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ABSTRACT

Large Multimodal Models (LMMs) often rely on in-context learning (ICL) to
perform new visual question answering (VQA) tasks with minimal supervision.
However, ICL performance, especially in smaller LMMs, does not always improve
monotonically when increasing the number of examples. We hypothesize that this
happens because the LMM is overwhelmed by extraneous information in the image
embeddings that is irrelevant to the downstream task. To address this, we propose
a meta-learning approach that induces few-shot capabilities in LMMs through a
fixed set of soft prompts distilled from task-relevant visual features, which are
adapted at test time using a small number of examples. We facilitate this distillation
through an attention-mapper module that can be easily integrated with any LMM
architecture and is jointly learned with soft prompts. Evaluation on the VL-ICL
Bench shows that our method successfully achieves task adaptation in low-data
regimes with just a few gradient steps, outperforming ICL by 21.2%. Comparisons
with parameter-efficient finetuning methods demonstrate that meta-learning further
enhances this adaptation by 7.7% for various VQA tasks.1

1 INTRODUCTION

Humans have the remarkable ability to quickly learn new tasks in multimodal environments with
just a few trial-and-error attempts. Extensive research in cognitive science suggests that this ability
arises from learning hierarchical abstractions and maintaining shared structural priors across related
tasks based on past experiences (Griffiths et al., 2019; Finn, 2018; Kirsch & Schmidhuber, 2022).
Drawing on this prior knowledge enables rapid learning in new situations and reduces the need for
large amounts of task-specific demonstrations (Finn et al., 2017).

Large Multimodal Models (LMMs) are able to perform a multitude of tasks ranging from reasoning
to fine-grained image understanding and visual question answering (Liu et al., 2024; Li et al.,
2023a; Laurençon et al., 2024). They are typically built on top of a base Large Language Model
(LLM) by supplementing it with a vision encoder and a connecting module that acts as a bridge
for different modalities to interact. When (pre)trained at sufficient scale and finetuned on a wide
range of multimodal tasks (with natural language instructions), LMMs can learn new tasks by virtue
of in-context learning (ICL), i.e., by being prompted with a few input-output examples, without
requiring any updates to model parameters (Zhao et al., 2024; Zong et al., 2025; Coda-Forno et al.,
2023). Although the training-free nature of ICL has led to its rapid adoption across tasks and domains,
its underlying mechanism remains ill-understood (Hendel et al., 2023; Huang et al., 2024) and its
empirical behaviour can be inconsistent.

Zong et al. (2025) demonstrate that ICL is most effective for large-scale LMMs (∼72B parameters),
while smaller models (≤7B parameters) struggle with increasing in-context examples and their
performance either plateaus or deteriorates, even when extending the context length or giving detailed
instructions. They attribute this limitation to the fact that smaller models struggle with the large
number of image tokens in long sequences. They become confused and perform the task haphazardly
or default to their parametric knowledge, effectively ignoring the in-context examples. Figure 1 shows
a failure case from the Fast Open-Ended MiniImageNet dataset (Tsimpoukelli et al., 2021), using
LLaVA-OneVision-7B (Li et al., 2025). The task is framed in a 2-way N-shot format where a support

1We provide our code for better reproducibility.
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Figure 1: Failure case of LLaVA-OneVision-7B (Li et al., 2025) on an example from the Fast Open-
Ended MiniImageNet classification task (Tsimpoukelli et al., 2021). When no in-context examples
are provided (0-shot), the model generates a generic description of the image. As more examples
(shots) are added, it begins to learn the answer format (single word), but still fails to grasp the task,
producing incorrect or irrelevant predictions. We only show the in-context examples (left) for 2-way
1-shot setting for the sake of brevity but provide model predictions (in red) for up to 5 shots.

set with N labeled examples of two classes is provided. The model uses ICL with the support set to
classify new query examples from the two classes. Without any support set or in-context examples
(0-shot), the model outputs a generic description about the image based on parametric knowledge and
ultimately fails to answer correctly, despite being prompted with a few examples.
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Figure 2: I2T and T2T performance with
LLaVA-OneVision-7B on Operator Induction
and CLEVR Count Induction tasks.

Building on this observation, we hypothesize that ef-
fective few-shot adaptation at test time may be com-
promised by the information added by the image
embeddings. In Figure 2, we compare the Image-to-
Text (I2T, red) and Text-to-Text (T2T, blue) perfor-
mance of LLaVA-OneVision-7B LMM on Operator
Induction and CLEVR Count Induction tasks (see
Appendix A.2.2). Our results reveal significant per-
formance gaps: ICL in T2T outperforms I2T, show-
ing monotonic improvement with additional shots.
We also observe a decline in performance, even when
adding detailed task instructions to I2T (green, see
Appendix A.2.1), which suggests that naively increas-
ing image embeddings in context impairs the model’s
inherent ICL ability. While a set of more precise im-
age embeddings would be preferable, their continu-
ous nature makes it challenging to distill task-specific
information from them. As an alternative, we propose
to learn a fixed set of new embeddings that can be easily finetuned at test time.

This idea of task adaptation has gained significant traction in the literature through prompt tuning
(Lester et al., 2021) which finetunes a set of continuous soft prompts while keeping the underlying
language model frozen; the prompts are prepended in the context at test time, effectively steering the
model toward the desired task. Our approach learns new tasks using soft prompts that receive task
information from the LLM in the form of loss gradients during finetuning. These gradients update
the soft prompts which when fused with the image embeddings are able to distill relevant features
from them. To facilitate this fusion, we propose an attention-mapper that uses a multi-head attention
(Vaswani et al., 2017) architecture for extracting relevant task-specific image information and can be
substituted in the projection layer of any LMM architecture.

Our approach relies on rapidly adapting to new tasks at test time using only a few examples, which is
not addressed by traditional finetuning methods. Prior work (Finn et al., 2017; Ravi & Larochelle,
2017) addressed this challenge by training a meta-learner that can infer an optimal learning strategy
for a new task after being exposed to a distribution of tasks. We apply this procedure to our multimodal
prompt distillation setting by employing the widely known MAML algorithm (Finn et al., 2017) and
use its lightweight first-order approximation to train the attention-mapper and soft prompts. We focus
on visual question answering (VQA; Antol et al. 2015; see example in Figure 1), a general-purpose
task often used to evaluate the image understanding capabilities of LMMs, and demonstrate the
benefits of MAML training applied to LMM architectures. Our contributions are as follows:
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• We introduce MAPD (Meta-Adaptive Prompt Distillation), an alternative to in-context
learning that meta-learns a fixed set of soft prompts within large multimodal models (LMMs)
via distillation. MAPD enables adaptation to new tasks with a few examples using a few
gradient updates at test time, and consistently improves performance as the number of shots
increases. To our knowledge, this is the first exploration of meta-learned prompt distillation
for cross-task generalization in LMMs under low-data settings.

• We propose a flexible attention-mapper module, derived from Najdenkoska et al. (2023),
that utilizes all the patch features from the vision encoder and can be easily incorporated into
the projection layer of any LMM architecture. It is trained jointly with soft prompts and can
be easily adapted at test-time to facilitate the distillation of task-specific visual information.

• Extensive evaluation on VL-ICL Bench.2 (Zong et al., 2025), a diverse benchmark for image
perception and mathematical reasoning, demonstrates that our approach outperforms ICL
and several other prompt distillation and parameter-efficient finetuning methods.

2 RELATED WORK

Our approach, Meta-Adaptive Prompt Distillation (MAPD), builds upon several existing research
areas including few-shot learning, prompt tuning and test-time adaptation.

Multimodal Few-shot Learning Learning from a few examples has been a long-standing goal in
machine learning. Early work by Vinyals et al. (2016) introduced Matching Networks for one-shot
image-to-text classification. This approach leverages a support set of labeled images to classify an
unlabeled query image, laying the foundation for few-shot learning in vision tasks. With the advent
of large language models (LLMs) and large multimodal models (LMMs; Alayrac et al. 2022; Zhao
et al. 2024), in-context learning (ICL; Zhao et al. 2024; Lester et al. 2021) has emerged as a popular
method for few-shot adaptation. ICL involves providing a few input-output examples directly in the
model’s prompt without updating its parameters. While this is a computationally inexpensive method,
its performance for LMMs can be inconsistent (Zong et al., 2025) and may even degrade as more
examples are added, particularly in smaller models.

Learning with prompts Another widely accepted way to adapt models on task-specific data is
by optimizing prompts given as input to the model. Wang et al. (2022) explored this idea with
small language models (∼ 0.1M params) like BERT for text classification tasks. Later works (Hou
et al., 2022), proposed used soft prompts as optimizing over language tokens is limited by the
model’s vocabulary. Further, Khattak et al. (2023) introduced PromptSRC for CLIP-based vision-
language encoders, mitigating soft prompt overfitting. These works show good performance on
classification tasks but their extension to LLM-based architectures and more complex problems like
question-answering and mathematical reasoning remains limited.

Test-Time Adaptation These methods aim to dynamically adapt models during inference on test
examples, that may have distributional differences from the training data. This adaptation can either
involve training of model parameters (Hardt & Sun, 2024) or can be entirely training free (Karmanov
et al., 2024). Additionally, previous work (Hu et al., 2025) has taken advantage of prompt tuning
and other PEFT methods such as LoRA (Hu et al., 2022) to resolve catastrophic forgetting issues
during test time training and achieve state-of-the-art performance. Shu et al. (2022) propose Test-time
Prompt Tuning (TPT), a method that adapts vision-language models for zero-shot classification by
tuning soft prompts on image augmentations. Previous work (Najdenkoska et al., 2023; Li et al.,
2023b) has also explored meta-learning of soft prompts for small models and a limited range of
vision-language tasks such as fast-concept binding.

We extend upon this idea to provide an alternative for few-shot adaptation in LMMs. Specifically, we
design a meta-learning procedure, namely MAPD, to learn soft prompts that can distill task-relevant
visual features from image embeddings and can be rapidly adapted at test time for a variety of new
tasks using a few examples. Najdenkoska et al. (2023) only uses a single [CLS] token from CLIP’s
vision encoder, that limits the attention-mapper’s capacity. Instead we propose to use the complete
set of hidden patch features, enabling the attention-mapper to encode detailed visual information for
distillation into soft prompts. We show that MAPD can be applied to any LMM architecture and
achieves state-of-the-art performance on visual question answering tasks (Antol et al., 2015).

2We only focus on single-image few-shot VQA tasks and leave the multi-image scenario for future work.
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Figure 3: Our proposed MAPD framework based on LLaVA v1.5-7B (Liu et al., 2024): im-
age embeddings are distilled into soft prompts P during instruction finetuning. The support set
(Xsupp

v , Xsupp
q , Xsupp

a ) is processed initially to the obtain loss value Lsupp which is used in the inner-
loop to obtain task-specific parameters {θ′, P ′}. Next, the query set (Xquery

v , Xquery
q , Xquery

a ) is used
to calculate the query loss for the outer-loop meta-parameter optimization {θ, P}.

