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ABSTRACT

Retrieval-Augmented Generation (RAG) systems enable large language models
(LLMs) instant access to relevant information for the generative process, demon-
strating their superior performance in addressing common LLM challenges such
as hallucination, factual inaccuracy, and the knowledge cutoff. Graph-based RAG
further extends this paradigm by incorporating knowledge graphs (KGs) to lever-
age rich, structured connections for more precise and inferential responses. A
critical challenge, however, is that most Graph-based RAG systems rely on LLMs
for automated KG construction, often yielding noisy KGs with redundant entities
and unreliable relationships. This noise degrades retrieval and generation perfor-
mance while also increasing computational cost. Crucially, current research does
not comprehensively address the denoising problem for LLM-generated KGs. In
this paper, we introduce DEnoised knowledge Graphs for Retrieval Augmented
Generation (DEG-RAG), a framework that addresses these challenges through:
(1) entity resolution, which eliminates redundant entities, and (2) triple reflection,
which removes erroneous relations. Together, these techniques yield more com-
pact, higher-quality KGs that significantly outperform their unprocessed counter-
parts. Beyond the methods, we conduct a systematic evaluation of entity reso-
lution for LLM-generated KGs, examining different blocking strategies, embed-
ding choices, similarity metrics, and entity merging techniques. To the best of our
knowledge, this is the first comprehensive exploration of entity resolution in LLM-
generated KGs. Our experiments demonstrate that this straightforward approach
not only drastically reduces graph size but also consistently improves question
answering performance across diverse popular Graph-based RAG variants.

1 INTRODUCTION

Large Language Models (LLMs) have made significant progress in natural language processing and
understanding (Zhao et al., 2023). However, their capabilities are limited by access to up-to-date
information, susceptibility to hallucination, and weak long-term memory (Zhao et al., 2023; Huang
et al., 2025; Wang et al., 2023). To mitigate these issues, Retrieval-Augmented Generation (RAG)
(Lewis et al., 2020) has emerged to ground LLMs with external knowledge. Given a user query,
a RAG system retrieves relevant information from a knowledge base, augments the query with the
retrieved context, and then generates a response. RAG enables LLMs to access updated information,
ground facts, and rapidly adapt to new domain knowledge.

Form changes

Multilingual

Abbrevation

Synonym

Typo

Case sensitivity LLMsllms

LLLMs

Large Language 
Models

Pretrained
Language Models

LLM

modelos de 
lenguaje grandes

Figure 1: Redundant concept synonyms for “LLMs” in a knowledge graph. Orange dashed lines
indicate synonymic equivalences showing why these entities convey the same meaning as “LLMs”.
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Traditional RAG systems (Karpukhin et al., 2020) retrieve isolated text chunks and ignore relation-
ships among them, which weakens multi-hop reasoning (Yang et al., 2018) and overall coherence
(Siriwardhana et al., 2023). Graph-based RAG (Edge et al., 2024; Guo et al., 2024; Jimenez Gutier-
rez et al., 2024) addresses it by structuring knowledge as a graph and retrieving over that structure.
Connectivity among entities allows models to consider inter-document relations rather than treating
units as independent chunks, enabling fine-grained, relation-aware retrieval (Hong et al., 2025).

As we all know, the quality of graph is critical to the success of graph mining (Xue & Zou, 2022;
Luan et al., 2024), and many graph-based RAG systems focus on constructing knowledge graphs
(KGs) from corpora with LLMs. However, the resulting LLM-generated graphs are often noisy
and redundant (Huang et al., 2024a). During entity and relation extraction, unlike human experts
who can recall and connect new concepts to previously identified entities, LLMs often struggle to
consistently maintain earlier entities and relations due to limited long-context capabilities, which
leads to duplicates (Lairgi et al., 2024). As illustrated in Figure 1, the extracted entity “LLMs”
may co-occur with its variants that represent the same concept, e.g., “LLM” (morphology), “llms”
(casing), “modelos de lenguaje grandes” (multilingual), and “Large Language Models” (abbrevia-
tion expansion). Existing methods, including LightRAG (Guo et al., 2024), MS GraphRAG 1 (Edge
et al., 2024), and HippoRAG (Jimenez Gutierrez et al., 2024), typically rely on string-matching
heuristics to merge similar entities, leaving many duplicates unresolved. These redundant enti-
ties inflate storage, degrade retrieval efficiency and precision. Besides, some outdated and incorrect
facts in external corpora(Rietveld et al., 2004; Feng et al., 2025; Moëll & Sand Aronsson, 2025) can
yield erroneous triples in LLM-generated graphs, which will mislead retrieval and harm generation
quality.

To simultaneously reduce the size and improve the quality of generated graphs, we propose DE-
noised knowledge Graphs for Retrieval Augmented Generation (DEG-RAG), which takes entity res-
olution to remove redundancy, and triple reflection to filter erroneous relations in LLM-generated
knowledge graphs for RAG. Entity resolution identifies and links records that refer to the same en-
tity (Ebraheem et al., 2017) and is widely used in KG consolidation (Berrendorf et al., 2020). We
conduct a comprehensive evaluation and study tailored to Graph-based RAG, spanning different
blocking, entity-embedding, matching, and merging strategies.

Our experiments show that, while removing 40% of the entities and relations in LLM-generated
KGs, DEG-RAG consistently improves the performance of four representative Graph-based RAG
approaches, underscoring the importance of KG quality rather than KG size. We further study the
design of different components comprehensively, for example, type-aware blocking is most effec-
tive, traditional KG embeddings can rival LLM embeddings, neighborhood-based similarity some-
times outperform ego-based measures, and simple merging often surpasses synonym-edge addition.
Together, these findings offer practical guidance for constructing high-quality LLM-generated KGs
and for developing more efficient and accurate Graph-based RAG systems, with potential exten-
sions to a wide range of KG-based LLM applications (Choudhary & Reddy, 2023; Wang et al.,
2025; Wang, 2025). In summary, our contributions are as follows:

• We propose DEG-RAG, which leverages entity resolution and triple reflection to reduce
graph size while improving KG quality for better Graph-based RAG.

• To the best of our knowledge, we are the first to conduct a comprehensive study of en-
tity resolution for Graph-based RAG, implementing and evaluating different components,
including blocking, entity-embedding, matching, and merging strategies.

• Our experiments demonstrate that DEG-RAG improves the performance of four graph-
based RAG methods across four benchmark QA datasets by removing approximately 40%
of entities and relations. We further analyze how different components of entity resolution
contribute to Graph-based RAG performance.

