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Abstract

We resolve difficulties in training and sampling from a discrete generative model by
learning a smoothed energy function, sampling from the smoothed data manifold
with Langevin Markov chain Monte Carlo (MCMC), and projecting back to the
true data manifold with one-step denoising. Our Discrete Walk-Jump Sampling
formalism combines the contrastive divergence training of an energy-based model
and improved sample quality of a score-based model, while simplifying training
and sampling by requiring only a single noise level. We evaluate the robustness
of our approach on generative modeling of antibody proteins and introduce the
distributional conformity score to benchmark protein generative models. By opti-
mizing and sampling from our models for the proposed distributional conformity
score, 97-100% of generated samples are successfully expressed and purified and
70% of functional designs show equal or improved binding affinity compared to
known functional antibodies on the first attempt in a single round of laboratory
experiments. We also report the first demonstration of long-run fast-mixing MCMC
chains where diverse antibody protein classes are visited in a single MCMC chain.

1 Introduction

Protein design is an instance of the discrete sequence generation problem, wherein the challenge is to
find useful proteins in the large, discrete, and sparsely functional space (Romero & Arnold, 2009)
of dimension 20L for proteins of length L. Here, we consider the specific problem of generative
modeling of antibodies, a class of proteins with highly conserved structure that are of immense interest
for therapeutics. Our goal here is to invent an efficient, non-autoregressive generative modeling
paradigm for discrete data that produces high quality, novel samples.

To this end, we introduce Smoothed Discrete Sampling (SDS), a new formalism for training and
sampling from discrete generative models. We propose a novel algorithm, discrete Walk-Jump
Sampling (dWJS), a method building on the neural empirical Bayes (NEB) (Saremi & Hyvärinen,
2019) formalism, that addresses the brittleness of discrete EBMs and diffusion models and in doing
so, provides a robust and general framework for protein discovery and design.2 We also design a
metric called the Distributional Conformity Score (DCS), which is a simple scalar score for protein
sample quality. Our results rescue EBMs for discrete distribution modeling and question the need for
diffusion models with multiple noise scales in protein discovery.

∗Equal contribution
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Figure 1: Selected samples from a single Markov chain Monte Carlo sampling run of discrete Walk-
Jump sampling (our method). Protein color corresponds to different antibody germlines (classes).
Samples are folded with EquiFold (Lee et al., 2022) for visualization purposes. Discrete walk-jump
sampling exhibits fast mixing and explores diverse modes of the distribution in a single chain.

Figure 2: Discrete walk-jump sampling. a The noising and denoising process is applied to antibody
proteins. b Discrete inputs x are smoothed with isotropic Gaussian noise, ε ∼ N(0, σ2Id), to noisy
inputs, y = x+ ε. A discrete energy-based model (dEBM) parameterizes the energy function fθ(y)
of noisy data. Noisy data is sampled with the energy function, and denoised with a separate denoising
ByteNet network to clean samples, x̂ϕ(y). c The “walk" sampling steps on the noisy data manifold
with Langevin MCMC are totally decoupled from the “jump" steps to clean samples. d The dEBM
takes noisy inputs y, concatenates them with a 1d positional encoding, p1d, passes through an MLP
and a 3 layer CNN, and concatenates the outputs with an embedding zs of the inputs into a hidden
state, h. h is passed through an MLP and returns the energy fθ(y).

2 Background

Discrete sequence generation poses a number of challenges to gradient-based generative models.
Generative models must be expressive enough to faithfully capture the underlying data distribution,
while also having controllable outputs that are novel, unique, diverse, and respect the constraints of
the problem space. Energy-based models (EBMs) (Hinton & Sejnowski, 1986; LeCun et al., 2006)
fit an energy function that specifies a probability distribution over data analogous to the Boltzmann
distribution from statistical physics. Giving access to an easily computable energy is an advantage
of EBMs, but on the flip-side they can be difficult to train and sample from. Denoising objectives
based on score matching (Hyvärinen, 2005; Vincent, 2011) and the related advancements in diffusion
models (Sohl-Dickstein et al., 2015; Ho et al., 2020) overcome these issues, but these either model
the energy gradient or only provide access to an empirical lower-bound of the likelihood.

3 Antibody discovery and design

3.1 Discrete walk-jump sampling

Following training of the denoising network, gϕ, one can sample noisy data using the learned score
function gϕ(y) with Langevin MCMC (replace −∇f with g in Eq. 3). For any such draws yk, clean
samples from the true data manifold M are obtained by “jumping” back to M with the least-squares
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estimator x̂ϕ(yk) = yk + σ2gϕ(yk). This is the walk-jump sampling (WJS) scheme. A key property
of WJS is the fact that the least-squares estimation (jump) is decoupled from the Langevin MCMC
(walk).

Here, we take advantage of this decoupling to train an EBM with maximum likelihood estimation on
the smoothed distribution of noisy sequences, generate noisy samples with Langevin MCMC, and
denoise samples with a separately trained neural network, the least-squares estimator. The algorithm
for discrete walk-jump sampling is given in Algo. 1. Our algorithm is general and applies to any
discrete sequence inputs of a fixed vocabulary. In Fig. 1 we show samples generated from a single
chain of MCMC. Unlike a diffusion model, every sample along the chain collectively forms a valid
set of samples from the underlying distribution, because of the decoupled walk (sampling) and jump
(denoising) steps. dWJS also produces fast-mixing chains, such that many diverse modes (protein
classes) are sampled in a single chain. Samples are folded with EquiFold (Lee et al., 2022) for
visualization and confirmation of structural validity.

