
The Reverse Turing Test
for Evaluating Interpretability Methods on Unknown

Tasks

Ana Valeria Gonzalez and Anders Søgaard
Department of Computer Science

University of Copenhagen
{ana,soegaard}@di.ku.dk

Abstract

The Turing Test evaluates a computer program’s ability to mimic human behaviour.
The Reverse Turing Test, reversely, evaluates a human’s ability to mimic machine
behaviour in a forward prediction task. We propose to use the Reverse Turing Test
to evaluate the quality of interpretability methods. The Reverse Turing Test im-
proves on previous experimental protocols for human evaluation of interpretability
methods by a) including a training phase, and b) masking the task, which, com-
bined, enables us to evaluate models independently of their quality, in a way that is
unbiased by the participants’ previous exposure to the task. We present a human
evaluation of LIME across five NLP tasks in a Latin Square design and analyze
the effect of masking the task in forward prediction experiments. Additionally, we
demonstrate a fundamental limitation of LIME and show how this limitation is
detrimental for human forward prediction in some NLP tasks.

1 Introduction

Machine learning models have tremendous impact on our daily lives, from information storing and
tracking (i.e. Google Search and Facebook News Feed), as well as on other scientific disciplines.
Modern-day NLP models, for example, are complex neural networks with millions or billions of
parameters trained with multiple objectives and often in multiple stages (Devlin et al., 2019; Raffel
et al., 2019); they are often seen for that reason, as black boxes whose rationales cannot easily be
queried. In other words, we are increasingly relying on models that we do not understand or cannot
explain, in science, as well as in our daily lives. Model interpretability, however, is desired for several
reasons: Humans often ask for the motivation behind advice, and in the same way, users are likely
to trust model decisions more if they can ask for the rationale behind them. Model interpretability
enables us to inspect whether models are fair and unbiased, and it enables engineers to detect when
models rely on mere confounds. Combatting this type of overfitting will lead to more robust (or
less error-prone) decision making with better generalization to unseen data (and, hence, safer model
employment).

Recent years has seen a surge in work on post-hoc interpretability methods for neural networks
which aim to approximate complex decision boundaries with less complex models, for example,
locally linear models. See §5 in Murdoch et al. (2019) for a brief survey. Unfortunately, there is little
consensus on how to compare interpretability methods. Some benchmarks have been introduced (Rei
and Søgaard, 2018; Poerner et al., 2018; DeYoung et al., 2020), but some of these are flawed, and
they are all only applicable to some of the proposed interpretablitity methods. See §5 for discussion.
In our view, a more promising approach to evaluating interpretability methods is by human forward
prediction experiments. Nguyen (2018) presented the first evaluations of LIME (Ribeiro et al., 2016)
for sentiment analysis using human subjects through a series of Mechanical Turk experiments. Their
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study had two limitations: (a) They did not allow for a training phase for the human participants to
learn model idiosyncracies, and participants instead had to rely on the assumption that the model
was near-perfect. (b) Since the participants thus had to rely on their own sentiment predictions, their
evaluations are biased by their beliefs about the sentiment of the input documents. Hase and Bansal
(2020) recently presented evaluations of LIME with human participants that involved a training phase,
enabling them to predict poor model behavior, and thereby addressing limitation (a), but they still
only included known tasks for which forward prediction is biased by the participants’ own beliefs.
This paper aims to fill this gap.

Contributions This work presents a simple-yet-insightful method for evaluating interpretability
methods through simple 15-minute experiments with human participants. Our experiments differ
from previous work in a very important way: our proposed evaluation of interpretability involves
conditions in which human subjects are less likely to rely on their cognitive biases. As our test case,
we evaluate LIME (Ribeiro et al., 2016) – which has been a popular feature attribution method in the
last few years – across five NLP tasks in a Latin Square design (Shah and Sinha, 1989), including
three tasks which were kept secret to our participants. We argue that keeping the tasks secret to the
participants makes the evaluation of interpretability methods more reliable and investigate the impact
of this difference in experimental design. Additionally, we also point out a weakness of LIME –
which is shared across many word attribution methods – namely, that its input/output dimensions are
sometimes orthogonal to the relevant dimensions for interpretability. We include a task in which this
happens and show how detrimental the interpretability method can be in such cases.

