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Abstract

“Why Not Other Classes?”: Towards Class-Contrastive Back-Propagation FExplanations
(Wang & Wang}, 2022)) provides a method for contrastively explaining why a certain class in a
neural network image classifier is chosen above others. This method consists of using back-
propagation-based explanation methods from after the softmax layer rather than before.
Our work consists of reproducing the work in the original paper. We also provide extensions
to the paper by evaluating the method on XGradCAM, FullGrad, and Vision Transformers
to evaluate its generalization capabilities. The reproductions show similar results as the
original paper, with the only difference being the visualization of heatmaps which could not
be reproduced to look similar. The generalization seems to be generally good, with imple-
mentations working for Vision Transformers and alternative back-propagation methods. We
also show that the original paper suffers from issues such as a lack of detail in the method
and an erroneous equation which makes reproducibility difficult. To remedy this we provide
an open-source repository containing all code used for this project.

1 Introduction

Deep Neural Networks (DNNs) have seen rapid growth in recent years due to their great performance across
many fields. However, these high-performing models suffer from being black-box, and therefore are hard
to interpret the decision-making process of. This is especially dangerous in security-critical systems, such
as in medicine or autonomous driving, where full transparency of decisions is needed. As an approach to
making DNNs more interpretable the field of Explainable AI studies different methods for explaining the
decision process of DNNs. A paper that studies such an approach, with a focus on computer vision and
back-propagation-based methods is the paper under scrutiny in this review.

The original paper “Why Not Other Classes?”: Towards Class-Contrastive Back-Propagation Ezxplanations
(Wang & Wang), 2022)) propose a new weighted contrastive back-propagation-based explanation. This method
aims to improve the explanation of why one specific class are chosen over others. By answering the question
of what differs between two similar classes, rather than what is important for both, the goal is to get a
explanation method that closer matches how people answers classification tasks.

Their proposed explanation method, called weighted contrast, are a class-wise weighted combination of the
original explanation defined as
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where ¢; is the original explanation for pixel ¢ and the weight « is the softmax activation of the logit vector
without the target class ¢
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The original explanation can be any back-Propagation based explanation method. This paper will further
investigate three of the methods proposed, namely, Gradient, Linear Approximation (LA) and GradCAM
as detailed in Appendix [A] The original paper further shows that the weighted contrast method is equal
to taking the explanation directly toward the probability after the softmax layer for most gradient-based
methods.

The authors argue that this is a superior contrastive explanation method by performing two forms of adver-
sarial attacks with regard to the different explanations. They show that an adversarial attack on the pixels
highlighted by weighted contrast results in a more significant effect on the accuracy of the model, while
original methods more accurately impact the logit strength. By performing a blurring and removal attack
with explanations extracted from GradCAM and Linear Approximation they show that their method finds
more impactful negative and positive regions of interest with regards to the model accuracy.

This document aims to reproduce the main results of the paper as well as provide insights into the general
reproducibility and impact of the paper. We also expand upon the paper and attempt applications outside its
scope, with other back-propagation-based explanation methods as well as applying it to Vision Transformers
(ViT) as introduced in |Dosovitskiy et al.| (2020]). This was done to see the generalization capabilities of the

paper.

2 Scope of reproducibility

The claims of the original paper we seek to verify are:

e Claim 1: When perturbing input features according to the original paper’s weighted contrastive
explanation, changes in the softmax output p; and accuracy match each other, whilst changes in the
logit y; do not for target class t.

e Claim 2: The original paper’s weighted contrastive explanation when coupled with a visualiza-
tion method such as GradCAM highlights the most crucial areas for classification when the model
classifies between several dominant classes.

e Claim 3: The original paper’s weighted contrastive explanation should be able to be easily applied
to other back-propagation-based explanation methods by back-propagating from the softmax output
p¢ rather than the logit y;.