The EBM is trained by maximizing the log-likelihood of noisy data under the model:

argmax
θ

Ey∼pY
[log pθ(y)] = argmax

θ

(
Ey−∼pθ(y)[fθ(y

−)]− Ey+∼pY
[fθ(y

+)]
)
, (1)

where y+ are noisy training data and y− are noisy data sampled from the model.

With this objective, the model aims to decrease the energy of noisy training data (“positive” samples
y+) while increasing the energy of noisy data sampled from the model (“negative” samples y−) in
expectation. The following identity is behind the positive/negative phases in the EBM training:

∇θ log pθ(y) = −∇θfθ(y)−∇θ logZ(θ)

= −∇θfθ(y) +

∫
∇θfθ(y)e

−fθ(y)dy

Z(θ)

= −∇θfθ(y) +

∫
∇θfθ(y) · pθ(y)dy

= −∇θfθ(y) + Ey∼pθ(y)[∇θfθ(y)],

(2)

where Z(θ) =
∫
e−fθ(y)dy is the partition function.

Algorithm 1: Discrete Walk-Jump Sampling
Input: Denoiser, gϕ(y), energy-based model, fθ(y)
Output: Noisy samples y ∼ p(y), denoised samples x̂(y)

1 y0 ∼ Unif([0, 1]d) +N(0, σ2Id)
2 for t = 0, . . . , T − 1 do
3 yt+1 ← yt − δ∇yfθ(yt) +

√
2δεt , εt ∼ N(0, Id)

4 end
5 x̂T ← yT + σ2gϕ(yT )
6 return argmax x̂T

4 Experiments

We evaluate our method, discrete Walk-jump sampling (dWJS) (Fig. 2), on three antibody generation
tasks: 1) distribution learning on paired observed antibody space (Olsen et al., 2022) (Appendix H);
2) the in vitro expression and purification of novel antibodies (Appendix H); and 3) most importantly,
functional therapeutic antibody design (Mason et al., 2021). Details related to model architectures,
training, baseline methods, and sequence sampling are in Appendix A.

4.1 dWJS generates functional antibody variants in vitro

To show the robustness of our method, we consider the task of training generative models on a
hu4D5 antibody mutant dataset (Mason et al., 2021) and compare to baseline models. The dataset
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consists of 9k binding and 25k non-binding hu4D5 CDR H3 mutants with up to 10 mutations (after
de-duplication and removing samples that are labeled both binding and non-binding). This yields a
1013 dimensional search space. The mutants were measured in lab experiments to determine their
binding to HER2 antigen. The goal of this benchmark task is to produce unique samples that also
bind to HER2. We trained dWJS models (score-based and energy-based) on only the binder set at
a noise level of σ = 0.5, while also training a 1D-CNN binary classifier to classify binders and
non-binders. The classifier achieves 86% accuracy on an IID validation split. Then, we classified 1000
samples from each dWJS generative model and four baseline models trained on the hu4D5 mutant
dataset. We compare in silico to three diffusion models: 1) a sequence transformer based on BERT
(Devlin et al., 2018) that generates sequences, 2) an E(n) Equivariant Graph Neural Network (EGNN)
(Satorras et al., 2021) that codesigns (sequence, structure), and 3) a latent sequence diffusion model,
SeqVDM; and a pre-trained LLM, GPT 4. The specific prompt used for GPT 4 is given in Appendix D.
The probability of binding for unique designs from each model is reported in Table 1.

Table 1: Predicted and measured antibody binding affinity.

Model pbind ↑ totalbind ↑
dWJS (energy-based) (Ours) 0.96 0.70
dWJS (score-based) (Ours) 0.95 N/A
LaMBO-2 (Gruver et al., 2023) N/A 0.25
AbDiffuser (Martinkus et al., 2023) 0.94 0.22 (0.57)
SeqVDM 0.75 N/A
GPT 4 0.74 N/A
Transformer 0.60 N/A
EGNN 0.58 N/A

We also report in vitro
wetlab validation results
for the dWJS energy-
based designs. dWJS
produces the highest per-
centage of functional an-
tibodies that bind to tar-
get (totalbind in Table 1).
We achieved a 70% bind-
ing rate in the first round
of experimental wet lab
validation on HER2, by
redesigning the CDR H3
loop of trastuzumab. To
the best of our knowledge,
this is the highest reported binding rate of any antibody design method applied to trastuzumab CDR
H3 redesign. Concurrent with the first appearance of our work, two diffusion models reported in vitro
wet-lab results for this task: AbDiffuser (Martinkus et al., 2023), a (sequence, structure) antibody
codesign method, and LaMBO-2 (Gruver et al., 2023), a guided discrete diffusion method. LaMBO-2
produces 25% binders, while AbDiffuser generates 22% binders (57% binders after post-hoc filtering).
Our method, dWJS, produces the highest percentage of unique binders (70%) and requires no post-
hoc filtering. While the diffusion methods include other important capabilities including structure
generation (AbDiffuser) and guided sampling (LaMBO-2), our method outperforms diffusion for
discrete distribution learning, which is our goal. For this experiment, our model is trained only on the
publicly available (Mason et al., 2021) dataset. This training dataset, our code,3 and our experimental
results are open and we encourage other researchers to compare results in the same in vitro setting.
Further background (G), in silico experiments (H), details of wetlab experiments (E), details of the
methods (I), and related work (J) are presented in the Appendix.

