
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CHYLL: LEARNING CONTINUOUS NEURAL REPRE-
SENTATIONS OF HYBRID SYSTEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Learning the flows of hybrid systems that have both continuous and discrete time
dynamics is challenging. The existing method learns the dynamics in each dis-
crete mode, which suffers from the combination of mode switching and disconti-
nuities in the flows. In this work, we propose CHyLL (Continuous Hybrid System
Learning in Latent Space), which learns a continuous neural representation of a
hybrid system without trajectory segmentation, event functions, or mode switch-
ing. The key insight of CHyLL is that the reset map glues the state space at the
guard surface, reformulating the state space as a piecewise smooth quotient man-
ifold where the flow becomes spatially continuous. Building upon these insights
and the embedding theorems grounded in differential topology, CHyLL concur-
rently learns a singularity-free neural embedding in a higher-dimensional space
and the continuous flow in it. We showcase that CHyLL can accurately predict
the flow of hybrid systems with superior accuracy and identify the topological in-
variants of the hybrid systems. Finally, we apply CHyLL to the stochastic optimal
control problem.

1 INTRODUCTION

Hybrid systems provide a powerful mathematical framework for modeling a broad spectrum of com-
plex dynamics, where the evolution of states is governed by an interplay between continuous-time
dynamics and discrete event-driven transitions. Such systems naturally arise in diverse applica-
tions, including rigid-body contact dynamics in robotics (Posa et al., 2014; Westervelt et al., 2003),
large-scale traffic flow networks (Gomes & Horowitz, 2006; van den Berg et al., 2016), molecular
interactions in biophysics (Anderson et al., 2007; Takada, 2015), and the coordination of humanoid
motions (Ames et al., 2014; Grizzle et al., 2001). The hybrid formulation captures both continuous
flows and abrupt state changes, enabling precise descriptions of systems that cannot be adequately
represented by purely continuous or purely discrete models.

While the hybrid nature offers exceptional expressive power, it is challenging for controller design,
verification, and learning the underlying dynamics from data. The primary difficulty stems from the
intrinsic discontinuities induced by discrete state transitions—such as impacts, switches, or mode
changes. These discontinuous breaks the smoothness assumptions that underpin many conventional
learning algorithms for dynamical systems. On the other hand, the number of modes or possible tran-
sitions for each trajectory also results in an exponential number of combinations that are intractable
for system identification when we learn the dynamics in the original state space.

In this work, we propose CHyLL (Continuous Hybrid System Learning in Latent Space) to learn
the hybrid systems from only time series data. We show that exploiting the topological structure
of hybrid systems enables one to learn the flow of hybrid systems via only continuous functions.
The key insight stems from hybrid system theory (Simic et al., 2005) where the guard surface,
i.e., the surface where the discrete changes happen, can be glued by the reset map to reformulate
the entire state space as a piecewise smooth quotient manifold. On this quotient manifold, the
flow of the hybrid systems becomes continuous, which is more suitable for a differentiable learning
pipeline. While the topological theorem in (Simic et al., 2005) proved the existence of such a
quotient manifold, there lacks a systematic way to construct it for numerical computations. To
mitigate this gap, we further leverage the embedding theorem to learn a quotient manifold in a

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: CHyLL framework. The discontinuity of the flow of hybrid systems makes it hard to learn the
dynamics. We introduce a continuous learning framework that reformulates the dynamics on a piecewise
smooth manifold by gluing the surface where the mode change happens. We introduce a dual training strategy
that learn the continuous flow in a higher-dimensional space without singularity and then decode it to the
original state space.

singularity-free manner. The main structure of the proposed framework is illustrated in Figure 1. In
summary, the main contributions of this work are:

1. Formulate the problem of learning the dynamics of a hybrid system from time series data
as supervised learning on an unknown piecewise smooth manifold,

2. Propose the CHyLL framework that learns the continuous manifold representation and the
dynamics of a hybrid system concurrently using only time-series data without trajectory
segmentation, event functions, or mode switching.

3. Showcase CHyLL on learning hybrid systems, exploring the topological invariants, and
applications in stochastic optimal control.