In order to evaluate the above claims and thus test the reproducibility of the paper we replicated the steps
described in section 5 Ezperiments of the original paper for a subset of the models and datasets used in the
original paper. We thus made our own experiments using our own code. The results of these experiments
were then compared with those of the paper in order to find if they were consistent. We furthermore
test the generalizability of the paper by applying the contrastive explanation method shown in the original
paper using XGradCAM (Fu et al., 2020), FullGrad (Srinivas & Fleuret, 2019), and Vision Transformers
(Dosovitskiy et al.| 2020]).

2.1 XGradCAM and FullGrad

As an attempt to test the paper’s contrastive method’s generalization capability additional back-propagation
methods in the form of modified versions of XGradCAM (Fu et al.l [2020) and FullGrad (Srinivas & Fleuret,
2019) were used.

The modified version of XGradCAM removes ReLLU, as in the original paper, and as a consequence uses the
absolute values in the feature map sum when normalizing rather than only the sum. This gives the following
explanation ¢'(z), when back-propagating from the logit y; with the target feature map layer @ with k € K
feature maps:
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A weighted contrastive version, ¢t(m)wcighmd as described in the original paper, of XGradCAM can be
obtained by propagating from the softmax neuron p; and can be proven as follows using notation [¢] for all
classes:
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The modified version of FullGrad changes the post-processing operations indicated by 1 in (Srinivas &
Fleuret, [2019) by removing the abs function in order to be linear and therefore allow negative and positive
values in the produced saliency map. This allows us to generate a contrastive weighted version by back-
propagating from the target softmax neuron p; in but also heavily alters the method.

2.2 Vision Transformers

In order to test how differences in architecture affect the results we modified two sets of explanation methods,
GradCAM and and Gradient-weighted attention rollout (Gildenblat} 2020), and tested them together with
the vit_b_16 model as first described in [Dosovitskiy et al.| (2020). This model works by dividing the image
into 16x16 patches, interpreting each patch of the image as a token. The information in these layers is then
propagated throughout the network using a self-attention mechanism. Unlike standard convolutional neural
network (CNN) architectures, spatial coherence is not guaranteed through the network, and information is
easily mixed with some layers containing little to no spatial coherence.

3 Experiments

In this section, we detail the various reproduction experiments and additions to the original pa-
per. They were performed using the PyTorch library and the code is available publicly at
https://anonymous.4open.science/r/contrastive-explanations-58EE/| under the MIT License. All experi-
ments were performed on a n2-standard-4 Google Cloud VM with an NVIDIA T4 GPU.

3.1 Reproducing 5.1 Back-Propagation till the Input Space

This section reproduces the experiments from section 5.1 in the original paper. The experiments test nine
networks with perturbed input images where the perturbation uses four different explanation methods to
select pixels to perturb. The four methods are original, mean, max and weighted.

Original is gradient explanation defined as ¢*(x) = Vyy'.

Mean is the original explanation averaged over all classes as, ¢'(x) = Vxy' — > £t Vxy®.

Maz is considering only the correct class and the highest other class, defined as ¢'(x) = Vyy! — Vs,
where s* = argmax,.; y°

Weighted is the original papers new method shown in (1)), using the original explanation method, which
gives ¢'(x) = Vxy' — 3, asVxy®, where a is given by (2)

All models use PyTorch pre-trained models, with the most up-to-date default weights as of writing, and
are tested on the validation set of ILSVRC2012 (Deng et all [2009). The experiments are repeated with a
perturbation limit, €, of 3 x 1073, see Figure[ll This differs from the original papers reported e = 103, while
after being in contact with the original authors we found that e = 3 x 1073 had been used. An experiment
with € = 1073 can be found in Figure m in Appendix
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Figure 1: Reproducing of Figure 3 in the original paper with e = 3 x 1073, Changes in accuracy, y; and
pi (t is the target classification class) when certain input features are perturbed. Perturbed features are
selected based on four gradient explanations (original, mean, max and weighted), where original is directly
with respect to the gradients of the logits.

Furthermore, the equations for the gradient sign perturbation in the original paper turned out to have errors
in the clamping and indexing of the iterations. The correct equations are

" 2" + asign(¢f(z)) (5)

2"« clamp(z" ™, max(z® — ¢,0), min(z® 4 ¢, 1)) (6)

€
Ntot

where n is the number of iterations, € is the perturbation limit, and o = is the step size, nso¢ is the total

number of iterations.