5 Conclusions

We introduced the discrete Walk-Jump Sampling (dWJS) algorithm and evaluate it on the antibody
discovery and design problems, showing the capability of our method to generate novel, diverse,
and functional antibodies as measured by synthetic biophysical property distributions, similarity
metrics, and in vitro experiments. The strong regularization provided by fitting the energy function
to noisy data completely prevents overfitting and training instabilities, resulting in fast and efficient
retraining and sampling with low compute requirements. dWJS discards many of the commonly
used techniques for improving EBM training with Langevin MCMC (replay buffers, ℓ2 norm penalty,
simulated annealing, rejection sampling, etc.) and reduces the engineering complexity of training
EBMs and diffusion-based models to a single hyperparameter choice: the noise level, σ. Altogether,
our results suggest a simplified, more general and robust framework for training and sampling from
discrete energy- and score-based models with applications to therapeutic molecule design.

3https://github.com/Genentech/walk-jump
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A Network architectures and training details

A.1 Discrete Walk-Jump Samplers

For all experiments we use an identical architecture for the EBM consisting of three Conv1D layers
with kernel sizes 15, 5, and 3 and padding 1, ReLU non-linearities and an output linear layer of
size 128. The denoising model is a 35-layer ByteNet (Kalchbrenner et al., 2016) architecture with a
hidden dimension of 128, trained from scratch. The Bytenet architecture has been shown to perform
competitively with transformers for protein sequence pretraining tasks (Yang et al., 2022). All models
were trained with the AdamW (Loshchilov & Hutter, 2017) optimizer in PyTorch (Paszke et al., 2019).
We used a batch size of 256, an initial learning rate of 1× 10−4, and trained with early stopping.
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Transformer implementation of dWJS denoising model In addition to the ByteNet implementa-
tion, we implemented a transformer-based architecture for the denoising network, with 12 hidden
layers, 8 attention heads, a dimension of 2048 for the feed-forward layers, 256 features in the en-
coder/decoder inputs, and SiLU activations. The score-based dWJS with a transformer architecture
exhibits comparable performance to the ByteNet architecture, indicating that the performance of our
method is not reliant on a particular architecture, and any sufficiently expressive architecture will
work.

A.2 dWJS stabilizes and simplifies training

We observe that the dWJS algorithm prevents instabilities during maximum likelihood training. EBMs
commonly exhibit issues with training stability and divergences in the energy, due to the energy
landscape becoming too complicated to sample. Noising the data provides strong regularization
that prevents overfitting and instabilities. This is seen over a range of noise levels σ ∈ [0.5, 4.0] for
EBMs trained over 3,000 steps. Training instabilities recur for σ < 0.5. We investigate the effects of
discarding many of the techniques for improved EBM training that, while introduced to ameliorate
challenges with EBMs, also introduce complexities that make EBMs brittle, inflexible, and difficult
to optimize. In particular, we discard the replay buffer, the ℓ2 norm penalty loss term to regularize
the energies, Metropolis rejection sampling, and time step annealing. We use the Langevin MCMC
algorithm (Algo. 3) from (Sachs et al., 2017) and eliminate the need for careful hyperparameter
finetuning; σ is the only free hyperparameter in dWJS.

A.3 Diffusion baselines

In our comparison study we use the Sequence-based Variational Diffusion Model (SeqVDM) proposed
by Kingma et al. Kingma et al. (2021), adapted for protein sequence data. The model deals with the
discrete sequences by first projecting them into a continuous latent space and then performing the
discrete denoising diffusion in the latent space. The VDM learns the data distribution by modeling
the reverse of a diffusion process in a latent space. In all our experiments we used T = 1000 steps
with the fixed noise schedule γmin = −13 and γmax = 5. The encoder, decoder and score network
model are parameterized with 3 blocks of residual MLP layers applied on flattened 1-hot encoding
representations of sequences. The MLP layers project the initial sequence representation down to
a d = 512 dimensional latent space. The model is simultaneously trained to optimize the diffusion
loss (i.e., the score-matching loss) and the sequence reconstruction loss. SeqVDM is trained on
paired OAS with the AdamW optimizer and the initial learning rate of 2× 10−4 for 50 epochs. The
sampling is done by starting from a latent vector initialized with Gaussian noise.

A.4 Language model baselines

We generate samples from IgLM using the prompt given in Appendix D. IgLM is a GPT2-style
model trained to conditionally generate antibody heavy and light chains. It is therefore a strong
autoregressive baseline for antibody design.

To mimic the ab initio generation task presented in Table 3, we increase the masking percentage of
the masked language model ESM2 Lin et al. (2023) as high as possible (40%) and infill validation set
sequences to generate new samples. Beyond 40% masking, the model produces invalid sequences
containing non-amino acid characters. As a masked language model, ESM2 is capable of limited
infilling tasks, but it is not designed to perform true *ab initio* antibody discovery. Indeed, it does not
generate antibody-like sequences, and the high Edist and IntDiv scores are therefore meaningless.
We include it purely as a familiar and powerful general protein language model baseline to show the
gap in performance between a general protein MLM and our methods.
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Figure 3: Histogram of χii′ values for random samples from the paired observed antibody space
(Olsen et al., 2022) dataset.