3 PROBLEM FORMULATION

3.1 FEW-SHOT VISUAL QUESTION ANSWERING

Visual Question Answering (VQA; Antol et al. 2015) is a key task for evaluating the ability of
vision-language models to understand images by accurately responding to questions about various
aspects of visual content. These questions can vary widely, ranging from descriptions of objects
inside bounding boxes (Krishna et al., 2017) to solving high-school geometry problems (Gao et al.,
2025), but are mostly grounded in the visual information present in the image.

In VQA, we typically have a dataset D = {(Xi
v, X

i
q, X

i
a)}

|D|
i=1 where Xv ∈ I, Xq ∈ Q and Xa ∈ A,

and I is the set of all images, Q the set of all questions, and A the set of all answers. Our goal
is to learn a function fθ parametrized by θ, that maximizes the likelihood of the answer given the
image and the question,

∏|D|
i=1 pθ(X

i
a|Xi

v, X
i
q). Following the standard train-test paradigm in deep

learning, we evaluate whether fθ generalizes well by dividing dataset D into (Dtrain, Dtest) such
that maximizing the above likelihood on Dtrain also maximizes the likelihood of answer on Dtest.
A common assumption is that the size of Dtrain is large enough so that function fθ does not overfit
on Dtrain. In the context of few-shot VQA, we treat the in-context examples (or shots) given to an
LMM during ICL as Dtrain. Since the examples in Dtrain are limited (as few as 1-shot), it becomes
harder to avoid overfitting while training and still perform well on Dtest. We conceptualize this
problem as one of learning about an underlying task represented by Dtrain and adopt meta-learning
(Finn et al., 2017) which exploits the shared structure across a distribution of tasks to learn a prior over
model parameters, thereby enabling stable transfer to new tasks with limited data. In the following,
we describe how we enforce this prior over parameters through the curation of meta-tasks containing
few-shots. A sketch of our model architecture and training procedure is shown in Figure 3.

3.2 IMPROVING TASK UNDERSTANDING WITH META-TASKS

The core idea of optimization-based meta-learning is to learn a good initialization of parameters,
which when finetuned on a specific task, enables stable transfer for that task with a few gradient
steps (Finn et al., 2017). To promote this capability, training involves processing batches of few-shot
datasets that represent an underlying task. We refer to these few-shot datasets as meta-tasks and
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propose to create them from our finetuning data mixture based on the original LLaVA datasets. We
provide details of our specific data mixture in Appendix A.1.1.

More formally, let p(D) denote our data mixture. We create meta-task T j by randomly sampling
a fixed subset of VQA examples (image, question, answer triplets) from dataset Di ∼ p(D) and
partitioning the examples further into support and query sets T j = {Dsupp, Dquery}. To be consistent
with the notation introduced in Section 3.1, we treat the support set as Dsupp ≡ Dtrain and the query
set as Dquery ≡ Dtest. We continue this process until all samples from Di have been assigned to at
least one meta-task. This meta-task construction is performed for each dataset in p(D), resulting in
meta-task distribution p(T meta). We now describe our model architecture designed to process these
meta-tasks. Further details on the number and composition of meta-tasks for training and evaluation
are provided in Appendix A.1.2.

3.3 MODEL ARCHITECTURE

We design our LMM architecture (Figure 3) based on the visual instruction tuning framework of
LLaVA v1.53 (Liu et al., 2024) and further describe our modifications for incorporating the attention-
mapper. For clarity, we omit the distinction between support and query sets in this section as both
are processed in the same manner. As shown in Figure 3, the model consists of a pretrained CLIP
ViT-L/14 visual encoder (gψ) with an aspect ratio of 336px; for an input image Xv, the encoder
gives us hidden visual features Zv which are then passed to the projection layer that consists of an
attention-mapper Mθ responsible for extracting useful features from Zv .

Attention Mapper We re-design the projection layer of LLaVA v1.5 to include soft prompts P
by introducing an attention-mapper Mθ for improved task-specific feature extraction. Specifically,
we prepend Zv with a set of m learnable prompt tokens P to obtain a sequence C = (P,Zv) which
is then passed to the attention-mapper (see Figure 3). Both prompt tokens P and weights θ are
initialized with Xavier Uniform initialization (Glorot & Bengio, 2010). We define the mapper as:

Hp+v = Mθ(Q,K, V ) = σ(QKT ) ∗ V (1)

where the query is Q = Mq
θ · C ; , the key is K = Mk

θ · C ; , the value is V = Mv
θ · C, and their

corresponding matrices are {Mq
θ ,M

k
θ ,M

v
θ }. The mapper computes the dot product of the query

and key vectors which are then passed to a softmax function to compute activation scores for every
feature in vector V . Finally, we extract the first m embeddings corresponding to the learnable prompt
tokens from the set Hp+v that correspond to the task-specific image embeddings Hp. These are now
passed to the LLM (fϕ) as prompts for further processing. We denote the trainable parameters for the
attention-mapper with θp = {θ, P}.
Language Model The quality of the learned prompts highly depends on the underlying language
model. We update the LLM of LLaVA v1.5 with the state-of-the-art Qwen2.5-7B-Instruct LLM,
which has demonstrated strong performance on complex tasks such as mathematical reasoning and
coding and supports the generation of up to 8K tokens. The LLM (fϕ) receives the concatenated
sequence of image and text tokens to generate the answer Xa = fϕ([Hp, Hq]). In this pipeline, only
the attention mapper parameters θp are trained, making our approach parameter-efficient for cross-task
generalization. The number of trainable parameters is approximately 24M (see Appendix A.1.3
for hyperparameters). The training objective maximizes the likelihood function, pθp(Xa|Xv, Xq),
parametrized by θp, where Xa is the answer, Xv is the image, and Xq is the question. For clarity, we
refer to this model, namely LLaVA-ATT-Qwen2.5 7B, as our base LMM in the following sections.

3.4 MODEL TRAINING

We train the attention mapper parameters to learn image-conditioned soft prompts in two stages
following a curriculum learning procedure similar to LLaVA v1.5 (Liu et al., 2023). In the first-stage,
which is aimed at feature alignment, the attention-mapper is pretrained on the LCS-558K subset
of the LAION/CC/SBU dataset filtered with a more balanced concept coverage (Liu et al., 2023).
Further details on pretraining are mentioned in Appendix A.1.4. In the second stage, which aims to

3We adopt LLaVA v1.5 due to its simplicity and publicly available training code and datasets (Section
A.1.1). This prevents mixing between training and test datasets and enables evaluation over unseen tasks. We
demonstrate in Section 4.3 that our method can be easily applied to other LMM architectures.
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distill task-specific image features into prompts Hp, the attention-mapper parameters θp are finetuned
on diverse task-specific instructions. We describe our MAML-based finetuning procedure below and
also introduce alternative methods which we compare against in our experiments.

3.4.1 LEARNING TO DISTILL PROMPTS WITH FIRST-ORDER META LEARNING

Our prompt distillation procedure, MAPD, uses the model-agnostic first-order approximation of
MAML (Finn et al., 2017) which aims to learn a robust initialization of meta-parameters that enable
efficient adaptation to new tasks with just a few gradient updates. We borrow the implementation
of Antoniou et al. (2019) and use their first-order version and (learnable) per-step learning rates (α)
to further optimize the training process. We sample a batch B of meta-tasks from p(T meta) and use
the support set of each task to convert θp into task specific parameters θ′p with a few gradient steps.
Equations (2) and (3) show a single step of this inner loop:

Lsupp
θp

=
−1
|Dsupp|

|Dsupp|∑
i=1

log(pθp(X
i
a|Xi

v, X
i
q)) (2) θ′p = θp − α∇θpL

supp
θp

(3)

The outer loop involves optimizing the meta-parameters which in our case are the original attention-
mapper parameters θp on the query set using the task-specific parameters θ′p:

Lquery
θ′p

=
−1
|Dquery|

|Dquery|∑
i=1

log(pθ′p(X
i
a|Xi

v, X
i
q)) (4) θp := θp − β

|B|∑
j=1

∇θ′p,jL
query
θ′p,j

(5)

Equation (5) is the first-order approximation of the meta-update in MAML (Finn et al., 2017)
that treats the gradient of θ′p,j w.r.t. θp for a meta task as a constant. This approximation avoids
backpropagating through the entire computation graph of the inner loop and avoids the Hessian-vector
product estimation of the query loss. This saves huge GPU memory while still approximating a
gradient in the same direction as the true MAML gradient (Weng, 2018). We provide a sketch of
MAPD training in Figure 3 and a more detailed algorithm in Appendix A.1.5 as Algorithm 1

3.4.2 ALTERNATIVE METHODS FOR PROMPT DISTILLATION

We also implement other prompt distillation methods based on our model architecture to compare
their performance with MAPD on few-shot VQA tasks. We provide a more formal description of
these methods below, highlighting important differences from our framework.

Multi-Task Prompt Distillation We define a multi-task baseline where we eliminate the bi-level
optimization of MAPD. Specifically, at each iteration, we sample a batch of meta-tasks from p(T meta)
and optimize the following loss per task:

Lθp =
−1
N

N∑
i=1

log(pθp(X
i
a|Xi

v, X
i
q)) (6)

such that N = |Dsupp|+ |Dquery|. This loss is accumulated across the entire batch of meta-tasks used
to update θp. We refer to this baseline as Multi-TaskPD.

In-Context Prompt Distillation Previous work (Chen et al., 2022; Min et al., 2022) suggests it is
possible to meta-learn task information by reducing the bi-level optimization of MAML to a sequence
prediction problem over in-context examples with the help of pretrained LLMs. We develop a method
called In-ContextPD, where we concatenate the support set with each query example in a meta-task,
and optimize the following loss function to distill this task information from LLMs into soft prompts:

Lθp =
−1
|Dquery|

|Dquery|∑
i=1

log(pθp(X
i
a|Xi

v, X
i
q, D

supp)) (7)

Methods without Meta-tasks To further understand the benefit of curating meta-tasks (see Sec-
tion 3.2), we compare with the original finetuning procedure of LLaVA-v1.5 7B but only train θp
without any meta-tasks for fair comparison. We refer to this method as NoMeta-taskPD in subsequent

6
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sections. We also compare with model averaging, which is computationally efficient and has been
shown to increase performance on out-of-distribution datasets (Choshen et al., 2022; Wortsman et al.,
2022).We separately finetune the attention-mapper on each dataset Di ∼ p(D), and take an average
of all dataset-specific parameters θip weighted by their corresponding dataset size ratios:

θavg
p =

|D|∑
i=1

θip · wi (8)

where wi = |Di| / |D|. We refer to this baseline as Model-AvgPD in subsequent sections.