2 RELATED WORK

Retrieval Augmented Generation (RAG) enables Large Language Models (LLMs) to utilize updated
information (Su et al., 2024), access domain-specific knowledge (Zhang et al., 2024), and reduce

1To avoid ambiguity, we use MS GraphRAG to refer to the specific GraphRAG method proposed in (Edge
et al., 2024), and Graph-based RAG to refer to the general class of approaches that leverage knowledge graphs.
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hallucinations (Huang et al., 2025). Traditional RAG systems (Karpukhin et al., 2020) organize
external knowledge as isolated database chunks, which limits performance in complex reasoning
(Yang et al., 2018; Jiang et al., 2024) and contextual completeness (Lu et al., 2025; Zhong et al.,
2025). To address these limitations, Graph-based RAG presents external information as graphs,
retrieving relevant data by considering inter-relationships (Peng et al., 2024). MS GraphRAG (Edge
et al., 2024) constructs communities and generates answers based on community summaries, while
LightRAG (Guo et al., 2024) retrieves relevant entities, relationships, and subgraphs using keywords
from queries. HippoRAG (Jimenez Gutierrez et al., 2024) employs PageRank (Page et al., 1998)
for efficient entity retrieval. KAG (Liang et al., 2024) integrates knowledge graphs (KGs) with
LLMs through logical-form-guided reasoning, knowledge alignment, and fine-tuning. Despite these
advancements, the quality of LLM-generated KGs remains a challenge, as they are often redundant
and noisy, hindering efficient knowledge storage and high-quality generation (Zhou et al., 2025).

Entity resolution, which links data records referring to the same real-world entity, is crucial for con-
structing high-quality KGs (Pujara & Getoor, 2016; Obraczka et al., 2021). Existing approaches fall
into three categories: (1) Traditional methods use string similarity (Yu et al., 2016; Papadakis et al.,
2023), heuristic rules (Abu Ahmad & Wang, 2018; Lee et al., 2013), or manually designed schemas
(Efthymiou et al., 2019) to identify equivalent entities. These methods are computationally efficient
and interpretable but struggle with noisy, incomplete, or multilingual data. (2) Embedding-based
methods represent entities in continuous vector spaces, matching based on representation similarity.
This includes LLM-based embeddings (Li et al., 2020) and KG embeddings like TransE (Bordes
et al., 2013), DistMult (Yang et al., 2014), and ComplEx (Trouillon et al., 2016), as well as Graph
Neural Networks (GNNs)-based approaches (Schlichtkrull et al., 2018). These techniques capture
structural dependencies across graphs, offering robustness over heuristic methods. (3) LLM-based
methods leverage LLMs through prompting (Peeters et al., 2023) or fine-tuning (Steiner et al., 2025)
to identify semantically equivalent entities, providing strong generalization capabilities, though they
require careful design for scalability and reliability.

Although many entity resolution methods exist, few focus on improving LLM-generated KG qual-
ity. For example, MS GraphRAG (Edge et al., 2024) and LightRAG (Guo et al., 2024) use simple
string matching for duplicate entity identification. HippoRAG (Jimenez Gutierrez et al., 2024) intro-
duces synonym relations based on cosine similarity, and KAG (Liang et al., 2024) predicts synonym
relations from one-hop neighbors, merging entities accordingly. However, the impact of enhancing
KG quality on Graph-based RAG is largely unexplored. This paper systematically investigates how
different entity resolution methods affect the performance of Graph-based RAG, alongside triple
reflection, contributing uniquely beyond previous studies.

3 PRELIMINARIES

In this section, we introduce the notations and the process of Graph-based RAG. Given a set of
external documents D = [d1, d2, . . . , dN ], Graph-based RAG constructs a knowledge graph (KG)
G = (E ,R, T ,A), where E , R, and T denote the sets of entities, relation types and triples, and A
represents the textual description for each entity. The neighbors of an entity e ∈ E are defined as the
set of entities N (e) that are directly connected to e through relation r ∈ R:

N (e) = { e′ ∈ E | (e, r, e′) ∈ T ∨ (e′, r, e) ∈ T , r ∈ R}. (1)
Then, given a user query Q, the RAG system (1) retrieves relevant contents from G via a retrieval
function R(·), (2) augments the query Q with retrieved context using an augmentation function
Aug(·), and (3) generates the final answer Y with LLMs M. Formally:

Y = M◦ Aug
[
Q,R(Q,G)

]
. (2)

Specifically, the raw documents D are first segmented into text chunks C = [c1, c2, . . . , cM ]. For
each chunk cm ∈ C, a LLM-based named-entity recognition function MNER(·) is applied, leads to
a set of raw triples, entities, and relations:

Tm = MNER(cm), T =
⋃M

m=1 Tm, E = {e1, e2 | (e1, r, e2) ∈ T }, R = {r | (e1, r, e2) ∈ T }. (3)
where each entity e ∈ E carries its local textual context A(e). Here, the LLM extracted E may con-
tain duplicates, aliases, or simple variations. To construct a coherent KG, a deduplication function
ϕ : E 7→ E∗ is applied, which maps each raw entity to a unique canonical entity ϕ(e). Then we have
the revised entity, triple, and relation sets as:
E∗ = {ϕ(e) | e ∈ E}, T ∗ = {(e1, r, e2) | (e1, r, e2) ∈ T , e1 ∈ E∗, e2 ∈ E∗}, R∗ = {r | (e1, r, e2) ∈ T ∗} (4)
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For each canonical entity e∗ ∈ E∗, we aggregate the textual description with a merge operator ⊕:

A∗(e∗) =
⊕

{ei:ϕ(ei)=e∗}

A(ei) (5)

The final denoised KG is G∗ = (E∗,R∗, T ∗,A∗), enabling more efficient retrieval.

4 DENOISING KNOWLEDGE GRAPHS

In most popular Graph-based RAG systems, such as LightRAG (Guo et al., 2024) and MS
GraphRAG (Edge et al., 2024), a simple string matching strategy is used as the deduplication func-
tion to denoise KGs. However, in this way, entities with the same semantic meaning but different
forms, e.g.,case sensitivity, abbreviation, synonym, multilingual, and typos, will be missed and iso-
lated from each other. This will lead to a coarse and redundant KG that impedes efficient storage
and retrieval in Graph-based RAG systems. To enhance the performance of Graph-based RAG by
denoising LLM-generated KGs, we propose to remove redundant entities by entity resolution in Sec-
tion 4.1 and remove unreasonable edges by triple reflection in Section 4.2. This framework enhances
the quality of the KGs while reducing their size.

4.1 ENTITY RESOLUTION

Entity resolution for KGs involves several key steps(Christophides et al., 2020), (1) Blocking: par-
titions raw entities into blocks to minimize the number of entity pairs that need to be compared. (2)
Matching and Grouping: identify entities that represent the same real-world object and then put
these matched entities into groups representing a single resolved entity. (3) Merging and Linking:
combine the raw entities in each cluster into a canonical representation and update the KG by creat-
ing or deleting relations as needed. With the above steps, we introduce how to use entity resolution
to improve the quality of LLM-generated KGs as follows.
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Figure 2: The overall framework of entity resolution for knowledge graphs (Christophides et al.,
2020).