2 Human Biases in Forward Prediction

One thing sets our experiments in this paper apart from previous evaluations of interpretability
methods by A/B testing with human forward prediction (Nguyen, 2018; Hase and Bansal, 2020):
We will present participants with decisions by models trained on tasks that are unknown to the
participants. In other words, humans are simply asked to predict y from x, with no prior knowledge of
the relation that may exist between them, beyond an initial training phase. Several different cognitive
biases are particularly important for motivating and analyzing our experimental design:

Belief bias An effect where someone’s evaluation of the logical strength of an argument is biased by
the plausibility of the conclusion (Klauer et al., 2000). In human forward prediction of model behavior,
this happens when the plausibility of the conclusion, e.g., this review is positive, biases the subject’s
evaluation of her own conclusions, e.g., the model will predict this review is negative, because it
includes this or that term. We argue that it is particularly important to evaluate interpretability methods
with human forward prediction on unknown tasks to avoid belief bias.

Confirmation bias This bias occurs when individuals seek information which supports their prior
belief while disproportionately disregarding information that challenges this belief (Mynatt et al.,
1977). In our context, such a bias could, for example, lead subjects that already classified a document
in one way to disregard LIME mark-up. In the extreme, confirmation bias could cancel out any effect
of interpretability methods in human forward prediction, but our results below show that in practice,
LIME has a strong (positive or negative) effect on human forward prediction.

Curse of knowledge This is the phenomenon when better-informed people find it extremely
difficult to think about problems from the perspective of lesser-informed people (Ackerman
et al., 2003). In our case, the model plays the role of a lesser-informed agent. We believe the
curse of knowledge amplifies belief bias and makes it very hard for participants to unlearn their
prior knowledge of the underlying task relation. This bias is very evident in our experiments
below and additional motivation for including a training phase in the Reverse Turing test (see our
Pre-Experiment).

Our experimental design is motivated by a desire to reduce the above biases in our forward prediction
experiments. Cognitive biases can interact with human forward prediction in a number of ways, e.g.,
making participants less confident about predictions that do not align with their prior beliefs, or
leading them to ignore explanations that are inconsistent with their beliefs.
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3 LIME – and its Limitations

The Local Model-agnostic Explanations (LIME) method (Ribeiro et al., 2016) has become one of the
most widely used post-hoc model interpretability methods in NLP. LIME aims to interpret model
predictions by locally approximating a model’s decision boundary around an individual prediction.
This is done by training a linear classifier on perturbations of this example.

Several weaknesses of LIME have been identified in the literature: LIME is linear (Bramhall et al.,
2020), unstable (Elshawi et al., 2019) and very sensitive to the width of the kernel used to assign
weights to input example perturbations (Vlassopoulos, 2019; Kopper, 2019), an increasing number of
features also increases weight instability (Gruber, 2019), and Vlassopoulos (2019) argues that with
sparse data, sampling is insufficient. Laugel et al. (2018) argues the specific sampling technique is
suboptimal.
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Figure 1: Our experimental protocol. For each task,
we train our models using standard datasets and
evaluate the model on held out training data and
testing data to be used for the training and evalu-
ation sessions involving humans. We also extract
LIME explanations. In the human experiments
phase, the humans train and evaluate in these 2
conditions (LIME explanation or no explanation).
Finally, we compare the results.

We point to an additional, albeit perhaps ob-
vious, weakness of LIME’s : It can only ex-
plain the decisions of a classifier in so far as
the decision boundary of the classifier aligns
with the feature dimensions of LIME. In most
applications of feature attribution interpretabil-
ity to NLP problems, the feature dimensions are
the input words. That is to say, such methods
can only explain the decisions of a classifier if
the decision boundary aligns with the dimen-
sions along which the occurrences of words are
encoded. LIME can, for example, not explain
the decisions of a classifier "1 if sentence length
odd, else 0". In our experiments, we include a
task in which a classifier is trained to predict the
length of the input sentence (from a low-rank
representation), as a way of evaluating the effect
of LIME on human forward prediction, on tasks
that LIME is, for this reason, not able to explain.

Examples of real tasks where this limitation is
a problem, include, for example, all tasks where
sentence length is predictive, including readabil-
ity assessment (Kincaid et al., 1975), authorship
attribution (Stamatatos, 2009), or sentence align-
ment (Brown et al., 1991). We note this limita-
tion is not unique to LIME, but shared among
most post-hoc interpretability methods which output word or span importance, e.g., hot flip (Ebrahimi
et al., 2018), attention (Rei and Søgaard, 2018), and back-propagation (Rei and Søgaard, 2018). Other
approaches to interpretability such as using influence functions (Koh and Liang, 2017) may have
more explanatory power for such problems however we choose to focus our experiments on LIME,
as a vast number of interpretability methods return explanations which are extractive similarly to this
method.