3.5 TEST-TIME ADAPTATION

After learning optimal parameters with MAPD and alternative distillation strategies, we adapt the
attention-mapper to a new (test) task by finetuning for K gradient steps. We empirically validate that
choosing K ≤ 30 is sufficient for all prompt distillation methods to converge, which we attribute
to our adaptation procedure training only 24M parameters over a few examples at test-time. We
further explain how we select this value in Appendix A.2.3. Given K ≤ 30 steps, we perform
task-specific finetuning of the parameters θp on the support set Dsupp

test of test task T jtest, using the
inner-loop optimizer mentioned in equation 3. We then evaluate model performance on the query set
Dquery

test for that task.

4 EXPERIMENTAL RESULTS

4.1 EVALUATION DATASETS

For evaluation purposes, our test datasets follow the same structure as the meta-tasks introduced in
Section 3.2, with support and query examples. We use the recently introduced VL-ICL benchmark
(Zong et al., 2025), designed to test the ICL capabilities of LMMs on various tasks like fast concept
binding, multimodal reasoning, and fine-grained perception. Meta-tasks for testing are created by
randomly sampling a support set from the training split of the VL-ICL datasets and a test/query set
from their respective testing splits.4 In line with our training pipeline, which exclusively utilizes
datasets containing a single image per example (see Section A.1.1), we focus solely on single image-
to-text scenarios, leaving multi-image cases for future work. We report results on four tasks from
VL-ICL: a) Fast Open MiniImageNet (Open-MI), where the model must name new objects based
on a few examples; b) Operator Induction, where the model must solve image tasks of the type
2 ? 7 =? given training examples like 1 ? 3 = 4; c) CLEVR Count Induction, where the model must
count objects that satisfy given attributes like ”shape: sphere”; and d) TextOCR, where the model
must transcribe highlighted text contained in an image. We provide more details on these tasks in
Appendix A.2.2. The final model performance is calculated as the average across all meta-tasks.

4.2 MODEL COMPARISONS

Our results are summarized in Table 1, which compares MAPD against alternative prompt distillation
methods (see Section 3.4.2) and reports the mean accuracy of up to eight shots. We compare two types
of test-time adaptation methods, namely in-context learning (ICL) which prompts the underlying
LLM with no distillation of image embeddings and finetuning (FT) with K≤ 30 gradient steps, which
are further distinguished based on whether they use meta-tasks during training. Results for individual
shots are in Appendix A.2.4; additional results for more shots are in Appendix A.2.105.

Prompt distillation improves task induction in LMMs at test-time. Our results in Table 1 show
that FT adaptation with few-shots (support examples) largely outperforms ICL at test time evaluated
over query examples, with an average increase of 21.2% over all datasets. These results highly support
our hypothesis that distilling task-specific information from image embeddings to create targeted
prompts improves the few-shot capabilities of the underlying LLM (in our case Qwen-2.5-7B-Instruct).

4We also keep a separate validation set for each VL-ICL dataset (sampled from the training split) to select
the best model which we then evaluate on the test (query) set. More details can be found in Section A.2.3

5We also provide ICL performance of publicly available models in Appendix A.2.5 for reference.
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Methods MT Open-MI OP IND CLEVR TextOCR

TTA with ICL
NoMeta-taskPD ✗ 43.8± 0.9 12.1± 0.6 18.0± 0.2 6.8± 0.4
Model-AvgPD ✗ 26.6± 0.7 9.2± 0.5 7.6± 0.1 2.8± 0.3
In-ContextPD ✓ 51.1± 0.9 20.6± 0.8 24.1± 0.2 23.8± 0.3
Multi-TaskPD ✓ 48.6± 0.9 10.0± 0.6 12.5± 0.1 6.9± 0.4
MAPD ✓ 53.3± 0.9 9.60± 0.5 12.3± 0.1 7.30± 0.4

TTA with FT ≤ 30
NoMeta-taskPD ✗ 68.0± 0.8 38.8± 0.6 25.8± 0.2 22.5± 0.3
Model-AvgPD ✗ 63.1± 0.8 40.0± 0.6 29.1± 0.2 21.5± 0.3
In-ContextPD ✓ 64.5± 0.8 30.9± 0.5 30.9± 0.2 18.9± 0.3
Multi-TaskPD ✓ 74.6± 0.7 45.1± 0.5 29.9± 0.2 22.9± 0.4
MAPD ✓ 77.9± 0.7 47.7± 0.5 31.4± 0.2 26.4± 0.5

Table 1: Evaluation on tasks from the VL-ICL Bench (Zong et al., 2025) with LLaVA-ATT-Qwen2.5
7B as the base LMM. Each method trains 24M attention-mapper parameters. We report the mean
accuracy across shots {1, 2, 4, 5, 8} with 95% binomial confidence intervals and compare different
prompt distillation approaches. TTA:Test-Time Adaptation, FT: Finetuning with K ≤ 30 gradient
steps, ICL: In-Context Learning, MT: Meta-Tasks used (✓) or not (✗) during training. Qualitative
results arein Appendix A.2.5 and A.2.8.

LoRA Open-MI OP IND CLEVR TextOCR

TTA with FT ≤ 30
All LLM layers 55.1± 0.7 13.3± 0.6 15.1± 0.2 10.4± 0.4
[0-15] LLM layers 67.3± 0.8 25.5± 0.6 30.0± 0.2 23.8± 0.3
[0-15] LLM layers + ATT 69.1± 0.8 30.5± 0.5 28.7± 0.2 24.5± 0.3

Table 2: LoRA configurations for base LMM and evaluated on the VL-
ICL bench. We report the mean accuracy across shots {1, 2, 4, 5, 8}
with 95% binomial confidence intervals. ATT: Attention-Mapper; TTA:
Test-Time Adaptation; FT: Finetuning with K ≤ 30 gradient steps.

Additionally, our results
show that finetuning just
the attention-mapper param-
eters only requires a few
gradient steps (K ≤ 30)
at test-time to generalize
to unseen tasks and does
not lead to overfitting over
the support examples (Ap-
pendix A.2.3). For a one-
to-one comparison, we look
into In-contextPD, which performs better with FT on 3 out of 4 tasks compared to its ICL adaptation
and enables prompting the underlying LLM with a fixed set of learned task-specific embeddings.

Meta-learning and meta-tasks improve few-shot learning. Table 1 shows that methods using
meta-tasks are indeed superior. For ICL-based adaptation, In-ContextPD performs best, while for
FT-based adaptation, our proposed approach, MAPD, achieves the best overall performance across all
four datasets at test time. This further suggests that first-order MAML learns the best initialization of
attention-mapper parameters θp. These parameters are subsequently adapted for a test task with a few
gradient steps and few-shot examples to produce a precise set of soft prompts that improves LMM
predictions on that task. Our detailed results in Table 11 in Appendix A.2.4 further show that for
FT-based adaptation, MAPD is most effective in the 2-shot case for Operator Induction, surpassing
Multi-TaskPD by 10%. Finally, MAPD with FT is the only approach that exhibits strictly monotonic
improvements as the number of shots increases, showing better scaling behavior.

MAPD surpasses other efficient finetuning approaches for few-shot adaptation. We compare
MAPD with LoRA (Hu et al., 2022), a state-of-the-art parameter-efficient finetuning (PEFT) approach.
In Table 2, we integrate LoRA in the base LMM in three configurations and evaluate on VL-ICL:
(1) naively applying LoRA to all underlying LLM layers (as done in LLaVA v1.5; Liu et al. 2023)
increases the number of trainable parameters (∼ 300M) and the model finds it difficult to converge
within 30 gradient steps at test-time; (2) restricting LoRA to the first 16 LLM layers (∼ 24M
parameters) offers better test-time performance; and (3) adding LoRA to the attention-mapper
layers further boosts performance as it provides some distillation over the image embeddings before
prompting the underlying LLM. Ultimately, MAPD still outperforms the best LoRA configuration
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Figure 4: (a) Left: Performance comparison between MAPD+FT (M) and In-ContextPD+ICL (I).
Mean Accuracy is computed across all VL-ICL datasets. We consider different prompt token lengths
P = {4, 16, 64, 256} which are shown in log2(P ) scale for different shots. (b) Right: Performance
of different prompt distillation methods on three Operator Induction subtasks: Task Induction,
Perception, and Math Reasoning. We report mean exact-match (EM; %) for 1,2 and 8-shots as
defined in the VL-ICL Bench (Zong et al., 2025) except for Mathematical Reasoning, which uses
mean ratings generated by Qwen-2.5-VL-32B-Instruct. More details can be found in Appendix A.2.9

by an average of 7.7% across all VL-ICL datasets. This demonstrates that MAPD is the best choice
for achieving fast test-time adaptation in low-data scenarios. We provide additional LoRA training
details in Appendix A.1.4 and further detailed results can be found in Appendix A.2.4.

4.3 ABLATION STUDIES AND ANALYSIS
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Figure 5: Projection layer architectures in the base
LMM. SP: Soft Prompts, ATT: Attention-Mapper,
MLP: 2-layer MLP (originally used in LLaVA v1.5).

In this section, we present ablation studies
across various model architectures and sizes,
along with a more in-depth analysis of the
benefits of test-time fine-tuning using MAPD.
Please refer to appendix for further ablations
on testing 1) robustness to image perturbations
(Appendix A.2.7) and 2) different few-shot
selection strategies (Appendix A.2.8).

What are the benefits of the attention map-
per and soft prompts? In Figure 5, we com-
pare different architectural designs for the pro-
jection layer in the base LMM for rapid few-
shot learning. We clearly see that MAPD ben-
efits most by incorporating the attention-mapper and soft prompts (SP+ATT). We draw two key
conclusions from this experiment: (1) distilling task-relevant information from CLIP embeddings
with soft prompts yields substantial improvements, with an average gain of 16.3% across architectures.
(2) replacing the 2-layer MLP used in LLaVA v1.5 with an attention mapper leads to an additional
average gain of 13.1%, thanks to its inherent weighting mechanism of pairwise similarities over CLIP
embeddings.

How does the number of soft prompts affect performance? We examine how MAPD’s performance
changes with the number of soft prompts across varying shot settings for VL-ICL datasets in Figure
4(a). Additionally, we show results of our best ICL approach, In-ContextPD, as a baseline for this
comparison. We see that MAPD scales favorably and learns more consistent task information from
gradient updates at test time as the number of soft prompts is increased. Furthermore, its marginal
improvement per added prompt token is substantially greater when more shots are provided. In
contrast, the performance of In-ContextPD generally deteriorates with more prompts and struggles to
jointly attend to more examples and longer prompts.