Our results verify the results reported in the original paper and are evidence for Claim 1, since the weighted
and max explanation methods yield an increase to p; and accuracy, while the original and mean explanation
methods yield an increase to y;. Although the results are similar to those of the original paper there are
some numerical differences in Figure [I| which is probably due to different weights in the models and hence
also different original performance.
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3.2 Reproducing 5.2 Back-Propagation till the Activation Space

This section reproduces section 5.2 in the original paper by performing the same experiments of both visu-
alization and effects of blurring and masking. These experiments were all performed on VGG-16 with batch
normalization (Simonyan & Zisserman) 2014]) fine-tuned on the CUB-200 dataset (Wah et al., |2011)). The
fine-tuning was done with an SGD optimizer with momentum using a batch size of 128, learning rate of
103, momentum of 0.9, and weight decay of 5 x 10~%. The model was trained for 200 epochs on the training
set as defined by the dataset. For an exact implementation or to reproduce the model, see our repository.
The results of this section generally show evidence for Claim 2, both qualitatively and quantitatively, and
show that the proposed weighted contrastive method highlights crucial areas for classification when the
model classifies between several dominant classes. The extensions to XGradCAM and FullGrad also show
generalizability of the method and thus strengthens Claim 3.

3.2.1 Visualizations

Reproduction of the visualizations of three different back-propagation-based methods can be seen in Figure[2]
Here we compare GradCAM and Linear Approximation, as described in the original paper, and XGradCAM,
as described in section 2.1} to their contrastive weighted counterpart, which was obtained by back-propagating
from the softmax neuron p; of the target class ¢ rather than its logit y;. The visualization was done by
overlapping the bilinearly interpolated relevance map on top of the original image with an alpha of 0.5. A
centered norm was applied on the heatmap before visualizing using the bwr colormap in Matplotlib. The
images were picked such that ps > 0.1 and were selected at random to prevent bias from only selecting good
samples. Observe that the samples picked are different from those in the original paper as those samples did
not have a probability for the second most probable class over the threshold.

The results are partly in line with what the original paper suggests. Firstly, one can note that the original
explanation method is quite consistent among the two classes with differences being mostly the intensity
of the positive and negative areas. Secondly, one can also see that the weighted methods produce almost
complementary heatmaps for the two classes, which makes sense as they are mostly dominant over all other
classes. Lastly, we see a large difference in the size of the negative and positive areas visualized compared
to the original paper. This is presumably due to different methods of visualization, but as the procedure of
visualization of the original paper was not detailed this cannot be confirmed. Observe that the large negative
areas in some images, especially seen when comparing our GradCAM to other implementations, are due to
the omission of ReLLU as described in the original paper. Our results therefore also conflict with the claim in
the original paper in appendix G, where the authors claim that non-contrastive methods have much larger
positive than negative areas. In Figure [2] one can see that the original GradCAM has much larger negative
areas than positive for all selected images.

The same experiments when performed using FullGrad produce fully negative saliency maps. The modified
FullGrad is therefore not truly contrastive as it does not have both positive and negative contributions
instead one has to use normalization and assume that they are evenly distributed. When normalizing is
applied to the final saliency map the results are similar to those seen in Figure [2] and some select images can
be seen in Figure [3] These seem to be of a more fine-grained nature than the GradCAM-based methods in
Figure [2] while largely highlighting the same areas. This suggests a suitable alternative to GradCAM-based
methods and that a contrastive visualization is possible for FullGrad but that this relies on normalization.