Blocking. To reduce computational costs and unnecessary entity comparisons, blocking is applied
to the entity set E before entity matching (Papadakis et al., 2019). Formally, blocking is a mapping

Block : E 7→ B = {B1, B2, . . . , BK},
K⋃

k=1

Bk = E (6)

where each block Bk is a subset of entities that are more likely to be matched. In this paper, we
consider three types of blocking strategies: semantic-based, entity type-based, and structural-based
(Christophides et al., 2020).

(1) Semantic-Based Blocking. Entities are represented as embeddings generated from their descrip-
tions A(e) using an embedding model femb(·). The entity set is partitioned into k clusters by:

B = kmeans
(
{femb(A(e)) | e ∈ E}, k

)
,

4
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To avoid manual selection of cluster number k, we use a rule-of-thumb heuristic k =
√

|E|
10 (Yuan

& Raubal, 2012). This strategy leverages global semantic similarity but is computationally more
expensive for large graphs.

(2) Entity Type-Based Blocking. Entities are first classified into types using a type mapping function
τ : E 7→ Ω. Entities with the same type t ∈ Ω are grouped into the same block:

B = {{e ∈ E | τ(e) = t} | t ∈ Ω}.

If a block contains too many entities, we further subdivide it using k-means. The entity type-based
blocking limits the matches within the same type of entities, which avoids excessive pair compar-
isons.

(3) Structural-based Blocking. This strategy exploits graph connectivity under the assumption that
semantically similar entities are likely to share neighbors. If an entity e has at least two neighbors,
we construct a block for its neighbor set N (e), and the set of final structural-based blocks is then

B = {N (e) | e ∈ E , |N (e)| ≥ 2}

This blocking is based on the assumption that entities co-occur as neighbors of the same nodes are
more likely to present the same meaning, e.g.,“Large Language Models” and “Pretrained Language
Models” may be placed in the same block if they both connect to the entity “GPU” through the
relation “run on.”. Therefore, the structural context of shared neighbors serves as a strong signal for
blocking.

Matching and Grouping. After blocking, the objective is to identify sets of entities in each block
that represent the same concept then group entities with the same meaning. Given a block B ⊆ E ,
the matching function derives a partition:

Match : B 7→ G = {G1, G2, . . . , GL},
L⋃

l=1

Gl ⊆ B, (7)

where each Gl is a group of equivalent entities. To match entities, we first obtain the embedding of
each entity h(e) in the KG, then select the entity embedding for matching. Specifically, embedding
methods used in this paper include KG embeddings: TransE (Bordes et al., 2013), DistMult (Yang
et al., 2014), and ComplEx (Trouillon et al., 2016); graph neural network embeddings: CompGCN
(Vashishth et al., 2019) and R-GCN (Schlichtkrull et al., 2018); and LLM embeddings of Qwen3-
Embedding-8B (Zhang et al., 2025).

To match similar nodes with proper information after embedding, we consider the calculation of
the following similarity scores: (1) Ego node similarity. It compares entity embeddings h(ei) and
h(ej), which is computationally efficient but may miss structural context. (2) Neighbor similarity.
It compares averaged neighbor embeddings h̄N (ei) and h̄N (ej), leveraging structural context to
identify entities with similar roles. (3) Type-aware Neighbor similarity. It compares type-specific
averaged neighbor embeddings h̄Nt

(ei) and h̄Nt
(ej) for each type t ∈ Ω, where Nt(e) = {e′ ∈

N (e) | τ(e′) = t}, then averages across types: sim(ei, ej) = 1
|Ω|

∑
t∈Ω simt(h̄Nt(ei), h̄Nt(ej)).

This reduces noises from irrelevant neighbors and enables precise matching within specific entity
types, particularly when entities of different types may have fundamentally different embedding
distributions. (4) Ego+neighbor similarity. It considers both the ego node and neighbor information
by concatenating the embeddings in (1) and (2). (5) Ego+Type-aware neighbor similarity. It
considers both the ego node and subset of neighbor information by concatenating the embeddings
used in (1) and (3). Each matching method captures different aspects of entity similarity and presents
distinct trade-offs.

After matching, entities ei and ej are grouped together if their similarity exceeds threshold δER, and
we assign each entity to a group using the function g : E 7→ G.

Merging or Linking. Once entity groups G are obtained, we finalize the KG G∗ by editing the
previous KGs with the following three strategies:

(1) Direct Merging. This approach first selects a single canonical entity e∗l = ϕ(Gl) given a group
Gl, where ϕ(·) refers to a canonical selection function. In this paper, we use random selection
for ϕ(·). Then, all the other entities inside the group Gl are merged into the canonical entity êl.
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The KG is updated by appending the descriptions of merged entities to that of the canonical entity,
reconnecting their relations to the canonical entity, and removing relations that involve the merged
entities. The above process can be expressed as:

E∗ = {ϕ(Gl) | Gl ∈ G}, A∗(ϕ(Gl)) =
⋃

e∈Gl

A(e), ∀ Gl ∈ G (8)

T ∗ = {ϕ(g(e1)), r, ϕ(g(e2)) | (e1, r, e2) ∈ T , ϕ(g(e1)) ̸= ϕ(g(e2))}. (9)
If the merged description of a canonical entity becomes too long, we summarize it to prevent overly
long inputs from a single entity during retrieval. The merge of similar entities effectively reduces the
storage cost. However, because numerous modifications are made to the original entity and relation
sets, the quality of the resulting knowledge graph largely depends on the effectiveness of the entity
embedding or matching methods used.

(2) Synonym Linking Only. This approach add a synonym relation rsyn between merged entity e′

and canonical entity ϕ(Gl) inside each group Gl without the modification of entity set and attributes,
which can be described as:

T ∗ = T ∪ {(e′, rsyn, ϕ(Gl)) | e′ ∈ Gl \ ϕ(Gl), Gl ∈ Gent}. (10)

This method keeps the minimal changes to the original KG G, yet still cannot well resolve dupli-
cation of conceptually similar entities inside G, leading to redundancy and low-efficiency during
retrieval.

(3) Merging with Synonym Linking. To prevent the information loss of merged entities as in directly
merging, inside each group Gl, this approach merges attributes and relations to the canonical entity
ϕ(Gl) first, then adds synonym relations rsyn towards canonical entity ϕ(Gl). In this case, the entity
set E remains unchanged, the relation set R is updated by Equation (9), then Equation (10), and the
attributes is updated by Equation (8).