To what extent does MAPD facilitate task understanding at test time? We take a closer look
at how effectively MAPD captures task understanding at test time, using the Operator Induction
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Vision Encoder LLM TTA NoMeta-taskPD Model-AvgPD In-ContextPD Multi-TaskPD MAPD

CLIP ViT-L/14 Qwen2.5-7B ICL 43.8± 0.9 26.6± 0.7 51.1± 0.9 48.6± 0.9 53.3± 0.9
Instruct FT≤30 68.0± 0.8 63.1± 0.8 64.5± 0.8 74.6± 0.7 77.9± 0.7

CLIP ViT-L/14
Qwen2.5-3B

Instruct
ICL 24.3± 0.7 30.5± 0.7 48.3± 0.9 39.1± 0.7 32.9± 0.7

FT≤30 56.5± 0.9 66.0± 0.5 47.5± 0.9 61.1± 0.8 67.3± 0.6

CLIP ViT-L/14 Vicuna v1.5-7B ICL 20.0± 0.7 26.2± 0.7 46.3± 0.9 29.1± 0.7 49.9± 0.9
FT≤30 69.1± 0.8 74.9± 0.4 66.7± 0.8 70.3± 0.7 75.8± 0.4

SigLIP-SO400M
Qwen2.5-7B

Instruct
ICL 42.6± 0.9 40.7± 0.9 47.3± 0.9 50.0± 0.9 43.6± 0.9

FT≤30 52.0± 0.9 56.5± 0.8 56.0± 0.8 59.3± 0.5 60.5± 0.5

CLIP ViT-L/14 Qwen3-8B ICL 55.0± 0.9 48.5± 0.9 63.5± 0.7 57.6± 0.5 60.3± 0.5
FT≤30 72.3± 0.9 69.1± 0.7 71.4± 0.9 80.4± 0.6 83.5± 0.6

Table 3: Comparison of prompt distillation approaches under different LMM settings while keeping
the attention-mapper and soft prompts fixed. We report mean accuracy across 1 to 5 shots with 95%
binomial confidence intervals for the OPEN MI benchmark. The original LLaVA-ATT-Qwen2.5
7B architecture is highlighted in gray. FT: Finetuning with K ≤ 30 gradient steps, ICL: In-Context
Learning, TTA: Test-Time Adaptation. NoMeta-taskPD and Model-AvgPD do not use meta-tasks.

task (See Figure 8) as a case study. To solve this task, the model should correctly (a) identify the
operands in the query example (Perception); (b) identify the operation from few-shot examples (Task
Induction); and (c) use its own mathematical knowledge over the identified elements to reason towards
the answer (Mathematical Reasoning). To test whether the model understands these subtasks, we
design specific prompts and modify query examples as listed in Appendix A.2.9. In Figure 4(b), we
observe that MAPD outperforms other prompt distillation approaches on all three subtasks, leading
to better performance on the original task. MAPD shows a major improvement for task induction
with an increase of 11.7% compared to MultiTaskPD. We also observe that solving each subtask
individually is easier than tackling the original task, as the latter requires integrating knowledge from
all subtasks, which is challenging when only a few shots are available at test time. Finally, MAPD
excels at mathematical reasoning, effectively utilizing the underlying LLM’s reasoning capabilities.

Does MAPD generalize across different LMM architectures? We next examine different LMM
architectures that affect MAPD’s performance. Specifically, we report results in four settings that vary
the underlying LLM and vision encoder: a) using a smaller LLM (Qwen2.5-3B-Instruct); b) using a
different and relatively weaker LLM (Vicuna v1.5-7B); c) using a different vision encoder, SigLIP
(Zhai et al., 2023); d) and using a relatively powerful LLM (Qwen3-8B) (Yang et al., 2025) . In
Table 3, MAPD outperforms other baselines with FT adaptation across different model configurations
on the Open MI task, demonstrating its robustness and generalizability. Fine-tuning based test-time
adaptation for prompt distillation substantially outperforms ICL, with average improvements of +24.6,
+37.06, +12.02, and +18.04 across the four settings, respectively. This highlights the significant
benefits of test-time prompt distillation.

5 CONCLUSION

This work introduced Meta-Adaptive Prompt Distillation (MAPD), a novel meta-learning approach
that endows LMMs with few-shot capabilities. MAPD employs a fixed set of soft prompts, distilled
from task-relevant image features, which can be efficiently adapted at test time using only a few
examples. A key component of our method is an attention-mapper module, which can be flexibly
integrated with any LMM architectures and is jointly learned with soft prompts to facilitate distillation.
Extensive evaluation on the VL-ICL benchmark shows that MAPD consistently outperforms tradi-
tional ICL and other efficient finetuning approaches across a diverse range of VQA tasks. Additional
analysis (presented in Appendix A.3) suggests that MAPD’s response time per query is higher than
ICL due to gradient-based adaptation but its performance scales better as test-time computational
budget is increased and is more data-efficient compared to ICL. Future work could focus on improving
MAPD’s computational efficiency for resource-constrained scenarios and extending it to multi-image
tasks and complex reasoning problems.
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A APPENDIX

1. Section A.1: Implementation Details
(a) Section A.1.1 Finetuning Data Mixture
(b) Section A.1.2 Details on Meta-Task Creation
(c) Section A.1.3 Model Configurations
(d) Section A.1.4 Training Details
(e) Section A.1.5 Psuedo Algorithm of MAPD

2. Section A.2 Evaluation
(a) Section A.2.1 Detailed Task Instructions for LMM Evaluation.
(b) Section A.2.2 Evaluation Datasets from VL-ICL Bench
(c) Section A.2.3 Test-Time Adaptation Details
(d) Section A.2.4 Detailed Results on VL-ICL Bench
(e) Section A.2.5 Performance of Publicly Available LMMs on VL-ICL Bench
(f) Section A.2.6 Qualitative Results on VL-ICL Bench
(g) Section A.2.7 Robustness Against Image Perturbations
(h) Section A.2.8 How to Select Few-Shot Examples for Better Performance?
(i) Section A.2.9 Details on Ablation Study for Operator Induction
(j) Section A.2.10 Scaling to More Shots

3. Section A.3 Test-time Compute Analysis for ICL vs FT
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A.1 IMPLEMENTATION DETAILS

A.1.1 FINETUNING DATA MIXTURE

For model finetuning, we create our multi-task data mixture for single image per example using
the visual instruction tuning data of LLaVA v1.5 (Liu et al., 2023) which contains a mixture of 12
different datasets6 ranging from long conversations to academic multiple-choice questions. Since
we are only training image-based prompts, we remove the language-only ShareGPT-40K dataset
(ShareGPT, 2023). Additionally, we include 3 different math reasoning/QA datasets from the LLaVA
OneVision data mixture (Li et al., 2025) which are known to improve LMM performance on difficult
reasoning and logical QA tasks (Lu et al., 2024). We further get rid of the extra answer formatting
instructions to test the true few-shot transfer learning ability of our approach without the need of
external task induction. Table 4 shows the list of all the datasets along with their size and question
types.

Table 4: Finetuning Data Mixture Statistics

Dataset No. of examples Question Types

LLaVA-Instruct 157,712
Conversations (57,669)
Detailed Image Description (23,240)
Complex Reasoning (76,803)

GQA 72,140 Visual Reasoning

OCR-VQA 80,000 Image Question Answering
with Reading Comprehension

TextVQA 21,953 Image Question Answering
with Reading Comprehension

Visual Genome 86,417 Image Question Answering
and Bounding Box Prediction

MAVIS-Math-Metagen 87,348 Visual Math
Question Answering

TabMWP-Cauldron 22,717 Tabular Math Reasoning

RefCOCO 48,447 Image Question Answering
and Bounding Box Prediction

OKVQA 8,998 Knowledge Grounded
Image Question Answering

VQAv2 82,783 Image Question Answering

A-OKVQA 66,160 Multiple-Choice Question
Answering

Geo-170k (QA) 67,823 Math Question Answering
and Reasoning

Total 802,498

A.1.2 DETAILS ON META-TASK CREATION

As mentioned in Section 3.2, meta-tasks are small subsets of examples randomly sampled from a
single VQA dataset (Di) within the training data mixture (p(D)). Each meta-task consists of support
and query sets, both containing a fixed number of VQA examples (image, question, answer triplets).
The support set provides few-shot demonstrations to the model, either as in-context examples or for
gradient-based adaptation, depending on the prompt distillation method. The query set is used to

6We use this dataset only for academic research purposes as mentioned by the original authors and follow the
Open AI Usage Policy for GPT-4 generated datasets. Additionally, we conform to the license (CC-BY-4.0) for
Cauldron datasets.
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optimize the LMM (specifically the attention-mapper parameters (θp) in our case) during fine-tuning,
and to evaluate performance during inference. This meta-task construction protocol remains consistent
across both the fine-tuning stage and test-time fine-tuning, following the framework established by
(Zong et al., 2025).

During test-time adaptation, we use the publicly available VL-ICL benchmark code7 to construct
meta-tasks of fixed sizes. VQA examples are randomly sampled from the predefined training and test
splits of each dataset. Table 5 specifies the number of meta-tasks per test set, which remains constant
throughout our evaluation. All results reported in the paper represent average accuracy computed
over the query examples of these meta-tasks, ensuring fair comparison across all prompt distillation
methods and shot configurations.

Table 5: Meta-Task composition during test-time adaptation

Open MI Operator Induction CLEVR TextOCR

No. of Meta-tasks 5000 4000 6000 5000

Support examples [1,2,4,5] [1,2,4,8] [1,2,4,8] [1,2,4,8]per meta-task

Query examples 1 1 1 1per meta-task

During the attention-mapper fine-tuning stage, in order to keep a balanced ratio of train-validation
splits across multiple datasets in Section A.1.1 used in this stage, we divide each dataset into 98%
for training and 2% for validation and then combine them separately to create the final train and
validation splits. We then construct meta-tasks by randomly sampling VQA examples. We treat the
support-query composition as a tunable hyperparameter alongside those listed in Table, performing a
grid search to identify the configuration that minimizes validation loss for each prompt distillation
method. Table 6 details the optimal support-query compositions, number of meta-tasks, and total
number of training and validation examples used for each method.

Table 6: Meta-Task composition during the finetuning stage

MAPD Multi-taskPD In-ContextPD

No. of Meta-tasks 39,650 / 79,300 / 72,100 /
(train/val) 8000 8000 8000

Support examples 10 / 5 / 10 /per meta-task [1,2,4,5,8] [1,2,4,5,8] [1,2,4,5,8](train/val)

Query examples
10 / 1 5 / 1 1 / 1per meta-task

(train/val)

Total no. of examples 793,000 / 793,000 / 793,000 /
(train/val) 16,000 16,000 16,000

Additionally, for In-ContextPD, we follow the in-context tuning algorithm of (Chen et al., 2022),
which uses only 1 query example per meta-task during training and yields optimal performance for
this prompt distillation method. Note that the validation is done across a different number of support
examples for robustness and the total number of training and validation examples remains constant
across all methods to ensure fair comparison, regardless of meta-task composition.

7VL-ICL: https://github.com/ys-zong/VL-ICL
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A.1.3 MODEL CONFIGURATIONS

Models We use the publicly available implementation of LLaVA v1.58 and first-order MAML9 to
implement our baselines. Additionally, we use the pretrained model weights from Huggingface for
Qwen2.5-7B-Instruct LLM10 and the CLIP ViT-L/14-336px visual encoder11. The output embedding
dimension size of CLIP is 1,024 and the input word embedding size of the Qwen LLM is 3,584.
We set the training context length as 4096 for all baselines except for in-context baseline where it
is 8,192 as it requires training with longer sequences. The attention-mapper is a single multi-head
attention block with 8 heads. The token length of the soft prompt P as described in Section 3.3 for
the attention mapper is set to m = 256. The total number of trainable parameters for our model is
approximately 24M making our approach significantly parameter-efficient for finetuning.

