
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LESS IS MORE: DENOISING KNOWLEDGE GRAPHS
FOR RETRIEVAL AUGMENTED GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Retrieval-Augmented Generation (RAG) systems enable large language models
(LLMs) instant access to relevant information for the generative process, demon-
strating their superior performance in addressing common LLM challenges such
as hallucination, factual inaccuracy, and the knowledge cutoff. Graph-based RAG
further extends this paradigm by incorporating knowledge graphs (KGs) to lever-
age rich, structured connections for more precise and inferential responses. A
critical challenge, however, is that most Graph-based RAG systems rely on LLMs
for automated KG construction, often yielding noisy KGs with redundant entities
and unreliable relationships. This noise degrades retrieval and generation perfor-
mance while also increasing computational cost. Crucially, current research does
not comprehensively address the denoising problem for LLM-generated KGs. In
this paper, we introduce DEnoised knowledge Graphs for Retrieval Augmented
Generation (DEG-RAG), a framework that addresses these challenges through:
(1) entity resolution, which eliminates redundant entities, and (2) triple reflection,
which removes erroneous relations. Together, these techniques yield more com-
pact, higher-quality KGs that significantly outperform their unprocessed counter-
parts. Beyond the methods, we conduct a systematic evaluation of entity reso-
lution for LLM-generated KGs, examining different blocking strategies, embed-
ding choices, similarity metrics, and entity merging techniques. To the best of our
knowledge, this is the first comprehensive exploration of entity resolution in LLM-
generated KGs. Our experiments demonstrate that this straightforward approach
not only drastically reduces graph size but also consistently improves question
answering performance across diverse popular Graph-based RAG variants.

1 INTRODUCTION

Large Language Models (LLMs) have made significant progress in natural language processing and
understanding (Zhao et al., 2023). However, their capabilities are limited by access to up-to-date
information, susceptibility to hallucination, and weak long-term memory (Zhao et al., 2023; Huang
et al., 2025; Wang et al., 2023). To mitigate these issues, Retrieval-Augmented Generation (RAG)
(Lewis et al., 2020) has emerged to ground LLMs with external knowledge. Given a user query,
a RAG system retrieves relevant information from a knowledge base, augments the query with the
retrieved context, and then generates a response. RAG enables LLMs to access updated information,
ground facts, and rapidly adapt to new domain knowledge.

Form changes

Multilingual

Abbrevation

Synonym

Typo

Case sensitivity LLMsllms

LLLMs

Large Language
Models

Pretrained
Language Models

LLM

modelos de
lenguaje grandes

Figure 1: Redundant concept synonyms for “LLMs” in a knowledge graph. Orange dashed lines
indicate synonymic equivalences showing why these entities convey the same meaning as “LLMs”.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Traditional RAG systems (Karpukhin et al., 2020) retrieve isolated text chunks and ignore relation-
ships among them, which weakens multi-hop reasoning (Yang et al., 2018) and overall coherence
(Siriwardhana et al., 2023). Graph-based RAG (Edge et al., 2024; Guo et al., 2024; Jimenez Gutier-
rez et al., 2024) addresses it by structuring knowledge as a graph and retrieving over that structure.
Connectivity among entities allows models to consider inter-document relations rather than treating
units as independent chunks, enabling fine-grained, relation-aware retrieval (Hong et al., 2025).

As we all know, the quality of graph is critical to the success of graph mining (Xue & Zou, 2022;
Luan et al., 2024), and many graph-based RAG systems focus on constructing knowledge graphs
(KGs) from corpora with LLMs. However, the resulting LLM-generated graphs are often noisy
and redundant (Huang et al., 2024a). During entity and relation extraction, unlike human experts
who can recall and connect new concepts to previously identified entities, LLMs often struggle to
consistently maintain earlier entities and relations due to limited long-context capabilities, which
leads to duplicates (Lairgi et al., 2024). As illustrated in Figure 1, the extracted entity “LLMs”
may co-occur with its variants that represent the same concept, e.g., “LLM” (morphology), “llms”
(casing), “modelos de lenguaje grandes” (multilingual), and “Large Language Models” (abbrevia-
tion expansion). Existing methods, including LightRAG (Guo et al., 2024), MS GraphRAG 1 (Edge
et al., 2024), and HippoRAG (Jimenez Gutierrez et al., 2024), typically rely on string-matching
heuristics to merge similar entities, leaving many duplicates unresolved. These redundant enti-
ties inflate storage, degrade retrieval efficiency and precision. Besides, some outdated and incorrect
facts in external corpora(Rietveld et al., 2004; Feng et al., 2025; Moëll & Sand Aronsson, 2025) can
yield erroneous triples in LLM-generated graphs, which will mislead retrieval and harm generation
quality.

To simultaneously reduce the size and improve the quality of generated graphs, we propose DE-
noised knowledge Graphs for Retrieval Augmented Generation (DEG-RAG), which takes entity res-
olution to remove redundancy, and triple reflection to filter erroneous relations in LLM-generated
knowledge graphs for RAG. Entity resolution identifies and links records that refer to the same en-
tity (Ebraheem et al., 2017) and is widely used in KG consolidation (Berrendorf et al., 2020). We
conduct a comprehensive evaluation and study tailored to Graph-based RAG, spanning different
blocking, entity-embedding, matching, and merging strategies.

Our experiments show that, while removing 40% of the entities and relations in LLM-generated
KGs, DEG-RAG consistently improves the performance of four representative Graph-based RAG
approaches, underscoring the importance of KG quality rather than KG size. We further study the
design of different components comprehensively, for example, type-aware blocking is most effec-
tive, traditional KG embeddings can rival LLM embeddings, neighborhood-based similarity some-
times outperform ego-based measures, and simple merging often surpasses synonym-edge addition.
Together, these findings offer practical guidance for constructing high-quality LLM-generated KGs
and for developing more efficient and accurate Graph-based RAG systems, with potential exten-
sions to a wide range of KG-based LLM applications (Choudhary & Reddy, 2023; Wang et al.,
2025; Wang, 2025). In summary, our contributions are as follows:

• We propose DEG-RAG, which leverages entity resolution and triple reflection to reduce
graph size while improving KG quality for better Graph-based RAG.

• To the best of our knowledge, we are the first to conduct a comprehensive study of en-
tity resolution for Graph-based RAG, implementing and evaluating different components,
including blocking, entity-embedding, matching, and merging strategies.

• Our experiments demonstrate that DEG-RAG improves the performance of four graph-
based RAG methods across four benchmark QA datasets by removing approximately 40%
of entities and relations. We further analyze how different components of entity resolution
contribute to Graph-based RAG performance.

2 RELATED WORK

Retrieval Augmented Generation (RAG) enables Large Language Models (LLMs) to utilize updated
information (Su et al., 2024), access domain-specific knowledge (Zhang et al., 2024), and reduce

1To avoid ambiguity, we use MS GraphRAG to refer to the specific GraphRAG method proposed in (Edge
et al., 2024), and Graph-based RAG to refer to the general class of approaches that leverage knowledge graphs.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

hallucinations (Huang et al., 2025). Traditional RAG systems (Karpukhin et al., 2020) organize
external knowledge as isolated database chunks, which limits performance in complex reasoning
(Yang et al., 2018; Jiang et al., 2024) and contextual completeness (Lu et al., 2025; Zhong et al.,
2025). To address these limitations, Graph-based RAG presents external information as graphs,
retrieving relevant data by considering inter-relationships (Peng et al., 2024). MS GraphRAG (Edge
et al., 2024) constructs communities and generates answers based on community summaries, while
LightRAG (Guo et al., 2024) retrieves relevant entities, relationships, and subgraphs using keywords
from queries. HippoRAG (Jimenez Gutierrez et al., 2024) employs PageRank (Page et al., 1998)
for efficient entity retrieval. KAG (Liang et al., 2024) integrates knowledge graphs (KGs) with
LLMs through logical-form-guided reasoning, knowledge alignment, and fine-tuning. Despite these
advancements, the quality of LLM-generated KGs remains a challenge, as they are often redundant
and noisy, hindering efficient knowledge storage and high-quality generation (Zhou et al., 2025).

Entity resolution, which links data records referring to the same real-world entity, is crucial for con-
structing high-quality KGs (Pujara & Getoor, 2016; Obraczka et al., 2021). Existing approaches fall
into three categories: (1) Traditional methods use string similarity (Yu et al., 2016; Papadakis et al.,
2023), heuristic rules (Abu Ahmad & Wang, 2018; Lee et al., 2013), or manually designed schemas
(Efthymiou et al., 2019) to identify equivalent entities. These methods are computationally efficient
and interpretable but struggle with noisy, incomplete, or multilingual data. (2) Embedding-based
methods represent entities in continuous vector spaces, matching based on representation similarity.
This includes LLM-based embeddings (Li et al., 2020) and KG embeddings like TransE (Bordes
et al., 2013), DistMult (Yang et al., 2014), and ComplEx (Trouillon et al., 2016), as well as Graph
Neural Networks (GNNs)-based approaches (Schlichtkrull et al., 2018). These techniques capture
structural dependencies across graphs, offering robustness over heuristic methods. (3) LLM-based
methods leverage LLMs through prompting (Peeters et al., 2023) or fine-tuning (Steiner et al., 2025)
to identify semantically equivalent entities, providing strong generalization capabilities, though they
require careful design for scalability and reliability.

