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ABSTRACT

Learning the flows of hybrid systems that have both continuous and discrete time
dynamics is challenging. The existing method learns the dynamics in each dis-
crete mode, which suffers from the combination of mode switching and disconti-
nuities in the flows. In this work, we propose CHyLL (Continuous Hybrid System
Learning in Latent Space), which learns a continuous neural representation of a
hybrid system without trajectory segmentation, event functions, or mode switch-
ing. The key insight of CHyLL is that the reset map glues the state space at the
guard surface, reformulating the state space as a piecewise smooth quotient man-
ifold where the flow becomes spatially continuous. Building upon these insights
and the embedding theorems grounded in differential topology, CHyLL concur-
rently learns a singularity-free neural embedding in a higher-dimensional space
and the continuous flow in it. We showcase that CHyLL can accurately predict
the flow of hybrid systems with superior accuracy and identify the topological in-
variants of the hybrid systems. Finally, we apply CHyLL to the stochastic optimal
control problem.

1 INTRODUCTION

Hybrid systems provide a powerful mathematical framework for modeling a broad spectrum of com-
plex dynamics, where the evolution of states is governed by an interplay between continuous-time
dynamics and discrete event-driven transitions. Such systems naturally arise in diverse applica-
tions, including rigid-body contact dynamics in robotics (Posa et al., 2014; Westervelt et al., 2003),
large-scale traffic flow networks (Gomes & Horowitz, 2006; van den Berg et al., 2016), molecular
interactions in biophysics (Anderson et al., 2007; Takada, 2015), and the coordination of humanoid
motions (Ames et al., 2014; Grizzle et al., 2001). The hybrid formulation captures both continuous
flows and abrupt state changes, enabling precise descriptions of systems that cannot be adequately
represented by purely continuous or purely discrete models.

While the hybrid nature offers exceptional expressive power, it is challenging for controller design,
verification, and learning the underlying dynamics from data. The primary difficulty stems from the
intrinsic discontinuities induced by discrete state transitions—such as impacts, switches, or mode
changes. These discontinuous breaks the smoothness assumptions that underpin many conventional
learning algorithms for dynamical systems. On the other hand, the number of modes or possible tran-
sitions for each trajectory also results in an exponential number of combinations that are intractable
for system identification when we learn the dynamics in the original state space.

In this work, we propose CHyLL (Continuous Hybrid System Learning in Latent Space) to learn
the hybrid systems from only time series data. We show that exploiting the topological structure
of hybrid systems enables one to learn the flow of hybrid systems via only continuous functions.
The key insight stems from hybrid system theory (Simic et al., 2005) where the guard surface,
i.e., the surface where the discrete changes happen, can be glued by the reset map to reformulate
the entire state space as a piecewise smooth quotient manifold. On this quotient manifold, the
flow of the hybrid systems becomes continuous, which is more suitable for a differentiable learning
pipeline. While the topological theorem in (Simic et al., 2005) proved the existence of such a
quotient manifold, there lacks a systematic way to construct it for numerical computations. To
mitigate this gap, we further leverage the embedding theorem to learn a quotient manifold in a
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Figure 1: CHyLL framework. The discontinuity of the flow of hybrid systems makes it hard to learn the
dynamics. We introduce a continuous learning framework that reformulates the dynamics on a piecewise
smooth manifold by gluing the surface where the mode change happens. We introduce a dual training strategy
that learn the continuous flow in a higher-dimensional space without singularity and then decode it to the
original state space.

singularity-free manner. The main structure of the proposed framework is illustrated in Figure 1. In
summary, the main contributions of this work are:

1. Formulate the problem of learning the dynamics of a hybrid system from time series data
as supervised learning on an unknown piecewise smooth manifold,

2. Propose the CHyLL framework that learns the continuous manifold representation and the
dynamics of a hybrid system concurrently using only time-series data without trajectory
segmentation, event functions, or mode switching.

3. Showcase CHyLL on learning hybrid systems, exploring the topological invariants, and
applications in stochastic optimal control.