4.2 TRIPLE REFLECTION

Since the external information in the documents may contain erroneous content, the triples extracted
by LLMs are not always trustworthy (Huang et al., 2024b; Han et al., 2023). Besides, due to the
batched generation of name-entity recognition of chunks, errors may also occur (Lu et al., 2024).
Therefore, we use LLM-as-judge to remove the low-quality triple. Specifically, given a triple,
composed of source entity, relation, and target entity, we let LLM to predict a reliability score
s = Mjudge(e1, r, e2). Then, we filter out the triples that are below a threshold δTR and the final
relation set that we obtain is

T ∗ = {(e1, r, e2) | (e1, r, e2) ∈ T ,Mjudge(e1, r, e2) ≥ δTR} (11)

4.3 ANALYSIS

Under the construction of KGs in Section 3, if no entity resolution is applied, i.e.,the deduplication
function becomes identity function, yielding a union of subgraphs with no cross edges. Retrieval
over such a disconnected graph reduces to selecting the information of independent triples that a
vanilla retriever would select. Formally, we summarize the claim in Proposition 1 as below, where
the proof is provided in Appendix D.

Proposition 1. Given a graph-based RAG and a vanilla RAG system that share the same augmen-
tation and generation processes, the absence of entity resolution causes the graph-based RAG to
degrade into vanilla RAG.

Proposition 1 demonstrates that any benefit of Graph-based RAG over vanilla RAG necessarily
comes from the connectivity created by entity resolution.

5 EXPERIMENTS

In this section, we comprehensively evaluate the effectiveness the denoising approach mentioned
in the previous section for Graph-based RAG systems. We first introduce the experimental settings
in Section 5.1. Then, we demonstrate that entity resolution can significantly reduce the scale of
the original graph while improving question-answering performance on Graph-based RAG systems
in Section 5.2. In Section 5.3, we test and analyze how different components in entity resolution

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

influence the overall performance. we study the impact of entity reduction ratio and relation reduc-
tion ratio on the performance of Graph-based RAG in Section 5.4. Then, we conduct an ablation
study in Section 5.5 to evaluate the impact of different deletion methods and LLM API. Additional,
we conduct a detailed case study in Appendix B.3 to illustrate the qualitative differences between
knowledge graphs before and after the denoising process.

5.1 EXPERIMENTAL SETUP

Datasets and metrics We evaluate the performance of Graph-based RAG on four datasets from
UltraDomain benchmark (Qian et al., 2025) following (Guo et al., 2024), including Agriculture, CS,
Legal, and Mix. Agriculture, CS, and Legal contains domain-specific knowledge, while Mix includes
a broad spectrum of disciplines. Please refer to Appendix A for details of data statistics. Different
Graph-based RAG systems are tested by question-answering tasks. We use an LLM as a judge to
conduct pairwise comparisons between the responses of two methods, where a winning rate greater
than 50% indicates that one method outperforms the other, and vice versa. The evaluation considers
four dimensions: comprehensiveness, diversity, empowerment, and overall quality. The detailed
evaluation process is shown in Appendix C.5.

Baselines We select four popular Graph-based RAG methods as our baselines: (1) LightRAG (Guo
et al., 2024). (2) HippoRAG (Jimenez Gutierrez et al., 2024). (3) LGraphRAG (Edge et al., 2024).
(4) GGraphRAG (Edge et al., 2024).

Implementation details. We implement our experiment based on DIGIMON (Zhou et al., 2025),
which is a framework that stably implements many variants of Graph-based RAG and provide a fair
and unified comparison among these methods. For efficient indexing and retrieval, the entities and
relations are stored in vector dataset bases implemented by Llama Index (Liu, 2022). We use open
sourced Qwen3-235B-A22B-Instruct-2507 (Team, 2025) for the LLM API calling, which natively
supports 256K context. The model is deployed using VLLM (Kwon et al., 2023) on a Linux server
with 8 H20 GPUs. We use Qwen3-Embedding-8B (Zhang et al., 2025) as the embedding model
during index building and semantic blocking. For the KG embedding, we use pykeen (Ali et al.,
2021), which is design for many types of KG embedding. By default, we set the entity reduction
ratio as 40% of the total size of the entity set, δTR of triple reflection as 0.2, semantic-based method
for blocking, LLM embeddings for entity embedding, ego-based similarity for matching, direct
merging in merging step. Please refer to Appendix C for more implementation details.

Table 1: Performance comparison of graph-based RAG methods on original and cleaned knowledge
graphs across four datasets. The evaluation is based on winning rates by comparing responses
generated from original versus cleaned knowledge graphs.

Dataset Dimension LightRAG HippoRAG LGraphRAG GGraphRAG

Orig. Clean Orig. Clean Orig. Clean Orig. Clean

Agriculture

Comprehensive 43.60% 56.40% 49.80% 50.20% 48.80% 51.20% 47.79% 52.21%
Diversity 41.60% 58.40% 43.78% 56.22% 40.00% 60.00% 36.14% 63.86%
Empowerment 42.00% 58.00% 47.39% 52.61% 45.60% 54.40% 47.79% 52.21%
Overall 42.40% 57.60% 48.19% 51.81% 47.20% 52.80% 47.39% 52.61%

CS

Comprehensive 39.20% 60.80% 49.17% 50.83% 47.18% 52.82% 48.19% 51.81%
Diversity 40.00% 60.00% 35.54% 64.46% 43.55% 56.45% 44.58% 55.42%
Empowerment 40.80% 59.20% 49.17% 50.83% 47.58% 52.42% 48.59% 51.41%
Overall 41.60% 58.40% 49.59% 50.41% 46.77% 53.23% 48.19% 51.81%

Legal

Comprehensive 43.60% 50.80% 49.60% 50.40% 44.80% 55.20% 48.00% 52.00%
Diversity 41.60% 51.20% 44.00% 56.00% 36.80% 63.20% 42.80% 57.20%
Empowerment 42.00% 51.60% 50.00% 50.00% 45.20% 54.80% 48.00% 52.00%
Overall 42.40% 51.60% 50.00% 50.00% 44.80% 55.20% 47.60% 52.40%

Mix

Comprehensive 45.60% 54.40% 48.80% 51.20% 45.20% 54.80% 49.60% 50.40%
Diversity 40.80% 59.20% 51.60% 48.40% 38.40% 61.60% 45.20% 54.80%
Empowerment 45.60% 54.40% 47.60% 52.40% 42.40% 57.60% 49.20% 50.80%
Overall 46.00% 54.00% 48.40% 51.60% 42.40% 57.60% 49.40% 50.60%

5.2 IMPACT OF KNOWLEDGE GRAPH DENOISING

To validate the effectiveness of our proposed DEG-RAG, we compare the performance of baseline
Graph-based RAG with denoised KGs and original KGs on four datasets. As shown in Table 5.1,
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after reducing 40% of the entities and removing erroneous relations, the performance of Graph-based
RAG on cleaned KGs is better than the original KGs in most cases. This indicates the necessity of
denoising KGs for Graph-based RAG. Note that for HippoRAG, the performance is not significantly
improved on the Legal and Mix datasets. This is because the entity set of the KG in HippoRAG only
contains entity names without descriptions, limiting the performance of entity resolution.