A.5 Estimation of σc hyperparameter

B Additional algorithms

B.1 Gradient flow enables local minima finding

We define the gradient flow as y′(t) = −∇ log f(y(t)), where sampling is performed by following
the flow of the gradient of the probability density function in a deterministic dynamics, rather than
stochastic Langevin dynamics. We initialize sampling from noise at t = 0, y0 = ε0, ε0 ∼ N(0, Id),
and sample noisy samples y′(t) following the gradient flow. In this way, we discover local “attractors"
on the data manifold that correspond to local minima of the learned energy function. The algorithm
for discrete gradient flow is given in Algo. 2.

Algorithm 2: Discrete gradient flow
Input: Denoiser, gϕ(y), energy-based model, fθ(y)
Output: Denoised samples x̂(y, t)

1 y0 ∼ N(0, σ2Id)
2 for t = 0, . . . , T − 1 do
3 yt+1 ← yt − δ∇yfθ(yt)
4 end
5 x̂T ← yT + σ2gϕ(yT )
6 return argmax x̂T

10



B.2 Langevin MCMC Update

Algorithm 3: Walk-jump sampling (Saremi & Hyvärinen, 2019) using the discretization of
Langevin diffusion by Sachs et al. (2017). Lines 6-13 correspond to walk step and line 14 is the
jump step.

1: Input δ (step size), u (inverse mass), γ (friction), K (steps taken)
2: Input Learned score function gθ(y) ≈ ∇ log p(y) and noise level σ
3: Output x̂K

4: y0 ∼ N(0, σ2Id) + Ud(0, 1)
5: v0 ← 0
6: for k = 0, . . . ,K − 1 do
7: yk+1 ← yk + δ

2vk
8: gk+1 ← gθ(yk+1)
9: vk+1 ← vk + uδ

2 gk+1

10: ε ∼ N(0, Id)

11: vk+1 ← exp(−γδ)vk+1 +
uδ
2 gk+1 +

√
u (1− exp(−2γδ))ε

12: yk+1 ← yk+1 +
δ
2vk+1

13: end for
14: x̂K ← yK + σ2gθ(yK)

B.3 Neural Empirical Bayes

Here, we include additional discussion and motivation for Neural Empirical Bayes and generating
discrete samples with decoupled walk and jump steps. Discrete data in this work is viewed as taking
continuous values (embedded in Euclidean space) in the NEB formalism, and by choosing large noise
levels we can smooth out the original distribution greatly which makes it easier to sample from. In
addition, we can use single-step denoising back to discrete values. In short, the walk-jump sampling
is especially well suited for discrete data.

In line 1 of Algorithm 1, we followed the initialization scheme in (Saremi & Srivastava, 2021), since
here the discrete data is viewed as being embedded in Euclidean space. Typically having the normal
distribution as part of the initialization is more important for high noise levels, and we chose the
uniform distribution for simplicity.

The walk and jump steps are completely decoupled. The models used for denoising and sampling
can have the same parameterization, but they can also be trained separately. Because the walk and
jump steps do not depend on each other in any way, we consider them to be decoupled. The energy
and score are related by a derivative with respect to the inputs, and any model that gives access to a
score can be used for sampling via Langevin MCMC. However, EBMs and score-based models are
trained in completely different ways with different loss functions and architectures, so the empirical
performance can differ greatly. DEEN models are not trained with contrastive divergence, so the
EBM formulation is completely distinct in terms of parameterization, training, and sampling.

C Performance profiling

Table 2: Model size, sampling time and memory consumption.

Model Parameters (M) GPU time / sample (ms) ↓ GPU memory (MB) ↓

dWJS (energy-based) 9.87 64.89 4734.76
dWJS (score-based) 1.03 327.60 16.7
SeqVDM 12.31 940.40 246.39
DEEN 1.03 976.99 16.72
IgLM 12.89 2800 —
ESM2 7.8 5.25 —
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D Few-shot, in-context learning and prompts

D.1 GPT 4 prompt

GPT 4 accessed on April 27, 2023. Prompt was repeated 20 times to generate additional samples for
statistics.

Prompt: You are an expert antibody engineer. I am going to give you examples of CDR
H3 variants of trastuzumab that were reported binders to the HER2 antigen in the paper
"Optimization of therapeutic antibodies by predicting antigen specificity from antibody se-
quence via deep learning". You will generate 100 new CDR H3 variants that you predict
will also bind to HER2. Output the 100 samples as a python list. Here are the examples:
[’WHINGFYVFH’, ’FQDHGMYQHV’, ’YLAFGFYVFL’, ’WLNYHSYLFN’, ’YNRYG-
FYVFD’, ’WRKSGFYTFD’, ’WANRSFYAND’, ’WPSCGMFALL’, ’WSNYGMFVFS’, ’WS-
MGGFYVFV’, ’WGQLGFYAYA’, ’WPILGLYVFI’, ’WHRNGMYAFD’, ’WPLYSMYVYK’,
’WGLCGLYAYQ’,]

Response: As an AI language model, I can’t run simulations or generate sequences based on
actual molecular interactions. However, I can use patterns found in your provided list to generate
new sequences that may resemble the CDR H3 variants you’ve shared. Keep in mind that these
new sequences have not been validated experimentally and may not bind to HER2.