A.1.4 TRAINING DETAILS

Pretraining stage During the pretraining stage, we only train the attention-mapper and soft prompts
for 4 epochs and use a learning rate of 2e-3 with a batch size of 64 per GPU. We perform a train-
validation split on the LCS-558K dataset (Liu et al., 2023) by keeping 98% of the examples for
training and 2% for validation and take the checkpoint with the lowest validation loss. We use this
checkpoint as our base for further task-specific finetuning.

Finetuning stage For finetuning, we perform a grid search across fixed set of values as we are
constrained by our GPU resources (4 H200 GPUs). For each prompt distillation method, we select
the configuration that achieves the lowest validation loss following standard train-val-test procedures.
Table 7 (for meta-task methods) and Table 8 (for non meta-task methods) provide details of all
hyperparameters for which we performed grid search. We also mention additional training details
below separately for each method with their corresponding best set of hyperparameters after grid
search. All approaches were finetuned for 1 epoch to ensure a complete pass over the entire finetuning
data mixture.

Table 7: Grid search values for meta-task methods

No. of support/query Learning Rate Inner-loop Batch Size
per meta task learning rate (# of meta-tasks)

Search Values [1, 5, 10, 15] [1e-3, 5e-4, 2e-5] [1e-1, 5e-2, 5e-1] [1, 5]

Table 8: Grid search values for non meta-task methods

Learning Rate Batch Size

Search Values [1e-3, 5e-4, 2e-5] [16, 32, 64, 80]

1. MAPD: We use 5 inner-loop steps and initialize the inner-loop learning rate α=1e-1. The
outer-loop learning rate is set as 1e-3 with a per GPU batch size of 1 meta-task with a
gradient accumulation of 2 steps. Each meta-task for training contains 10 support and 10
query examples. Training time ∼ 10 hours.

2. Multi-TaskPD: Similar to MAPD, we use a learning rate of 1e-3 with a per GPU batch size
of 1 meta-task with a gradient accumulation of 4 steps. Each meta-task for training contains
5 support and 5 query examples. Training time ∼ 4.5 hours

3. In-ContextPD: We use a learning rate of 1e-3 with a gradient accumulation of 4 steps and
5 meta tasks per GPU. Each meta task for training contains 10 support examples and 1
query example. The support examples were concatenated with the strategy that ensured all
image tokens of a meta-task are present in the sequence and we truncate the text tokens

8LLaVA v1.5: https://github.com/haotian-liu/LLaVA/tree/main/llava
9MAML: https://github.com/AntreasAntoniou/HowToTrainYourMAMLPytorch

10Qwen2.5-7B-Instruct: https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
11CLIP-ViT-L/14-336px: https://huggingface.co/openai/clip-vit-large-patch14-336
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if the sequence exceeded the context length of 8192. Further, the few-shot question and
answers were concatenated by inserting ”Question:” and ”Answer:” strings in between them,
inspired from (Alayrac et al., 2022). Training time ∼ 4.5 hours

4. ModelAvgPD: We first finetune individual models on each dataset in the finetuning data
mixture (Section A.1.1) with a learning rate of 5e-4. For all the datasets, we choose a per
GPU batch size of 8 with gradient accumulation of 2 steps. Average time per dataset ∼ 3
hours

5. NoMeta-taskPD: Here, we finetune on the complete data mixture in one training run
by sampling batches randomly and again use a per GPU batch size of 8 with a gradient
accumulation of 2 steps. We also use a learning rate of 5e-4. Training time ∼ 4 hours.

6. LoRA: We only apply LoRA to the attention matrices (Q,K, V ) of each layer. For training,
we use a learning rate of 5e-4 and a per GPU batch size of 8 with gradient accumulation of
2 steps. Further, we performed hyperparameter search for choosing LoRA parameters - rank
(r) and scaling factor (α) for the three settings shown in Table 2. Training time ∼ 4 hours.

(a) All LLM layers (r = 128, α = 256)
(b) [0-15] LLM layers (r = 16, α = 64)
(c) [0-15] LLM layers + ATT: (r = 16, α = 64)

Computational Requirements We find that the GPU requirement for training the attention-mapper
mostly depends on the size of the underlying LLM used. For the 7B model training, we use 4 H200
GPUs with a VRAM of 143GB per GPU and for 3B models only 2 H200 GPUs were needed. For
both the stages, the hyperparameters were tuned using their corresponding validation sets and we
choose the checkpoints at the end of first epoch to report our results.

A.1.5 PSEUDO ALGORITHM FOR MAPD

We highlight our full MAPD algorithm based on FoMAML in detail with inner and outer loop that is
used to train the attention-mapper parameters θp in Algorithm 1.

Algorithm 1: Meta-Adaptive Prompt Distillation (MAPD)
Input: Meta-Task distribution p(T meta), inner-loop learning rate α, meta learning rate β
Output: Meta-parameters θp = {θ, P}
Initialize θp with Xavier Uniform Initialization;
while not converged do

Sample batch of meta-tasks {Tj}Nj=1 ∼ p(T meta);
foreach task Tj = {Dsupp

j , Dquery
j } in batch do

Evaluate Lsupp
θp,j

=
−1
|Dsupp

j |

|Dsupp
j |∑
i=1

log(pθp,j (X
i
a|Xi

v, X
i
q));

Adapt parameters with K gradient steps:
for k = 1, . . . ,K do

θkp,j ← θk−1
p,j − α∇θk−1

p,j
Lsupp
θk−1
p,j

Evaluate Lquery
θKp,j

=
−1
|Dquery

j |

|Dquery
j |∑
i=1

log(pθKp,j (X
i
a|Xi

v, X
i
q));

First-Order Meta-Update:

θp ← θp − β

N∑
j=1

∇θKp,jL
query
θKp,j
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A.2 EVALUATION DETAILS

A.2.1 DETAILED TASK INSTRUCTIONS FOR LMM EVALUATION.

Here we provide the detailed task instructions in Figure 6 used for LLaVA-OneVision-7B LMM
evaluation for Image-to-Text (I2T) ICL.

• Operator Induction - ”The image contains two digit numbers and a ? representing the
mathematical operator. Induce the mathematical operator (addition, multiplication, minus)
according to the results of the in-context examples and calculate the result.”

• CLEVR Count Induction - ”The image contains objects of different shapes, colors, sizes and
materials. The question describes the attribute and its value. You need to find all objects within
the image that satisfy the condition. You should induce what operation to use according to the
results of the in-context examples and then calculate the result.”

Figure 6: Detailed task instruction for LLaVA-OneVision-7B LMM evaluation on VL-ICL tasks.

A.2.2 EVALUATION DATASETS FROM VL-ICL BENCH

Table 9: Evaluation Dataset Statistics

Dataset Task Category Train Set Test Set Size (GB)(Support) (Query)

Fast Open-MiniImageNet Fast-Concept Binding 5,000 200 0.18(OPEN MI)

CLEVR Count Induction Fine-Grained Perception, 800 200 0.18Task Induction

Operator Induction Perception, Task Induction 80 60 0.01Mathematical Reasoning

TextOCR Perception, Task Induction 800 200 0.01

The VL-ICL Bench Zong et al. (2025) includes a diverse variety of tasks to test different capabilities
of models like Fast-Concept binding, Mathematical Induction, and Fine-grained perception. Given
the nature of our model architecture and training (Section 3), we only focus on the single-image
Image-to-text (I2T) tasks. Table 9 shows the dataset statistics. We also give brief descriptions of
these tasks below along with some examples for better understanding.

1. Fast Open-Ended MiniImageNet (OPEN MI) - This is a variant of the MiniImageNet
few-shot object recognition task (Vinyals et al., 2016), which was repurposed for few-shot
prompting (Tsimpoukelli et al., 2021). It is essentially an open-ended image classfication
problem, but contains nonsense categorical names like dax or blicket making the test
performance not influenced by the prior knowledge of an LMM but only dependent on the
support examples. This design ensures to test the few-shot abilities of LMMs and how
quickly they can learn about new concepts. For the results shown in Table 11, we use the
2-way version of this task involving classification between two nonsense categories. An
example of a 2-way 1-shot task is shown in Figure 7.

2. Operator Induction - Initially proposed by (Zong et al., 2025), this dataset tests various
capabilties of LMMs like Task Induction, Perception and Mathematical Reasoning. The
support examples involve two operands with a missing mathematical operation and an
answer. When testing, the task is to identify the hidden operation from the support example
and use it to calculate the result over the operands in the query. An example of a 2-shot task
is shown in Figure 8.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Figure 7: 2-way Fast Open-Ended MiniImageNet

Figure 8: Operator Induction

3. CLEVR Count Induction - This dataset contains images from the widely used CLEVR
dataset (Johnson et al., 2017) where each image contains a set of objects that have certain
characteristics based on attributes like shape, size, color and material. The task is to learn to
count the objects of the given attribute in the support example and transfer that knowledge
to count the objects of any attribute in the query example. An example of a 2-shot task is
shown in Figure 9.

4. TextOCR - This dataset has been repurposed by (Zong et al., 2025) from the TextOCR
dataset (Singh et al., 2021) to create a task where the LMM should learn to output the text
within a red bounding box from the support examples. Even though this task could be solved
in a zero-shot setting as we see in the 0-shot case with a detailed prompt, we still only focus
on inducing task knowledge from the few-shot examples. An example of a 2-shot task is
shown in Figure 10.
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Figure 9: CLEVR Count Induction

Figure 10: TextOCR

A.2.3 TEST-TIME ADAPTATION DETAILS

We choose a similar test-time adaptation procedure as (Qin et al., 2023) to find the best hyperparameter
settings for every prompt distillation method for fair comparison. We first sample 10% of the examples
from the training split of each test task and combine them to create a validation set. After meta-task
creation of VL-ICL datasets (Zong et al., 2025) using the remaining training and test splits, we then
performed a maximum of K = 30 inner-loop steps over each support set of a meta-task and chose the
Kth-step model that gave the lowest validation loss. We use this model to calculate the result over
the query set. To further validate whether K = 30 is the optimal threshold for fine-tuning steps, we
plot the average test accuracy curves (upto 40 gradient steps) for different VL-ICL datasets for all the
methods and for different shots in Figure 11. We see that the accuracies converge within 30 gradient
steps which confirms our choice of K to achieve best performance for all the methods. We have also
provided examples of how the predictions change during test-time adaptation in Figure 12, Figure
13, Figure 14, and Figure 15. Further to ensure reproducibility, we provide our best learning rate
values in Table 10 used for different methods based on the validation set after doing a hyperparameter
search within the range [0.1, 1.0] with a batch size of 1 meta-task.
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(a) OPEN MI test performance (b) Operator Induction test performance

(c) CLEVR test performance (d) TEXTOCR test performance

Figure 11: Average test performances of MAPD with finetuning on different datasets

Table 10: Learning rates for finetuning-based (FT) test-time adaptation for results shown in Table 1,
Table 2, Table 11 and Table 12.