2 RELATED WORK

2.1 LEARNING HYBRID SYSTEMS

The Neural ODE by Chen et al. (2018) has been proposed to learn the continuous-time vector field
from the time series observations of the flows generated by ordinary differential equations. However,
when learning hybrid systems, Neural ODE fails to learn the discontinuous mode change as the
vector field is represented by neural networks that can not uniformly approximate the discontinuous
functions. To mitigate this issue, the event Neural ODE (Chen et al., 2020) is proposed to learn the
hybrid automaton model by introducing additional event functions and the reset maps. Though these
methods mimicked the structure of the hybrid automaton and thus inherently have the discontinuous
structure, Chen et al. (2020) suffers from the sparsity of mode changes. If the mode change never
happen or the initial solution is ill-posed, the event Neural ODE does not work. Similarly, the Neural
Hybrid Automata is proposed in Poli et al. (2021) to learn stochastic hybrid systems represented by
the dynamics module for the continuous dynamics, the discrete latent selector for the mode, and
the event module for the transition between modes. Its discrete-time counterpart, the neural discrete
hybrid automata, is proposed in Liu et al. (2025) to enable agile motor skills for legged robots with
rich contact interactions. As a mixture-of-expert structure, both (Liu et al., 2025) and (Poli et al.,
2021) requires a maximal number of neural networks for the dynamics in each mode. For systems
with contact, the structure of the Linear Complementarity Problem (LCP) has been integrated into
the learning pipeline. More recent work focuses on differentiating through the LCP (Bianchini
et al., 2023; 2025; Jin et al., 2022; Pfrommer et al., 2021; Yang et al., 2025) to avoid the use of event
functions. The LCP-based method can be considered as a geometric description of the system, thus
naturally avoiding the combination of the modes.

Other than the hybrid automaton or geometric formulations like LCPs, the topological structure
of hybrid systems has been widely studied in the control community. The hybridfold is proposed
in (Simic et al., 2005) to convert the hybrid automaton to a single unified manifold by gluing the
guard surface using the equivalence relationship defined by the reset map. A metrization method
is later proposed in (Burden et al., 2015) to define the distance between trajectories on the glued
space. Though these methods are topologically insightful, they do not show how to formulate the
manifolds for numerical optimization. Nonetheless, these methods provide a promising direction to
combine with learning and on-manifold optimization techniques.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.2 TOPOLOGICAL & GEOMETRIC LEARNING

The manifold structure of data has been extensively studied in the machine learning community.
Roweis & Saul (2000); Tenenbaum et al. (2000) embed the data into a single manifold in an un-
supervised and non-parametric manner. In addition to a global embedding, atlas learning has been
applied in (Pitelis et al., 2013) and (Cohn et al., 2022) to learn a piecewise embedding of the manifold
that can potentially preserve the topological information. In addition to discovering the underlying
manifold structure, the Lie group structure has been enforced in (Deng et al., 2021; Esteves et al.,
2018; Lin et al., 2023) to enable higher data efficiency in 3D perception tasks. To learn the normal-
izing flow on a known manifold, Lou et al. (2020) extends the Neural ODE to non-Euclidean space
via learning the vector field in a local chart.

Data-driven methods have been applied to discover the underlying topological structure of data. The
persistent homology (Edelsbrunner & Harer, 2010) is proposed to discover the topological invariants
from point clouds. This method detects multi-scale topological invariants by forming a simplicial
complex. By the persistence diagram, we can extract the topological invariance of the data. The
persistence image, a finite dimensional vector representation of the diagram, is proposed in Adams
et al. (2017) for classification tasks. Zhou et al. (2019) explored the topology of real projective space
to represent rotations in 3D perception without singularities. For learning of dynamics, the persistent
homology is applied to time-series in (Perea & Harer, 2015) to explore the periodicity of the data.
Moor et al. (2020) proposed the Topological Autoencoders to first explore the topological invariance
in the input data and then add regularization to preserve the discovered connectivity information. To
learn time-series data with intersections in the flow, the Augmented Neural ODE Dupont et al. (2019)
appends additional latent dimensions to the vector field to lift the flow to a higher-dimensional space
that does not have such intersections.