3.2.2 Blurring and masking

Reproduction of the blurring and masking experiment seen in Table 1 of the original paper can be seen in
Table [I] Here we also added an additional row with results using XGradCAM. FullGrad is not analyzed
as the modified version only produces negative areas. This gave similar results to GradCAM and Linear
Approximation although performed slightly better on the negative features and for positive features for the
second most probable class t5. Here we use the same baselines as the original paper with the motivation of
them having slightly different results without a generally accepted standard (Sturmfels et al., 2020)). The
values in the table are the average relative probability of the most and second most probable classes for each
image. This relative probability is defined as p;, = E [e¥%i /(e¥"1 + e¥t2)],i = 1,2 where ¢; € [c] represents
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Figure 2: Reproduction of Figure 4 in the original paper. Comparison between the back-propagation from
logits y; (Original) and weighted contrastive back-propagation from p; (Weighted) for GradCAM, Linear
Approximation, and XGradCAM. The columns for each image signify the most possible and second possible
class, respectively. Red and blue signal positive and negative activations respectively.

the i-th most possible class. These expectations are, like in the original paper, only calculated over samples
that fulfill the threshold criteria ps > 0.1.

The results are very similar to those of the original paper, although not identical, and show the same patterns.
We decided to use equal blurring and masking here to prevent bias where one method might yield larger or
smaller negative areas to guarantee that the original and weighted methods both modify an equal number
of pixels. This was also suggested in the original paper in appendix G and seems to have a minor impact on
the results while negating some bias.

3.3 Reproducing 5.3 Comparison with Mean/Max Contrast

We perform the same experiments as in section 5.3 of the original article. Here we reuse the same VGG-16
model used in section [3.2] and implement mean and max contrast as described in the original paper. The
used method for visualization is also the same as in section [3.2] and a threshold of p3 > 0.1 is used. The
results, seen in Figure 4] are similar to the original paper, especially the observation that original and mean
methods yield extremely similar results due to the tiny scaling factor used when subtracting by the other
classes in the mean method. We also note that max similarity for the two most probable classes is each
other’s inverse and that the weighted method gives a similar but more detailed comparison that includes
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Input

FullGrad
Original
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Figure 3: Comparison between the back-propagation from logits y; (Original) and weighted contrastive back-
propagation from p; (Weighted) for FullGrad. The columns for each image signify the most possible and
second possible class, respectively. Red and blue signal positive and negative activations respectively after
normalization.

Table 1: Reproduction of Table 1 in the original paper using equal blurring. Comparisons between weighted
contrastive method (wtd.) and original method (ori.) when blurring and masking. Using baselines Gaussian
Blur, Zeros, and Channel-wise Mean and the methods Linear Approximation (LA), GradCAM (GC), and
XGradCAM (XC). t; and ¢ are the classes with the highest and second highest probability respectively.
Each line shows how the average relative probability changes among each image’s top two classes. Pos. and
Neg. Features mean that only positive and negative features are kept with respect to the corresponding
target class. It is expected that when the positive or negative features corresponding to the target are kept,
the expected relative probability is expected to increase or decrease respectively.

Gaussian Blur Zeros Channel-wise Mean
Pt Pos. Features [ Neg. Features Pos. Features | Neg. Features Pos. Features [ Neg. Features
ori. wtd. [ ori. wtd. ori. wtd. [ ori. wtd. ori. wtd. [ ori. wtd.
LA t1 0.712 0.695 0.789 0.419 0.274 0.663 0.754 0.428 0.292 0.676 0.766 0.426 0.281
to 0.288 0.560 0.738 0.390 0.211 0.563 0.717 0.398 0.253 0.558 0.729 0.391 0.235
CUB-200 ac t1 0.712 0.747 0.858 0.428 0.271 0.731 0.850 0.432 0.286 0.745 0.857 0.426 0.277
to 0.288 0.461 0.759 0.402 0.199 0.469 0.761 0.414 0.226 0.468 0.759 0.406 0.214
xC ty 0.712 0.733 0.847 0.422 0.248 0.711 0.838 0.426 0.266 0.719 0.844 0.419 0.253
to 0.288 0.504 0.785 0.393 0.169 0.515 0.777 0.402 0.184 0.511 0.784 0.395 0.177

several classes simultaneously. Like in section [3.2] we also observe that the negative areas are much larger
than in the compared article, presumably due to different visualization methods.