2 RELATED WORK

2.1 LEARNING HYBRID SYSTEMS

The Neural ODE by Chen et al. (2018) has been proposed to learn the continuous-time vector field
from the time series observations of the flows generated by ordinary differential equations. However,
when learning hybrid systems, Neural ODE fails to learn the discontinuous mode change as the
vector field is represented by neural networks that can not uniformly approximate the discontinuous
functions. To mitigate this issue, the event Neural ODE (Chen et al., 2020) is proposed to learn the
hybrid automaton model by introducing additional event functions and the reset maps. Though these
methods mimicked the structure of the hybrid automaton and thus inherently have the discontinuous
structure, Chen et al. (2020) suffers from the sparsity of mode changes. If the mode change never
happen or the initial solution is ill-posed, the event Neural ODE does not work. Similarly, the Neural
Hybrid Automata is proposed in Poli et al. (2021) to learn stochastic hybrid systems represented by
the dynamics module for the continuous dynamics, the discrete latent selector for the mode, and
the event module for the transition between modes. Its discrete-time counterpart, the neural discrete
hybrid automata, is proposed in Liu et al. (2025) to enable agile motor skills for legged robots with
rich contact interactions. As a mixture-of-expert structure, both (Liu et al., 2025) and (Poli et al.,
2021) requires a maximal number of neural networks for the dynamics in each mode. For systems
with contact, the structure of the Linear Complementarity Problem (LCP) has been integrated into
the learning pipeline. More recent work focuses on differentiating through the LCP (Bianchini
et al., 2023; 2025; Jin et al., 2022; Pfrommer et al., 2021; Yang et al., 2025) to avoid the use of event
functions. The LCP-based method can be considered as a geometric description of the system, thus
naturally avoiding the combination of the modes.

Other than the hybrid automaton or geometric formulations like LCPs, the topological structure
of hybrid systems has been widely studied in the control community. The hybridfold is proposed
in (Simic et al., 2005) to convert the hybrid automaton to a single unified manifold by gluing the
guard surface using the equivalence relationship defined by the reset map. A metrization method
is later proposed in (Burden et al., 2015) to define the distance between trajectories on the glued
space. Though these methods are topologically insightful, they do not show how to formulate the
manifolds for numerical optimization. Nonetheless, these methods provide a promising direction to
combine with learning and on-manifold optimization techniques.
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2.2 TOPOLOGICAL & GEOMETRIC LEARNING

The manifold structure of data has been extensively studied in the machine learning community.
Roweis & Saul (2000); Tenenbaum et al. (2000) embed the data into a single manifold in an un-
supervised and non-parametric manner. In addition to a global embedding, atlas learning has been
applied in (Pitelis et al., 2013) and (Cohn et al., 2022) to learn a piecewise embedding of the manifold
that can potentially preserve the topological information. In addition to discovering the underlying
manifold structure, the Lie group structure has been enforced in (Deng et al., 2021; Esteves et al.,
2018; Lin et al., 2023) to enable higher data efficiency in 3D perception tasks. To learn the normal-
izing flow on a known manifold, Lou et al. (2020) extends the Neural ODE to non-Euclidean space
via learning the vector field in a local chart.

Data-driven methods have been applied to discover the underlying topological structure of data. The
persistent homology (Edelsbrunner & Harer, 2010) is proposed to discover the topological invariants
from point clouds. This method detects multi-scale topological invariants by forming a simplicial
complex. By the persistence diagram, we can extract the topological invariance of the data. The
persistence image, a finite dimensional vector representation of the diagram, is proposed in Adams
et al. (2017) for classification tasks. Zhou et al. (2019) explored the topology of real projective space
to represent rotations in 3D perception without singularities. For learning of dynamics, the persistent
homology is applied to time-series in (Perea & Harer, 2015) to explore the periodicity of the data.
Moor et al. (2020) proposed the Topological Autoencoders to first explore the topological invariance
in the input data and then add regularization to preserve the discovered connectivity information. To
learn time-series data with intersections in the flow, the Augmented Neural ODE Dupont et al. (2019)
appends additional latent dimensions to the vector field to lift the flow to a higher-dimensional space
that does not have such intersections.

3 PRELIMINARIES

Consider a finite-dimensional smooth manifold M . The tangent space at a point x ∈ M is denoted
by Tx M . The tangent bundle TM :=

⋃
x∈M Tx M is the disjoint union of tangent spaces. A

(smooth) vector field is a map V : M → TM such that V (x) ∈ Tx M for all x ∈ M . The
set of all smooth vector fields on M is denoted by X(M). A curve c : (t0, t1) → M is said to
be the integral curve of the vector V if ċ(t) = V (c(t)). The integral curves by V define the flow
Φ(t, x) : R ×M → M that indicates the point c(t) at time t with initial condition c(0) = x ∈ M
and satisfy the group law Φ(t2,Φ(t1, x0)) = Φ(t1 + t2, x0).

We now refer to the (Simic et al., 2005) for the definition of the hybrid systems.
Definition 1 (hybrid systems (Simic et al., 2005)). A hybrid system defined on M is a 6-tuple

H = (Q,E,D,V,G,R),with

• Q = {1, . . . , k} is the finite set of (discrete) states, where k ≥ 1 is an integer;

• E ⊂ Q×Q is the collection of edges;

• D = {Di : i ∈ Q} is the collection of domain, where Di ⊂ {i} ×M , for all i ∈ Q;

• V = {Vi : i ∈ Q} is the collection of vector fields such that Vi is Lipschitz on Di, ∀i ∈ Q;

• G = {G(e) : e ∈ E} is the collection of guards, with ∀e = (i, j) ∈ E,G(e) ⊂ Di;

• R = {Re : e ∈ E} is the collection of resets, where ∀e = (i, j) ∈ E,Re is a relation
between elements of G(e) and elements of Dj , i.e., Re ⊂ G(e)×Dj .