D.2 GPT 3.5 prompt

GPT 3.5 accessed on May 2, 2023. Prompt was repeated 5 times to generate additional samples for
statistics.

Prompt: You are an expert antibody engineer. I am going to give you examples of antibody
heavy chain variable regions from the paired observed antibody space database. You will
generate 10 new antibody heavy chains that are not in the database. Output the 10 samples as a
python list. Here are the examples: [’QLQLQESGPGLVKPSGTLSLICAVAGSSVTTSNVY-
WDWIRQPPGKGLEWIGTISYSATT’, ’YYNPSLKSRVTLFVDTSKNQFSLKLNSVTAAD-
TAMYYCARHVVDCTGGRCLWKTGFDYWGQGTLVTVSS’, ’QVQLVESGGGVVQP-
GRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVIWYDGSNKYY’, ’ADSVK-
GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDQGLSTYYGYDKDSSYGMD-
VWGQGTTVTVSS’, ’EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYSMNWVRQAPGK-
GLEWVSSISSSSSYIYY’, ’ADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARD-
FGYCSGGSCSGWGQGTLVTVSS’, ’QVQLKESGPGLVQPSQTLSLTCTVSGFSLTSYHVH-
WVRQPPGKGLEWMGVMWSDGDTSYN’, ’SALKSRLSISRDTSKSQVFLKMSSLQT-
EDTATYYCARSGKAVMDAWGQGASVTVSS’, ’QVQLVQSGAEVKKPGSSVKVSCK-
ASGGPFRGSTINWVRQAPGQGLEWMGRIIPILNAPNY’, ’AQNFHGRVTITADKST-
STAYMELSSLTSDDTALYFCATYSGTYHMAPGAFDIWGHGTMVTVSS’]

Response: Sure, I can help you generate 10 new antibody heavy chains. Here’s a list of 10 new
antibody heavy chains that are not in the given database: ...

These heavy chains were generated using the antibody engineering tools and techniques to
create novel heavy chains. The generated sequences have a similar length and structure as the
provided examples, but they have different amino acid sequences, and are unique.

D.3 IgLM prompt

IgLM samples were generated using the prompt in the IgLM README, adjusted to produce 2000
samples for comparison with other methods.

iglm_generate --prompt_sequence EVQ \\
--chain_token [HEAVY] --species_token [HUMAN] --num_seqs 2000

12



E in vitro validation

E.1 Experimental results

Figure 4: Expression yield (mg) and binding affinity (pKD) of sequence designs from our method
targeting the ERBB2 antigen.

E.2 Experimental details

in vitro validation of generated antibody proteins was performed following Hsiao et al. (2020).
Discrete Walk-Jump Sampling (dWJS) was used to generate antibody sequences, which were then
expressed and purified in the laboratory. Surface plasmon resonance (SPR) measurements were used
to determine binding affinity.

Plasmid Construction and Antibody Production: synthesized DNA (provided by Twist Biosciences)
of antibody variable domains were cloned into mammalian expression vectors using Gibson assembly.
We amplified the whole vector using PrimeStar Max polymerase (Takeda). We transfected PCR
products transiently in 1mL Expi293 cell culture. Expression lasted 7 days before harvest. We affinity
purified antibodies over a MAb Select SuRe resin (Cytiva), and measured their concentration by
optical density at 280nM.

Binding Affinity Measurements: we measured affinity of the antibodies towards their target antigen
by surface plasmon resonance (SPR) at 37 °C on a Biacore 8K instrument (Cytiva) in HBS-EP+
buffer (10 mM Hepes, pH 7.4, 150 mM NaCl, 0.3mM EDTA and 0.05% vol/vol Surfactant P20). We
captured antibodies on a Protein A chip and injected their target antigens for 5 minutes and allowed
them to dissociate for 10 minutes at 30 ul/min. We regenerated the surface between cycles with 10
mM glycine pH 1.5. We obtained affinity constants using Biacore Insight (Cytiva) using a 1:1 binding
kinetics model.

F Further discussion of distributional conformity score

The difference between DCS and property alignment in the score-based dWJS model indeed provides
valuable insights into the nature of the DCS statistic. DCS, being a measure of joint distribution
alignment, might prioritize capturing relationships among properties as opposed to alignment of
individual properties. Additionally, given that DCS uses kernel density estimation, it might be more
influenced by extreme data points within the distribution. These factors combined suggest that DCS
offers a distinct perspective on the overall quality of generative model performance.

We considered sequence-based properties of average hydprophilicity, molecular weight, grand average
of hydropathy (Cock et al., 2009), as well as two structure-based properties: surface hydrophobicity
patches around the CDR region and the symmetry of structural variable chain charges (Raybould
et al., 2019).
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Table 3: Ablikeness metrics, uniqueness, diversity, and distributional conformity scores.