Training Methods Learning Rate (LR)

MAPD 1.0
Multi-TaskPD 0.8
In-ContextPD 0.8
ModelAvgPD 0.6
NoMeta-taskPD 1.0
LoRA 0.2
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A.2.4 DETAILED RESULTS

Table 11: Comparison of different prompt distillation approaches on single-image tasks from VL-ICL
Bench (Zong et al., 2025). We report accuracy for different numbers of shots (–S). ”Avg” is only
calculated for ≥ 1 shot(s). FT = Finetuning with ≤ 30 gradient steps, ICL = In-Context Learning,
TTA= Test-Time Adaptation. More details are mentioned in Appendix A.2.3. We do not compare on
0-shot results. The model used for this evaluation is LLaVA-ATT-Qwen2.5 7B which is described
in Section 3.3. Meta-Tasks used (✓) or not (✗) during training. We also provide results for higher
number of shots in Appendix A.2.10 and qualitative results in Appendix A.2.6 and A.2.9.

Methods Meta
Task

Open-MI (2-way) Operator Induction

0-S 1–S 2–S 4–S 5-S Avg 0-S 1–S 2–S 4–S 8–S Avg

TTA with ICL
NoMeta-taskPD ✗ 0.0 35.0 47.0 48.0 45.0 43.8 11.7 13.3 13.3 10.0 11.7 12.1
Model-AvgPD ✗ 0.0 20.0 22.0 30.0 34.5 26.6 8.3 11.7 6.7 8.3 10.0 9.2
In-ContextPD ✓ 0.0 30.0 56.0 55.0 63.5 51.1 10.0 20.0 18.5 18.0 26.0 20.6
Multi-TaskPD ✓ 0.0 43.0 50.0 51.0 50.5 48.6 8.3 13.3 11.7 3.3 11.7 10.0
MAPD ✓ 0.0 42.5 53.0 57.0 60.5 53.3 15.0 13.3 13.3 1.7 10.0 9.6

TTA with FT ≤30
NoMeta-taskPD ✗ 0.0 21.5 67.5 89.0 94.0 68.0 11.7 26.7 23.3 46.7 58.3 38.8
Model-AvgPD ✗ 0.0 28.5 53.5 83.0 87.5 63.1 8.3 31.5 28.0 45.0 55.5 40.0
In-ContextPD ✓ 0.0 35.5 54.5 79.5 88.5 64.5 10.0 21.7 18.3 41.7 41.7 30.9
Multi-TaskPD ✓ 0.0 37.0 73.5 93.5 94.5 74.6 8.3 31.0 28.3 61.0 60.0 45.1
MAPD ✓ 0.0 43.5 78.0 94.5 95.5 77.9 15.0 32.0 38.3 58.3 62.0 47.7

Methods Meta
Task

CLEVR Count Induction TextOCR

0–S 1–S 2–S 4–S 8-S Avg 0-S 1–S 2–S 4–S 8–S Avg

TTA with ICL
NoMeta-taskPD ✗ 0.0 8.0 10.5 23.0 30.5 18.0 20.0 4.5 9.5 8.5 4.5 6.8
Model-AvgPD ✗ 1.5 17.0 8.5 4.0 1.0 7.6 12.0 3.0 2.5 3.0 1.0 2.8
In-ContextPD ✓ 0.0 13.5 23.0 28.5 31.5 24.1 16.0 22.5 21.0 23.5 28.0 23.8
Multi-TaskPD ✓ 1.0 5.0 9.0 16.5 19.5 12.5 18.0 4.0 4.5 8.5 10.5 6.9
MAPD ✓ 2.0 11.0 7.0 15.5 15.5 12.3 21.5 5.5 7.0 8.0 8.5 7.3

TTA with FT ≤30
NoMeta-taskPD ✗ 0.0 18.5 21.5 26.0 37.0 25.8 20.0 20.5 23.0 24.0 22.5 22.5
Model-AvgPD ✗ 1.5 26.5 25.0 29.5 35.5 29.1 12.0 17.5 20.0 23.0 25.5 21.5
In-ContextPD ✓ 0.5 24.5 30 34.5 34.5 30.9 16.0 16.0 18.0 19.5 22.0 18.9
Multi-TaskPD ✓ 0.0 25.0 25.5 31.0 38.0 29.9 18.0 21.0 20.5 24.5 25.5 22.9
MAPD ✓ 0.0 26.5 27.5 31.0 40.5 31.4 21.5 23.5 26.5 27.0 28.5 26.4

Table 12: Comparison of the LoRA baselines on VL-ICL Bench (Zong et al., 2025). ”Avg” is only
calculated for ≥ 1 shot(s) (-S). TTA= Test-Time Adaptation. FT=Finetuning with ≤ 30 gradient
steps. ATT=Attention-Mapper. The model used for this evaluation is LLaVA-ATT-Qwen2.5 7B.

LoRA Open-MI (2-way) Operator Induction

0-S 1–S 2–S 4–S 5-S Avg 0-S 1–S 2–S 4–S 8–S Avg

TTA with FT ≤ 30
All LLM layers 0.0 24.5 45.7 68.3 81.9 55.1 8.1 11.7 10.0 13.3 18.2 13.3
[0-15] LLM layers 0.0 30.9 65.3 81.1 91.9 67.3 8.3 18.3 26.3 23.1 34.3 25.5
[0-15] LLM layers + ATT 0.0 37.3 64.1 83.5 91.5 69.1 10.0 21.5 28.3 35.5 36.7 30.5

LoRA CLEVR Count Induction TextOCR

0-S 1–S 2–S 4–S 5-S Avg 0-S 1–S 2–S 4–S 8–S Avg

TTA with FT ≤ 30
All LLM layers 0.0 9.3 11.7 15.5 23.9 15.1 15.0 6.7 9.1 13.3 12.5 10.4
[0-15] LLM layers 0.0 21.5 28.3 32.5 37.7 30.0 18.3 20.3 24.5 25.5 24.9 23.8
[0-15] LLM layers + ATT 0.0 26.0 23.1 30.0 35.7 28.7 18.3 20.6 23.4 26.5 27.5 24.5
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A.2.5 PERFORMANCE OF PUBLICLY AVAILABLE LMMS ON VL-ICL BENCH

Table 13: Performance of different LMMs on single-image tasks from VL-ICL Bench. We report the
”Avg” accuracy for different numbers of shots - {1, 2, 4, 5, 8} with 95% binomial confidence intervals.
FT = Finetuning with ≤ 30 gradient steps, ICL = In-Context Learning, TTA= Test-Time Adaptation,
VL-Data=Vision-Language Data, LAQ-7B=LLaVA-ATT-Qwen2.5-7B, CLIP=CLIP-ViT-L/14-336px,
MLP=2-layer MLP, ATT=Attention-Mapper. Bold shows best performance and Underline is MAPD’s
performance with LAQ-7B LMM.

Methods VL-Data Params TTA Open-MI OP IND CLEVR TextOCRtrained

LLaVA v1.5-7B 1.2M 7B ICL 12.4± 0.4 5.4± 0.5 10.9± 0.1 4.4± 0.3
LLaVA v1.5-7B 1.2M 7B FT≤30 38.4± 0.7 11.4± 0.6 16.9± 0.2 15.6± 0.6
LLaVA-Next-7B 1.3M 7.06B ICL 34.4± 0.7 5.4± 0.5 21.1± 0.2 0.4± 0.0
LLaVA-Next-7B 1.3M 7.06B FT≤30 55.1± 0.9 13.4± 0.6 28.6± 0.2 7.8± 0.4
LLaVA-OneVision-7B 10.4M 8B ICL 42.1± 0.9 41.7± 0.5 34.9± 0.2 42.3± 0.5
LLaVA-OneVision-7B 10.4M 8B FT≤30 83.4± 0.7 46.1± 0.5 38.9± 0.2 45.5± 0.5
LLaVA-OneVision-72B 10.4M 73.2B ICL 75.1± 0.6 69.1± 0.9 37.2± 0.2 52.2± 1.1
Qwen2-VL-7B-Instruct -NA- 8B ICL 73.5± 0.6 69.6± 0.9 27.9± 0.2 50.5± 0.9
Qwen2.5-VL-7B-Instruct -NA- 8B ICL 44.0± 0.9 84.2± 1.2 22.0± 0.2 36.9± 0.7
Qwen2.5-VL-7B-Instruct -NA- 8B FT≤30 85.6± 0.7 89.4± 1.2 29.1± 0.2 41.1± 0.5
LAQ-7B + In-ContextPD 1.3M 24M ICL 51.1± 0.9 20.6± 0.8 24.1± 0.2 23.8± 0.8
LAQ-7B + In-ContextPD 1.3M 24M FT≤30 64.5± 0.8 30.9± 0.5 30.9± 0.2 18.9± 0.7
LAQ-7B + MAPD 1.3M 24M ICL 53.3± 0.9 9.6± 0.5 12.3± 0.1 7.3± 0.4
LAQ-7B + MAPD 1.3M 24M FT≤30 77.9± 0.7 47.7± 0.5 31.4± 0.2 26.4± 0.8

We show performance of publicly available LMMs and our best performing LMM architecture
(LLaVA-ATT-Qwen2.5-7B) on the single-image tasks from VL-ICL Bench in Table 13. We only
provide this as a reference and note that its not possible to directly compare different LMMs
due to their fundamental differences in model architectures, sizes and training datasets.

1. We first note that test-time fine-tuning of the MLP connector for public LMMs consistently
improves over ICL, supporting our hypothesis that these LMMs are overwhelmed by the
image embeddings during ICL. Fine-tuning enables the connector to distill task-specific
information into image embeddings before prompting the LLM, thereby enhancing few-shot
performance.

2. We see that our model along with MAPD based meta-learning and finetuning-based adap-
tation performs comparably with other publicly available LMMs and surprisingly, even
surpasses LLaVA-OneVision-72B ICL performance for the Fast Open-Ended MiniImageNet
(Open-MI) task and ICL on its 7B version (trained on much more data) and the stronger
Qwen-VL models on other tasks.

3. Note that unlike other LMMs, LLaVA-ATT-Qwen2.5-7B (LAQ-7B) does not finetune the
LLM in complete training and uses significantly lesser vision-language data (1.3M) and
trainable parameters (24M) compared to LLaVA-OneVision that trains the complete model
with 10.4M examples. This shows promising results regarding the data and parameter
efficiency of our prompt distillation approach MAPD, which achieves state-of-the-art perfor-
mance on Open-MI with finetuning just the attention-mapper with upto 30 gradient steps on
the few-shot examples.