Although many entity resolution methods exist, few focus on improving LLM-generated KG qual-
ity. For example, MS GraphRAG (Edge et al., 2024) and LightRAG (Guo et al., 2024) use simple
string matching for duplicate entity identification. HippoRAG (Jimenez Gutierrez et al., 2024) intro-
duces synonym relations based on cosine similarity, and KAG (Liang et al., 2024) predicts synonym
relations from one-hop neighbors, merging entities accordingly. However, the impact of enhancing
KG quality on Graph-based RAG is largely unexplored. This paper systematically investigates how
different entity resolution methods affect the performance of Graph-based RAG, alongside triple
reflection, contributing uniquely beyond previous studies.

3 PRELIMINARIES

In this section, we introduce the notations and the process of Graph-based RAG. Given a set of
external documents D = [d1, d2, . . . , dN], Graph-based RAG constructs a knowledge graph (KG)
G = (E ,R, T ,A), where E , R, and T denote the sets of entities, relation types and triples, and A
represents the textual description for each entity. The neighbors of an entity e ∈ E are defined as the
set of entities N (e) that are directly connected to e through relation r ∈ R:

N (e) = { e′ ∈ E | (e, r, e′) ∈ T ∨ (e′, r, e) ∈ T , r ∈ R}. (1)
Then, given a user query Q, the RAG system (1) retrieves relevant contents from G via a retrieval
function R(·), (2) augments the query Q with retrieved context using an augmentation function
Aug(·), and (3) generates the final answer Y with LLMs M. Formally:

Y = M◦ Aug
[
Q,R(Q,G)

]
. (2)

Specifically, the raw documents D are first segmented into text chunks C = [c1, c2, . . . , cM]. For
each chunk cm ∈ C, a LLM-based named-entity recognition function MNER(·) is applied, leads to
a set of raw triples, entities, and relations:

Tm = MNER(cm), T =
⋃M

m=1 Tm, E = {e1, e2 | (e1, r, e2) ∈ T }, R = {r | (e1, r, e2) ∈ T }. (3)
where each entity e ∈ E carries its local textual context A(e). Here, the LLM extracted E may con-
tain duplicates, aliases, or simple variations. To construct a coherent KG, a deduplication function
ϕ : E 7→ E∗ is applied, which maps each raw entity to a unique canonical entity ϕ(e). Then we have
the revised entity, triple, and relation sets as:
E∗ = {ϕ(e) | e ∈ E}, T ∗ = {(e1, r, e2) | (e1, r, e2) ∈ T , e1 ∈ E∗, e2 ∈ E∗}, R∗ = {r | (e1, r, e2) ∈ T ∗} (4)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

For each canonical entity e∗ ∈ E∗, we aggregate the textual description with a merge operator ⊕:

A∗(e∗) =
⊕

{ei:ϕ(ei)=e∗}

A(ei) (5)

The final denoised KG is G∗ = (E∗,R∗, T ∗,A∗), enabling more efficient retrieval.

4 DENOISING KNOWLEDGE GRAPHS

In most popular Graph-based RAG systems, such as LightRAG (Guo et al., 2024) and MS
GraphRAG (Edge et al., 2024), a simple string matching strategy is used as the deduplication func-
tion to denoise KGs. However, in this way, entities with the same semantic meaning but different
forms, e.g.,case sensitivity, abbreviation, synonym, multilingual, and typos, will be missed and iso-
lated from each other. This will lead to a coarse and redundant KG that impedes efficient storage
and retrieval in Graph-based RAG systems. To enhance the performance of Graph-based RAG by
denoising LLM-generated KGs, we propose to remove redundant entities by entity resolution in Sec-
tion 4.1 and remove unreasonable edges by triple reflection in Section 4.2. This framework enhances
the quality of the KGs while reducing their size.

4.1 ENTITY RESOLUTION

Entity resolution for KGs involves several key steps(Christophides et al., 2020), (1) Blocking: par-
titions raw entities into blocks to minimize the number of entity pairs that need to be compared. (2)
Matching and Grouping: identify entities that represent the same real-world object and then put
these matched entities into groups representing a single resolved entity. (3) Merging and Linking:
combine the raw entities in each cluster into a canonical representation and update the KG by creat-
ing or deleting relations as needed. With the above steps, we introduce how to use entity resolution
to improve the quality of LLM-generated KGs as follows.

Market Price
of Stock

Stock Price

Stock Holder

BlockingEntity set

Investor
behaviors

Covid-19

Coronavirus
Disease 2019

Healthcare
Center

Market Price
of Stock

Market Price
of Stock

Worldwide
Market Price

Stock Price
Stock Price

Market Price
of Stock

Name: Market Price...
Description: how the
market price was
determined, but this
is a later ...

Name: Stock Price
Description:
how the market price was determined, but this is
a later ...
This price is not fixed and fluctuates constantly
throughout the trading ...

Name: Stock Price
Description: This
price is not fixed and
fluctuates constantly
throughout the
trading ...

Stock
holder

NVIDIA Analyst
Reports

Stockholder

NVIDIA

Analyst Reports

Stock Price

Stock PriceStock Holder

Investor
behaviors

Covid-19
Covid-19

Coronavirus
Disease 2019

Coronavirus
Disease 2019

Healthcare
Center

Matching & Grouping Merging & Linking

⊕

Figure 2: The overall framework of entity resolution for knowledge graphs (Christophides et al.,
2020).

Blocking. To reduce computational costs and unnecessary entity comparisons, blocking is applied
to the entity set E before entity matching (Papadakis et al., 2019). Formally, blocking is a mapping

Block : E 7→ B = {B1, B2, . . . , BK},
K⋃

k=1

Bk = E (6)

where each block Bk is a subset of entities that are more likely to be matched. In this paper, we
consider three types of blocking strategies: semantic-based, entity type-based, and structural-based
(Christophides et al., 2020).

(1) Semantic-Based Blocking. Entities are represented as embeddings generated from their descrip-
tions A(e) using an embedding model femb(·). The entity set is partitioned into k clusters by:

B = kmeans
(
{femb(A(e)) | e ∈ E}, k

)
,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

To avoid manual selection of cluster number k, we use a rule-of-thumb heuristic k =
√

|E|
10 (Yuan

& Raubal, 2012). This strategy leverages global semantic similarity but is computationally more
expensive for large graphs.

(2) Entity Type-Based Blocking. Entities are first classified into types using a type mapping function
τ : E 7→ Ω. Entities with the same type t ∈ Ω are grouped into the same block:

B = {{e ∈ E | τ(e) = t} | t ∈ Ω}.

If a block contains too many entities, we further subdivide it using k-means. The entity type-based
blocking limits the matches within the same type of entities, which avoids excessive pair compar-
isons.

(3) Structural-based Blocking. This strategy exploits graph connectivity under the assumption that
semantically similar entities are likely to share neighbors. If an entity e has at least two neighbors,
we construct a block for its neighbor set N (e), and the set of final structural-based blocks is then

B = {N (e) | e ∈ E , |N (e)| ≥ 2}

This blocking is based on the assumption that entities co-occur as neighbors of the same nodes are
more likely to present the same meaning, e.g.,“Large Language Models” and “Pretrained Language
Models” may be placed in the same block if they both connect to the entity “GPU” through the
relation “run on.”. Therefore, the structural context of shared neighbors serves as a strong signal for
blocking.

Matching and Grouping. After blocking, the objective is to identify sets of entities in each block
that represent the same concept then group entities with the same meaning. Given a block B ⊆ E ,
the matching function derives a partition:

Match : B 7→ G = {G1, G2, . . . , GL},
L⋃

l=1

Gl ⊆ B, (7)

where each Gl is a group of equivalent entities. To match entities, we first obtain the embedding of
each entity h(e) in the KG, then select the entity embedding for matching. Specifically, embedding
methods used in this paper include KG embeddings: TransE (Bordes et al., 2013), DistMult (Yang
et al., 2014), and ComplEx (Trouillon et al., 2016); graph neural network embeddings: CompGCN
(Vashishth et al., 2019) and R-GCN (Schlichtkrull et al., 2018); and LLM embeddings of Qwen3-
Embedding-8B (Zhang et al., 2025).

To match similar nodes with proper information after embedding, we consider the calculation of
the following similarity scores: (1) Ego node similarity. It compares entity embeddings h(ei) and
h(ej), which is computationally efficient but may miss structural context. (2) Neighbor similarity.
It compares averaged neighbor embeddings h̄N (ei) and h̄N (ej), leveraging structural context to
identify entities with similar roles. (3) Type-aware Neighbor similarity. It compares type-specific
averaged neighbor embeddings h̄Nt

(ei) and h̄Nt
(ej) for each type t ∈ Ω, where Nt(e) = {e′ ∈

N (e) | τ(e′) = t}, then averages across types: sim(ei, ej) = 1
|Ω|

∑
t∈Ω simt(h̄Nt(ei), h̄Nt(ej)).