4 Human Forward Prediction Experiments

The experiments we describe below are examples of the Reverse Turing Test. The test resembles the
Turing Test (Turing, 1950; Horn, 1995) in that it focuses on the differences between the behavior
of humans and computer programs. In the Reverse Turing Test, we quantify humans’ ability to
simulate computer programs, however; rather than computer programs’ ability to simulate humans.
Specifically, we quantify humans’ ability to predict the output of machine learning models given
previously unseen examples. The test is defined (for classification models) as follows: The Reverse
Turing test is an experimental protocol according to which participants are presented with k examples
of 〈I(x), ŷ〉 pairs, with ŷ = f(x) the labeling of x by some unknown machine learning model f(·),
and I is a possibly empty interpretation function, which, in the case of post-hoc interpretability
methods, highlights parts of the input, e.g., input words. The training phase is timed. Subsequently,
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participants are presented with m unseen examples x1 . . .xm and asked to predict f(x1) . . . f(xm).
The evaluation phase is also timed. The result of the Reverse Turing test is the accuracy or F1 of the
participants’ predictions compared to ŷ1, . . . , ŷm, as well as the training and inference times. The
test is meant to evaluate the quality of different interpretations, I(·) and can be used for evaluation
methods, like we do, or for evaluating models or interpretability methods during development (Lage
et al., 2018). We believe our test is in some ways more critical than previous, as we are attempting to
evaluate interpretability methods more reliably by reducing human belief bias.

4.1 Tasks and Data

Based on the efforts of 30 annotators, we collected a total of 3000 example annotations in human
forward prediction experiments, distributed across five different tasks (two known; three unknown)
and two experimental conditions (with and without explanations). The overall experimental protocol
is shown in Figure 1. All code for preprocessing data, training the models, and the experimental set
ups are publicly available at https://github.com/anavaleriagonzalez/reverse_turing_test.

Known Tasks For our known tasks, we focus on two very common text classification tasks:
sentiment analysis and hate/offensive speech detection. For sentiment analysis we use the Stanford
Sentiment Treebank (SST) (Socher et al., 2013). The SST dataset consists of 6920 documents for
training, 872 documents for development and 1820 documents for testing. For hate speech detection,
we use the HatEval dataset from SemEval 2019 (Basile et al., 2019). The dataset consists of several
binary tasks, however we focus on the task of detecting presence of hate speech (disregarding which
group is being targeted as this is considered a separate task). In total, there are 9000 tweets for
training, 1000 for development and 3000 for testing.

Unknown Tasks As our unknown tasks, we use 3 of the 10 probing tasks introduced in Conneau
et al. (2018). The probing tasks were originally designed to evaluate the linguistic properties of
sentence embedding models. In this study we are mostly interested in the differences in performance
between humans and machines, and are not looking to evaluate linguistic properties of representations
in depth, therefore chose only a few of theses tasks. The first task is sentence length prediction in
which the sentences are grouped in 6 bins indicating length in terms of number of words. This task
was chosen in order to examine the effect on LIME in a task where LIME offers poor explanations.
The second probing task is tense prediction, which involves predicting whether the verb in the
main clause is present or past tense. The third task is subject number prediction, which focuses on
predicting whether the subject in the main clause is plural or singular. These last two are simple tasks
where we expect LIME to offer good enough explanations. The training data for each of the probing
tasks consists of 100k sentences, 10k sentences for validation and 10k sentences for testing. The
sentences are taken from the Toronto Book Corpus (Zhu et al., 2015). More details on data extraction
can be found on Conneau et al. (2018).