We then define the time trajectories to indicate for the flow in each domain:
Definition 2 (Hybrid time trajectory (Simic et al., 2005)). A (forward) hybrid time trajectory is a
sequence (finite or infinite) τ = {Ij}Nj=0 of intervals such that Ij =

[
τj , τ

′
j

]
for all j ≥ 0 if the

sequence is infinite; if N is finite, then Ij =
[
τj , τ

′
j

]
for all 0 ≤ j ≤ N − 1 and IN is either of the

form [τN , τ ′N ] or [τN , τ ′N ). Furthermore, τj ≤ τ ′j = τj+1, for all j.

The execution or the flow ofH is defined as:
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Definition 3 (Flow of H (Simic et al., 2005)). An execution of a hybrid system H is a triple χ =
(τ, q, x), where τ is a hybrid time trajectory, q : ⟨τ⟩ → Q is a map, and x = {xj : j ∈ ⟨τ⟩} is a
collection of C1 maps such that xj : Ij → Dq(j) and for all t ∈ Ij , ẋj(t) = Vq(j) (xj(t)). The flow
of the hybrid system x(t) = Φ(t, x0) satisfy ẋj = Vq(j)(Φ(t, x0)), t ∈ Ij .

Figure 2: An example of a hybrid automaton.

Thus, we see that the trajectories of
H in the original state space can be
discontinuous at τ ′k and τk+1 due to
the reset functions. An example fo
the hybrid system is shown in Fig-
ure 2. To avoid pathological behav-
ior, we also require the systems to
satisfy several regularity conditions,
which we defer to Appendix A.

4 PROBLEM FORMULATION

We formally define the problem of learning hybrid systems from time-series data.

Problem 1 (Learning hybrid system from time series data). Consider time-series data observation
of system H indicated by q with length T as γq = {(tq0, x

q
0), (t

q
1, x

q
1), (t

q
2, x

q
2), · · · , (t

q
T , x

q
T )} with

each xq
k ∈ M recorded at time tqk. Denote a date set with N trajectories as X := {γq}Nq=1. Our

goal is to learn the flow ofH from X .

The key challenge of learning the hybrid system H originates from the reset maps Re that instanta-
neously map the state at the guard surface x− ∈ Ge to its image via x+ = Re(x

−). Such discrete
jumps make the flow Φ(t, x) non-smooth or even discontinuous. From the conventional perspective
of hybrid systems that evaluate the systems in each domain separately, the flow at the time of reset
may not a conventional function but an impulse distribution, which is hard to learn using continuous
neural networks.

ThoughH contains the index set Q, guard surface G, and the reset mapR, this information is usually
more difficult to measure and thus this work does not assume any knowledge other than the time
series data X observed on the flow Φ(·, ·). We also note that recovering Φ(·, ·) does not require an
explicit representation of G or R, which suffers from the combinatorially many mode selections,
and also unnecessary, as shown in Simic et al. (2005) and this work.

5 CONTINUOUS HYBRID SYSTEM LEARNING IN LATENT SPACE

5.1 GLUING THE CONFIGURATION SPACE

To mitigate the discontinuity of Φ, we construct the quotient manifolds induced by the reset map and
learn Φ(·, ·) on it. Now we apply the techniques from Simic et al. (2005) to generate the quotient
manifold, namely hybrifold, i.e., a piecewise smooth manifold-like structure forH:

Definition 4 (Hybrifold (Simic et al., 2005)). Let H be a hybrid system. On the n dimensional
manifold M , let∼ be the equivalence relation generated by x ∼ R̃e(x), for all e ∈ E and x ∈ G(e).
Collapse each equivalence class to a point to obtain the quotient space

MH = M/ ∼ . (Hybrifold)

Theorem 1 (Smoothness of Hybrifold (Simic et al., 2005)). MH is a topological n-manifold with
boundary, and both MH and its boundary are piecewise smooth.