5.3 COMPONENT ANALYSIS OF ENTITY RESOLUTION
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Figure 3: Impact of different entity resolution components on Graph-based RAG performance.

We further study the impact of different components of entity resolution on the performance of
Graph-based RAG. Figure 3 shows the winning rate averaged across four metrics (Comprehensive,
Diversity, Empowerment, and Overall) on denoised KGs with different components of blocking
type, entity embedding, similarity mode, and merge type. We find that: (1) Entity type-based block-
ing is more effective than semantic-based or structure-based blocking. We speculate that entity type
is a better and more natural inductive bias for entity resolution and can lead to more robust denoised
graph, which is important for graph mining (Luan et al., 2022; Zheng et al., 2024). (2) Traditional
KG embeddings can rival LLM embeddings. In the Legal and Agriculture datasets, LLM embed-
dings underperform ComplEx embeddings (Trouillon et al., 2016), which represents entities and
relations as vectors in a complex number vector space to better handle asymmetric relations. This
demonstrates that traditional KG embeddings can be a viable alternative to LLM embeddings, es-
pecially in scenarios where computational resources are insufficient for LLMs or when we contain
complex relations in the datasets. (3) Without ego-based similarity, the performance of Graph-based
RAG degrades in most cases. Additionally, incorporating neighbor information as a complement
to ego node information improves performance in the Legal and Mix datasets. (4) Simple direct
merging often surpasses synonym linking. Although both methods aim to deal with the synonym
entities, synonym linking only adds synonym relations between merged entities and the canonical
entity. As a result, the KGs remain redundant, requiring more hops to retrieve relevant informa-
tion. In contrast, direct merging addresses this by consolidating entities with similar meanings into
a single entity, which is more efficient.

5.4 HYPERPARAMETER ANALYSIS

We conduct experiments to investigate the robustness of the selection of the entity reduction ratio
on the effectiveness of denoising. As shown in Figure 4, the winning rate is equal or larger than
50% as long as reduction ratio is not too high. This means, as long as entities are not over-merged,
the denoising step is effective for Graph-based RAG. Notably, on Mix and Legal, the performance
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Figure 4: Influence of entity reduction ratio on Graph-based RAG performance.

remains comparable to the original KG up to 70%, which means even the reduction of 70% entities
in KG does not cause negative effect compared to original KG. At such aggressive denoising setting,
not only near-duplicate or synonymous entities are merged, but entities with only marginal semantic
similarity and overlapping local neighborhoods can also be absorbed into a single canonical node,
effectively collapsing fine-grained clusters. The resulting KG becomes substantially more compact
while still keep, and sometimes even improve, Graph-based RAG performance. We attribute this to
the reduced redundancy, shorter multi-hop paths, and the concentration on fewer, more informative
nodes. This indicates that Graph-based RAG is robust to some over-merging cases so long as coarse-
grained semantics are preserved.

5.5 ABLATION STUDY
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Figure 5: Ablation study on the performance of
the full denoising method against versions with-
out entity resolution, without triple reflection, and
with random entity merging.

To evaluate the effectiveness of entity reso-
lution and triple reflection in DEG-RAG, we
conduct an ablation study in this subsection.
As shown in Figure 5, without entity reso-
lution or triple reflection, the performance of
Graph-based RAG significantly degrades in all
datasets. Moreover, we find that entity reso-
lution is more impactful than triple reflection,
indicating the necessity of entity resolution in
KGs. We also set up random merging as a ref-
erence method for comparison and the results
show worse performance than the above two
partial methods, which again shows the neces-
sity to handle the redundant entities smartly.

6 CONCLUSION AND FUTURE WORKS

In this work, we investigated how denoising LLM-generated KGs benefits Graph-based RAG. We
introduced DEG-RAG, which combines entity resolution and triple reflection to remove redundant
entities and filter unreliable relations. Across four Graph-based RAG variants and four datasets,
DEG-RAG reduces around half the size of the entities and relations while preserving or improving
QA quality and lowering storage cost. Our component analysis shows that type-aware blocking is
consistently strong, classical KG embeddings such as ComplEx can rival LLM embeddings, ego in-
formation is essential and neighbor cues help in some settings, and direct merging generally outper-
forms synonym-only linking. Hyperparameter sweeps reveal wide operating regimes and sometimes
allow up to 70% entity reduction without hurting performance. Our methods focus on improving
the quality of KGs and can be used alongside advances in knowledge-graph-based LLM applications
(Choudhary & Reddy, 2023; Wang et al., 2025; Wang, 2025).

While effective, DEG-RAG has limitations. Our study uses four QA datasets and non-large-scale
KGs. Triple reflection depends on LLM prompting and the LLM-as-judge setup, which can intro-
duce calibration bias. Gains are bounded by attribute richness. For example, graphs with only short
names without rich descriptions limit resolution quality. In future work, we will extend DEG-RAG to
more datasets and larger-scale KGs, generalize the denoising pipeline to other LLM-generated data
structures beyond KGs, and richer evaluations beyond LLM as judges.
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Incremental knowledge graphs construction using large language models. In International Con-
ference on Web Information Systems Engineering, pp. 214–229. Springer, 2024.

Heeyoung Lee, Angel Chang, Yves Peirsman, Nathanael Chambers, Mihai Surdeanu, and Dan
Jurafsky. Deterministic coreference resolution based on entity-centric, precision-ranked rules.
Computational Linguistics, 39(4):885–916, December 2013. doi: 10.1162/COLI a 00152. URL
https://aclanthology.org/J13-4004/.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
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Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard. Com-
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THE USE OF LARGE LANGUAGE MODELS

In this work, we employed LLMs as auxiliary tools to support the preparation of the manuscript.
Specifically, LLMs were used in two ways: (i) to polish the writing style of the paper by refining
grammar, clarity, and readability without altering the technical content, and (ii) to assist in identify-
ing relevant related work by suggesting potential references. Note that LLMs were not involved in
designing experiments, analyzing results, or drawing conclusions; these aspects of the study were
carried out independently by the authors.