This reduces noises from irrelevant neighbors and enables precise matching within specific entity
types, particularly when entities of different types may have fundamentally different embedding
distributions. (4) Ego+neighbor similarity. It considers both the ego node and neighbor information
by concatenating the embeddings in (1) and (2). (5) Ego+Type-aware neighbor similarity. It
considers both the ego node and subset of neighbor information by concatenating the embeddings
used in (1) and (3). Each matching method captures different aspects of entity similarity and presents
distinct trade-offs.

After matching, entities ei and ej are grouped together if their similarity exceeds threshold δER, and
we assign each entity to a group using the function g : E 7→ G.

Merging or Linking. Once entity groups G are obtained, we finalize the KG G∗ by editing the
previous KGs with the following three strategies:

(1) Direct Merging. This approach first selects a single canonical entity e∗l = ϕ(Gl) given a group
Gl, where ϕ(·) refers to a canonical selection function. In this paper, we use random selection
for ϕ(·). Then, all the other entities inside the group Gl are merged into the canonical entity êl.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

The KG is updated by appending the descriptions of merged entities to that of the canonical entity,
reconnecting their relations to the canonical entity, and removing relations that involve the merged
entities. The above process can be expressed as:

E∗ = {ϕ(Gl) | Gl ∈ G}, A∗(ϕ(Gl)) =
⋃

e∈Gl

A(e), ∀ Gl ∈ G (8)

T ∗ = {ϕ(g(e1)), r, ϕ(g(e2)) | (e1, r, e2) ∈ T , ϕ(g(e1)) ̸= ϕ(g(e2))}. (9)
If the merged description of a canonical entity becomes too long, we summarize it to prevent overly
long inputs from a single entity during retrieval. The merge of similar entities effectively reduces the
storage cost. However, because numerous modifications are made to the original entity and relation
sets, the quality of the resulting knowledge graph largely depends on the effectiveness of the entity
embedding or matching methods used.

(2) Synonym Linking Only. This approach add a synonym relation rsyn between merged entity e′

and canonical entity ϕ(Gl) inside each group Gl without the modification of entity set and attributes,
which can be described as:

T ∗ = T ∪ {(e′, rsyn, ϕ(Gl)) | e′ ∈ Gl \ ϕ(Gl), Gl ∈ Gent}. (10)

This method keeps the minimal changes to the original KG G, yet still cannot well resolve dupli-
cation of conceptually similar entities inside G, leading to redundancy and low-efficiency during
retrieval.

(3) Merging with Synonym Linking. To prevent the information loss of merged entities as in directly
merging, inside each group Gl, this approach merges attributes and relations to the canonical entity
ϕ(Gl) first, then adds synonym relations rsyn towards canonical entity ϕ(Gl). In this case, the entity
set E remains unchanged, the relation set R is updated by Equation (9), then Equation (10), and the
attributes is updated by Equation (8).

4.2 TRIPLE REFLECTION

Since the external information in the documents may contain erroneous content, the triples extracted
by LLMs are not always trustworthy (Huang et al., 2024b; Han et al., 2023). Besides, due to the
batched generation of name-entity recognition of chunks, errors may also occur (Lu et al., 2024).
Therefore, we use LLM-as-judge to remove the low-quality triple. Specifically, given a triple,
composed of source entity, relation, and target entity, we let LLM to predict a reliability score
s = Mjudge(e1, r, e2). Then, we filter out the triples that are below a threshold δTR and the final
relation set that we obtain is

T ∗ = {(e1, r, e2) | (e1, r, e2) ∈ T ,Mjudge(e1, r, e2) ≥ δTR} (11)

4.3 ANALYSIS

Under the construction of KGs in Section 3, if no entity resolution is applied, i.e.,the deduplication
function becomes identity function, yielding a union of subgraphs with no cross edges. Retrieval
over such a disconnected graph reduces to selecting the information of independent triples that a
vanilla retriever would select. Formally, we summarize the claim in Proposition 1 as below, where
the proof is provided in Appendix D.

Proposition 1. Given a graph-based RAG and a vanilla RAG system that share the same augmen-
tation and generation processes, the absence of entity resolution causes the graph-based RAG to
degrade into vanilla RAG.

Proposition 1 demonstrates that any benefit of Graph-based RAG over vanilla RAG necessarily
comes from the connectivity created by entity resolution.

5 EXPERIMENTS

In this section, we comprehensively evaluate the effectiveness the denoising approach mentioned
in the previous section for Graph-based RAG systems. We first introduce the experimental settings
in Section 5.1. Then, we demonstrate that entity resolution can significantly reduce the scale of
the original graph while improving question-answering performance on Graph-based RAG systems
in Section 5.2. In Section 5.3, we test and analyze how different components in entity resolution

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

influence the overall performance. we study the impact of entity reduction ratio and relation reduc-
tion ratio on the performance of Graph-based RAG in Section 5.4. Then, we conduct an ablation
study in Section 5.5 to evaluate the impact of different deletion methods and LLM API. Additional,
we conduct a detailed case study in Appendix B.3 to illustrate the qualitative differences between
knowledge graphs before and after the denoising process.

5.1 EXPERIMENTAL SETUP

Datasets and metrics We evaluate the performance of Graph-based RAG on four datasets from
UltraDomain benchmark (Qian et al., 2025) following (Guo et al., 2024), including Agriculture, CS,
Legal, and Mix. Agriculture, CS, and Legal contains domain-specific knowledge, while Mix includes
a broad spectrum of disciplines. Please refer to Appendix A for details of data statistics. Different
Graph-based RAG systems are tested by question-answering tasks. We use an LLM as a judge to
conduct pairwise comparisons between the responses of two methods, where a winning rate greater
than 50% indicates that one method outperforms the other, and vice versa. The evaluation considers
four dimensions: comprehensiveness, diversity, empowerment, and overall quality. The detailed
evaluation process is shown in Appendix C.5.

Baselines We select four popular Graph-based RAG methods as our baselines: (1) LightRAG (Guo
et al., 2024). (2) HippoRAG (Jimenez Gutierrez et al., 2024). (3) LGraphRAG (Edge et al., 2024).
(4) GGraphRAG (Edge et al., 2024).

Implementation details. We implement our experiment based on DIGIMON (Zhou et al., 2025),
which is a framework that stably implements many variants of Graph-based RAG and provide a fair
and unified comparison among these methods. For efficient indexing and retrieval, the entities and
relations are stored in vector dataset bases implemented by Llama Index (Liu, 2022). We use open
sourced Qwen3-235B-A22B-Instruct-2507 (Team, 2025) for the LLM API calling, which natively
supports 256K context. The model is deployed using VLLM (Kwon et al., 2023) on a Linux server
with 8 H20 GPUs. We use Qwen3-Embedding-8B (Zhang et al., 2025) as the embedding model
during index building and semantic blocking. For the KG embedding, we use pykeen (Ali et al.,
2021), which is design for many types of KG embedding. By default, we set the entity reduction
ratio as 40% of the total size of the entity set, δTR of triple reflection as 0.2, semantic-based method
for blocking, LLM embeddings for entity embedding, ego-based similarity for matching, direct
merging in merging step. Please refer to Appendix C for more implementation details.

Table 1: Performance comparison of graph-based RAG methods on original and cleaned knowledge
graphs across four datasets. The evaluation is based on winning rates by comparing responses
generated from original versus cleaned knowledge graphs.

Dataset Dimension LightRAG HippoRAG LGraphRAG GGraphRAG

Orig. Clean Orig. Clean Orig. Clean Orig. Clean

Agriculture

Comprehensive 43.60% 56.40% 49.80% 50.20% 48.80% 51.20% 47.79% 52.21%
Diversity 41.60% 58.40% 43.78% 56.22% 40.00% 60.00% 36.14% 63.86%
Empowerment 42.00% 58.00% 47.39% 52.61% 45.60% 54.40% 47.79% 52.21%
Overall 42.40% 57.60% 48.19% 51.81% 47.20% 52.80% 47.39% 52.61%

CS

Comprehensive 39.20% 60.80% 49.17% 50.83% 47.18% 52.82% 48.19% 51.81%
Diversity 40.00% 60.00% 35.54% 64.46% 43.55% 56.45% 44.58% 55.42%
Empowerment 40.80% 59.20% 49.17% 50.83% 47.58% 52.42% 48.59% 51.41%
Overall 41.60% 58.40% 49.59% 50.41% 46.77% 53.23% 48.19% 51.81%

Legal

Comprehensive 43.60% 50.80% 49.60% 50.40% 44.80% 55.20% 48.00% 52.00%
Diversity 41.60% 51.20% 44.00% 56.00% 36.80% 63.20% 42.80% 57.20%
Empowerment 42.00% 51.60% 50.00% 50.00% 45.20% 54.80% 48.00% 52.00%
Overall 42.40% 51.60% 50.00% 50.00% 44.80% 55.20% 47.60% 52.40%

Mix

Comprehensive 45.60% 54.40% 48.80% 51.20% 45.20% 54.80% 49.60% 50.40%
Diversity 40.80% 59.20% 51.60% 48.40% 38.40% 61.60% 45.20% 54.80%
Empowerment 45.60% 54.40% 47.60% 52.40% 42.40% 57.60% 49.20% 50.80%
Overall 46.00% 54.00% 48.40% 51.60% 42.40% 57.60% 49.40% 50.60%

5.2 IMPACT OF KNOWLEDGE GRAPH DENOISING

To validate the effectiveness of our proposed DEG-RAG, we compare the performance of baseline
Graph-based RAG with denoised KGs and original KGs on four datasets. As shown in Table 5.1,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

after reducing 40% of the entities and removing erroneous relations, the performance of Graph-based
RAG on cleaned KGs is better than the original KGs in most cases. This indicates the necessity of
denoising KGs for Graph-based RAG. Note that for HippoRAG, the performance is not significantly
improved on the Legal and Mix datasets. This is because the entity set of the KG in HippoRAG only
contains entity names without descriptions, limiting the performance of entity resolution.