When the graph (D, E) is connected, MH is connected where the flow is continuous. We note
that Theorem 1 is only a topological argument. Even when H is fully known, a parameterized
singularity-free continuous representation of the hybrifold MH is unknown and may not be unique.
To the best of the author’s knowledge, there has been no systematic way to construct MH, either
through analytical or data-driven methods.
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5.2 CONTINUOUS LATENT SPACE EMBEDDING

In this work, we propose to concurrently learn MH and Φ(·, ·) using only the time series dataX . The
first challenge is to formulate a global embedding of MH without singularities. As shown in many
classical examples in topology, the glued manifold with dimension n does not have a global smooth
representation in Rn. For example, the torus T2 and the Klein bottle K can both be constructed
by gluing the edges on [0, 1]2, while T2 has to be in R3 and K to be in R4 to have singularity-free
representations without self-intersections. In this work, instead of learning the dynamics on local
charts (Lou et al., 2020) or on an atlas (Cohn et al., 2022), we learn a global representation of the
hybrifold, which is guaranteed to exist and has a finite-dimensional embedding:
Theorem 2 (Whitney Embedding Theorem (Hirsch, 2012)). Any Cr-manifold M (r ≥ 1) of dimen-
sion n can be embedded into R2n.
Remark 1. For MH without a global C1 structure, such as the case with corners on the boundaries,
MH is still continuous and can be embed into R2n+1 by Menger–Nöbeling theorem.

The Whitney embedding theorem suggests that there exists a smooth injective function that maps
∀x ∈M to the ambient space Z := Rm with m ≥ 2n:

E(·) : M → Z, (1)

For z ∈ Z not on the boundary, we can recover the unique x ∈M by the inverse:

E−1(·) : ImgE →M. (2)

Given this insight, we propose to encode the data into a higher-dimensional latent space where the
hybrifold is guaranteed to have a global continuous representation.
Remark 2. Conventional methods compress the original data to a lower-dimensional embedding,
while we note that it has no guarantee that the topological structure can be preserved. In our work,
we show that increasing the dimension can help preserve the topological structure, which is the key
to learn the discontinuous flow.
Remark 3. Though E(·) is a smooth function, E−1(·) can be discontinuous. One example is the
1-D torus T1 ≃ SO(2). The 1-D parameterization with E(·) : t → (sin t, cos t) is smooth, while
the inverse E−1(·) : (sin t, cos t)→ atan2(sin t, cos t) has discontinuities.

5.3 MAIN ALGORITHM

Algorithm 1 CHyLL

Require: Trajectory dataset X ; curriculum lengths {T1 <
· · · < TL}; steps per length S; batch size B; decoder
steps K

Ensure: Learned encoder/flow and decoder parameters
(θ, ξ)

1: // Phase I: Train Encoder & Flow
2: for ℓ = 1, . . . , L do
3: for step = 1, . . . , S do
4: {xq

0:Tℓ
}Bq=1 ∼ X ▷ Sample minibatch

5: zq0:Tℓ
← Φθ(t, Eθ(x

q
0)) ▷ Rollout in latent space

6: Ld(θ)← Equation (4)
7: θ ← θ − η∇θLd(θ)
8: end for
9: end for

10: // Phase II: Reconstruction
11: Flatten X ← {x ∈ Rd} from X ; compute xlb, xub

12: for i = 1, . . . ,K do
13: xbatch ∼ X
14: xnoisy ← xbatch + ϵ, ϵ ∼ N (0, σ2I)
15: Ld(ξ)← MSE

(
Dξ(Eθ(xnoisy)), xnoisy

)
16: ξ ← ξ − η∇ξLd(ξ)
17: end for

Given the analysis in the last sec-
tion, we proceed to learn the em-
bedding E(·), its inverse E−1(·) and
the flow Φ(·, ·) in the latent space.
We consider the encoder Eθ(·) as the
smooth embedding from the original
state space M to the latent space Z.
The flow on Z is denoted by Φθ(t, z).
The inverse of Eθ(·) is Dξ(·):

z = Eθ(x) : M → Z,

x = Dξ(z) : Z →M,

Φθ(t, x) : R× Z → Z.

(3)

By Remark 3, we see that the flow
and encoder are continuous func-
tions, while the decoder can be dis-
continuous. As the discontinuity may
result in unstable training behavior,
we decouple the training of contin-
uous and discontinuous components.
Thus, we group the parameters for the
flow and encoder as θ, and denote the
parameters for the decoder as ξ.
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To train Eθ(·) and Φθ(·, ·), we propose to optimize the continuous loss function, namely Lc(θ):

Lc(θ) = w1 MSE
(
Eθ(x

q
k), z

q
k

)︸ ︷︷ ︸
Dynamics Loss over (q, k)

+w2 MSE
(
Eθ(x

q
k), Eθ(x

q
k+1)

)︸ ︷︷ ︸
Gluing Loss over (q, k ∈ C)

+w4 MSE(θcIn − (
∂E

∂x
)⊤

∂E

∂x
|xq

k
)︸ ︷︷ ︸

Conformal Loss

+w3

m∑
i=1

ReLu
(
Λ− Cov(Eθ(x)i)

)
︸ ︷︷ ︸

Latent Collapse Loss

,
(4)

with the flow in the latent space parameterized by the vector field Vθ(·) : Z → Z:

zqk = Φθ(tk, Eθ(x
q
0)) =

∫ tk

0

Vθ(z(t))dt+ Eθ(x
q
0). (5)

Lc(θ) is composed of a few terms to ensure the learned system behaves well. The gluing loss is the
core of learning the hybrifold that glued the guard surface in Z. Though in each domain the pre- and
post-reset state x+ and x− can be far away from each other, they are encouraged to be close to each
other in Z. As we do not assume any label other than the time series data, we label the state with
large finite time differences ∥xk+1−xk

∆tk
∥22 as the transitions and denote the indicator set as C. The

dynamics loss is designed to learn the flow in the latent space by matching the prediction of flow
with the encoded trajectories on Z.