Figure [4] also highlights the strengths of the weighted contrastive method. Here it is clear that the weighted
method helps give detail to which areas of the image are key for a specific classification given a choice of
several dominating classes. This can be useful when debugging misclassified samples where positive regions
using the weighted method indicate regions that the model considered in its choice. For example, for the
top-left part of Figure [d one can clearly see that the top class puts a heavy bias on a few select spots of the
background, thus indicating that the model might be utilizing non-object pixels to classify the object. This
is further evidence for Claim 2.

3.4 Vision Transformers and contrastive GradCAM

To adapt GradCAM to Vision Transformer models the outputs of the multi-head attention blocks of the ViT
are assumed to be spatially coherent nodes as in standard CNN models. This is convenient as they generally
have the same dimensionality as the input patches, here 16x16. This means that instead of backpropagating
toward a convolutional layer GradCAM backpropagates toward a late multi-head attention block. This
results in a 16x16 explanation map after taking the mean of the channels, where channels here are not RGB
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Figure 4: Reproduction of Figure 5 in the original paper. Comparison between mean, max, and weighted
contrast for four images from CUB-200. In each column, we present explanations for the three most probable
classes for GradCAM using the original image and the three contrastive methods.

channels as in CNN but the embedded dimension of the tokens. These explanations are then upsampled
to the original image’s size. For a more detailed description of how this is implemented, see
lcontributors (2021)).

ViT models process information from pixels differently from CNNs. While CNNs inherently have a spatial
connection between input pixels and activations, enforced by limited filter sizes, EI this spatial relation is not
enforced in ViTs. The self-attention module in ViT allows them to attend to and be influenced by patches,
or tokens, regardless of distance. It has been shown that contrary to CNNs, ViT models attend to pixels
regardless of distance from the first layer [Dosovitskiy et al.| (2020). For evaluating this we use the model
implemented in PyTorcH’| and fine-tune it on the Food-101 dataset (Bossard et al) 2014). Initial attempts
were also made without fine-tuning evaluating on ImageNet, as can be seen in Appendix [B] although these
results are less clear as the dataset is not as fine-grained.

We get qualitatively worse results compared to CNNs, with most explanations generating nonsense results
that do not seem to be correlated to the image. We believe that this is mostly due to the weaker spatial
relationship between token-wise representations and that the method for upscaling patches, or activations, in
later layers, to input image does not adequately represent pixel importance in ViTs. The alternative method

1Filter sizes in CNNs are usually not larger than 7 x 7, therefore the spatial distance between the two pixels influencing an
activation can at most be 7.
2See, using the default weights, |https://pytorch.org/vision/main/models/generated/torchvision.models.vit_b_16.html.
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of Gradient-weighted Attention Rollout is considered in Section [3.5]as a partial solution to the spatial mixing
problem.

A few examples of good explanation maps can be found in Figure [5a] but these are rare and selected from
the multi-head attention blocks that for those images gave spatially coherent results which can vary between
images. We find that the contrastive explanation does affect the results, giving more detail in the highlights
as can be seen in the pad thai and rice example in Figure

3.5 Vision Transformer: Contrastive Gradient-weighted Attention Rollout

To alleviate the problem of hard-to-find proper explanations due to less enforced spatial coherence, expla-
nations through attention rollout are attempted. Attention rollout as an explanation method for ViT was
proposed in [Dosovitskiy et al.| (2020), with the theory laid out in|Abnar & Zuidema (2020). With attention
rollout, information flow is quantified by backtracking the attention from the desired layer to the input
layer by multiplying the attention matrices. This partially restores the information flow between tokens and
patches in ViT. This method has later been further developed in order to weight explanations with regard
to their gradients (Gildenblat, [2020; |Chefer et al., |2020), similar to GradCAM.