3 PRELIMINARIES

Consider a finite-dimensional smooth manifold M . The tangent space at a point x ∈ M is denoted
by Tx M . The tangent bundle TM :=

⋃
x∈M Tx M is the disjoint union of tangent spaces. A

(smooth) vector field is a map V : M → TM such that V (x) ∈ Tx M for all x ∈ M . The
set of all smooth vector fields on M is denoted by X(M). A curve c : (t0, t1) → M is said to
be the integral curve of the vector V if ċ(t) = V (c(t)). The integral curves by V define the flow
Φ(t, x) : R ×M → M that indicates the point c(t) at time t with initial condition c(0) = x ∈ M
and satisfy the group law Φ(t2,Φ(t1, x0)) = Φ(t1 + t2, x0).

We now refer to the (Simic et al., 2005) for the definition of the hybrid systems.
Definition 1 (hybrid systems (Simic et al., 2005)). A hybrid system defined on M is a 6-tuple

H = (Q,E,D,V,G,R),with

• Q = {1, . . . , k} is the finite set of (discrete) states, where k ≥ 1 is an integer;

• E ⊂ Q×Q is the collection of edges;

• D = {Di : i ∈ Q} is the collection of domain, where Di ⊂ {i} ×M , for all i ∈ Q;

• V = {Vi : i ∈ Q} is the collection of vector fields such that Vi is Lipschitz on Di, ∀i ∈ Q;

• G = {G(e) : e ∈ E} is the collection of guards, with ∀e = (i, j) ∈ E,G(e) ⊂ Di;

• R = {Re : e ∈ E} is the collection of resets, where ∀e = (i, j) ∈ E,Re is a relation
between elements of G(e) and elements of Dj , i.e., Re ⊂ G(e)×Dj .

We then define the time trajectories to indicate for the flow in each domain:
Definition 2 (Hybrid time trajectory (Simic et al., 2005)). A (forward) hybrid time trajectory is a
sequence (finite or infinite) τ = {Ij}Nj=0 of intervals such that Ij =

[
τj , τ

′
j

]
for all j ≥ 0 if the

sequence is infinite; if N is finite, then Ij =
[
τj , τ

′
j

]
for all 0 ≤ j ≤ N − 1 and IN is either of the

form [τN , τ ′N] or [τN , τ ′N). Furthermore, τj ≤ τ ′j = τj+1, for all j.

The execution or the flow ofH is defined as:

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Definition 3 (Flow of H (Simic et al., 2005)). An execution of a hybrid system H is a triple χ =
(τ, q, x), where τ is a hybrid time trajectory, q : ⟨τ⟩ → Q is a map, and x = {xj : j ∈ ⟨τ⟩} is a
collection of C1 maps such that xj : Ij → Dq(j) and for all t ∈ Ij , ẋj(t) = Vq(j) (xj(t)). The flow
of the hybrid system x(t) = Φ(t, x0) satisfy ẋj = Vq(j)(Φ(t, x0)), t ∈ Ij .

Figure 2: An example of a hybrid automaton.

Thus, we see that the trajectories of
H in the original state space can be
discontinuous at τ ′k and τk+1 due to
the reset functions. An example fo
the hybrid system is shown in Fig-
ure 2. To avoid pathological behav-
ior, we also require the systems to
satisfy several regularity conditions,
which we defer to Appendix A.

4 PROBLEM FORMULATION

We formally define the problem of learning hybrid systems from time-series data.

Problem 1 (Learning hybrid system from time series data). Consider time-series data observation
of system H indicated by q with length T as γq = {(tq0, x

q
0), (t

q
1, x

q
1), (t

q
2, x

q
2), · · · , (t

q
T , x

q
T)} with

each xq
k ∈ M recorded at time tqk. Denote a date set with N trajectories as X := {γq}Nq=1. Our

goal is to learn the flow ofH from X .

