0.6079 ± 0.0080 0.5224 0.5390 ± 0.0105 0.6333
SimSiam qg c = 0.7 0.3581 ± 0.0022 0.2815 0.6008 ± 0.0073 0.5093 0.5512 ± 0.0065 0.6334
SimSiam Gaussian 0.3556 ± 0.0052 0.2744 0.6112 ± 0.0041 0.5117 0.5422 ± 0.0059 0.6494

SimCLR zeros c = 0.2 0.3533 ± 0.0066 0.2547 0.6019 ± 0.0078 0.5041 0.5689 ± 0.0102 0.6424
SimCLR qg c = 0.2 0.3428 ± 0.0053 0.2282 0.6044 ± 0.0050 0.5174 0.5501 ± 0.0020 0.6342

SimCLR zeros c = 0.7 0.3416 ± 0.0117 0.2294 0.5999 ± 0.0045 0.5144 0.5479 ± 0.0106 0.6232
SimCLR qg c = 0.7 0.3435 ± 0.0082 0.2410 0.6109 ± 0.0020 0.5147 0.5434 ± 0.01031 0.6315
SimCLR Gaussian 0.3561 ± 0.0054 0.2519 0.6063 ± 0.0027 0.5171 0.5657 ± 0.0074 0.659

Table 3. Comparison between SimCLR and SimCLR-rank.

Method MSLR30K robust Yahoo robust Istella robust

SimCLR Gaussian 0.3561 ± 0.0054 0.2519 0.6063 ± 0.0027 0.5171 0.5657 ± 0.0074 0.659
SimCLR-rank Gaussian 0.3534 ± 0.0059 0.2508 0.6052 ± 0.0027 0.5171 0.5805 ± 0.0022 0.6353

similarity) (Chen et al., 2020a). The main idea is to train the neural net to give a common representation to two augmented
views of the data (maximize similarity between positive pairs), while not allowing the neural net to simply give the same
representation to all inputs (minimize similarity to negative pairs).

B.2. SimSiam

SimSiam (Chen and He, 2021) similarly takes a data point xi,j and produces stochastically-augmented versions x(1)
i,j and

x
(2)
i,j , which are called a positive pair. We pass the first sample of the pair through the base encoder h(·), projector g(·), and

predictor pred(·), to get p(1)i,j = pred(g(h(x(1)
i,j ))); we pass the second sample through just the base encoder and projector

to get z(2)i,j = g(h(x
(2)
i,j )). Then we maximize the cosine similarity of p(1)i,j and z

(2)
i,j , while treating z

(2)
i,j as a constant in the

backpropagation. Unlike SimCLR, there are no “negative” pairs, i.e., the loss function does not try to push the representation
of z(1)i,j farther from other samples’ augmentations.

C. Empirical Study
C.1. Datasets

For all three datasets, we assume 0.1% of query groups in the training set of each dataset is labeled, while the rest is
unlabeled. To evaluate our methods, we provide both the plain test NDCG@5 (measure of performance on the entire dataset)
and the robust-NDCG@5 (measure of performance on queries with outlier feature values). We use the term NDCG to mean
NDCG@5. We provide the precise methodology used to measure robust-NDCG in the following subsection.

C.2. Details on augmentation study

Baselines. We compare against two baselines that do not use unsupervised pretraining. The first is “GBDT”, which is a
gradient boosted decision tree implemented on lightgbm (Ke et al., 2017), trained on the labeled training data. We grid
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Table 4. Effect of changing the number of linear probing layers on pretrained models wrt to test NDCG and test robust-NDCG. “end-to-end”
refers to finetuning the entire network. “Finetune strategy” refers to the number of layers appended to the end of the frozen pretrained
model that are finetuned. Numbers are from single runs, except for “end-to-end” (where we are finetuning end-to-end, or full finetuning),
which are an average over 5 runs. A few observations: (1) just one layer leads to unacceptable performance across all datasets across both
methods (2) more layers helps both the SimSiam and SimCLR models, but helps the SimCLR model much more (3) more layers increases
the performance on robust metrics (4) with enough layers appended, SimCLR with frozen pretrained representations is competitive with
fully finetuned SimCLR. We bold the best entries for each metric, and underline the worst for each metric for both SimSiam and SimCLR.