5.3 COMPONENT ANALYSIS OF ENTITY RESOLUTION

CS Legal Agriculture Mix
35

40

45

50

55

60

65

70

W
in

ni
ng

 R
at

e
(%

)

Blocking Type

Semantic
Entity Type
Structural

CS Legal Agriculture Mix
35

40

45

50

55

60

65

70

W
in

ni
ng

 R
at

e
(%

)

Entity Embedding

Qwen3-Embedding-8B
CompGCN
RGCN

ComplEx
DistMult
TransE

CS Legal Agriculture Mix
35

40

45

50

55

60

65

70

W
in

ni
ng

 R
at

e
(%

)

Similarity Mode

Ego node
Neighbor Only
Ego + Neighbor

Neighbor subset Only
Ego + Neighbor subset

CS Legal Agriculture Mix
35

40

45

50

55

60

65

70

W
in

ni
ng

 R
at

e
(%

)

Merge Type

Direct Merging
Merging + Synonym Linking
Synonym Linking

Figure 3: Impact of different entity resolution components on Graph-based RAG performance.

We further study the impact of different components of entity resolution on the performance of
Graph-based RAG. Figure 3 shows the winning rate averaged across four metrics (Comprehensive,
Diversity, Empowerment, and Overall) on denoised KGs with different components of blocking
type, entity embedding, similarity mode, and merge type. We find that: (1) Entity type-based block-
ing is more effective than semantic-based or structure-based blocking. We speculate that entity type
is a better and more natural inductive bias for entity resolution and can lead to more robust denoised
graph, which is important for graph mining (Luan et al., 2022; Zheng et al., 2024). (2) Traditional
KG embeddings can rival LLM embeddings. In the Legal and Agriculture datasets, LLM embed-
dings underperform ComplEx embeddings (Trouillon et al., 2016), which represents entities and
relations as vectors in a complex number vector space to better handle asymmetric relations. This
demonstrates that traditional KG embeddings can be a viable alternative to LLM embeddings, es-
pecially in scenarios where computational resources are insufficient for LLMs or when we contain
complex relations in the datasets. (3) Without ego-based similarity, the performance of Graph-based
RAG degrades in most cases. Additionally, incorporating neighbor information as a complement
to ego node information improves performance in the Legal and Mix datasets. (4) Simple direct
merging often surpasses synonym linking. Although both methods aim to deal with the synonym
entities, synonym linking only adds synonym relations between merged entities and the canonical
entity. As a result, the KGs remain redundant, requiring more hops to retrieve relevant informa-
tion. In contrast, direct merging addresses this by consolidating entities with similar meanings into
a single entity, which is more efficient.

5.4 HYPERPARAMETER ANALYSIS

We conduct experiments to investigate the robustness of the selection of the entity reduction ratio
on the effectiveness of denoising. As shown in Figure 4, the winning rate is equal or larger than
50% as long as reduction ratio is not too high. This means, as long as entities are not over-merged,
the denoising step is effective for Graph-based RAG. Notably, on Mix and Legal, the performance

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0.2 0.4 0.6 0.8
Node Reduction Ratio

40

50

60

70

W
in

ni
ng

 R
at

e
(%

)
49.4

52.7

64.3
59.6

55.7
53.0

48.8

39.6

CS

0.2 0.4 0.6 0.8
Node Reduction Ratio

40

50

60

W
in

ni
ng

 R
at

e
(%

)

48.349.5
51.951.3

53.5
50.951.3

40.4

Legal

0.2 0.4 0.6 0.8
Node Reduction Ratio

50

60

70

W
in

ni
ng

 R
at

e
(%

)

57.1

64.9

58.157.6
54.5

46.346.9
49.9

Agriculture

0.2 0.4 0.6 0.8
Node Reduction Ratio

40

50

60

70

W
in

ni
ng

 R
at

e
(%

)

55.253.752.2
55.5

60.7
57.056.6

41.7

Mix

Figure 4: Influence of entity reduction ratio on Graph-based RAG performance.

remains comparable to the original KG up to 70%, which means even the reduction of 70% entities
in KG does not cause negative effect compared to original KG. At such aggressive denoising setting,
not only near-duplicate or synonymous entities are merged, but entities with only marginal semantic
similarity and overlapping local neighborhoods can also be absorbed into a single canonical node,
effectively collapsing fine-grained clusters. The resulting KG becomes substantially more compact
while still keep, and sometimes even improve, Graph-based RAG performance. We attribute this to
the reduced redundancy, shorter multi-hop paths, and the concentration on fewer, more informative
nodes. This indicates that Graph-based RAG is robust to some over-merging cases so long as coarse-
grained semantics are preserved.

5.5 ABLATION STUDY

Agriculture CS Legal Mix
45

50

55

60

65

W
in

ni
ng

 R
at

e
(%

)

Full Method
w/o Entity
Resolution

w/o Triple
Reflection
Random
Merging

Figure 5: Ablation study on the performance of
the full denoising method against versions with-
out entity resolution, without triple reflection, and
with random entity merging.

To evaluate the effectiveness of entity reso-
lution and triple reflection in DEG-RAG, we
conduct an ablation study in this subsection.
As shown in Figure 5, without entity reso-
lution or triple reflection, the performance of
Graph-based RAG significantly degrades in all
datasets. Moreover, we find that entity reso-
lution is more impactful than triple reflection,
indicating the necessity of entity resolution in
KGs. We also set up random merging as a ref-
erence method for comparison and the results
show worse performance than the above two
partial methods, which again shows the neces-
sity to handle the redundant entities smartly.

6 CONCLUSION AND FUTURE WORKS

In this work, we investigated how denoising LLM-generated KGs benefits Graph-based RAG. We
introduced DEG-RAG, which combines entity resolution and triple reflection to remove redundant
entities and filter unreliable relations. Across four Graph-based RAG variants and four datasets,
DEG-RAG reduces around half the size of the entities and relations while preserving or improving
QA quality and lowering storage cost. Our component analysis shows that type-aware blocking is
consistently strong, classical KG embeddings such as ComplEx can rival LLM embeddings, ego in-
formation is essential and neighbor cues help in some settings, and direct merging generally outper-
forms synonym-only linking. Hyperparameter sweeps reveal wide operating regimes and sometimes
allow up to 70% entity reduction without hurting performance. Our methods focus on improving
the quality of KGs and can be used alongside advances in knowledge-graph-based LLM applications
(Choudhary & Reddy, 2023; Wang et al., 2025; Wang, 2025).

While effective, DEG-RAG has limitations. Our study uses four QA datasets and non-large-scale
KGs. Triple reflection depends on LLM prompting and the LLM-as-judge setup, which can intro-
duce calibration bias. Gains are bounded by attribute richness. For example, graphs with only short
names without rich descriptions limit resolution quality. In future work, we will extend DEG-RAG to
more datasets and larger-scale KGs, generalize the denoising pipeline to other LLM-generated data
structures beyond KGs, and richer evaluations beyond LLM as judges.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We have provided the codebase in supplementary material and all the results in this paper are repro-
ducible. The additional implementation details and experimental setups can be found in Section 5.1
and Appendix C.

ETHICS STATEMENT

All of the authors in this paper have read and followed the ethics code.

REFERENCES

Hiba Abu Ahmad and Hongzhi Wang. An effective weighted rule-based method for entity resolution.
Distributed and Parallel Databases, 36(3):593–612, 2018.

Mehdi Ali, Max Berrendorf, Charles Tapley Hoyt, Laurent Vermue, Sahand Sharifzadeh, Volker
Tresp, and Jens Lehmann. PyKEEN 1.0: A Python Library for Training and Evaluating Knowl-
edge Graph Embeddings. Journal of Machine Learning Research, 22(82):1–6, 2021. URL
http://jmlr.org/papers/v22/20-825.html.

Max Berrendorf, Evgeniy Faerman, Valentyn Melnychuk, Volker Tresp, and Thomas Seidl. Knowl-
edge graph entity alignment with graph convolutional networks: Lessons learned. In European
Conference on Information Retrieval, pp. 3–11. Springer, 2020.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko.
Translating embeddings for modeling multi-relational data. Advances in neural information pro-
cessing systems, 26, 2013.

Nurendra Choudhary and Chandan K Reddy. Complex logical reasoning over knowledge graphs
using large language models. arXiv preprint arXiv:2305.01157, 2023.

Vassilis Christophides, Vasilis Efthymiou, Themis Palpanas, George Papadakis, and Kostas Ste-
fanidis. An overview of end-to-end entity resolution for big data. ACM Comput. Surv., 53(6),
December 2020. ISSN 0360-0300. doi: 10.1145/3418896. URL https://doi.org/10.
1145/3418896.