The key challenge of learning the hybrid system H originates from the reset maps Re that instanta-
neously map the state at the guard surface x− ∈ Ge to its image via x+ = Re(x

−). Such discrete
jumps make the flow Φ(t, x) non-smooth or even discontinuous. From the conventional perspective
of hybrid systems that evaluate the systems in each domain separately, the flow at the time of reset
may not a conventional function but an impulse distribution, which is hard to learn using continuous
neural networks.

ThoughH contains the index set Q, guard surface G, and the reset mapR, this information is usually
more difficult to measure and thus this work does not assume any knowledge other than the time
series data X observed on the flow Φ(·, ·). We also note that recovering Φ(·, ·) does not require an
explicit representation of G or R, which suffers from the combinatorially many mode selections,
and also unnecessary, as shown in Simic et al. (2005) and this work.

5 CONTINUOUS HYBRID SYSTEM LEARNING IN LATENT SPACE

5.1 GLUING THE CONFIGURATION SPACE

To mitigate the discontinuity of Φ, we construct the quotient manifolds induced by the reset map and
learn Φ(·, ·) on it. Now we apply the techniques from Simic et al. (2005) to generate the quotient
manifold, namely hybrifold, i.e., a piecewise smooth manifold-like structure forH:

Definition 4 (Hybrifold (Simic et al., 2005)). Let H be a hybrid system. On the n dimensional
manifold M , let∼ be the equivalence relation generated by x ∼ R̃e(x), for all e ∈ E and x ∈ G(e).
Collapse each equivalence class to a point to obtain the quotient space

MH = M/ ∼ . (Hybrifold)

Theorem 1 (Smoothness of Hybrifold (Simic et al., 2005)). MH is a topological n-manifold with
boundary, and both MH and its boundary are piecewise smooth.

When the graph (D, E) is connected, MH is connected where the flow is continuous. We note
that Theorem 1 is only a topological argument. Even when H is fully known, a parameterized
singularity-free continuous representation of the hybrifold MH is unknown and may not be unique.
To the best of the author’s knowledge, there has been no systematic way to construct MH, either
through analytical or data-driven methods.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

5.2 CONTINUOUS LATENT SPACE EMBEDDING

In this work, we propose to concurrently learn MH and Φ(·, ·) using only the time series dataX . The
first challenge is to formulate a global embedding of MH without singularities. As shown in many
classical examples in topology, the glued manifold with dimension n does not have a global smooth
representation in Rn. For example, the torus T2 and the Klein bottle K can both be constructed
by gluing the edges on [0, 1]2, while T2 has to be in R3 and K to be in R4 to have singularity-free
representations without self-intersections. In this work, instead of learning the dynamics on local
charts (Lou et al., 2020) or on an atlas (Cohn et al., 2022), we learn a global representation of the
hybrifold, which is guaranteed to exist and has a finite-dimensional embedding:
Theorem 2 (Whitney Embedding Theorem (Hirsch, 2012)). Any Cr-manifold M (r ≥ 1) of dimen-
sion n can be embedded into R2n.
Remark 1. For MH without a global C1 structure, such as the case with corners on the boundaries,
MH is still continuous and can be embed into R2n+1 by Menger–Nöbeling theorem.

The Whitney embedding theorem suggests that there exists a smooth injective function that maps
∀x ∈M to the ambient space Z := Rm with m ≥ 2n:

E(·) : M → Z, (1)

For z ∈ Z not on the boundary, we can recover the unique x ∈M by the inverse:

E−1(·) : ImgE →M. (2)

Given this insight, we propose to encode the data into a higher-dimensional latent space where the
hybrifold is guaranteed to have a global continuous representation.
Remark 2. Conventional methods compress the original data to a lower-dimensional embedding,
while we note that it has no guarantee that the topological structure can be preserved. In our work,
we show that increasing the dimension can help preserve the topological structure, which is the key
to learn the discontinuous flow.
Remark 3. Though E(·) is a smooth function, E−1(·) can be discontinuous. One example is the
1-D torus T1 ≃ SO(2). The 1-D parameterization with E(·) : t → (sin t, cos t) is smooth, while
the inverse E−1(·) : (sin t, cos t)→ atan2(sin t, cos t) has discontinuities.