4. For LMMs like LLaVA-OneVision, fine-tuning the attention-mapper requires more GPUs
(>= 12 H200 GPUs) due to their large-scale fine-tuning mixture (10.4M vision-language ex-
amples) and high-dimensional vision encoder embeddings, exceeding our compute resources.
Similarly, Qwen-VL models lack publicly available fine-tuning data. Given these constraints,
we cannot conduct attention-mapper fine-tuning experiments on these architectures.
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A.2.6 QUALITATIVE RESULTS

Figure 12: OPEN MI predictions at test-time

Figure 13: CLEVR predictions at test-time

Figure 14: TEXTOCR predictions at test-time

Figure 15: Operator Induction predictions at test-time
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A.2.7 ROBUSTNESS AGAINST IMAGE PERTURBATIONS

Table 14: Robustness of prompt distillation methods against image perturbations on the Fast Open-
Ended MiniImageNet dataset (2-way classification) for LLaVA-ATT-Qwen2.5 7B LMM. We report
accuracy scores as defined in VL-ICL Bench (Zong et al., 2025) across 2, and 5 shots. Test-Time
Adaptation = Finetuning with ≤ 30 gradient steps.

NoMeta-taskPD Model-AvgPD In-ContextPD Multi-taskPD MAPD

2–S 5–S 2–S 5–S 2–S 5-S 2–S 5–S 2–S 5–S

Original 67.5 94.0 53.5 87.5 54.5 88.5 73.5 94.5 78.0 95.5

Cropping 65.0 94.0 51.5 87.5 51.5 83.0 72.0 91.5 76.5 95.0
Rotation 67.0 91.0 50.5 81.5 50.5 83.5 72.5 93.5 78.0 95.5
Gaussian Blur 67.5 92.5 51.5 84.5 49.5 78.0 71.5 92.5 77.5 96.0
Color Jitter 66.5 92.5 50.5 89.0 49.5 81.5 71.5 94.0 77.0 94.0
CutMix 58.5 86.0 45.5 70.5 49.0 75.0 72.0 92.0 75.5 92.5
MixUp 58.0 84.0 46.0 70.5 48.0 75.5 69.0 89.0 76.5 91.0

Mean Drop in Accuracy −3.8 −4.0 −4.3 −6.9 −4.8 −9.1 −2.1 −2.4 −1.2 −1.4

Net Mean Drop across Shots −3.9 −5.6 −7.0 −2.3 −1.3

We assess if our prompt distillation methods are robust enough to handle perturbations applied to the
images in the support set as shown in Table 14. We see that our method, MAPD, is most robust even
in the presence of noise in the support examples as compared to other distillation methods that suffer
a huge drop in performance. Advanced techniques like CutMix (Yun et al., 2019) and MixUp (Zhang
et al., 2018) change the original image distribution substantially, affecting all methods to a greater
degree but MAPD is still close to its original performance for both 2 and 5 shots. This robustness
likely stems from MAPD’s meta-learned initialization, which learns the underlying task structure
from meta-tasks without over-fitting to any other spurious visual patterns and this allows it to adapt
quickly to newer tasks without being influenced by noisy visual artifacts in the examples.

A.2.8 HOW TO SELECT FEW-SHOT EXAMPLES FOR BETTER PERFORMANCE?
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Figure 16: (a) Performance comparison of different prompt distillation approaches on the CLEVR
Count Induction (details in Appendix A.2.2). Few-shot examples for Same Attribute and Same Pair
are selected based on their attribute-value similarity with the query (test) example. Mean Accuracy
is computed for 1,2,4 and 8 shots. Left: Finetuning (FT) based Test-time Adaptation. (b) Right:
In-Context Learning (ICL) based Test-time Adaptation.

We further assess how performance varies for different prompt distillation approaches based on the
selection of few-shot examples on the CLEVR Count Induction task (details in Appendix A.2.2) as an
example. We propose two selection methods based on similarity of attributes and their corresponding
values for every query (test) example. If the query has attribute and value as shape: sphere, we
select the few-shot examples based on - a) Same Attribute - shape, (b) Same Pair - shape: sphere
and compare both of them with the original setup as proposed in the VL-ICL benchmark (Zong
et al., 2025) which retrieves the few-shot examples randomly. In Figure 16(a), we first see that
for finetuning-based (FT) adaptation, the performance of all the baselines increases by 4.8% for
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Same Attribute and 5.3% for Same Pair on an average. MAPD performs best in the Same Attribute
setting (Mean Acc = 35.4%) and Multi-TaskPD performing best in the Same Pair setting (Mean Acc =
35.8%). In Figure 16(b), we see that for In-Context Learning (ICL) adaptation, the similarity-based
few-shot selection methods have a greater impact in performance and improve the mean accuracy of
all the baselines by 7.7% for Same Attribute and 8.6% for Same Pair on an average. In-ContextPD

performs the best in both Same Attribute and Same Pair settings with mean accuracies of 28.8%
and 30.5% respectively for ICL adaptation. We also notice that the Same Pair setup is generally
the best few-shot selection method giving best performance for all the approaches. This indicates
that choosing few-shot examples that are similar to query example induces better task understanding
during test-time adaptation. We also see that the selection of few-shot examples shows less variance
with FT adaptation compared to ICL adaptation, thereby showing higher robustness of FT adaptation.

A.2.9 DETAILS ON ABLATION STUDY FOR OPERATOR INDUCTION

We break down the ablation study on operator induction tasks (Section 4.3; Figure 4(b)) into 3
components: 1) Task Induction, 2) Perception, and 3) Mathematical Reasoning. We test these
components separately with the help of suitable prompts for our LMM to answer questions in specific
formats. Figure 17 shows our prompts used for different components.

• Task Induction - ”What mathematical operation should be used in this example? Strictly
answer in one word.”

• Perception - ”What are the numbers in this example? Do not calculate the answer after
applying mathematical operation. Only give the numbers shown in the example. Stricly give
numbers in numeric digits and your result should be in the format > Number A: xxx || Number
B: xxx.”

• Mathematical Reasoning - ”Think step-by-step and give proper reasoning steps first and
then given your final answer. The format should be > Reasoning: xxx || Answer: xxx . The
Reasoning part should contain reasons to derive the answer and the Answer part should only
contain the answer. Your response should strictly follow this format and not just give the
answer of the mathematical operation. It’s important that you give reasoning before you
answer.”

Figure 17: (Operator Induction Task) Prompts to the LMM for generating answers in specific formats
suited for evaluation.

We list out a few examples which we curate for the Operator Induction task to enhance mathematical
reasoning. Each image in the dataset contains a set of 2 numbers or operands and a hidden mathemat-
ical operation. The result of the correct mathematical operation is also provided for the support set
examples. The task is to induce the mathematical operation used in the support set to calculate the
answer of the query image containing two new operands. As finetuning on a single answer token
limits the token generation capacity of the LMM, we further modify the support set examples to list
out detailed mathematical steps before calculating the answer. Finetuning on this reasoning data
improves both the generation capacity and reasoning ability of the LMM. We further provide a few
examples of this hand-curated data in Figure 18.

We used Qwen2.5VL-32B-Instruct (Qwen et al., 2025) as a judge for evaluating the Mathematical
Reasoning component of the problem where LMMs responded with detailed reasoning steps before
the answer. Evaluation of responses was done by prompting the judge to score a response between
0–3 based on if it thinks the reasoning and answer are correct. We then calculated mean score as
the percentage of total score assigned by the Qwen-2.5-VL (Judge) to the responses relative to the
maximum possible score.

Mean Percent Score =

∑N
i=1 Si
3 ∗N

× 100 (9)

where Si is the score assigned by Qwen2.5-VL for the ith response and N is the total number of
responses. We provide the prompt to the judge for this evaluation in Figure 19.
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Original Answer: 4
Detailed Answer: There are two numbers, 5 and 1. Performing some
mathematical operation gives the answer 4. So if we think about adding
the numbers, 5 + 1 = 6, subtracting them, 5− 1 = 4, multiplying them,
5× 1 = 5. This implies that the hidden operation must be subtraction
(–) and the result is 4.

Original Answer: 21
Detailed Answer: There are two numbers, 3 and 7. Performing some
mathematical operation gives the answer 21. So if we think about
multiplying the numbers, 3× 7 = 21, adding the numbers, 3 + 7 = 10,
subtracting the numbers, 3 − 7 = −4. This implies that the hidden
operation must be multiplication or × and the result is 21.

Figure 18: (Operator Induction Math Reasoning) Few examples of our hand-curated data with
mathematical reasoning steps.

Judge Prompt - ”You are given a few in-context examples of a mathematical induction problem.
The in-context examples each have an image with two numbers and a ’?’ which is supposed
to be some mathematical operation. You are given a solution that gives the answer and the
reasoning on how to calculate that answer using some mathematical operation applied on those
two numbers in the image. The task is to induce the correct mathematical operation from the
given examples, and use that operation to calculate the result of a query image with different
numbers.

After this, you are then given a reference answer written by experts and a candidate
response. The candidate response is in format Reasoning: xxx || Answer: xxx . The reasoning
part contains reasoning about how the candidate arrived at the solution, and the Answer
part contains their final answer. Your task is to judge if the reasoning and the answer of the
candidate response are correct or not after considering the in-context examples, query image,
question, reference answer, and your own reasoning of the mathematical induction problem.

The rating should be done on a scale of 0–3, where 0 indicates when the response is
ambiguous or does not follow the format, 1 is for when both the reasoning and answer are
wrong, 2 is for when either only reasoning or answer is correct, 3 is for when both the reasoning
and answer are correct.

Be strict in your judgement and do not give a higher rating unless the candidate re-
sponse contains accurate reasoning and exact answer. Thorougly check each and every part of
the candidate response and make sure it does not contain extra irrelevant operations or answers.
If it does then give a lower rating accordingly. The candidate response should follow the format
and conclude with the correct answer. If it does not, that means their answer is wrong. Also give
your rationale before rating. Give the final rating as > Rating: xxx”

Figure 19: (Operator Induction Math Reasoning) Prompts for the Qwen2.5VL-32B-Instruct to
evaluate LMM responses on a scale of 0–3. It is given 1 to 4 in-context examples for understanding
the mathematical induction task before the LMM (candidate) response for better evaluation.