A DATA STATISTICS

Table 2: Statistics of datasets and knowledge graphs across four domains.
Category Agriculture CS Legal Mix

# Token 1,949,526 2,047,866 4,872,343 611,161
# Document 12 10 94 61
# Question 125 125 125 125

# Entity

LightRAG 21,131 16,434 16,502 8,942
HippoRAG 42,444 25,495 34,342 24,055
LGraphRAG 21,761 15,257 16,761 10,240
GGraphRAG 21,227 15,600 16,111 10,399

# Relation

LightRAG 23,102 20,642 33,625 7,458
HippoRAG 41,636 25,170 51,031 16,370
LGraphRAG 25,834 19,980 36,742 8,513
GGraphRAG 21,408 19,412 36,507 9,943

Ave. Entity
Description

LightRAG 40.47 42.12 63.64 32.61
HippoRAG – – – –
LGraphRAG 40.23 40.21 62.11 31.88
GGraphRAG 38.74 39.83 63.76 33.66

As shown in Table A, we report the numbers of tokens, documents, and questions for the four
datasets used in this paper. We also present the counts of entities and relations, as well as the
average length of entity descriptions (in tokens) in the LLM-generated knowledge graphs extracted
by LightRAG (Guo et al., 2024), HippoRAG (Jimenez Gutierrez et al., 2024), LGraphRAG (Edge
et al., 2024), and GGraphRAG (Edge et al., 2024). Note that the knowledge graphs generated by
HippoRAG do not contain entity descriptions.

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 IMPACT OF DIFFERENT LLMS IN RAG

To show how different LLMs backbones influences the performance of DEG-RAGshown in Table
5.1, apart from Qwen3-235B-A22B (Team, 2025), we further conduct experiments using GPT-4o-
mini (OpenAI, 2024) and Gemini-2.5-flash (Comanici et al., 2025) on four datasets on LightRAG
(Guo et al., 2024). As shown in Table B.1, under the entity reduction of 40% and triple reflec-
tion threshold of 0.2, the winning rate of using GPT-4o-mini or Gemini-2.5-flash is comparable as
Qwen3-235-A22B, indicating the generality of DEG-RAGacross different types of LLMs.

B.2 COMPARISON OF TOKEN CONSUMPTION

We further compare the costs of DEG-RAGunder different entity reduction ratios. Table B.2 shows
the statistics of token consumption after applying DEG-RAGin LightRAG as shown in Table 5.1.
First, we can see that there is no significant differences of token consumption in prompt and com-
pletion for LightRAG on the original knowledge graph and knowledge graphs with DEG-RAG, in-
dicating the performance gain is not caused by additional information. Second, we notice that the
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Table 3: Performance comparison of models on original and cleaned knowledge graphs across four
datasets. The evaluation is based on winning rates by comparing responses generated from original
versus cleaned knowledge graphs.

Dataset Dimension Qwen3-235B-A22B GPT-4o-mini Gemini-2.5-flash

Orig. Clean Orig. Clean Orig. Clean

Agriculture

Comprehensive 43.60% 56.40% 45.34% 54.66% 46.00% 54.00%
Diversity 41.60% 58.40% 29.27% 70.73% 46.00% 54.00%
Empowerment 42.00% 58.00% 31.71% 68.29% 46.80% 53.20%
Overall 42.40% 57.60% 33.74% 66.26% 46.80% 53.20%

CS

Comprehensive 39.20% 60.80% 42.32% 57.68% 44.40% 55.60%
Diversity 40.00% 60.00% 36.51% 63.49% 43.20% 55.60%
Empowerment 40.80% 59.20% 41.91% 58.09% 43.20% 56.80%
Overall 41.60% 58.40% 41.91% 58.09% 44.00% 56.00%

Legal

Comprehensive 43.60% 56.40% 46.40% 53.60% 42.00% 58.00%
Diversity 41.60% 58.40% 45.20% 54.80% 42.40% 57.60%
Empowerment 42.00% 58.00% 46.80% 53.20% 40.80% 59.20%
Overall 42.40% 57.60% 47.60% 52.40% 41.20% 58.80%

Mix

Comprehensive 45.60% 54.40% 47.18% 52.82% 42.40% 57.60%
Diversity 40.80% 59.20% 43.95% 56.05% 40.00% 60.00%
Empowerment 45.60% 54.40% 45.16% 54.84% 42.40% 57.60%
Overall 46.00% 54.00% 45.56% 54.44% 42.00% 58.00%

Table 4: Token consumption statistics under different entity reduction ratios across four datasets.
Dataset Type Original 20% 40% 60% 80%

Mix
Prompt 1,040,189 1,185,787 1,267,955 1,149,659 1,133,338
Completion 86,171 85,738 85,454 85,334 86,051
Total Token 1,126,360 1,271,525 1,353,409 1,234,993 1,219,389

CS
Prompt 1,084,623 1,118,326 1,106,513 906,618 779,191
Completion 89,056 90,658 89,394 88,844 89,252
Total Token 1,173,679 1,208,984 1,195,907 995,462 868,443

Agriculture
Prompt 1,273,710 1,537,191 1,296,947 1,278,717 911,124
Completion 82,351 82,677 82,978 79,724 79,683
Total Token 1,356,061 1,619,868 1,379,925 1,358,441 990,807

Legal
Prompt 1,755,056 1,749,183 1,721,740 1,528,838 1,658,700
Completion 84,124 84,771 84,178 83,707 85,468
Total Token 1,839,180 1,833,954 1,805,918 1,612,545 1,744,168

input token increases with node reduction of 20% or 40%, then decreases on 60% and 80%. We
explain this as, in lower reduction ratio, few entities are merged, which slightly increases the input
prompt, while in high reduction ratio, more and more entities are merged together, after the sum-
maziation of entitiy description, the total retrieved entites and relations become fewer, leads to fewer
input token.

B.3 CASE STUDY

To illustrate the qualitative impact of denoising, we conduct a case study on entity resolution using
the CS dataset. Figure 6 shows a subgraph of the knowledge graph before and after denoising.
Red nodes indicate redundant entities that have been merged into their canonical forms, while blue
nodes represent entities that remain unchanged. Dashed red lines indicate the direction of merging
from one entity to another, green lines denote newly added relations, brown dashed lines represent
removed relations, and black lines correspond to relations that are retained.

The entity merging process is generally reasonable. For example, variations such as ARIME
methodology are merged into ARIMA model, and Linear Regression into linear
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Figure 6: Case Study of Knowledge Graph Denoising on the CS Dataset. The figure illustrates a
subgraph before and after applying our denoising method. Redundant entities are denoted in red and
merging process is shown in arrows.

regression. We also observe merges driven by semantic similarity, such as K-means
Algorithm being merged into Clustering models, and Naive Bayes Model and
Support Vector Machine Model being merged into Decision Tree. Overall, the de-
noised knowledge graph is more concise and efficient, thereby improving the performance of graph-
based RAG.

We also examine the cases of triple reflection. As in Table 5, we listed some triples with δTR ≤ 0.2.