5.3 MAIN ALGORITHM

Algorithm 1 CHyLL

Require: Trajectory dataset X ; curriculum lengths {T1 <
· · · < TL}; steps per length S; batch size B; decoder
steps K

Ensure: Learned encoder/flow and decoder parameters
(θ, ξ)

1: // Phase I: Train Encoder & Flow
2: for ℓ = 1, . . . , L do
3: for step = 1, . . . , S do
4: {xq

0:Tℓ
}Bq=1 ∼ X ▷ Sample minibatch

5: zq0:Tℓ
← Φθ(t, Eθ(x

q
0)) ▷ Rollout in latent space

6: Ld(θ)← Equation (4)
7: θ ← θ − η∇θLd(θ)
8: end for
9: end for

10: // Phase II: Reconstruction
11: Flatten X ← {x ∈ Rd} from X ; compute xlb, xub

12: for i = 1, . . . ,K do
13: xbatch ∼ X
14: xnoisy ← xbatch + ϵ, ϵ ∼ N (0, σ2I)
15: Ld(ξ)← MSE

(
Dξ(Eθ(xnoisy)), xnoisy

)
16: ξ ← ξ − η∇ξLd(ξ)
17: end for

Given the analysis in the last sec-
tion, we proceed to learn the em-
bedding E(·), its inverse E−1(·) and
the flow Φ(·, ·) in the latent space.
We consider the encoder Eθ(·) as the
smooth embedding from the original
state space M to the latent space Z.
The flow on Z is denoted by Φθ(t, z).
The inverse of Eθ(·) is Dξ(·):

z = Eθ(x) : M → Z,

x = Dξ(z) : Z →M,

Φθ(t, x) : R× Z → Z.

(3)

By Remark 3, we see that the flow
and encoder are continuous func-
tions, while the decoder can be dis-
continuous. As the discontinuity may
result in unstable training behavior,
we decouple the training of contin-
uous and discontinuous components.
Thus, we group the parameters for the
flow and encoder as θ, and denote the
parameters for the decoder as ξ.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

To train Eθ(·) and Φθ(·, ·), we propose to optimize the continuous loss function, namely Lc(θ):

Lc(θ) = w1 MSE
(
Eθ(x

q
k), z

q
k

)︸ ︷︷ ︸
Dynamics Loss over (q, k)

+w2 MSE
(
Eθ(x

q
k), Eθ(x

q
k+1)

)︸ ︷︷ ︸
Gluing Loss over (q, k ∈ C)

+w4 MSE(θcIn − (
∂E

∂x
)⊤

∂E

∂x
|xq

k
)︸ ︷︷ ︸

Conformal Loss

+w3

m∑
i=1

ReLu
(
Λ− Cov(Eθ(x)i)

)
︸ ︷︷ ︸

Latent Collapse Loss

,
(4)

with the flow in the latent space parameterized by the vector field Vθ(·) : Z → Z:

zqk = Φθ(tk, Eθ(x
q
0)) =

∫ tk

0

Vθ(z(t))dt+ Eθ(x
q
0). (5)

Lc(θ) is composed of a few terms to ensure the learned system behaves well. The gluing loss is the
core of learning the hybrifold that glued the guard surface in Z. Though in each domain the pre- and
post-reset state x+ and x− can be far away from each other, they are encouraged to be close to each
other in Z. As we do not assume any label other than the time series data, we label the state with
large finite time differences ∥xk+1−xk

∆tk
∥22 as the transitions and denote the indicator set as C. The

dynamics loss is designed to learn the flow in the latent space by matching the prediction of flow
with the encoded trajectories on Z.