As the gluing loss encourages the points at the guard surface that are far away to move close, it is
possible that the θ converges to a trivial solution, where the latent collapses to a single point and
the flow becomes static. To mitigate this issue, we have the latent collapse loss which enforces a
minimal covariance for each dimension of the latent features to avoid the trivial solution. Finally, we
note that though the Whitney Embedding Theorem suggests the latent is singularity-free, the man-
ifold can still be highly distorted, which makes the decoding and dynamics learning complicated.
To avoid this issue, we consider the induced Riemannian metric of Eθ(·) and enforce the conformal
loss to only scale while preserving the angle for the samples: (∂E∂x )

⊤ ∂E
∂x |x=xi

→ θcIn,∀xi. After
optimizing the loss Lc

θ, we can train the decoder by simply minimizing the reconstruction loss:

Ld(ξ) = MSE(Dξ(Eθ(x
q
k)), x

q
k). (6)

As the decoder can never be perfect, we also consider the result of the decoder as an initial guess for
the projection problem that can be solved via the Levenberg-Marquardt (LM) algorithm, provided
that the Jacobian of the encoder is known:

min
x
∥Eθ(x)− z∥22, z ∈ Z. (7)

Now we summarize the training method in Algorithm 1. As predicting the state of a dynamical
system over a long duration is difficult, we design a curriculum to learn the flow with increasing
horizon length to make the training more stable.

6 NUMERICAL EXPERIMENTS

We apply the adjoint method for training using the Neural ODE Chen et al. (2018) in the latent space
to rollout the states. To identify the point to glue, we compute the empirical Lipchitz constant for
all data point and glue the pairs outside of the two-sigma boundary. The details of the experiment
setup are presented in Appendix B. The key questions we want to answer are: Q1) Can we learn
discontinuous flow ofHwithout discrete components? Q2) Can we identify the topological structure
of H as predicted by the hybrifold structure? Q3) How does the learned hybrifold structure support
the downstream tasks?

6.1 LEARNING THE FLOWS

We showcase the proposed algorithm on a few classical examples, including the torus, Klein bottle,
and the bouncing ball. Consider a hybrid system with one domain D1 = [0, 1]2 associated with the

6
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Figure 3: Boundaries in the same color are glued following the directions of the arrows. a) Torus and the flow.
b) Immersion of the Klein bottle. Two points far away can be close after gluing. c) Inelastic bouncing ball. We
see that after gluing, all the hybrid flows become continuous.

constant vector field ẋ = c,∀x ∈ [0, 1]2. The system has one edge e with start and end both on D.
The guard surface of the system contains two neighboring edges of D:

G(e) = G1 ∪G2,with, G1 = {x|x2 ∈ [0, 1], x1 = 1}, G2 = {x|x1 ∈ [0, 1], x2 = 1}. (8)

The reset map of Torus, i.e., RT glues the opposite edges without twist, while the reset RK for the
Klein Bottle twists one pair of the edge:

RT (x) ∼
{
(0, x2) x ∈ G1

(x1, 0) x ∈ G2
, RK(x) ∼

{
(0, x2) x ∈ G1

(1− x1, 0) x ∈ G2
. (9)

The Bouncing Ball system satisfy the linear dynamics with gravity g: ẋ1 = x2, ẋ2 = −g. The
guard surface GB(e) = {(x1, x2)|x1 = 0, x2 ≤ 0} indicates the ground where elastic collisions
happen and is represented by the reset map RB : RB(x) ∼ (x1,−αx2), (x1, x2) ∈ GB .

The systems are illustrated in Figure 3 .To learn the dynamics, we compare the proposed method with
four method. 1) Neural ODE (Chen et al., 2018), 2) Deep Koopman Operator (Lusch et al., 2018)
based on spectral theory, 3) Event Neural ODE (Chen et al., 2020) that contains each component of
H, and 4) Latent Neural ODE (Chen et al., 2020) that also learns the latent dynamics but without
topological loss. For the latent ODE with autoencoder, the structure is identical as the proposed
method but with the decoder trained with the continuous part with only reconstruction loss.