C IMPLEMENTATION DETAILS

C.1 GRAPH-BASED RAG

For all the Graph-based RAG methods, we set token-based chunking across all methods, with seg-
ment length of approximately 1,200 tokens and an overlap of 100 tokens, using a standard tokenizer
to balance context preservation and indexing granularity. We set the retriever to return the top 5
candidates. When personalized PageRank is used, we set entity-aware priors with light damping to
encourage focus on salient nodes. All methods answer questions directly rather than only returning
supporting context. We set the overall candidate pool to 20. We set token budgets consistently across
methods: the naive assembly budget to 12,000 tokens, the local assembly budget to 4,000 tokens,
and the entity and relation evidence budgets to 2,000 tokens each. When iterative reasoning over
retrieved evidence is enabled, we cap the refinement steps at 2.

LightRAG (Guo et al., 2024) maintains both entity and relation indices and builds a relation-centric
knowledge graph enriched with edge keywords. We enable entity descriptions, entity types, edge
descriptions, and edge names to maximize semantic coverage. We set the usable context window
to 32,768 tokens. For retrieval, we set nearest-neighbor search and enable entity-similarity–aware
propagation with the top 5 results. Querying is hybrid: we enable both local and global graph search.
We set the global community cap to 512 without a minimum rating, the global community report
budget to 16,384 tokens, and the global context budget to 4,000 tokens. Locally, we set the context
budget to 4,800 tokens and the community report budget to 3,200 tokens. We allow keyword cues
when composing the final context.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 5: Case study of triple reflection
Relation Source Score Target Analysis
Transenterix Inc.
owns Safestitch
LLC

Transenterix Inc.
owns Safestitch
LLC, indicating a
parent subsidiary
relationship

0.1 Safestitch LLC TransEnterix does not own
SafeStitch

Turtle is one of
the entities classi-
fied as a borrower

Turtle is one of
the entities classi-
fied as a borrower
in the financial
agreement

0.1 Borrowers Turtles are not entities that en-
gage in borrowing

Michael Scott is
involved in the
SEC lawsuit

Michael Scott is
involved in the
SEC lawsuit as
a defendant ac-
cused of securi-
ties violations

0.1 SEC lawsuit Michael Scott is a fictional char-
acter from the television show
’The Office’ and not a real per-
son involved in any legal mat-
ters

Title policy for
Pabst

Title policy is re-
quired to obtain
a title policy to
ensure the legiti-
macy of the asset
ownership during
the acquisition

0.1 Pabst A title policy is a type of insur-
ance related to real estate trans-
actions, while ’pabst’ appears to
refer to a brand

Shareholder’s eq-
uity reflects net
worth of dealers

Shareholder’s
equity is a key
financial metric
that reflects the
net worth of
dealers after
liabilities are
deducted

0.2 Dealers Shareholder’s equity is a finan-
cial metric relevant to com-
panies and their owners, not
specifically to dealers

Kristen M Jenner
and Kylie K Jen-
ner are key exec-
utives

Kylie K Jenner
and Kristen
M Jenner are
both identified
as key execu-
tives, indicating
a professional
relationship in a
business context

0.2 Kylie K Jenner Kristen M Jenner is not a recog-
nized executive in the same con-
text as Kylie K Jenner

HippoRAG (Jimenez Gutierrez et al., 2024) focuses on an entity–relation graph with entity-
link–aware chunking and enables graph augmentation while keeping metadata conservative: we
disable entity and edge descriptions, and we retain edge names. We set retrieval to personalized
PageRank over the entity–relation graph without an entity-similarity term in propagation, and we
set the top-k to 5. Querying follows a hybrid strategy while we disable explicit propagation-based
augmentation in the final context assembly. We keep the same token budgets as in the common
configuration, and we cap iterative reasoning at 2 steps.

LGraphRAG (Edge et al., 2024) uses a relation-centric knowledge graph with a forced construction
setting. We enable entity and edge descriptions and edge names, and we disable entity types. We
apply community-aware clustering using the Leiden algorithm; we set the maximum community
size to 10 and use concise community summaries. We set retrieval to nearest-neighbor search with
an additional local neighborhood expansion, and we enable propagation-based augmentation while
disabling global community selection. We set the local context budget to 4,800 tokens and the local
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community report budget to 3,200 tokens, and we keep the same overall budgets and refinement
limits as in the common setup.

GGraphRAG (Edge et al., 2024) adopts the same relation-centric graph construction and
community-aware clustering as LGraphRAG. We set retrieval to nearest-neighbor search without
local expansion, and we enable both local and global querying. We set the global community cap to
512, the global community report budget to 16,384 tokens, and the global context budget to 4,000
tokens, while keeping the local budgets aligned with the common configuration. Other token allo-
cations and refinement limits follow the common setup.

C.2 REDUCTION RATIO

We further report the number and proportion of removed entities and relations in Table 5.1. As
shown in Table 6, across the four datasets, the entity reduction ratio is approximately 40%. The
relation reduction ratio ranges from 30% to 60%, reflecting both the removal of relations during
triple reflection and the disappearance of relations associated with merged entities.

Table 6: Statistics of original and cleaned knowledge graphs across four datasets and four Graph-
based RAG models.

Dataset Dimension LightRAG HippoRAG LGraphRAG GGraphRAG

Orig. Clean Reduction Orig. Clean Reduction Orig. Clean Reduction Orig. Clean Reduction

Agriculture # Entity 21131 12679 40.00% 42444 25466 40.00% 21761 13057 40.00% 21227 12736 40.00%
# Relation 23102 15548 32.70% 41636 20321 51.19% 25834 16503 36.12% 21408 11258 47.41%

CS # Entity 16434 9861 40.00% 25495 15297 40.00% 15257 9154 40.00% 15600 9360 40.00%
# Relation 20642 12164 41.07% 25170 13801 45.17% 19980 13756 33.15% 19412 13742 29.21%

Legal # Entity 16502 9902 40.00% 34342 20606 40.00% 16761 10057 40.00% 16111 9667 40.00%
# Relation 33625 21261 36.77% 51031 35920 29.61% 36742 22987 37.44% 36507 14025 61.58%

Mix # Entity 8942 5366 40.00% 24055 14433 40.00% 10240 6144 40.00% 10399 6240 40.00%
# Relation 7458 5164 30.76% 16370 6896 57.87% 8513 6288 26.14% 9943 6713 32.49%

C.3 PROMPTS IN ENTITY RESOLUTION

To avoid the exceeding length of descriptions of merged knoweldge graphs, we summarize the
descriptions if the number of token exceed 4,000. We provide the summarization prompt of entity
and relation as follows

Entity description summarization prompt

You are a helpful assistant. Please summarize the following list of descriptions for the
entity {entity name} into a single, coherent paragraph. Combine the key information
and remove redundant details.
Descriptions to summarize:
{description list}
Concise Summary:

Relation description summarization prompt

You are a helpful assistant. Please summarize the following list of descriptions for the
relationship {item name} into a single, coherent paragraph. Combine the key information
and remove redundant details.
Descriptions to summarize:
{description list}
Concise Summary:
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C.4 PROMPTS IN TRIPLE REFLECTION

We perform triple reflection on knowledge graph triples (edges) using LLMs to assess their reason-
ableness before downstream use. For each triple, an LLM returns a numerical quality score and a
short analysis; results are written as JSONL for subsequent aggregation and filtering.