4.2 Classification Model

For training sentiment and hate speech classifiers, we pass as our input pretrained BERT representa-
tions (Devlin et al., 2019) through an LSTM layer (Hochreiter and Schmidhuber, 1997) (d = 100)
followed by a multi-layered perceptron with a single hidden layer (d = 100). We use a learning rate
of 0.001 and Adam optimizer. The hyper-parameters were not tuned for optimal performance. We
use the same architecture for all tasks, except for sentence length prediction. For the sentence length
prediction task, we use BERT token representations and pass them through a mean pooling layer
followed by a multi-layered perceptron with a single hidden layer (d = 100). Both models are trained
for 20 epochs. Note also that we do not fine-tune the BERT representations. This, together with our
hyper-parameters, gives us suboptimal performance, especially on the known tasks, but this was done
on purpose to make our predictions different from the gold labels for the known tasks, in order to
make it possible to quantify participants’ belief bias: If results are too close to human performance, it
would not be possible to distinguish human forward prediction performance with respect to model
predictions from human performance with respect to predicting the true class. Our performance on
the unknown probing tasks is comparable to the results in Conneau et al. (2018).
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Figure 2: Example LIME explanation stripped of model decisions and class probabilities. We turn
images into gray scale to only highlight overall importance and avoid hinting the model’s decision.

4.3 Stimulus Presentation

Each human forward prediction experiment consists of a training session where we present the
participant with 25 training samples with model predictions, with or without explanations, followed
by an evaluation session with 15 testing samples (without model predictions), also with or without
LIME explanations. The participant is asked to predict the model’s labeling of these items. We use
a Latin Square design (Shah and Sinha, 1989)to control for idiosyncratic differences between our
participants. For each of the tasks tt, we therefore randomly sample 120 examples, 75 of which we use
for training our participants, and 45 of which we use for evaluation. We divide the 75 training samples
into groups of 25: tt1 , tt2 , tt3 . We have three different presentation conditions: no explanation, LIME
explanation, or random explanation (for control). For the LIME explanations, we remove information
about model decision and present participants with the original LIME output images, after turning
them into grayscale in order to avoid revealing the class label. We rely on 500 perturbations of each
data sample in order to obtain the top 3 most informative input tokens. See Figure 2 for an example
of the visual stimuli under this condition. The training sessions are interactive, simulating the test
interface, but providing the true answer whenever the participant has provided an initial guess. We
shuffle the training sessions at random. The evaluation sets for each task te consist of 45 samples in
total, split into chunks of 15: te1 , te2 , te3 . In the evaluation session, subjects are not provided with the
true model responses, to avoid biases from additional training. We divide our participants in three
groups, and for each task, the groups are assigned task subsamples in the following Latin Square
design:

x LIME(x) Control(x)

Subjects1 tt1 , te1 tt2 , te2 tt3 , te3
Subjects2 tt2 , te2 tt3 , te3 tt1 , te1
Subjects3 tt3 , te3 tt1 , te1 tt2 , te2

We include 3 unknown tasks, meaning that no information about the tasks was provided to the
participants in advance of the experiment. Instead, subjects had to try to infer patterns from the data
sample, possibly augmented with LIME explanations. For the known tasks, we follow Nguyen (2018)
and Hase and Bansal (2020) and provide subjects with a brief explanation of the task, but emphasize
the fact that the participants should predict model decisions, not the true labels; and hence, they
should avoid being influenced by their own beliefs of whether a text is positive or an instance of hate
speech. As in Hase and Bansal (2020), we make sure that true positives, false positives, true negatives,
and false negatives are balanced across the training and test data. In total we have 30 participants,
all with at least undergraduate education and some knowledge of computer science and machine
learning. We collect 3000 human forward predictions: 1800 from training sessions and 1200 from the
evaluation sessions. For each condition and item in the evaluation set, we have at least two human
forward predictions. Some of the participants gave us optional feedback on strategies they used. This,
as well as some examples of our interface can be found in the Appendix.

4.4 Pre-Experiment: The Effect of Training on Forward Prediction

In addition to our main experiment with 30 participants, we also performed a human forward
prediction pre-experiment with a single participant. In the pre-experiment we compare human
forward prediction with and without training; we do so to motivate our experimental design, in which
we follow Hase and Bansal (2020), but depart from Nguyen (2018), in including a training phase in
which humans can learn the idiosyncracies of the machine learning model. In the pre-experiment,
we only explore the effects of the training phase for the known tasks. We first ran the experiment
without training; then ran the experiment with training. To clearly be able to quantify the effect of our
interactive training phase, we only use examples with false model predictions in the pre-experiment.
For each of the two tasks, sentiment analysis and hate speech detection, we use: (a) 20 distinct
examples for evaluation for each of the two conditions; and (b) 25 distinct examples for training for
the second experimental condition. Note that since we only use a single human participant in the
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HUMAN ACC. (p̂) HUMAN TIME(p̂) MODEL ACC. (p) HUMAN ACC. (p)