Method Finetune Strategy MSLR30K Yahoo Istella

No pretrain - 0.3464 0.5753 0.5387

SimSiam +1 layer (linear probing) 0.2208 0.4234 0.2812
SimSiam +4 layer (non-linear probing) 0.2362 0.5097 0.3573
SimSiam +7 layer (non-linear probing) 0.2364 0.4687 0.3472
SimSiam end-to-end 0.3559 0.6140 0.5512

SimCLR +1 layer (linear probing) 0.2930 0.4713 0.3117
SimCLR +4 layer (non-linear probing) 0.3331 0.6009 0.5385
SimCLR +7 layer (non-linear probing) 0.3587 0.5994 0.5496
SimCLR +10 layer (non-linear probing) 0.3513 0.5973 0.5477
SimCLR end-to-end 0.3561 0.6063 0.5658

searched on the following parameters: num leaves [16, 31, 96], n estimators [10, 31, 96, 200], min child samples [10, 20,
60, 200], learning rate [0.1, 0.01], used early stopping based on validation accuracy and reported the best test accuracy.
Second is “No pretrain”, which is a five-layer MLP (multi-layer perceptron) trained only on the labeled training data, and
using the default parameters from PT-ranking. The loss function used for both baselines is LambdaRank (Burges, 2010).

Training details. For the pretrained models, we select an augmentation and value of c and then pretrain with either SimSiam
or SimCLR for 300 epochs on the entire training dataset. For SimSiam, we use a sample (as opposed to query group) batch
size of roughly 200000, while for SimCLR we have a batch size of roughly 5000. In general, it has been found that larger
batch sizes benefit both SimSiam and SimCLR (Chen and He, 2021), so we try to set it as high as possible for each method.
In the pretraining phase, we train with a learning rate of 5e-4 while in the finetuning phase we train with a learning rate of
1e-5. We do full finetuning, i.e. the entire network is trained during the finetuning phase. The optimizer we use is Adam
with default Pytorch parameters. We finetune the entire network, which is a five-layer MLP like the “No pretrain” baseline,
and also use the LambdaRank loss (Burges, 2010).

C.3. Details on finetuning in ranking

In this section we study different finetuning methods and how they impact final test NDCG.

Background. Typically in unsupervised pretraining literature the preferred way to compare pretraining methods against
each other is via linear probing. In linear probing, one pretrains a model, freezes it, and learns a linear model using its frozen
representations on the labeled data (Chen and He, 2021; Chen et al., 2020a; Grill et al., 2020; Chen et al., 2020b). One
alternative choice to this is finetuning the deep model end to end without freezing after adding one or more layers on top
of it (we call this full finetuning). A second alternative is to freeze the pretrained model and learn a model with possibly
multiple layers using its frozen representations on the labeled data, which we call probing. We will compare these three
methods on our ranking problem.

Training details. Aside from “no pretrain” and entries with “end-to-end” (meaning that we do full finetuning where we
update all weights during training), we take a particular checkpoint of a pretrained model, add one or more linear layers
(number is specified by Layers column), and finetune only those layers with a learning rate of 1e-5. All are single runs,
except for “no pretrain” and when “end-to-end”, which are over five trials and copied over from Table 3. For SimSiam, we
use a pretrained checkpoint that was pretrained using the qg augmentation at c = 0.7. For SimCLR, we use a pretrained
checkpoint that was pretrained using the Gaussian augmentation.

10



Table 5. Ablation study on sources of variance during finetuning. We find that much of the variability can be attributed to the random
initialization of finetuning layers. Details in Subsubsection C.4.1.

Method MSLR30K Yahoo Istella

Baseline 0.3561 ± 0.0054 0.6063 ± 0.0027 0.5657 ± 0.0074
Default finetuning settings 0.3487 ± 0.0057 0.6039 ± 0.0026 0.5718 ± 0.0018

Identity Finetune Init 0.3512 ± 0.0005 0.6039 ± 0.0005 0.5550 ± 0.0004
Identity Finetune Init + Full batch 0.3549 0.6007 0.5340

Table 6. Ablation study on sources of variance in pretraining. We find that optimizer (e.g. Adam vs SGD) and model choices (like
activation functions) have a big impact on the stability of results. Details in Subsubsection C.4.2.