System prompt

You are a knowledge graph expert who evaluates whether the knowledge graph triplet be-
longs to commonsense knowledge.

User prompt

Evaluate the reasonableness of the knowledge graph triplet with precision:

Source: <source>
Destination: <destination>
Relationship: <relationship>

Analysis requirements
• Semantic accuracy: Does the relationship accurately describe the connection? Consider

domain knowledge and factual correctness.
• Relevance: Is the connection meaningful and significant, not trivial or coincidental?
• Specificity: Is the relationship clear and specific rather than vague or overly general?
• Logical coherence: Does the triple follow expected semantic and syntactic patterns for

KGs?
• Entity type compatibility: Is the relationship sensible given the entity types involved?
Scoring guidelines
• 0.0–0.3: Invalid or highly questionable (factually wrong, illogical, meaningless)
• 0.4–0.6: Partially valid but problematic (some relevance yet vague/imprecise/minor inac-

curacies)
• 0.7–0.8: Mostly valid (accurate but could be more specific or informative)
• 0.9–1.0: Fully valid (accurate, specific, informative, and logically sound)
Optimization notes
• Focus on direct evaluation without unnecessary elaboration.
• Use domain-specific reasoning where applicable.
Output format (return a valid JSON object):
{

"analysis": "concise analysis",
"score": 0.5

}

The score should be a float between 0.0–1.0 with two-decimal precision.

C.5 EVALUATION

We assess the responses of DEG-RAGusing an LLM judge in a pairwise-comparison setup. For
each question the judge receives the question and two candidate answers from original knowledge
graphs or denoised knowledge graphs by DEG-RAG, and decides which answer is better and why.
To mitigate position bias we run two passes per question. Pass A uses (Answer 1, Answer 2) and
Pass B swaps the order. Aggregated wins for a method on a criterion are computed by summing
Answer 1 wins in Pass A and Answer 2 wins in Pass B. Ties are recorded when the judge issues a
tie token. The judge receives the following prompts verbatim.
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System prompt

You are an expert tasked with evaluating two answers to the same question based on three
criteria: Comprehensiveness, Diversity, and Empowerment.

User prompt

You will evaluate two answers to the same question using the three criteria below:
• Comprehensiveness: How much detail does the answer provide to cover all aspects and

details of the question?
• Diversity: How varied and rich is the answer in presenting different perspectives and

insights?
• Empowerment: How well does the answer help the reader understand the topic and make

informed judgments?
For each criterion, choose the better answer (Answer 1 or Answer 2) and explain why. Then
select an overall winner based on these three categories.
Here is the question: {query}
Here are the two answers:
Answer 1: {answer1}
Answer 2: {answer2}
Evaluate both answers using the three criteria above and provide detailed explanations for
each criterion.
Output your evaluation in the following JSON format:

{
"Comprehensiveness": {

"Winner": "[Answer 1 or Answer 2]",
"Explanation": "[Provide explanation here]"

},
"Diversity": {

"Winner": "[Answer 1 or Answer 2]",
"Explanation": "[Provide explanation here]"

},
"Empowerment": {

"Winner": "[Answer 1 or Answer 2]",
"Explanation": "[Provide explanation here]"

},
"Overall Winner": {

"Winner": "[Answer 1 or Answer 2]",
"Explanation": "[Summarize why this answer is the
overall winner based on the three criteria]"

}
}

D PROOF OF PROPOSITION 1

Proposition 1. Given a graph-based RAG and a vanilla RAG system that share the same augmen-
tation and generation processes, the absence of entity resolution causes the graph-based RAG to
degrade into vanilla RAG.

Proof. We assume that: (1) both systems use identical augmentation and generation processes except
for the knowledge representation, (2) vanilla RAG retrieves chunks based on relevance scoring, and
(3) graph-based RAG retrieves subgraphs or triples based on query-entity matching. This is not a
formal proof but rather an intuitive argument.

Given document chunks C = {c1, . . . , cM}, a Graph-based RAG system constructs a knowledge
graph G∗ = (E∗,R∗, T ∗,A∗) through named entity recognition followed by deduplication. The
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response Y is generated for query Q as:

Y = M◦ Aug
[
Q,Ret(Q,G∗)

]
. (12)

Without entity resolution, the deduplication function becomes the identity mapping ϕ(e) = e for all
e ∈ Eraw. This means:

E∗ = {ϕ(e) | e ∈ Eraw} = Eraw (13)
T ∗ = Traw (14)

A∗(e) = Araw(e) ∀e ∈ E∗ (15)

Since each triple (e1, r, e2) ∈ Traw originates from a single chunk cm, and no entity merging occurs,
entities from different chunks remain disconnected even if they represent the same real-world con-
cept. Formally, let Em = {e1, e2 | (e1, r, e2) ∈ Tm} be entities extracted from chunk cm. Without
entity resolution, there are no edges connecting entities from different chunks:

∀i ̸= j : N (ei) ∩ Ej = ∅ where ei ∈ Ei (16)

This results in M disconnected subgraphs G∗
1 ,G∗

2 , . . . ,G∗
M , where each G∗

m = (Em,Rm, Tm,Am)
corresponds to chunk cm.

For any query Q, the graph retrieval function Ret(Q,G∗) can only retrieve from individual discon-
nected components. Since each component G∗

m contains only local information from chunk cm,
the retrieved content consists of triples Tm that represent structured partitions of the original chunk
content. The graph-based retrieval without entity resolution becomes:

Ret(Q,G∗) =
⋃

m:rel(Q,G∗
m)>τ

Tm (17)

where rel(Q,G∗
m) measures relevance between query and local subgraph, and τ is a threshold.

Note that each original chunk cm can be decomposed as:

cm = Tm ∪ unextracted text (18)

where Tm represents the structured information extracted from cm. Since Tm ⊂ cm, the retrieved
triples are essentially parts of the original chunks. With no cross-chunk connections, this retrieval
process can be considered as a vanilla RAG system:

Retvanilla(Q, {Tm}) = {Tm | rel(Q, Tm) > τ ′} (19)

for appropriately chosen thresholds τ and τ ′.

Since the augmentation and generation processes are identical by assumption, and the retrieved
content has the same information coverage (parts of chunks vs. disconnected subgraphs), we have:

Ygraph = M◦ Aug[Q,Ret(Q,G∗)] ≡ M◦ Aug[Q,Retvanilla(Q, {Tm})] = Yvanilla (20)

Therefore, without entity resolution, graph-based RAG degrades to vanilla RAG.
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