The gradient-weighted attention rollout explanation is constructed from the gradient-weighted attentions
of each layer, defined as the mean over the attention heads of the gradient with regard to the target logit
elementwise multiplied with the attention activation. These gradient-weighted attentions are then propagated
down towards the input by multiplying these matricies togetherﬂ

This explanation is significantly more accurate to the perceived localization of the image. For example, one
can clearly see in Figure [5b| that the method highlights rice and noodles for the different classes respectively.
The weighted contrastive method with regard to the softmax further shows an even more detailed explanation.
This is especially obvious when the dominating classes are of similar probability as in the pad thai and rice
example shown in Figure BBl In other cases, such as in the sushi and ramen example, where there is one
dominating class but many probable classes with p; &~ 0.05 the weighted contrastive version is similar to the
normal version. Overall this shows that a ViT implementation of the proposed contrastive weighted method
is possible and relatively easy to implement, thus strengthening generalizability and Claim 3.

4 Scientific considerations

4.1 Reproducibility

As seen in the checklist of the original paper no large efforts were made toward the reproducibility of the
paper. For example, no links to working code or details on the fine-tuned model training were provided. This
heavily impacted our work as we had to make many assumptions about the process. We did find, however,
a repository at https://github.com/yipei-wang/ClassContrastiveExplanations/| that contained some code
regarding the fine-tuning of VGG-16 on CUB-200. This helped in specifying hyperparameters that would
reflect those of the original paper. This also showed that they used VGG-16 with batch normalization, which
was not specified in the original paper and the difference compared to the non-batch normalized variant will
yield different results.

Lack of code or detailed method also led to difficulties reproducing some results, as seen in section [3| especially
coupled with some errors. For example, the inaccurate equation in section 5.1 in the original paper coupled
with the wrong epsilon led to many difficulties in reproducing and understanding that section. It is also not
specified as to which data the fine-tuned models are trained. There are also some minor mistakes such as
the bird in Figure 1 of the original paper having the wrong input label.

We also found it unclear during our first readthroughs of the article that the authors’ weighted contrastive
method should ideally be implemented by back-propagating from the p neuron and the performance gains
that this gives. In general, the presentation of their weighted contrastive method as novel led us to miss the

3Gradient-weighted attention rollout has been implemented in https://github.com/jacobgil/vit-explain/blob/main/vit_
grad_rollout.py
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Figure 5: Comparison between proposed explanations. In (a) a comparison between GradCAM, GradCAM
without ReLU, and Contrastive GradCAM is considered with target attention layer 8 and 10 respectively.
In (b) a comparison between Gradient-weighted Attention rollout (GWAR) of the standard, without ReLU,
and contrastive variant is considered. Red sections are considered areas with high explainability. To adapt
the method to the contrastive version all ReLU operations were removed and the gradients were calculated
from the softmax output instead of the logits.

conclusion that it was proportional to back-propagating from the p neuron for many explanation methods.
Our experiments show, however, that for more sophisticated explanation methods more adjustments have
to be made to the original method in order to make it contrastive by introducing negative areas.

4.2 Scientific contribution

The original paper provides an intuitive and efficient way of generating contrastive explanations that can
take multiple classes into account. They also show that these outperform generally non-contrastive meth-
ods regarding the strength of the probability for the target class. They do not, however, make any large
comparisons to state-of-the-art baselines in contrastive explanations. They defend this in peer reviews by
claiming that many other contrastive methods ask the question of “how to change the instance to other
classes?” while the authors aim to answer “why the instance is classified into this class, but not others?”.
Furthermore, many other contrastive methods are only suitable for preliminary data such as MNIST rather
than the high-resolution images used here. Therefore we deem this lack of comparisons to other methods as
valid.

Another observation is that all results rely on the class probability p as a metric for the relevance of the
explainability method. While this is intuitive it also seems obvious that the contrastive weighted method
presented which back-propagates from the p; neuron will outperform the same method based on the preceding
y+ neuron. This makes the results very expected, especially the ones shown in Figure [I] and Table [} The
visualizations show, however, that this method yields a clear explanation as to which areas of the image are
especially important for a certain class, and in the end, this is perhaps the greatest contribution.