We use an event-based simulation to obtain the dataset X with 1000 trajectories. We use 800 tra-
jectories for training and 200 for testing. The MSE loss of the testing dataset are listed in Table 1.
We can see that the proposed method consistently outperforms the baselines in MSE. The predicted
trajectories for the bouncing ball, torus, and the Klein bottles are illustrated in Figure 4, 5, and 6,
respectively. With the refinement of the decoder by the Levenberg–Marquardt algorithm, the perfor-
mance of the proposed method further improves in many cases. In the bouncing ball case, though
the Neural ODE can consistently provide good solutions, we observe a large ground penetration,
which is not seen in the proposed method. In the torus and Klein bottle example, we see that all the
baseline fails to capture the discontinuity in the long term. We note that as the MLP-based event
function can hardly satisfy the regularization conditions, they can easily fall in ill-conditions, which
is discussed in Appendix A. Finally we note that the latent ODE with autoencoder that learns the
continuous and discontinuous part concerrently also fails to generalize beyond training horizon.

6.2 TOPOLOGY OF THE LATENT

To verify the structure of the learned latents from the last section, we further apply the persistent
homology tool (Tralie et al., 2018) to conduct Topology Data Analysis (TDA). Given a point cloud
sampled from the latent space, the persistent homology gradually increases the radius of each data
point to form simplicial complexes, which generate chains of different dimensions to identify the

Table 1: MSE of long-horizon predictions on three benchmark systems. The proposed methods achieve the
lowest error and remain stable beyond the training horizon, while all other baselines, including Event ODE,
either exhibit large errors or fail to converge (Ill-conditioned).

Proposed (Decoder) Proposed (LM) Neural ODE Latent ODE (RNN) Koopman Latent ODE (Auto) Event ODE

Bouncing Ball 0.246 0.224 0.332 0.710 4488 1441 Ill-conditioned
Torus 0.0310 0.0327 0.0830 0.0817 7.73 48.8 Ill-conditioned
Klein Bottle 0.0259 0.0239 0.0627 0.0678 651 38.8 Ill-conditioned
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Figure 4: Bouncing Ball. The proposed method does not have penetrations and precisely preserves the change
at impact. After refinement by Equation (7), the inaccurate velocity estimation at the impact is eliminated.
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Figure 5: Torus. All the baseline fails to predict the reset beyond the training horizon (2 secs).
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Figure 6: Klein bottle. All the baseline fails to predict the reset beyond the training horizon (2 secs).
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(b) Latent trajectories of the bouncing ball.

Figure 7: Persistent homology and latent trajectory analysis. (a) Points far from the “birth=death” line cor-
respond to long-lived holes, which are more likely to be scale-invariant. (b) Latent trajectories reveal smooth
dynamics while the x-space trajectories has discontinuity.

k−dimensional homology group Hk. For the chain with different dimensions, i.e., H0, H1, · · · ,
we compute the homology groups, which characterize connected components (H0), loops (H1),
voids (H2), and higher-order cavities in the data. As the radius increases, these topological features
appear (birth) and eventually disappear (death). By recording their birth and death scales across
dimensions, we obtain persistence diagrams, which summarize the multi-scale invariant topological
structure of the data and highlight which features are robust (long persistence) versus noise (short
persistence). We then have the Betti number as β = [β0, β1, · · · ] that categorizes the data manifold.

We sample a mesh in x ∈ R2 and obtain the latent point cloud to compute the Betti number. The
persistent diagram of all three cases is illustrated in Figure 7a. For bouncing ball, the z point cloud
has a H0 point that has infinite longevity, while H1 and H2 holes vanish quickly after emergence.
Thus, we can see that the Betti number is likely to be βB = [1, 0, 0], which corresponds to the pro-
jective plane that is consistent with the topological structure of the hybrifold structure as discussed
in Simic et al. (2005). Similarly, we can see that the z point cloud of the torus has a single H0 point
that lasts forever, two H1 points that live long, and one H2 hole. Thus, the Betti number of this
point cloud is βT = [1, 2, 1], also consistent with the Betti number of the Torus. In the Klein bottle,
we see that the Betti number of the z point cloud is βK = [1, 1, 0], consistent with the topology of
the underlying hybrifold. Finally, we show the latent trajectory of the bouncing ball in Figure 7b.
Compared with Figure 4, the latent trajectory is smooth. For more visualization, see Appendix C.

6.3 HYBRID STOCHASTIC OPTIMAL CONTROL

Finally, we present the algorithm for the stochastic optimal control of hybrid systems. We consider
the ball juggling problem, considering the vertical motions of a ball and a force controller paddle.
We use MuJoCo to simulate the systems with elastic collisions. The continuous dynamics of the
system, with ball position and velocity (xb, vb), paddle state (xp, vp), controlled by force f are

ẋb = vb, v̇b = −g, ẋp = vp, v̇p = f/m− g. (10)
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We consider a low-level PD controller to generate the force f = K(vp − ak) with ak the desired
paddle velocity as the action. We collect 1024 trajectories generated by random actions ak and apply
CHyLL to learn the underlying dynamics for controller implementation.