Model Wproperty ↓ Unique ↑ Edist ↑ IntDiv ↑ DCS ↑

dWJS (energy-based) 0.056 1.0 58.4 55.3 0.38
dWJS (score-based) 0.065 0.97 62.7 65.1 0.49
SeqVDM 0.062 1.0 60.0 57.4 0.40
DEEN 0.087 0.99 50.9 42.7 0.41
GPT 3.5 0.14 0.66 55.4 46.1 0.23
IgLM 0.08 1.0 48.6 34.6 0.533
ESM2 0.15 1.0 70.99* 77.56* 0.061

G Further background

G.1 Energy-based models

EBMs are a class of models that learn an energy function fθ : X→ R mapping inputs x (in Rd) to a
scalar “energy" value. The data distribution is approximated by the Boltzmann distribution

pθ(x) ∝ e−fθ(x).

EBMs are typically trained via contrastive divergence (Hinton, 2002), and new samples are drawn
from pθ(x) by Markov-Chain Monte Carlo (MCMC). Details of the loss function used in this work
are given in Section 3. In Langevin MCMC, samples are initialized from a known data point or
random noise and refined with (discretized) Langevin diffusion

xk+1 = xk − δ∇fθ(xk) +
√
2δ εk, εk ∼ N(0, Id), (3)

where∇ denotes the gradient of the energy function with respect to inputs, k is the sampling step, δ
is the (discretization) step size, and the noise εk is drawn from the normal distribution at each step.

G.2 Neural empirical Bayes

In NEB, the random variable X is transformed with additive Gaussian noise Y = X +N(0, σ2Id).
The least-squares estimator of X given Y = y is given by (Robbins, 1956; Miyasawa, 1961)

x̂(y) = y + σ2∇ log p(y), (4)

where p(y) =
∫
p(y|x)p(x)dx is the probability distribution function of the smoothed density.4

This estimator is often expressed directly in terms of g(y) = ∇ log p(y) known as the score func-
tion (Hyvärinen, 2005) which is parameterized with a neural network denoted by gϕ : Rd → Rd. The
least-squares estimator then takes the following parametric form:

x̂ϕ(y) = y + σ2gϕ(y). (5)

Putting this all together leads to the following learning objective

L(ϕ) = Ex∼p(x),y∼p(y|x)∥x− x̂ϕ(y)∥2, (6)

which is optimized with stochastic gradient descent. Notably, no MCMC sampling is required
during learning. In short, the objective is “learning to denoise” with an empirical Bayes formulation
(discussed further in Appendix B.3).

H Further experiments

H.1 dWJS generates natural, novel, diverse antibodies in silico

We measure generative model performance with a suite of “antibody likeness" (ab-likeness) metrics
including labels derived from the AA sequence with Biopython (Cock et al., 2009). Sequence property

4We follow the convention p(x) := pX(x), p(y) := pY (y), etc.
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metrics are condensed into a single scalar metric by computing the distributional conformity score and
the normalized average Wasserstein distance Wproperty between the property distributions of samples
and a validation set. The average total edit distance Edist summarizes the novelty and diversity of
samples compared to the validation set, while internal diversity (IntDiv) represents the average total
edit distance between samples. Our method achieves strong ablikeness results (Table 3), simply by
increasing σ to ≥ 0.5. dWJS with dEBM sampling achieves the best agreement with the validation
set property distribution and highest percentage of unique samples, while dWJS with score-based
sampling has the best distributional conformity score, novelty, and diversity. We compare to a latent
sequence diffusion method (SeqVDM), (a discrete generalization of variational diffusion; Kingma
et al. 2021), a score-based model with an energy parameterization (DEEN), a transformer-based
language model trained specifically for antibody design (IgLM); Shuai et al. (2021), ESM2 Lin et al.
(2023), and a pre-trained large language model (LLM) (GPT 3.5). Our dWJS methods have faster
sampling time and lower memory footprint than diffusion, autoregressive, and score-based baselines
(Table 2), while also having better sample quality. Details on the baseline methods and IgLM and
GPT 3.5 prompts are given in Appendices A and D.

H.2 dWJS generates natural, novel, diverse antibodies in vitro

Table 4: Protein synthesis.

Model pexpression ↑
dWJS (score-based) 1.0
dWJS (energy-based) 0.97
EBM 0.42

Out of more than 277 designed antibody sequences tested
in the laboratory, 270 were successfully expressed and
purified (Table 4). We achieved the 97.47% in vitro suc-
cess rate by developing dWJS to capture the antibody
distribution in silico as measured by distributional con-
formity score. For comparison, sequences from an EBM
(trained on clean data with samples drawn using traditional
Langevin MCMC) achieved a 42% expression rate. An
antibody sequence comprised of random vocabulary to-
kens would be expected to have a 0% expression rate, and
in laboratory experiments we have confirmed that a small

number of edits (< 4) can destroy expression if the proposal distribution (generative model) is poorly
optimized.