Task x LIME(x) x LIME(x) x x LIME(x)

KNOWN TASKS

SST 0.557 ∗0.694 03:00 ∗01:50 0.822 0.767 0.794
HatEval2019 0.562 ∗0.715 02:18 ∗01:10 0.573 0.706 0.609

UNKNOWN TASKS

Sent Len ∗0.470 0.310 05:32 08:15 0.846 ∗0.612 0.360
Subj Number 0.500 0.430 09:43 08:50 0.901 0.397 0.491

Tense 0.542 0.581 07:02 04:51 0.942 0.449 0.500

Table 1: RESULTS FROM MAIN EXPERIMENT. Columns 1–2: accuracy of human forward prediction
results on plain input (x) or augmented with LIME interpretations (LIME(x)). ∗: Significance of
α < .05 computed with Mann-Whitney U test. Columns 3–4: average duration of evaluation sessions
(human inference time). Column 5 lists the model accuracies with respect to human gold annotation;
which we compare with human accuracies with respect to human gold annotation.

pre-experiment, controlling for individual differences, we cannot control for the difficulty of data
points and use different data points across the two experimental conditions.

The effect of training is positive. On the SST dataset, accuracy with respect to model predictions (p̂)
increases from 0.400 to 0.550;1 on the HatEval2019 dataset, performance increases from 0.3690 to
0.526. We see this as a very strong motivation for including a training phase. A training phase also
makes it possible to perform human forward prediction experiments on tasks that are unknown to
the participants, removing any belief bias that may otherwise affect results. We note that a training
phase does not necessarily lead to faster inference times. On HatEval, average inference time was
reduced from 08:56 to 07:21, but on STS, it increased from 06:24 to 08:53. This suggests that
untrained annotators (after a few instances) learn superficial heuristics that enable them to draw fast,
yet inaccurate, inferences.

4.5 Main Experiment: The Effect of LIME on Forward Prediction

We report the results of our main experiment in Table 1. Results show that LIME helps, both in terms
of accuracy and time, on known and unknown target tasks, except when the decisions boundary does
not align with LIME dimensions (Sent Len) (columns 1–4); and that while humans are biased by
their beliefs and knowledge of the known tasks, they are not biased during unknown tasks, which
can be seen by their decrease in accuracy with respect to human annotation. We make the following
observations:

The Effect of LIME on Known Tasks This is the standard set-up considered also in previous
work (Nguyen, 2018; Hase and Bansal, 2020); see columns 1–2 and rows 1–2 in Table 1. We see
that LIME leads to significantly better human forward prediction performance on both tasks. It also
leads to (statistically) significantly faster inference times, approximately halving the time participants
spend on classifying the test examples. This shows that LIME, in spite of its limitations (§3), is a
very useful tool in some cases.

The Effect of LIME on Unknown Tasks The effect of LIME on human forward prediction
accuracy on 2 of the unknown tasks is not significant. On the two tasks, where LIME provides
meaningful explanations (subject number and tense prediction), LIME does lead to smaller reductions
in inference time which are not statistically significant. The effect on the participants’ accuracy is
mixed and insignificant. In addition, LIME is significantly detrimental on human forward prediction
accuracy for the task of sentence length prediction; it also leads to longer inference times, although
this difference was not statistically significant. This shows that while LIME is useful in some cases,
this is not always the case. We speculate that since LIME explanations are partial, they are only

1Note that our human participant, without training had lower-than-random accuracy in both tasks. This is not
surprising, since we have selected data points on which our model was wrong. Under the influence of belief bias,
humans are likely to also classify these wrongly.
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effective when supplemented by (approximately correct) belief bias. If true, this suggests that LIME,
even for the tasks that can be explained in terms of input words, is, nevertheless, only applicable to
tasks that humans have experience with, and when the underlying models perform reasonably well.

Known and Unknown Tasks In general, our participants are much slower at classifying examples
when the task is unknown. This shows the efficiency of the belief biases our participants have in sen-
timent analysis and hate speech classification. The effectiveness of these biases is also demonstrated
by the performance gaps between humans and models when comparing their predictions to ground
truth labels. To see this, consider columns 5–7 in Table 1. Participants, while instructed to predict
model output (p̂), actually significantly outperform our classifier in predicting the true labels (0.706
vs. 0.573)! In contrast, participants perform subject number and tense prediction at chance levels
(0.491 and 0.500), while a simple classifier achieves accuracy greater than 0.9 on both tasks. This
clearly demonstrates belief bias in human forward prediction experiments.