Gheorghe Comanici et al. Gemini 2.5: Pushing the frontier with advanced reasoning, mul-
timodality, long context, and next generation agentic capabilities. arXiv:2507.06261, 2025.
URL https://storage.googleapis.com/deepmind-media/gemini/gemini_
v2_5_report.pdf. Google DeepMind Technical Report.

Muhammad Ebraheem, Saravanan Thirumuruganathan, Shafiq Joty, Mourad Ouzzani, and Nan
Tang. Deeper–deep entity resolution. arXiv preprint arXiv:1710.00597, 2017.

Darren Edge, Ha Trinh, N Cheng, J Bradley, A Chao, A Mody, S Truitt, and J Larson. From local
to global: A graph rag approach to query-focused summarization. arxiv 2024. arXiv preprint
arXiv:2404.16130, 2024.

Vasilis Efthymiou, George Papadakis, Kostas Stefanidis, and Vassilis Christophides. Minoaner:
Schema-agnostic, non-iterative, massively parallel resolution of web entities. arXiv preprint
arXiv:1905.06170, 2019.

Yiyang Feng, Yichen Wang, Shaobo Cui, Boi Faltings, Mina Lee, and Jiawei Zhou. Unraveling
misinformation propagation in llm reasoning. arXiv preprint arXiv:2505.18555, 2025.

Zirui Guo, Lianghao Xia, Yanhua Yu, Tu Ao, and Chao Huang. Lightrag: Simple and fast retrieval-
augmented generation.(2024). arXiv preprint arXiv:2410.05779, 2024.

Ridong Han, Chaohao Yang, Tao Peng, Prayag Tiwari, Xiang Wan, Lu Liu, and Benyou Wang.
An empirical study on information extraction using large language models. arXiv preprint
arXiv:2305.14450, 2023.

10

http://jmlr.org/papers/v22/20-825.html
https://doi.org/10.1145/3418896
https://doi.org/10.1145/3418896
https://storage.googleapis.com/deepmind-media/gemini/gemini_v2_5_report.pdf
https://storage.googleapis.com/deepmind-media/gemini/gemini_v2_5_report.pdf

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yubin Hong, Chaofan Li, Jingyi Zhang, and Yingxia Shao. Fg-rag: Enhancing query-focused sum-
marization with context-aware fine-grained graph rag. arXiv preprint arXiv:2504.07103, 2025.

Haoyu Huang, Chong Chen, Zeang Sheng, Yang Li, and Wentao Zhang. Can llms be good graph
judge for knowledge graph construction? arXiv preprint arXiv:2411.17388, 2024a.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong
Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, et al. A survey on hallucination in large language
models: Principles, taxonomy, challenges, and open questions. ACM Transactions on Information
Systems, 43(2):1–55, 2025.

Yue Huang, Lichao Sun, Haoran Wang, Siyuan Wu, Qihui Zhang, Yuan Li, Chujie Gao, Yixin
Huang, Wenhan Lyu, Yixuan Zhang, et al. Trustllm: Trustworthiness in large language models.
arXiv preprint arXiv:2401.05561, 2024b.

Ziyan Jiang, Xueguang Ma, and Wenhu Chen. Longrag: Enhancing retrieval-augmented generation
with long-context llms. arXiv preprint arXiv:2406.15319, 2024.

Bernal Jimenez Gutierrez, Yiheng Shu, Yu Gu, Michihiro Yasunaga, and Yu Su. Hipporag: Neurobi-
ologically inspired long-term memory for large language models. Advances in Neural Information
Processing Systems, 37:59532–59569, 2024.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick SH Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In EMNLP
(1), pp. 6769–6781, 2020.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Yassir Lairgi, Ludovic Moncla, Rémy Cazabet, Khalid Benabdeslem, and Pierre Cléau. itext2kg:
Incremental knowledge graphs construction using large language models. In International Con-
ference on Web Information Systems Engineering, pp. 214–229. Springer, 2024.

Heeyoung Lee, Angel Chang, Yves Peirsman, Nathanael Chambers, Mihai Surdeanu, and Dan
Jurafsky. Deterministic coreference resolution based on entity-centric, precision-ranked rules.
Computational Linguistics, 39(4):885–916, December 2013. doi: 10.1162/COLI a 00152. URL
https://aclanthology.org/J13-4004/.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented gener-
ation for knowledge-intensive nlp tasks. Advances in neural information processing systems, 33:
9459–9474, 2020.

Yuliang Li, Jinfeng Li, Yoshihiko Suhara, AnHai Doan, and Wang-Chiew Tan. Deep entity matching
with pre-trained language models. arXiv preprint arXiv:2004.00584, 2020.

Lei Liang, Mengshu Sun, Zhengke Gui, Zhongshu Zhu, Zhouyu Jiang, Ling Zhong, Peilong Zhao,
Zhongpu Bo, Jin Yang, et al. Kag: Boosting llms in professional domains via knowledge aug-
mented generation. arXiv preprint arXiv:2409.13731, 2024.

Jerry Liu. LlamaIndex, 11 2022. URL https://github.com/jerryjliu/llama_index.

Jinghui Lu, Yanjie Wang, Ziwei Yang, Xuejing Liu, Brian Mac Namee, and Can Huang. Padellm-
ner: parallel decoding in large language models for named entity recognition. Advances in Neural
Information Processing Systems, 37:117853–117880, 2024.

Wensheng Lu, Keyu Chen, Ruizhi Qiao, and Xing Sun. Hichunk: Evaluating and enhancing
retrieval-augmented generation with hierarchical chunking. arXiv preprint arXiv:2509.11552,
2025.

11

https://aclanthology.org/J13-4004/
https://github.com/jerryjliu/llama_index

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Sitao Luan, Chenqing Hua, Qincheng Lu, Jiaqi Zhu, Mingde Zhao, Shuyuan Zhang, Xiao-Wen
Chang, and Doina Precup. Revisiting heterophily for graph neural networks. Advances in neural
information processing systems, 35:1362–1375, 2022.

Sitao Luan, Chenqing Hua, Qincheng Lu, Liheng Ma, Lirong Wu, Xinyu Wang, Minkai Xu,
Xiao-Wen Chang, Doina Precup, Rex Ying, et al. The heterophilic graph learning hand-
book: Benchmarks, models, theoretical analysis, applications and challenges. arXiv preprint
arXiv:2407.09618, 2024.

Birger Moëll and Fredrik Sand Aronsson. Harm reduction strategies for thoughtful use of large
language models in the medical domain: perspectives for patients and clinicians. Journal of
Medical Internet Research, 27:e75849, 2025.

Daniel Obraczka, Jonathan Schuchart, and Erhard Rahm. Eager: embedding-assisted entity resolu-
tion for knowledge graphs. arXiv preprint arXiv:2101.06126, 2021.

OpenAI. Gpt-4o mini: Advancing cost-efficient intelligence. https://openai.com/
index/gpt-4o-mini-advancing-cost-efficient-intelligence/, July 2024.
Accessed: 2025-09-24.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank citation ranking:
Bringing order to the web. Technical Report 1999-66, Stanford InfoLab, 1998. URL http:
//ilpubs.stanford.edu:8090/422/.

George Papadakis, Dimitrios Skoutas, Emmanouil Thanos, and Themis Palpanas. A survey of block-
ing and filtering techniques for entity resolution. arXiv preprint arXiv:1905.06167, 2019.

George Papadakis, Vasilis Efthymiou, Emmanouil Thanos, Oktie Hassanzadeh, and Peter Christen.
An analysis of one-to-one matching algorithms for entity resolution. The VLDB Journal, 32(6):
1369–1400, April 2023. ISSN 1066-8888. doi: 10.1007/s00778-023-00791-3. URL https:
//doi.org/10.1007/s00778-023-00791-3.

Ralph Peeters, Aaron Steiner, and Christian Bizer. Entity matching using large language models.
arXiv preprint arXiv:2310.11244, 2023.

Boci Peng, Yun Zhu, Yongchao Liu, Xiaohe Bo, Haizhou Shi, Chuntao Hong, Yan Zhang, and
Siliang Tang. Graph retrieval-augmented generation: A survey. arXiv preprint arXiv:2408.08921,
2024.

Jay Pujara and Lise Getoor. Generic statistical relational entity resolution in knowledge graphs.
arXiv preprint arXiv:1607.00992, 2016.

Hongjin Qian, Zheng Liu, Peitian Zhang, Kelong Mao, Defu Lian, Zhicheng Dou, and Tiejun
Huang. Memorag: Boosting long context processing with global memory-enhanced retrieval
augmentation. In Proceedings of the ACM Web Conference 2025 (TheWebConf 2025), Sydney,
Australia, 2025. ACM. URL https://arxiv.org/abs/2409.05591.

Toni C. M. Rietveld, Roeland van Hout, and Mirjam Ernestus. Pitfalls in corpus research. Comput.
Humanit., 38(4):343–362, 2004. doi: 10.1007/S10579-004-1919-1. URL https://doi.
org/10.1007/s10579-004-1919-1.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and Max
Welling. Modeling relational data with graph convolutional networks. In European semantic web
conference, pp. 593–607. Springer, 2018.