I Further methods

Variable length protein sequence generation. We represent antibody protein molecules as
x = (x1, . . . , xd), where xl ∈ {1, . . . , 20} corresponds to the amino acid (AA) type at position l.
Sequences from the Observed Antibody Space (OAS) database (Olsen et al., 2022) are aligned ac-
cording to the AHo numbering scheme (Honegger & PluÈckthun, 2001) using the ANARCI (Dunbar
& Deane, 2016) package and one-hot encoded. Aligning sequences in this way is a practical solution
to handling insertions and deletions, which are otherwise troublesome for models that require fixed
length inputs and outputs; alignment introduces a “gap" token that can be introduced or removed
during sampling to effectively change the length of sequences. This allows the model to capture the
distribution of lengths present in natural antibodies. The alignment step maps heavy and light chain
sequences of varying lengths to a standard, gapped input size of 149 and 148 respectively with 21
possible discrete tokens including the gap. Thus, the input dimension for every sequence becomes
d = (149 + 148)× 21. Without loss of generality, any set of proteins can be aligned with a multiple
sequence alignment (Rao et al., 2021). For other classes of discrete data, pseudo-alignment tokens
can be used and randomly inserted into the inputs, or simple BOS and EOS tokens can be used and
sampled. An EBM is trained via contrastive divergence on the manifold of smoothed, noisy one-hot
encodings, y, given by y = x+ε, ε ∼ N(0, σ2Id), where x ∈ {0, 1}d. A separate denoising model is
trained with the objective in Eq. 6. New antibody sequences are generated (Fig. 2) by sampling noisy
samples with Langevin MCMC following gradients from the EBM, denoising with the least-squares
estimator, and taking argmax x̂ to recover a one-hot encoding. Further details related to training and
network architecture are given in Appendix A.

Protein design vs discovery. Protein discovery is the task of generating novel, unique, and valid
samples. Protein design refers to taking some starting sequence and making edits to improve function.
With dWJS we achieve discovery through unconditional sampling, while design is performed via
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Figure 5: in silico designs sampled with dWJS are compared to a reference set of validation samples.
Distributions are characterized with a set of sample quality metrics. Joint density estimation is used
to compute the likelihood of designs versus the validation set and likelihoods are condensed into a
distributional conformity score that characterizes the similarity of generated samples to the reference
set.

constrained sampling and scoring. That is, we impose the following constraint in the form of a binary
projection matrix

P⊤x̂(y, t) = P⊤s

for P ∈ {0, 1}L×c, where c is the number of conserved tokens in the sequence, y is the noisy
sequence at time step t of Langevin MCMC, x̂(y, t) is the denoised sample at time t, and s is the
starting sequence. This constraint ensures that the specified regions of the sequence are conserved,
while the non-conserved regions are free to change during Langevin MCMC.

I.1 Derivation of optimal noise level for discrete sequence data

Throughout the experiments in Section 4, we must choose what noise level, σ, to use for training.
Empirically, we find that in the protein discovery setting, σ ≥ 0.5 is sufficient for getting good sample
quality. Here, we provide some intuition for choosing a good σ, based on a geometric picture of the
concentration of the measure (Saremi & Hyvärinen, 2019). We define the matrix χ with entries

χii′ =
||Xi −Xi′ ||

2
√
d

, (7)

where d is the dimension of the data and the 1
2
√
d

scaling comes from the concentration of isotropic
Gaussians in high dimensions. The critical noise level, σc, is defined as

σc = max
ii′

χii′

such that for σ > σc, all noisy data have some degree of overlap. For our antibody sequence data,
the statistics of the χ matrix are given in Table 5 and the histogram of χii′ values is shown in
Appendix A.5. We find that σc ≈ 0.5, which agrees with our empirical hyperparameter optimization.
Estimating σc in this way serves to motivate the empirical success of the σ used in our experiments,
and provides helpful guidance on the scale of σ to use for discrete data. Here we take d to be the
length of the input vector (d = L = 297 for aligned antibody sequences); for the flattened sparse
one-hot matrices with vocabulary size 21, d = 6237. This scales σc by 0.22, which still gives a useful
scale for σ, but is not optimal because of the sparsity of the one-hot matrices.

Table 5: Statistics of the distance matrix, χ, for discrete antibody sequence data.

min median mean max ≈ σc

χ 0.17 0.42 0.41 0.51
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I.2 Distributional conformity score

The FID score in computer vision and metrics like the BLEU score in machine translation greatly
simplify the evaluation of proposed methods; protein generation lacks such metrics, which motivates
us to introduce the “distributional conformity score” (Fig. 5). The goal of the distributional conformity
score is to provide a succinct description of how likely generated samples are with respect to a
reference distribution, while maintaining novelty and diversity. Distributional conformity score
is designed such that improving sample quality corresponds directly to increased probability of
generating real, biophysically valid proteins.

We evaluate the probability that our generated sequences conform to a reference distribution using
the conformal transducer system (Shafer & Vovk, 2008; Vovk et al., 2016). Let X ∈ Rd, Y ∈ R, and
Z = X× Y.5 A conformity measure A is a measurable function that maps a sequence (z1, . . . , zn) ∈
Zn to a set of real numbers (α1, . . . , αn) and is equivariant under permutations. Given a new
example z, we use A to measure how similar z is to (z1, . . . , zn). The conformal transducer is then
defined as a system of p-values where for each label y ∈ Y, a reference sequence (z1, . . . , zl) ∈ Zl,
and a test example x ∈ X , we have: py := py(z1, . . . , zl, (x, y)) = 1

l+1

∑l+1
i=1[αyi < αyl+1

]

where (αy1 , ..., αyl
, αyl+1

) := A(z1, ..., zl, (x, y)). Intuitively, py is the fraction of examples that
have a higher degree of conformity to the reference distribution than (x, y). Here, we define A to
be the likelihood under the join density over various properties, including biophysical properties
and statistical properties, such as a log-probability under a protein language model (the properties
considered and comparisons to other measures of protein-likeness are given in Appendix F). We use
kernel density estimation to compute the joint density. To avoid overfitting the estimator, we split the
reference set into a fitting set and a validation set, with the latter used to compute the p-values (Algo.
4). In our context, the reference distribution D comprises all antibodies and the label y represents the
property of interest such as expression or binding.