As the ball has no energy loss in the flight phase, we consider an energy-based tracking strategy. To
avoid the paddle from directly lifting the ball at the desired position, we add a penalty ρ to avoid the
paddle from going too high or too low. Thus the optimal control problem can be derived as:

min
{ak}N

k=0

(0.5v2b,k + gxb,k − Edes)
2 + ρ(ReLu(xp,k − xp,max) + ReLu(xp,min − xp,k)) (11)

We apply the Model Predictive Path Integral (MPPI) (Williams et al., 2017) control that rolls out the
neural dynamics. We consider the same control objective Equation (11) for our method, a Neural
ODE-based model, and a Deep Koopman Operator-based model. As all the methods are trained in
continuous time, we roll out the dynamics using the RK4 integration scheme. We consider stabiliz-
ing the ball at the height of 1.2m and xp,max = 0.8. We consider the same planning horizon and
control rate for all the methods and repeat the control for 10 trials and present the result in Table 2.
We find that Koopman operator outperforms the proposed method in terms of the mean tracking
cost and has compatible standard deviations. The Neural ODE fails in this task, possibly due to the
ground penetrations that result in inaccurate collision point predictions.

Table 2: Tracking cost statistics of MPPI for ball juggling with planning horizon 0.8s with 40 HZ control rate.
1 2 3 4 5 6 7 8 9 10 Mean Std. Dev

Proposed 10.49 4.13 5.67 3.83 3.94 5.21 4.08 3.64 7.41 3.55 5.195 2.10
Koopman 8.48 7.79 1.44 3 5.56 2.88 2.15 2.71 3.72 6.19 4.392 2.33
Neural ODE 291.77 300.05 280 286.85 203.16 249.62 223.22 225.66 254.77 274.33 258.943 31.35

7 DISCUSSIONS

Role of conformal loss: We find that the conformal loss plays an important role in preventing
distortions and ensuring the decoding quality. As discussed in Cohn et al. (2022), a single MLP-
based decoder may have singularities and does not preserve the topological structures. After adding
the conformal loss, the decoding quality greatly improves even with a single MLP as the decoder.
Without this loss, atlas learning with multiple networks in different charts has poor performance.

Integration in the latent space: We roll out the trajectories in the latent space via the Neural ODE.
As the latent space Rm is the ambient space that has higher dimensions than the state space M , the
integration can not preserve the manifold structure unless additional constraints are incorporated. To
mitigate this issue, one can consider i) add additional constraints or ii) conduct the intrinsic integra-
tions scheme in a moving charts Lou et al. (2020). We note that i) may require solving differential
algebraic equations (Koch et al., 2024) or variational integrations Saemundsson et al. (2020), which
is computationally expensive, and ii) requires the Riemannian exponential or logarithmic of the in-
duced manifold of encoder Eθ(·). Though these techniques are rigorous and could be interesting
intersections between machine learning and geometric mechanics, we find integration in the ambient
space is the most viable approach at this point.

Comparison with Koopman operator: We find that though the long-term performance of the deep
Koopman operator is worse than the proposed method, the short-term performance is compatible or
even better. This is due to the infinite-dimensional formulations that have guarantees on the linearity
of the latent dynamics. To enhance the prediction performance, we can also increase the latent
dimensions in the proposed method.

8 CONCLUSIONS

In this work, we presented the CHyLL (Continuous Hybrid System Learning in Latent Space) to
learn the dynamics of hybrid systems from only time-series data without trajectory segmentation,
event functions, or mode switching. The insight of CHyLL is to reformulate the state space of the
hybrid system as a continuous quotient manifold glued by the reset map, and then learn the flow on
it. CHyLL learns the glued manifold and the latent vector field concurrently via a topology-inspired
loss function. We show that CHyLL can accurately recover the flow of hybrid systems, where the
other method fails. By the topological data analysis, we further showcase that CHyLL is capable
of identifying the topological structure of the learned quotient manifold. Finally, we applied the
proposed method in downstream task like stochastic optimal control.
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APPENDIX

A REGULARIZATION CONDITION OF H

We introduce several regularization conditions ofH that define the well-behaved hybrid system and
account for some difficulties in the Event Neural ODE. This part directly adapts from the assump-
tions shown in (Simic et al., 2005).

A1 H is deterministic and non-blocking.

A2 There exists a d such that each domain Di is a connected n-dimensional smooth subman-
ifold of Rd, with piecewise smooth boundary. The angle between any two intersecting
smooth components of the boundary is nonzero.