Shamane Siriwardhana, Rivindu Weerasekera, Elliott Wen, Tharindu Kaluarachchi, Rajib Rana, and
Suranga Nanayakkara. Improving the domain adaptation of retrieval augmented generation (rag)
models for open domain question answering. Transactions of the Association for Computational
Linguistics, 11:1–17, 2023.

Aaron Steiner, Ralph Peeters, and Christian Bizer. Fine-tuning large language models for en-
tity matching. In 2025 IEEE 41st International Conference on Data Engineering Workshops
(ICDEW), pp. 9–17. IEEE, 2025.

12

https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
http://ilpubs.stanford.edu:8090/422/
http://ilpubs.stanford.edu:8090/422/
https://doi.org/10.1007/s00778-023-00791-3
https://doi.org/10.1007/s00778-023-00791-3
https://arxiv.org/abs/2409.05591
https://doi.org/10.1007/s10579-004-1919-1
https://doi.org/10.1007/s10579-004-1919-1

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Weihang Su, Yichen Tang, Qingyao Ai, Zhijing Wu, and Yiqun Liu. Dragin: dynamic retrieval
augmented generation based on the information needs of large language models. arXiv preprint
arXiv:2403.10081, 2024.

Qwen Team. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard. Com-
plex embeddings for simple link prediction. In International conference on machine learning, pp.
2071–2080. PMLR, 2016.

Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, and Partha Talukdar. Composition-based multi-
relational graph convolutional networks. arXiv preprint arXiv:1911.03082, 2019.

Nan Wang, Yongqi Fan, ZongYu Wang, Xuezhi Cao, Xinyan He, Haiyun Jiang, Tong Ruan, Jing-
ping Liu, et al. Kg-o1: Enhancing multi-hop question answering in large language models via
knowledge graph integration. arXiv preprint arXiv:2508.15790, 2025.

Shaofei Wang. Enhancing in-context learning of large language models for knowledge graph rea-
soning via rule-and-reinforce selected triples. Applied Sciences, 15(3):1088, 2025.

Weizhi Wang, Li Dong, Hao Cheng, Xiaodong Liu, Xifeng Yan, Jianfeng Gao, and Furu Wei. Aug-
menting language models with long-term memory. Advances in Neural Information Processing
Systems, 36:74530–74543, 2023.

Bingcong Xue and Lei Zou. Knowledge graph quality management: A comprehensive survey. IEEE
Transactions on Knowledge and Data Engineering, 35(5):4969–4988, 2022.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding entities and
relations for learning and inference in knowledge bases. arXiv preprint arXiv:1412.6575, 2014.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov,
and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering. arXiv preprint arXiv:1809.09600, 2018.

Minghe Yu, Guoliang Li, Dong Deng, and Jianhua Feng. String similarity search and join: a survey.
Frontiers Comput. Sci., 10(3):399–417, 2016. doi: 10.1007/S11704-015-5900-5. URL https:
//doi.org/10.1007/s11704-015-5900-5.

Yihong Yuan and Martin Raubal. Extracting dynamic urban mobility patterns from mobile phone
data. In International conference on geographic information science, pp. 354–367. Springer,
2012.

Tianjun Zhang, Shishir G Patil, Naman Jain, Sheng Shen, Matei Zaharia, Ion Stoica, and
Joseph E Gonzalez. Raft: Adapting language model to domain specific rag. arXiv preprint
arXiv:2403.10131, 2024.

Yanzhao Zhang, Mingxin Li, Dingkun Long, Xin Zhang, Huan Lin, Baosong Yang, Pengjun Xie,
An Yang, Dayiheng Liu, Junyang Lin, Fei Huang, and Jingren Zhou. Qwen3 embedding: Advanc-
ing text embedding and reranking through foundation models. arXiv preprint arXiv:2506.05176,
2025.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 1(2), 2023.

Yilun Zheng, Sitao Luan, and Lihui Chen. What is missing for graph homophily? disentangling
graph homophily for graph neural networks. Advances in Neural Information Processing Systems,
37:68406–68452, 2024.

Zijie Zhong, Hanwen Liu, Xiaoya Cui, Xiaofan Zhang, and Zengchang Qin. Mix-of-granularity:
Optimize the chunking granularity for retrieval-augmented generation. In Owen Rambow, Leo
Wanner, Marianna Apidianaki, Hend Al-Khalifa, Barbara Di Eugenio, and Steven Schockaert
(eds.), Proceedings of the 31st International Conference on Computational Linguistics, pp. 5756–
5774, Abu Dhabi, UAE, January 2025. Association for Computational Linguistics.

13

https://arxiv.org/abs/2505.09388
https://doi.org/10.1007/s11704-015-5900-5
https://doi.org/10.1007/s11704-015-5900-5

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Yingli Zhou, Yaodong Su, Youran Sun, Shu Wang, Taotao Wang, Runyuan He, Yongwei Zhang,
Sicong Liang, Xilin Liu, Yuchi Ma, et al. In-depth analysis of graph-based rag in a unified
framework. arXiv preprint arXiv:2503.04338, 2025.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

THE USE OF LARGE LANGUAGE MODELS

In this work, we employed LLMs as auxiliary tools to support the preparation of the manuscript.
Specifically, LLMs were used in two ways: (i) to polish the writing style of the paper by refining
grammar, clarity, and readability without altering the technical content, and (ii) to assist in identify-
ing relevant related work by suggesting potential references. Note that LLMs were not involved in
designing experiments, analyzing results, or drawing conclusions; these aspects of the study were
carried out independently by the authors.

A DATA STATISTICS

Table 2: Statistics of datasets and knowledge graphs across four domains.
Category Agriculture CS Legal Mix

Token 1,949,526 2,047,866 4,872,343 611,161
Document 12 10 94 61
Question 125 125 125 125

Entity

LightRAG 21,131 16,434 16,502 8,942
HippoRAG 42,444 25,495 34,342 24,055
LGraphRAG 21,761 15,257 16,761 10,240
GGraphRAG 21,227 15,600 16,111 10,399

Relation

LightRAG 23,102 20,642 33,625 7,458
HippoRAG 41,636 25,170 51,031 16,370
LGraphRAG 25,834 19,980 36,742 8,513
GGraphRAG 21,408 19,412 36,507 9,943

Ave. Entity
Description

LightRAG 40.47 42.12 63.64 32.61
HippoRAG – – – –
LGraphRAG 40.23 40.21 62.11 31.88
GGraphRAG 38.74 39.83 63.76 33.66

As shown in Table A, we report the numbers of tokens, documents, and questions for the four
datasets used in this paper. We also present the counts of entities and relations, as well as the
average length of entity descriptions (in tokens) in the LLM-generated knowledge graphs extracted
by LightRAG (Guo et al., 2024), HippoRAG (Jimenez Gutierrez et al., 2024), LGraphRAG (Edge
et al., 2024), and GGraphRAG (Edge et al., 2024). Note that the knowledge graphs generated by
HippoRAG do not contain entity descriptions.

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 IMPACT OF DIFFERENT LLMS IN RAG

To show how different LLMs backbones influences the performance of DEG-RAGshown in Table
5.1, apart from Qwen3-235B-A22B (Team, 2025), we further conduct experiments using GPT-4o-
mini (OpenAI, 2024) and Gemini-2.5-flash (Comanici et al., 2025) on four datasets on LightRAG
(Guo et al., 2024). As shown in Table B.1, under the entity reduction of 40% and triple reflec-
tion threshold of 0.2, the winning rate of using GPT-4o-mini or Gemini-2.5-flash is comparable as
Qwen3-235-A22B, indicating the generality of DEG-RAGacross different types of LLMs.

B.2 COMPARISON OF TOKEN CONSUMPTION

We further compare the costs of DEG-RAGunder different entity reduction ratios. Table B.2 shows
the statistics of token consumption after applying DEG-RAGin LightRAG as shown in Table 5.1.
First, we can see that there is no significant differences of token consumption in prompt and com-
pletion for LightRAG on the original knowledge graph and knowledge graphs with DEG-RAG, in-
dicating the performance gain is not caused by additional information. Second, we notice that the

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 3: Performance comparison of models on original and cleaned knowledge graphs across four
datasets. The evaluation is based on winning rates by comparing responses generated from original
versus cleaned knowledge graphs.