We also provide a few examples of LMM predictions for task induction (Figure 20) and perception
(Figure 21) and mathematical reasoning (Example 1: Figure 22, 23 and Example 2: Figure 24, 25)
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Example (Task Induction): Support shot 1

Question: What is the result of the following mathematical expression?
Answer: 42

Example (Task Induction): Support shot 2

Question: What is the result of the following mathematical expression?
Answer: 0

Example (Task Induction): Query

Question: What mathematical operation should be used in this example?
Strictly answer in one word.
LMM prediction: Multiplication

Figure 20: (Operator Induction Task Induction) An example of a 2-shot task induction for multiplica-
tion operation

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Example (Perception): Support shot 1

Question: What is the result of the following mathematical expression?
Answer: 0

Example (Perception): Support shot 2

Question: What is the result of the following mathematical expression?
Answer: -2

Example (Perception): Query

Question: What are the numbers in this example? Do not calculate the
answer after applying mathematical operation. Only give the numbers
shown in the example. Stricly give numbers in numeric digits and your
result should be in the format > Number A: xxx || Number B: xxx.
LMM prediction: Number A: 5 || Number B: 4

Figure 21: (Operator Induction Perception) An example of a 2-shot perception task to detect operands
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Example 1: Support

Question: What is the result of the following mathematical expression?
Answer: There are two numbers, 1 and 8. Performing some mathemati-
cal operation gives the answer 8. So if we think about subtracting the
numbers, 1− 8 = −7, multiplying the numbers, 1× 8 = 8, adding the
numbers, 1 + 8 = 9. This implies that the hidden operation must be
multiplication or x and the result is 8.

Example1: Query

Question: What is the result of the following mathematical expression?
Think step-by-step and give proper reasoning steps first and then given
your final answer. The format should be > Reasoning: xxx || Answer:
xxx .The Reasoning part should contain reasons to derive the answer
and the Answer part should only contain the answer. Your response
should stricly follow this format and not just give the answer of the
mathematical operation. It’s important that you give reasoning before
you answer.
LMM prediction: There are two numbers, 6 and 2. We need to find
the result of an operation between them. The question is asking for the
result of the operation, which is 12. So the answer is Reasoning: The
two numbers are 6 and 2. The operation between them is multiplication.
6× 2 = 12 || Answer: 12

Figure 22: (Operator Induction Math Reasoning) An example of a 1-shot mathematical reasoning
task with Judge Rating: 3 (shown in Figure 23)
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Example 1: Judge Response

Judge Response – ### Analysis of the Problem

#### In-Context Example:
The in-context example provides the expression ‘1 ? 8‘ and states that the result is **8**. The
solution explains that among the possible operations (subtraction, multiplication, addition), the
operation that yields the result **8** is **multiplication** (‘1 × 8 = 8‘). This establishes the
pattern that the hidden operation is **multiplication**.

#### Query Image:
The query image presents the expression ‘6 ? 2‘. Based on the in-context example, we infer that
the hidden operation is **multiplication**.

#### Candidate Response:
The candidate response states:

- **Reasoning**: The two numbers are 6 and 2. The operation between them is
multiplication. 6× 2 = 12.

- **Answer**: 12
#### Reference Answer:
The reference answer is also **12**.

### Evaluation of the Candidate Response

1. **Correct Identification of the Operation**: - The candidate correctly identifies the
operation as **multiplication** based on the in-context example. This is consistent
with the pattern established in the in-context example.

2. **Correct Application of the Operation**: - The candidate applies the multiplication
operation correctly: 6× 2 = 12.

3. **Final Answer**: - The candidate’s final answer is **12**, which matches the
reference answer.

4. **Clarity of Reasoning**: - The reasoning provided is clear and logically follows
the pattern established in the in-context example. The candidate explicitly states the
operation and shows the calculation step.

5. **Format Compliance**: - The candidate response follows the required format: ”Rea-
soning: xxx || Answer: xxx”.

### Final Verdict
The candidate’s response is both logically sound and mathematically correct. Both the reasoning
and the final answer are accurate, and the response adheres to the required format.

> **Rating: 3**

Figure 23: (Operator Induction Math Reasoning) The Judge (Qwen2.5-VL-32B) evaluates the
response of the LMM in Figure 22 to provide correct rating.
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Example 2: Support

Question: What is the result of the following mathematical expression?
Answer: There are two numbers, 1 and 6. Performing some mathemati-
cal operation gives the answer 6. So if we think about subtracting the
numbers, 1− 6 = −5, multiplying the numbers, 1× 6 = 6, adding the
numbers, 1 + 6 = 7. This implies that the hidden operation must be
multiplication or × and the result is 6

Example 2: Query

Question: What is the result of the following mathematical expression?
Think step-by-step and give proper reasoning steps first and then given
your final answer. The format should be > Reasoning: xxx || Answer:
xxx .The Reasoning part should contain reasons to derive the answer
and the Answer part should only contain the answer. Your response
should stricly follow this format and not just give the answer of the
mathematical operation. Its important that you give reasoning before
you answer.
LMM prediction: Reasoning: There are two numbers, 4 and 1. Per-
forming some mathematical operation gives the answer 5. So if we
think about adding the numbers, 4 + 1 = 5, subtracting the numbers,
4 − 1 = 3, multiplying the numbers, 4 × 1 = 4. This implies that the
hidden operation must be addition or + and the result is 5. || Answer: 5

Figure 24: (Operator Induction Math Reasoning) An example of a 1-shot mathematical reasoning
task with Judge Rating: 1 (shown in Figure 25)
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Judge Response – ### Analysis of the Problem
#### In-Context Example:
The in-context example provides the expression ‘1 ? 6‘ and the solution states that the result is
**6**. The reasoning provided suggests testing different operations:

• Subtraction: 1− 6 = −5;
• Multiplication: 1× 6 = 6;
• Addition: 1 + 6 = 7

From these tests, the solution concludes that the hidden operation is **multiplication**, as
1× 6 = 6.

#### Query Image:
The query image is ‘4 ? 0‘. We need to determine the result of this expression based on the same
hidden operation identified in the in-context example.

#### Reference Answer:
The reference answer provided is **0**.

#### Candidate Response:
The candidate’s reasoning and answer are as follows:
- **Reasoning**: The candidate incorrectly identifies the numbers as **4 and 1**

instead of **4 and 0**. They test different operations:
- Addition: 4 + 1 = 5; Subtraction: 4− 1 = 3; Multiplication: 4× 1 = 4
- Conclusion: The hidden operation is **addition**, and the result is **5**.
- **Answer**: The candidate concludes that the result is **5**.

### Evaluation of the Candidate Response

1. **Correct Identification of the Hidden Operation**:
- The in-context example clearly indicates that the hidden operation is **multi-

plication** (1× 6 = 6).
- However, the candidate incorrectly assumes the hidden operation is **addi-

tion** based on their misinterpretation of the numbers.
2. **Correct Interpretation of the Numbers**:

- The query image shows the numbers **4 and 0**, but the candidate mistakenly
uses **4 and 1** in their reasoning.

- This error leads to incorrect calculations and conclusions.
3. **Correct Application of the Operation**:

- Even if we overlook the misidentification of the numbers, the candidate’s rea-
soning is flawed because they do not apply the correct hidden operation (multi-
plication) as indicated by the in-context example.

4. 4. **Final Answer**:
- The candidate’s final answer is **5**, which is incorrect. The correct answer,

based on the reference and the hidden operation of multiplication, should be
**0** (4× 0 = 0).

### Rating Justification
- The candidate’s reasoning is **incorrect** because:

1. They misidentify the numbers in the query image.

2. They incorrectly deduce the hidden operation as addition instead of multiplication.

- The candidate’s final answer (**5**) is also **wrong**.

Given these errors, the candidate’s response does not align with the in-context example or the
reference answer. Both the reasoning and the answer are incorrect.

### Final Rating:
> Rating: 1

Figure 25: (Operator Induction Math Reasoning) The Judge (Qwen2.5-VL-32B) evaluates the
response of the LMM in Figure 24 to provide correct rating.
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A.2.10 SCALING TO MORE SHOTS

Here, we look into the performance of different prompt distillation methods with finetuning-based
test time adaptation for larger number of shots and for 3 tasks from the VL-ICL dataset - Operator
Induction, CLEVR Count Induction and TextOCR. LMM used for below evaluation is LLaVA-
ATT-Qwen2.5 7B (described in Section 3.3). Meta-Tasks used (✓) or not (✗) during training. We
see similar performance gains with the introduction of more shots as shown in Table 11. Both the
meta-task learning methods, Multi-TaskPD and MAPD perform quite well with MAPD showing
outstanding performance for Operator Induction.

Table 15: Operator Induction Results.

Training Methods Meta-task 16-S 32-S 64-S

NoMeta-taskPD ✗ 73.3 73.3 80.0
Model-AvgPD ✗ 71.7 78.3 80.5
In-ContextPD ✓ 58.3 53.3 76.7
Multi-TaskPD ✓ 73.3 67.7 80.0

MAPD ✓ 80.0 81.0 83.3

Table 16: CLEVR Count Induction Results.

Training Methods Meta-task 16-S 32-S 64-S

NoMeta-taskPD ✗ 35.5 30.0 36.5
Model-AvgPD ✗ 30.0 34.5 37.0
In-ContextPD ✓ 25.5 34.5 32.5
Multi-TaskPD ✓ 38.0 41.5 38.5

MAPD ✓ 40.0 40.5 41.0

Table 17: TextOCR Results.

Training Methods Meta-task 16-S 32-S 64-S

NoMeta-taskPD ✗ 29.0 26.5 30.5
Model-AvgPD ✗ 29.0 29.5 31.5
In-ContextPD ✓ 26.5 26.0 28.5
Multi-TaskPD ✓ 27.0 32.5 33.5

MAPD ✓ 30.5 31.5 31.5
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A.3 TEST-TIME COMPUTE ANALYSIS FOR ICL VS FT
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Figure 26: (a) Left: Computational time taken per test example (query) by ICL (blue) and FT (orange)
for different number of shots. (b) Right: FLOPs matched evaluation across all the VL-ICL test sets
with mean accuracy for ICL (blue) and FT (orange).

Test-time finetuning (FT) for 30 gradient steps takes about twice as much inference time per test
example (query) compared to in-context learning (ICL) under different few-shot scenarios as shown
in Figure 26(a). This is not surprising as fine-tuning involves gradient computation, which is more
expensive to run than a single forward pass in ICL.

For a more fair comparison, we examine the amount of computation required between these different
test-time adaptation methods. Figure 26(b), shows FLOPs-matched evaluation curves for ICL and
FT, using In-ContextPD and MAPD as representative training methods, respectively. We report mean
accuracy across all (single-image) VL-ICL datasets. Test-time computation (TFLOPs) scales with
the number of shots for ICL, while for FT, it can be scaled by increasing either number of shots or
gradient steps. We note that given a low test-time computational budget, ICL performs better than FT,
but as the amount of computation is increased FT outperforms ICL. This indicates that FT adaptation
is resource-intensive but scales better than ICL as the amount of computation is increased at test time.

After 400 TFLOPs, In-ContextPD performance begins to decline because the large number of shots
used (≥32) exceeds its trained context length of 8,192 tokens. Training In-ContextPD with longer
context would require >4 H200 GPUs, which exceeds our available compute resources. On the
other hand, MAPD by design does not require training on long context lengths due to the use of
a fixed set of distilled soft prompts for all shots. Additionally, we find that MAPD is much more
data-efficient: at 400 TFLOPs, it achieves comparable performance with only 8 shots and 20 gradient
steps, indicating better few-shot test-time adaptation.
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