A3 Each guard is a smooth (n − 1)-dimensional submanifold of the boundary of the corre-
sponding domain. The boundary of each guard is piecewise smooth (or possibly empty).

A4 Each reset is a diffeomorphism from its domain G(e) onto its image. The image of every
reset lies on the boundary of the corresponding domain. Moreover, if e = (i, j) ∈ E and
Re(p) = q, then Vi(p) = 0 if and only if Vj(q) = 0.

A5 Elements of G∪R (i.e., sets which are closures of guards and images of resets) can intersect
only along their boundaries. Furthermore, if p ∈ Ḡ ∪ R̄, then p can be of only one of the
following four in (Simic et al., 2005).

A6 For all e = (i, j) ∈ E, the following holds: on intG(e), Vi points outside intDi; on
int (imRe) , Vj points inside D̄j .

A7 Each vector field Vi is the restriction to Di of some smooth vector field, which we also
denote by Vi, defined on a neighborhood of Di in {i} ×Rn. Each reset map Re extends to
a map R̃e defined on a neighborhood of G(e) in Di such that Re is a diffeomorphism onto
its image, which is a neighborhood of imRe in Dj .

A8 If p ∈ Di is on the boundary of Di and Vi(p) points inside Di then p is in the image of
some reset.

These regularization conditions avoid pathological behaviors in learning, such as: A1) ensures H
has unique solutions; A3) ensures H does not have infinitely many state changes at a single time;
A6) ensures the trajectories will not go back and forth around the guard surface.

We note that learning each component of H explicitly using Event Neural ODE or its discrete vari-
ants generally does not have guarantees on the satisfaction of these conditions. According to our
experience, it is easy to have infinitely many state changes that stall the training process.

B EXPERIMENTAL SETUP

We emphasize reproducibility and transparency. All code, configuration files, and preprocessed data
used in these experiments will be released under an open-source license upon publication.1 The
following paragraphs describe the model architecture, hyper-parameters, and training schedule in
sufficient detail to enable exact replication.

B.1 MODEL ARCHITECTURE AND PARAMETERS

All neural components are implemented as multilayer perceptrons (MLPs) with ReLU activations.
Table 3 summarizes the hidden-layer configurations for the event-driven Neural ODE (vector field,
guard, and reset functions). Table 4 summarizes the parameters for latent Neural ODE with RNN
encoders. Table 5 details the full parameterization for every baseline and ablation, including our
proposed method, continuous ODE variants, and Koopman baselines.

1The repository URL will be provided in the camera-ready version.
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Table 3: Hidden layers for each component of the event-driven Neural ODE. Brackets indicate layer width;
“×k” denotes k identical layers.

Vector Field Guard Reset Function Vector Field Dim.

Event ODE [64]×2 [64]×3 [64]×3 2

Table 4: Hidden layers for each component of the ODE (RNN).
Vector Field Encoder Decoder Vector Field Dim.

ODE (RNN) [100]×2 GRU(100) Linear×3 20

B.2 TRAINING SCHEDULE

We adopt a curriculum strategy in which the rollout horizon grows from 10 to 200 steps according to
the sequence {10, 20, 40, 80, 150, 200}. Each horizon is trained for 2 000 gradient-descent updates,
except the final 200-step stage, which is trained for 4 000 updates to ensure stability at long time
horizons. The trajectory rollout batch size is fixed at 4 096 throughout all phases. Unless otherwise
stated, all models are optimized with the same learning-rate schedule and weight initialization to
ensure fair comparison.

This level of specification, combined with our forthcoming open-source release, is intended to make
the reported results fully reproducible and to facilitate direct benchmarking by the research commu-
nity.

C MORE VISUALIZATIONS

C.1 LATENT TRAJECTORIES

The latent trajectories for the Klein bottle and the torus are presented in Figure 8 and 9. We see that
both trajectories are continuous even the original flows are highly discontinuous.

More trajectories for the Torus, Klein bottle, and bouncing balls are shown as follows:

Table 5: Model parameters for all other methods. “N/A” indicates the component is not used.
Proposed ODE Koopman ODE (Auto)

Vector Field [64]×2 [128]×2 Linear [64]×2
Encoder [64]×3 N/A [64,128,256] [64]×3
Decoder [128]×8 N/A [256,128,64] [64]×3
Vector Field Dim. 4 2 256 4
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Figure 8: Latent trajectories of Klein bottle systems
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Figure 9: Latent trajectories of torus systems
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Figure 10: Bouncing ball trajectories
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Figure 11: Latent of bouncing ball by CHyLL
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Figure 12: Torus trajectories
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Figure 13: Latent of torus by CHyLL
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Figure 14: Klein bottle trajectories
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Figure 15: Latent of Klein bottle by CHyLL
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