Dataset Dimension Qwen3-235B-A22B GPT-4o-mini Gemini-2.5-flash

Orig. Clean Orig. Clean Orig. Clean

Agriculture

Comprehensive 43.60% 56.40% 45.34% 54.66% 46.00% 54.00%
Diversity 41.60% 58.40% 29.27% 70.73% 46.00% 54.00%
Empowerment 42.00% 58.00% 31.71% 68.29% 46.80% 53.20%
Overall 42.40% 57.60% 33.74% 66.26% 46.80% 53.20%

CS

Comprehensive 39.20% 60.80% 42.32% 57.68% 44.40% 55.60%
Diversity 40.00% 60.00% 36.51% 63.49% 43.20% 55.60%
Empowerment 40.80% 59.20% 41.91% 58.09% 43.20% 56.80%
Overall 41.60% 58.40% 41.91% 58.09% 44.00% 56.00%

Legal

Comprehensive 43.60% 56.40% 46.40% 53.60% 42.00% 58.00%
Diversity 41.60% 58.40% 45.20% 54.80% 42.40% 57.60%
Empowerment 42.00% 58.00% 46.80% 53.20% 40.80% 59.20%
Overall 42.40% 57.60% 47.60% 52.40% 41.20% 58.80%

Mix

Comprehensive 45.60% 54.40% 47.18% 52.82% 42.40% 57.60%
Diversity 40.80% 59.20% 43.95% 56.05% 40.00% 60.00%
Empowerment 45.60% 54.40% 45.16% 54.84% 42.40% 57.60%
Overall 46.00% 54.00% 45.56% 54.44% 42.00% 58.00%

Table 4: Token consumption statistics under different entity reduction ratios across four datasets.
Dataset Type Original 20% 40% 60% 80%

Mix
Prompt 1,040,189 1,185,787 1,267,955 1,149,659 1,133,338
Completion 86,171 85,738 85,454 85,334 86,051
Total Token 1,126,360 1,271,525 1,353,409 1,234,993 1,219,389

CS
Prompt 1,084,623 1,118,326 1,106,513 906,618 779,191
Completion 89,056 90,658 89,394 88,844 89,252
Total Token 1,173,679 1,208,984 1,195,907 995,462 868,443

Agriculture
Prompt 1,273,710 1,537,191 1,296,947 1,278,717 911,124
Completion 82,351 82,677 82,978 79,724 79,683
Total Token 1,356,061 1,619,868 1,379,925 1,358,441 990,807

Legal
Prompt 1,755,056 1,749,183 1,721,740 1,528,838 1,658,700
Completion 84,124 84,771 84,178 83,707 85,468
Total Token 1,839,180 1,833,954 1,805,918 1,612,545 1,744,168

input token increases with node reduction of 20% or 40%, then decreases on 60% and 80%. We
explain this as, in lower reduction ratio, few entities are merged, which slightly increases the input
prompt, while in high reduction ratio, more and more entities are merged together, after the sum-
maziation of entitiy description, the total retrieved entites and relations become fewer, leads to fewer
input token.

B.3 CASE STUDY

To illustrate the qualitative impact of denoising, we conduct a case study on entity resolution using
the CS dataset. Figure 6 shows a subgraph of the knowledge graph before and after denoising.
Red nodes indicate redundant entities that have been merged into their canonical forms, while blue
nodes represent entities that remain unchanged. Dashed red lines indicate the direction of merging
from one entity to another, green lines denote newly added relations, brown dashed lines represent
removed relations, and black lines correspond to relations that are retained.

The entity merging process is generally reasonable. For example, variations such as ARIME
methodology are merged into ARIMA model, and Linear Regression into linear

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

ARIMA
Model

ARIMA
methodology

Forecast
Package

Time
Series

Analysis

Expected
Value
E(X)

Weak Law
of Large
Numbers

Probability
of Distribution

P(X)

Probability
of Distribution

Sample
Means

Dataset
{X} covariance

matrix

Covariance
Matrix

Dataset

Sample
Mean

Correlation
Coefficient

Correlation

Correlation
Coefficient

(r)

Bootstrap
Replicates

sales
forecast

PSO
Algorithm

mean

linear
regression

Linear
Regression

Linear
Models

Decision
Tree

Clustering
models

Confidence
Interval

Bootstrap
Method

R
programming
Environment

Normalized
Coordinates

Datasets

Negative
Correlation

Probability
Theory

Chebyshev's
Inequality

K-means
Algorithm

Unsupervised
Learning

Naive
Bayes
Model

Support
Vector

Machine
Model

L1
Regulari_

zation

L2
Regulari-

zation

Figure 6: Case Study of Knowledge Graph Denoising on the CS Dataset. The figure illustrates a
subgraph before and after applying our denoising method. Redundant entities are denoted in red and
merging process is shown in arrows.

regression. We also observe merges driven by semantic similarity, such as K-means
Algorithm being merged into Clustering models, and Naive Bayes Model and
Support Vector Machine Model being merged into Decision Tree. Overall, the de-
noised knowledge graph is more concise and efficient, thereby improving the performance of graph-
based RAG.

We also examine the cases of triple reflection. As in Table 5, we listed some triples with δTR ≤ 0.2.

C IMPLEMENTATION DETAILS

C.1 GRAPH-BASED RAG

For all the Graph-based RAG methods, we set token-based chunking across all methods, with seg-
ment length of approximately 1,200 tokens and an overlap of 100 tokens, using a standard tokenizer
to balance context preservation and indexing granularity. We set the retriever to return the top 5
candidates. When personalized PageRank is used, we set entity-aware priors with light damping to
encourage focus on salient nodes. All methods answer questions directly rather than only returning
supporting context. We set the overall candidate pool to 20. We set token budgets consistently across
methods: the naive assembly budget to 12,000 tokens, the local assembly budget to 4,000 tokens,
and the entity and relation evidence budgets to 2,000 tokens each. When iterative reasoning over
retrieved evidence is enabled, we cap the refinement steps at 2.

LightRAG (Guo et al., 2024) maintains both entity and relation indices and builds a relation-centric
knowledge graph enriched with edge keywords. We enable entity descriptions, entity types, edge
descriptions, and edge names to maximize semantic coverage. We set the usable context window
to 32,768 tokens. For retrieval, we set nearest-neighbor search and enable entity-similarity–aware
propagation with the top 5 results. Querying is hybrid: we enable both local and global graph search.
We set the global community cap to 512 without a minimum rating, the global community report
budget to 16,384 tokens, and the global context budget to 4,000 tokens. Locally, we set the context
budget to 4,800 tokens and the community report budget to 3,200 tokens. We allow keyword cues
when composing the final context.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 5: Case study of triple reflection
Relation Source Score Target Analysis
Transenterix Inc.
owns Safestitch
LLC

Transenterix Inc.
owns Safestitch
LLC, indicating a
parent subsidiary
relationship

0.1 Safestitch LLC TransEnterix does not own
SafeStitch

Turtle is one of
the entities classi-
fied as a borrower

Turtle is one of
the entities classi-
fied as a borrower
in the financial
agreement

0.1 Borrowers Turtles are not entities that en-
gage in borrowing

Michael Scott is
involved in the
SEC lawsuit

Michael Scott is
involved in the
SEC lawsuit as
a defendant ac-
cused of securi-
ties violations

0.1 SEC lawsuit Michael Scott is a fictional char-
acter from the television show
’The Office’ and not a real per-
son involved in any legal mat-
ters

Title policy for
Pabst

Title policy is re-
quired to obtain
a title policy to
ensure the legiti-
macy of the asset
ownership during
the acquisition

0.1 Pabst A title policy is a type of insur-
ance related to real estate trans-
actions, while ’pabst’ appears to
refer to a brand

Shareholder’s eq-
uity reflects net
worth of dealers

Shareholder’s
equity is a key
financial metric
that reflects the
net worth of
dealers after
liabilities are
deducted

0.2 Dealers Shareholder’s equity is a finan-
cial metric relevant to com-
panies and their owners, not
specifically to dealers

Kristen M Jenner
and Kylie K Jen-
ner are key exec-
utives

Kylie K Jenner
and Kristen
M Jenner are
both identified
as key execu-
tives, indicating
a professional
relationship in a
business context

0.2 Kylie K Jenner Kristen M Jenner is not a recog-
nized executive in the same con-
text as Kylie K Jenner

HippoRAG (Jimenez Gutierrez et al., 2024) focuses on an entity–relation graph with entity-
link–aware chunking and enables graph augmentation while keeping metadata conservative: we
disable entity and edge descriptions, and we retain edge names. We set retrieval to personalized
PageRank over the entity–relation graph without an entity-similarity term in propagation, and we
set the top-k to 5. Querying follows a hybrid strategy while we disable explicit propagation-based
augmentation in the final context assembly. We keep the same token budgets as in the common
configuration, and we cap iterative reasoning at 2 steps.

LGraphRAG (Edge et al., 2024) uses a relation-centric knowledge graph with a forced construction
setting. We enable entity and edge descriptions and edge names, and we disable entity types. We
apply community-aware clustering using the Leiden algorithm; we set the maximum community
size to 10 and use concise community summaries. We set retrieval to nearest-neighbor search with
an additional local neighborhood expansion, and we enable propagation-based augmentation while
disabling global community selection. We set the local context budget to 4,800 tokens and the local

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

community report budget to 3,200 tokens, and we keep the same overall budgets and refinement
limits as in the common setup.

GGraphRAG (Edge et al., 2024) adopts the same relation-centric graph construction and
community-aware clustering as LGraphRAG. We set retrieval to nearest-neighbor search without
local expansion, and we enable both local and global querying. We set the global community cap to
512, the global community report budget to 16,384 tokens, and the global context budget to 4,000
tokens, while keeping the local budgets aligned with the common configuration. Other token allo-
cations and refinement limits follow the common setup.

C.2 REDUCTION RATIO

We further report the number and proportion of removed entities and relations in Table 5.1. As
shown in Table 6, across the four datasets, the entity reduction ratio is approximately 40%. The
relation reduction ratio ranges from 30% to 60%, reflecting both the removal of relations during
triple reflection and the disappearance of relations associated with merged entities.

Table 6: Statistics of original and cleaned knowledge graphs across four datasets and four Graph-
based RAG models.