Algorithm 4: Distributional conformity scores for evaluating generated designs
Input: Reference distribution D, test example x ∈ X, conformity measure A, label y
Output: p-value py (the fraction of validation examples that more similar to Dz|y than x)

1 Sample (z1, . . . , zn), zi ∼ Dz|y and a held-out validation set (z̃1, . . . , z̃k − 1), z̃i ∼ Dz|y
2 Set z̃k ← (x, y)
3 for i = 1 to k do
4 αi ← A(z1, . . . , zn, z̃i)
5 end
6 py ← 1

k

∑k
i=1[αi < αk]

7 return py

J Related work

Energy-based models (EBMs) (LeCun et al., 2006) are a class of physics-inspired models that
learn an energy function defining a probability distribution over data with a rich history that goes
back to Boltzmann machines (Hinton & Sejnowski, 1986). Contrastive divergence (Hinton, 2002)
training using Gibbs sampling was proposed to estimate the gradient of the log partition function,
wherein input data is usually discrete and MCMC chains are initialized from training data, leading to
long mixing times in high dimensions. Using continuous inputs and Langevin MCMC initialized
from uniform noise with a replay buffer of past samples, efficient training was achieved (Du &
Mordatch, 2019). The Langevin MCMC approach to sampling and maximum likelihood training
yield advantages in simplicity (only one network is trained), flexibility (no constraints imposed by a
prior distribution), and compositionality (energy functions can be summed).

Estimating unnormalized densities has also been formulated using score matching (Hyvärinen, 2005).
This formulation led to probabilistic models for denoising autoencoders (Vincent, 2011; Alain &
Bengio, 2014; Saremi et al., 2018), but also has an empirical Bayes interpretation that is most related
to this work. In particular, the neural empirical Bayes (NEB) (Saremi & Hyvärinen, 2019) formalism

5In the discussion of distributional conformity score, x refers to sample features; elsewhere in the paper x
refers to clean data. Here, y refers to labels; elsewhere in the paper y refers to noisy data.
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unifies kernel density estimation (Parzen, 1962) and empirical Bayes (Robbins, 1956) to transform
the unsupervised learning problem into a more tractable form where a neural network energy function
is parameterized to capture a smoothed data distribution. Our work is the first study of the NEB
formalism for discrete data. Whereas our approach relies on smoothing discrete data and learning
energies and scores over the smooth distribution, (Meng et al., 2023) formulates discrete score
matching by constructing a faithful approximation of continuous score matching via an inductive
prior on the local topology of the data space. Additionally, discrete diffusion models such as (Austin
et al., 2023) learn an iterative denoising process over many different noise levels by prescribing a
noise process over discrete data that converges to a known categorical distribution.

Although generative modeling is widely adopted in image and natural language generation, successful
applications of generative modeling in the sciences are few and far between, due to the over-
representation of image and text datasets, challenges in evaluation, and the need for generating
samples that are novel and diverse while respecting the underlying symmetries and structure of a
particular domain. We consider the application of designing new molecules, focusing on therapeutic
antibodies. Antibodies are proteins consisting of a heavy and light chain that can be represented as
discrete sequences of amino acids (AAs), which comprise a standard vocabulary of 20 characters.
Approaches borrowing from traditional ML generative modeling have been used to model antibodies
(Shuai et al., 2021; Gligorijević et al., 2021; Ferruz & Höcker, 2022; Tagasovska et al., 2022), but
typical natural-language-based methods struggle to capture the data distribution of antibodies, for
which there is limited training data (∼1K - 1M high-quality sequences depending on the distribution
of interest) and additional challenges due to the high-entropy variable regions of the sequence.
Here, we address the above challenges with training and sampling discrete sequences using a novel
formulation of decoupled energy- and score-based modeling.

18



19


	Introduction
	Background
	Antibody discovery and design
	Discrete walk-jump sampling

	Experiments
	dWJS generates functional antibody variants in vitro

	Conclusions
	 Appendix
	Network architectures and training details
	Discrete Walk-Jump Samplers
	dWJS stabilizes and simplifies training
	Diffusion baselines
	Language model baselines
	Estimation of c hyperparameter

	Additional algorithms
	Gradient flow enables local minima finding
	Langevin MCMC Update
	Neural Empirical Bayes

	Performance profiling
	Few-shot, in-context learning and prompts
	GPT 4 prompt
	GPT 3.5 prompt
	IgLM prompt

	in vitro validation
	Experimental results
	Experimental details

	Further discussion of distributional conformity score
	Further background
	Energy-based models
	Neural empirical Bayes

	Further experiments
	dWJS generates natural, novel, diverse antibodies in silico
	dWJS generates natural, novel, diverse antibodies in vitro

	Further methods
	Derivation of optimal noise level for discrete sequence data
	Distributional conformity score

	Related work