We also find that the authors’ work is more of an explanatory nature than inventing something novel, as
back-propagating from the p neuron has been commonly done before and even mentioned in the original
GradCAM paper (Selvaraju et al [2019)). The value is therefore showing that back-propagating from target
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Figure 6: Relationship between the explanation weight ||¢,|| and logit value y, using ¢, = V,y as an
explanation, for 145 target classes for 1000 random images from ImageNet. A second-degree regression is
applied and shows a clear upward trend (red). Colors are applied solely for visibility.

softmax neuron p; yields a proven weighted contrastive explanation compared to back-propagating from logit
Yt-

4.3 Dominating classes

The authors have explicitly chosen not to do experiments on images where there exist dominating classes
where p; > po. This is not motivated in the paper but is likely because the contrastive weighted method
tends to be reduced to the original, non-contrastive, explanation under such circumstances. This is easy to
make note of during testing when looking at images where ps = 0 where the contrastive and non-contrastive
versions show no qualitative difference. Table [2] also shows a reproduction of Table [I] but inverting the
threshold and only using samples where the second most likely class has a probability ps < 0.1. This table
clearly shows that the positive features between the original and weighted method are on average very
similar while the negative regions in the weighted variant are slightly more effective in decreasing the target
probability, although less so than in Table [T}

That the explanation methods are so similar for low ps can be explained by p, often being very low, < 0.001,
and much closer to p3 than p;. In those cases the weighted method when targetting the most likely class t;
the subtracted weighted sum in Equation [I| will go toward zero as the non-target classes take out each other.
As seen in Table [2] this seems to mostly apply to the positive features of the weighted method and therefore
it seems that the negative features of the non-target classes seem to be taking out each other.

Another reason for this behavior is explained by the observed relationship that explanation weights seem
to increase with logit strength or output probability. This is exemplified in Figure [f] Due to this, we can
expect an explanation with regards to the dominating value to be weighted significantly higher, around 3
to 4 times, than all other features. For future work, normalizing the explanation before weighing could be
considered.

The behaviour of

by a single value the gradient goes to zero. That if there exists a p; — 1 then it implicates gz Lt — 0, this is
J

gZ £ should also be considered. Here we observe that if the softmax output is dominated
J

easily observed in the Jacobian.

One could also argue that there is no use of contrastive methods when there is only a single dominating
class as then the model is certain in its decision and is not weigh the possibility of another class. However,
in scenarios where a misclassification has occurred a contrastive method to compare the correct class to the
misclassified class can be useful, thus there is a use for contrastive method even without dominating classes
showing an opportunity for advancement in future work.
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Table 2: Reproduction of Table |1| using threshold criteria p < 0.1 for GradCAM (GC). The probability of
the second most likely class is almost always ps &~ 0 with an average ps = 0.01, and has been omitted for
this reason as it is mostly ambiguous.

Gaussian Blur Zeros Channel-wise Mean
Pt Pos. Features | Neg. Features Pos. Features | Neg. Features Pos. Features | Neg. Features
ori. wtd. | ori. wtd. ori. wtd. | ori. wtd. ori. wtd. | ori. wtd.

CUB-200 GC | t; | 0.985 0.981 0.979 | 0.442  0.351 0.973  0.974 | 0.438 0.358 0.977  0.977 | 0.437  0.349

5 Conclusion

Overall the paper provides a clear argument as to how back-propagating from the softmax prediction instead
of the logits gives improved connectivity to the actual prediction and thus a more relevant contrastive
explanation. They propose a simple way of implementing this, which is applicable to many models and
methods, and it shows a clear connection to accuracy using removal and blurring metrics. Their method
also answers why a sample is predicted to belong to a certain class above others.

We have reimplemented their work, made some corrections to their method, and have further been able to
apply their method to other similar tasks using Vision Transformer architectures and the XGradCAM and
FullGrad explanation methods with good results. Due to the simple nature of their contrastive method, one
can also easily reproduce it by using back-propagating explanation methods from after the softmax layer
which makes it generally reproducible. Some methods might, however, require simple modifications such as
removing RelLUs or somehow introducing contrastiveness such as through normalization.
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