Method MSLR30K Yahoo Istella

Baseline 0.3561 ± 0.0054 0.6063 ± 0.0027 0.5657 ± 0.0074
Identity Pretrain Init + Full batch 0.3308 ± 0.0178 0.5976 ± 0.0027 0.5608 ± 0.0010

Identity Pretrain Init + Full batch + c = 0.01 0.3273 ± 0.0196 0.5964 ± 0.0053 0.5477 ± 0.0118
Identity Pretrain Init + Full batch + c = 0.7 + SGD opt + ELU 0.2770 ± 0.0010 0.6187 ± 0.0015 0.4101 ± 0.0016

C.4. Details on variance study

C.4.1. FINETUNING VARIANCE

In Table 5 we find that the main source of variance in finetuning comes from the random initialization of the finetuning
layers. Methodology: we fix a pretrained model that was pretrained using SimCLR with Gaussian augmentation, and
perform an ablation study on various training choices in the finetuning, where the choices are: {Default finetuning settings,
Identity Finetune Init, Identity Finetune Init + Full batch}. In the first setting, we simply finetune using the protocol we had
used before (random initialization of finetuning layers, batched and shuffled training). In the second, we add five layers on
top of the pretrained model and initialize all matrices to the identity and the bias to zero. In the third, we both use the fixed
initializations above and also perform full gradient descent in the finetuning phase. We compare all of these against the
baseline, which is a model that is pretrained with SimCLR Gaussian and finetuned with default finetuning settings. All
results are averages over five trials, and the metric we use is NDCG.

C.4.2. PRETRAINING VARIANCE

In Table 6 we perform an ablation study on possible sources of pretraining variance when we zero out the finetuning variance
(by using full batch training in finetuning and fixing the finetuning initializations as in Table 5). In this table we find that
variance coming from augmentation in the pretraining is unavoidable, but we can dampen the effect of it by: (1) removing
other sources of variance like initialization and batch size, (2) adopting training strategies that are less noisy. The baseline
is a pretrained model that was pretrained using SimSiam qg 0.7 using the default pretraining and finetuning settings from
Section 4.1. We have four different pretraining settings that we perform an ablation study over: {Identity Pretrain Init + Full
batch, Identity Pretrain Init + Full batch + c = 0.01, Identity Pretrain Init + Full batch + c = 0.7 + SGD opt + ELU }. From
the first two experiments, we find that removing initialization variance, batch size variance, and decreasing augmentation
variance as much as possible was insufficient to reduce pretraining variance. In the last experiment, we use SGD and ELU
activation in the pretraining (as opposed to Adam and GeLU/ReLU), which reduced the variance significantly. However,
average test NDCG suffered greatly for two out of three datasets (all except Yahoo Set1).

D. Synthesis Details
D.1. SimCLR-Rank vs SimCLR

To keep this section self-contained, we will repeat the exposition on SimCLR in Section B.1.

First, for a data point xi,j (i-th query group, j-th item in the query group), we produce stochastically augmented versions x(1)
i,j

and x
(2)
i,j which are called a positive pair. Second, a base encoder h(·) and projection head g(·) map x

(1)
i,j to z

(1)
i,j = g(h(x

(1)
i,j ))
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and x
(2)
i,j to z

(2)
i,j = g(h(x

(2)
i,j )). Then we optimize the InfoNCE loss (Oord et al., 2018) to push z

(1)
i,j and z

(2)
i,j closer to each

other in cosine similarity, and z
(1)
i,j farther from other augmented data points (also in cosine similarity) (Chen et al., 2020a).

Precisely, the loss for SimCLR looks like this for each augmented datapoint xi,j :

ℓi,j = −log
exp(sim(z

(1)
i,j , z

(2)
i,j )/τ)∑B

q=1

∑Lq

k=1 1[i ̸= q or k ̸= j][exp(sim(z
(1)
i,j , z

(1)
q,k)/τ) + exp(sim(z

(1)
i,j , z

(2)
q,k)/τ)]

+−log
exp(sim(z

(1)
i,j , z

(2)
i,j )/τ)∑B

q=1

∑Lq

k=1 1[i ̸= q or k ̸= j][exp(sim(z
(2)
i,j , z

(1)
q,k)/τ) + exp(sim(z

(2)
i,j , z

(2)
q,k)/τ)]

Where B is the number of query groups in the batch, τ is a temperature parameter, and sim(·) and the final loss is averaged
across all the available (i, j) in the batch. For SimCLR-Rank, the loss is replaced with

ℓi,j = −log
exp(sim(z

(1)
i,j , z

(2)
i,j )/τ)∑Li

k=1 1[k ̸= j][exp(sim(z
(1)
i,j , z

(1)
i,k )/τ) + exp(sim(z

(1)
i,j , z

(2)
i,k )/τ)]

+−log
exp(sim(z

(1)
i,j , z

(2)
i,j )/τ)∑Li

k=1 1[k ̸= j][exp(sim(z
(2)
i,j , z

(1)
i,k )/τ) + exp(sim(z

(2)
i,j , z

(2)
i,k )/τ)]

Where the final loss is averaged across all the available (i, j) in the batch. Note the difference in the denominator, which
now is summed only over the items within the query group as opposed to the entire batch.
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