Figure 3: COMPARING KNOWN AND UNKNOWN
TASKS. i) Left bars show mean inference time
(secs) with LIME explanations; ii) middle bars
show mean inference time without; and iii) right
bars show mean inference time across all tasks,
with and without LIME.

Human Inference Time In addition to con-
sidering performance, we also recorded the time
our participants spent on completing the forward
prediction tasks. We present the average times
of each condition in Table 1 with shorter times
bolded. We used the Mann-Whitney U test to
determine significance for these, which is also
shown in the same table. We plot the total av-
erages in Figure 3. All the results shown in the
plot are significant with α < 0.001.

5 Related Works

Interpretability methods Interpretability
methods come in different flavors: (a) post-hoc
analysis methods that estimate input feature
importance for decisions, including LIME, (b)
post-hoc analysis methods that estimate the
influence of training instances on decisions,
e.g., influence functions (Koh and Liang, 2017)
and (c) strategies for making complex models
interpretable by learning to generate explana-
tions (Narang et al., 2020) or uptraining simpler
models (Agarwal et al., 2020). In this paper
we have focused on post-hoc interpretability
methods, but it is equally important, we argue, to evaluate other types of interpretability methods on
unknown tasks, when running human forward prediction experiments, to avoid participants’ cognitive
biases.

Intrinsic evaluation of interpretability methods One standard approach to evaluating explana-
tions is to remove the parts of the input detected by the interpretability method and see whether
classifier performance degrades (Samek et al., 2017). One drawback of this method is that the cor-
rupted examples are now out-of-distribution, and classifiers will generally perform worse on such
examples. Hooker et al. (2019) improve on this by evaluating classifiers retrained on the corrupted
examples. This approach, however, now suffers from another drawback: If classifiers perform well
on the corrupted examples, that does not mean the interpretability methods were wrong.2 Jain and
Wallace (2019) evaluate attention functions as explanations and argue that they do not provide useful
explanations, in part because they do not correlate with gradient-based approaches to determining
feature importance; Wiegreffe and Pinter (2019), in return, show this test is not sufficient to show
attention functions do not provide useful explanations.

2To see this, consider a sparsity-promoting classifier relying on a single feature f in the context of feature
swamping (Sutton et al., 2006), i.e., frequent features may lead to undertraining of covariate features in
discriminative learning. If f is removed, but the classifier retains its original performance by now relying on
covariate features, that does not mean the classifier did not solely rely on f when trained on the original data.
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Extrinsic benchmarks for interpretability methods Rei and Søgaard (2018) show how token-
level annotated corpora can be converted to benchmarks for evaluating post-hoc interpretability
methods. They train sentence classifiers to predict whether sentences contain labels or not, use
interpretability methods to predict what input words were important, and use the F1 score of those
predictions to evaluate the interpretability methods. Their method, however, only works as an
evaluation of interpretability methods under the assumption that the classifier is near-perfect (since
otherwise the token-level annotations cannot be assumed to be explanations of model decisions);
furthermore, it is only applicable to tasks for which we have token-level annotations. Poerner et al.
(2018) adopt a slightly different approach, augmenting real documents with random text passages to
see whether interpretability methods focus on the original text passages. This method suffers from
the same drawback, that it assumes near-perfect performance. It is also only designed to capture
false positives; it cannot distinguish between true or false negatives. Finally, DeYoung et al. (2020)
recently introduced ERASER,3 a suite of NLP datasets augmented with rationales, including reading
comprehension, natural language inference, and fact checking. ERASER also assumes near-perfect
performance, and can be seen as extending the set of tasks for which the method proposed in Rei and
Søgaard (2018), is applicable. Our method, in contrast, is independent of model quality.