Dataset Dimension LightRAG HippoRAG LGraphRAG GGraphRAG

Orig. Clean Reduction Orig. Clean Reduction Orig. Clean Reduction Orig. Clean Reduction

Agriculture # Entity 21131 12679 40.00% 42444 25466 40.00% 21761 13057 40.00% 21227 12736 40.00%
Relation 23102 15548 32.70% 41636 20321 51.19% 25834 16503 36.12% 21408 11258 47.41%

CS # Entity 16434 9861 40.00% 25495 15297 40.00% 15257 9154 40.00% 15600 9360 40.00%
Relation 20642 12164 41.07% 25170 13801 45.17% 19980 13756 33.15% 19412 13742 29.21%

Legal # Entity 16502 9902 40.00% 34342 20606 40.00% 16761 10057 40.00% 16111 9667 40.00%
Relation 33625 21261 36.77% 51031 35920 29.61% 36742 22987 37.44% 36507 14025 61.58%

Mix # Entity 8942 5366 40.00% 24055 14433 40.00% 10240 6144 40.00% 10399 6240 40.00%
Relation 7458 5164 30.76% 16370 6896 57.87% 8513 6288 26.14% 9943 6713 32.49%

C.3 PROMPTS IN ENTITY RESOLUTION

To avoid the exceeding length of descriptions of merged knoweldge graphs, we summarize the
descriptions if the number of token exceed 4,000. We provide the summarization prompt of entity
and relation as follows

Entity description summarization prompt

You are a helpful assistant. Please summarize the following list of descriptions for the
entity {entity name} into a single, coherent paragraph. Combine the key information
and remove redundant details.
Descriptions to summarize:
{description list}
Concise Summary:

Relation description summarization prompt

You are a helpful assistant. Please summarize the following list of descriptions for the
relationship {item name} into a single, coherent paragraph. Combine the key information
and remove redundant details.
Descriptions to summarize:
{description list}
Concise Summary:

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

C.4 PROMPTS IN TRIPLE REFLECTION

We perform triple reflection on knowledge graph triples (edges) using LLMs to assess their reason-
ableness before downstream use. For each triple, an LLM returns a numerical quality score and a
short analysis; results are written as JSONL for subsequent aggregation and filtering.

System prompt

You are a knowledge graph expert who evaluates whether the knowledge graph triplet be-
longs to commonsense knowledge.

User prompt

Evaluate the reasonableness of the knowledge graph triplet with precision:

Source: <source>
Destination: <destination>
Relationship: <relationship>

Analysis requirements
• Semantic accuracy: Does the relationship accurately describe the connection? Consider

domain knowledge and factual correctness.
• Relevance: Is the connection meaningful and significant, not trivial or coincidental?
• Specificity: Is the relationship clear and specific rather than vague or overly general?
• Logical coherence: Does the triple follow expected semantic and syntactic patterns for

KGs?
• Entity type compatibility: Is the relationship sensible given the entity types involved?
Scoring guidelines
• 0.0–0.3: Invalid or highly questionable (factually wrong, illogical, meaningless)
• 0.4–0.6: Partially valid but problematic (some relevance yet vague/imprecise/minor inac-

curacies)
• 0.7–0.8: Mostly valid (accurate but could be more specific or informative)
• 0.9–1.0: Fully valid (accurate, specific, informative, and logically sound)
Optimization notes
• Focus on direct evaluation without unnecessary elaboration.
• Use domain-specific reasoning where applicable.
Output format (return a valid JSON object):
{

"analysis": "concise analysis",
"score": 0.5

}

The score should be a float between 0.0–1.0 with two-decimal precision.

C.5 EVALUATION

We assess the responses of DEG-RAGusing an LLM judge in a pairwise-comparison setup. For
each question the judge receives the question and two candidate answers from original knowledge
graphs or denoised knowledge graphs by DEG-RAG, and decides which answer is better and why.
To mitigate position bias we run two passes per question. Pass A uses (Answer 1, Answer 2) and
Pass B swaps the order. Aggregated wins for a method on a criterion are computed by summing
Answer 1 wins in Pass A and Answer 2 wins in Pass B. Ties are recorded when the judge issues a
tie token. The judge receives the following prompts verbatim.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

System prompt

You are an expert tasked with evaluating two answers to the same question based on three
criteria: Comprehensiveness, Diversity, and Empowerment.

User prompt

You will evaluate two answers to the same question using the three criteria below:
• Comprehensiveness: How much detail does the answer provide to cover all aspects and

details of the question?
• Diversity: How varied and rich is the answer in presenting different perspectives and

insights?
• Empowerment: How well does the answer help the reader understand the topic and make

informed judgments?
For each criterion, choose the better answer (Answer 1 or Answer 2) and explain why. Then
select an overall winner based on these three categories.
Here is the question: {query}
Here are the two answers:
Answer 1: {answer1}
Answer 2: {answer2}
Evaluate both answers using the three criteria above and provide detailed explanations for
each criterion.
Output your evaluation in the following JSON format:

{
"Comprehensiveness": {

"Winner": "[Answer 1 or Answer 2]",
"Explanation": "[Provide explanation here]"

},
"Diversity": {

"Winner": "[Answer 1 or Answer 2]",
"Explanation": "[Provide explanation here]"

},
"Empowerment": {

"Winner": "[Answer 1 or Answer 2]",
"Explanation": "[Provide explanation here]"

},
"Overall Winner": {

"Winner": "[Answer 1 or Answer 2]",
"Explanation": "[Summarize why this answer is the
overall winner based on the three criteria]"

}
}

D PROOF OF PROPOSITION 1

Proposition 1. Given a graph-based RAG and a vanilla RAG system that share the same augmen-
tation and generation processes, the absence of entity resolution causes the graph-based RAG to
degrade into vanilla RAG.

Proof. We assume that: (1) both systems use identical augmentation and generation processes except
for the knowledge representation, (2) vanilla RAG retrieves chunks based on relevance scoring, and
(3) graph-based RAG retrieves subgraphs or triples based on query-entity matching. This is not a
formal proof but rather an intuitive argument.

Given document chunks C = {c1, . . . , cM}, a Graph-based RAG system constructs a knowledge
graph G∗ = (E∗,R∗, T ∗,A∗) through named entity recognition followed by deduplication. The

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

response Y is generated for query Q as:

Y = M◦ Aug
[
Q,Ret(Q,G∗)

]
. (12)

Without entity resolution, the deduplication function becomes the identity mapping ϕ(e) = e for all
e ∈ Eraw. This means:

E∗ = {ϕ(e) | e ∈ Eraw} = Eraw (13)
T ∗ = Traw (14)

A∗(e) = Araw(e) ∀e ∈ E∗ (15)

Since each triple (e1, r, e2) ∈ Traw originates from a single chunk cm, and no entity merging occurs,
entities from different chunks remain disconnected even if they represent the same real-world con-
cept. Formally, let Em = {e1, e2 | (e1, r, e2) ∈ Tm} be entities extracted from chunk cm. Without
entity resolution, there are no edges connecting entities from different chunks:

∀i ̸= j : N (ei) ∩ Ej = ∅ where ei ∈ Ei (16)

This results in M disconnected subgraphs G∗
1 ,G∗

2 , . . . ,G∗
M , where each G∗

m = (Em,Rm, Tm,Am)
corresponds to chunk cm.

For any query Q, the graph retrieval function Ret(Q,G∗) can only retrieve from individual discon-
nected components. Since each component G∗

m contains only local information from chunk cm,
the retrieved content consists of triples Tm that represent structured partitions of the original chunk
content. The graph-based retrieval without entity resolution becomes:

Ret(Q,G∗) =
⋃

m:rel(Q,G∗
m)>τ

Tm (17)

where rel(Q,G∗
m) measures relevance between query and local subgraph, and τ is a threshold.

Note that each original chunk cm can be decomposed as:

cm = Tm ∪ unextracted text (18)

where Tm represents the structured information extracted from cm. Since Tm ⊂ cm, the retrieved
triples are essentially parts of the original chunks. With no cross-chunk connections, this retrieval
process can be considered as a vanilla RAG system:

Retvanilla(Q, {Tm}) = {Tm | rel(Q, Tm) > τ ′} (19)

for appropriately chosen thresholds τ and τ ′.

Since the augmentation and generation processes are identical by assumption, and the retrieved
content has the same information coverage (parts of chunks vs. disconnected subgraphs), we have:

Ygraph = M◦ Aug[Q,Ret(Q,G∗)] ≡ M◦ Aug[Q,Retvanilla(Q, {Tm})] = Yvanilla (20)

Therefore, without entity resolution, graph-based RAG degrades to vanilla RAG.

22

	Introduction
	Related Work
	Preliminaries
	Denoising Knowledge Graphs
	Entity Resolution
	Triple Reflection
	Analysis

	Experiments
	Experimental Setup
	Impact of Knowledge Graph Denoising
	Component Analysis of Entity Resolution
	Hyperparameter Analysis
	Ablation Study

	Conclusion and Future Works
	Data Statistics
	Additional Experimental Results
	Impact of Different LLMs in RAG
	Comparison of Token Consumption
	Case Study

	Implementation Details
	Graph-based RAG
	Reduction Ratio
	Prompts in Entity Resolution
	Prompts in Triple Reflection
	Evaluation

	Proof of Proposition 1