Human evaluation of explanations The idea of evaluating explanations by testing human partici-
pants’ ability to predict model decisions with and without explanations is not novel. Nguyen (2018),
Lage et al. (2018) and Hase and Bansal (2020), as already discussed, present such experiments.
Schmidt and Biessmann (2019) is another example of human forward prediction experiments in a
crowdsourcing platform. They perform experiments on the effect of LIME and COVAR on human
forward prediction for a sentiment task that is known to be participants, in advance. Our criticism
of Nguyen (2018) also applies to their study. Narayanan et al. (2018) also present evaluations of
interpretability methods with humans; they design simple tasks in which humans verify whether an
output is consistent with an input and an explanation. The human participants are provided with
explanations of what the tasks are, and they only consider a handful of input features.

The Reverse Turing Test that we propose here is different from previous proposals to use human
forward prediction to evaluate interpretability methods, in that it a) includes a training phase which
is important for subjects to learn model nuances and which in turn, allows us to b) include human
forward prediction on unknown tasks, i.e., tasks about which they have no prior beliefs. We are, to
the best of our knowledge, the first to propose such a protocol. In the above experiments, designed to
motivate the design of the Reverse Turing Test, we see the limitations of a widely used interpretability
method, LIME. On some tasks, i.e., tasks which cannot be explained by the occurrence of input
words, the effect of LIME is detrimental; and on unknown tasks, for which LIME interpretations are
not supported by participants’ cognitive biases, its effect on human forward prediction is insignificant.
Overall, our experiments show that our proposed design offers interesting insights into the role that
cognitive biases play in the evaluation of interpretability, and propose that such a set up be used in
further research to explore the effect of cognitive biases for other interpretability methods which
provide final rationales similar to those provided by LIME.

6 Conclusion

We presented an evaluation protocol for interpretability methods, which differs from previous work
by including a training phase and by including unknown tasks. This makes our protocol work
independently of model quality, and controls for belief bias. Using LIME as our test case, we find that
on known tasks, LIME leads to statistically significant improvements in human forward prediction,
both in accuracy and inference time. However, when tasks are unknown, differences are no longer
significant. We see this as evidence of bias in the standard protocols, and argue that making tasks
unknown, leads to more reliable evaluations. We also identify tasks, where model decisions cannot
be explained in terms of input word occurrences, and for which the effect of LIME is detrimental for
human forward prediction performance.

3http://www.eraserbenchmark.com/
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A Presentation of stimuli

We created a web application using Flask4 in order to collect participant data. Participants would
get assigned a known or unknown task and LIME explanations or no explanations. For all tasks we
provide the same general instructions. See top of Figure 4 for a screenshot of our general instructions.
In addition, we had task specific instructions. For known tasks we provided short descriptions of the
task, while emphasizing the fact that subjects should imitate the model rather than follow their own
opinions about the true labels. For unknown tasks, we provided instructions as seen in Figure 4.

Figure 4: Example of the instructions presented to the participants. The participants could get a secret
task or one of the known tasks, as well as LIME explanations or no explanations.

The training and evaluation sessions were almost the same, with the only difference being that during
training, subjects could check the model’s answer after making an initial guess. See Figure 5 for an
example of what the items looked like. The example here is for the task of sentence length prediction
using LIME explanations.

(a) (b)

Figure 5: (a) Example of item in the training session for sentence length prediction. Note that the
participants are able to check the model answer (b) Example of item in the evaluation session for
sentence length prediction. Here the participants are no longer able to check the model answer

B Subject Feedback

As an optional part of our tests, subjects provided some insight into the strategies they came up with
or troubles they had when solving a task. We only had this feedback from some of the participants,
which can be found in Table

4https://flask.palletsprojects.com/en/1.1.x/
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Explanation Task Strategy

none Binary Tried to identify what kinds of data the ML model fails
lime Binary 1. Read the sentence. 2. Paid attention to the shaded words: if

the overall sentiment of these words was clear I assumed the
model would classify them accordingly. Otherwise I tried to
consider how easy it would be for the model to understand the
compositional meaning of the sentence assuming it will make
mistakes at phenomena involving ironies or comparsions to proper
names etc.

none Binary logical

none Hateval Keywords, the sentimental polarity of the sentence
lime Hateval only look at highlighted words
none Hateval logical

lime Sent Len Haven’t got the faintest idea.
none Sent Len I was very lost in this task. I coud not find topics in the sentences

so I tried to focus whether sentences contained similar words
guessing that these would be mapped to the same class...

lime Tense no clue
none Tense 1st Person 1 Person vs 2nd Person Multiple participants

Table 2: Feedback on strategies found by participants. Writing a strategy was not mandatory therefore
we do not have written feedback from every participant.
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