As the gluing loss encourages the points at the guard surface that are far away to move close, it is
possible that the θ converges to a trivial solution, where the latent collapses to a single point and
the flow becomes static. To mitigate this issue, we have the latent collapse loss which enforces a
minimal covariance for each dimension of the latent features to avoid the trivial solution. Finally, we
note that though the Whitney Embedding Theorem suggests the latent is singularity-free, the man-
ifold can still be highly distorted, which makes the decoding and dynamics learning complicated.
To avoid this issue, we consider the induced Riemannian metric of Eθ(·) and enforce the conformal
loss to only scale while preserving the angle for the samples: (∂E∂x)

⊤ ∂E
∂x |x=xi

→ θcIn,∀xi. After
optimizing the loss Lc

θ, we can train the decoder by simply minimizing the reconstruction loss:

Ld(ξ) = MSE(Dξ(Eθ(x
q
k)), x

q
k). (6)

As the decoder can never be perfect, we also consider the result of the decoder as an initial guess for
the projection problem that can be solved via the Levenberg-Marquardt (LM) algorithm, provided
that the Jacobian of the encoder is known:

min
x
∥Eθ(x)− z∥22, z ∈ Z. (7)

Now we summarize the training method in Algorithm 1. As predicting the state of a dynamical
system over a long duration is difficult, we design a curriculum to learn the flow with increasing
horizon length to make the training more stable.

6 NUMERICAL EXPERIMENTS

We apply the adjoint method for training using the Neural ODE Chen et al. (2018) in the latent space
to rollout the states. To identify the point to glue, we compute the empirical Lipchitz constant for
all data point and glue the pairs outside of the two-sigma boundary. The details of the experiment
setup are presented in Appendix B. The key questions we want to answer are: Q1) Can we learn
discontinuous flow ofHwithout discrete components? Q2) Can we identify the topological structure
of H as predicted by the hybrifold structure? Q3) How does the learned hybrifold structure support
the downstream tasks?

6.1 LEARNING THE FLOWS

We showcase the proposed algorithm on a few classical examples, including the torus, Klein bottle,
and the bouncing ball. Consider a hybrid system with one domain D1 = [0, 1]2 associated with the

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 3: Boundaries in the same color are glued following the directions of the arrows. a) Torus and the flow.
b) Immersion of the Klein bottle. Two points far away can be close after gluing. c) Inelastic bouncing ball. We
see that after gluing, all the hybrid flows become continuous.

constant vector field ẋ = c,∀x ∈ [0, 1]2. The system has one edge e with start and end both on D.
The guard surface of the system contains two neighboring edges of D:

G(e) = G1 ∪G2,with, G1 = {x|x2 ∈ [0, 1], x1 = 1}, G2 = {x|x1 ∈ [0, 1], x2 = 1}. (8)

The reset map of Torus, i.e., RT glues the opposite edges without twist, while the reset RK for the
Klein Bottle twists one pair of the edge:

RT (x) ∼
{
(0, x2) x ∈ G1

(x1, 0) x ∈ G2
, RK(x) ∼

{
(0, x2) x ∈ G1

(1− x1, 0) x ∈ G2
. (9)

The Bouncing Ball system satisfy the linear dynamics with gravity g: ẋ1 = x2, ẋ2 = −g. The
guard surface GB(e) = {(x1, x2)|x1 = 0, x2 ≤ 0} indicates the ground where elastic collisions
happen and is represented by the reset map RB : RB(x) ∼ (x1,−αx2), (x1, x2) ∈ GB .

The systems are illustrated in Figure 3 .To learn the dynamics, we compare the proposed method with
four method. 1) Neural ODE (Chen et al., 2018), 2) Deep Koopman Operator (Lusch et al., 2018)
based on spectral theory, 3) Event Neural ODE (Chen et al., 2020) that contains each component of
H, and 4) Latent Neural ODE (Chen et al., 2020) that also learns the latent dynamics but without
topological loss. For the latent ODE with autoencoder, the structure is identical as the proposed
method but with the decoder trained with the continuous part with only reconstruction loss.

We use an event-based simulation to obtain the dataset X with 1000 trajectories. We use 800 tra-
jectories for training and 200 for testing. The MSE loss of the testing dataset are listed in Table 1.
We can see that the proposed method consistently outperforms the baselines in MSE. The predicted
trajectories for the bouncing ball, torus, and the Klein bottles are illustrated in Figure 4, 5, and 6,
respectively. With the refinement of the decoder by the Levenberg–Marquardt algorithm, the perfor-
mance of the proposed method further improves in many cases. In the bouncing ball case, though
the Neural ODE can consistently provide good solutions, we observe a large ground penetration,
which is not seen in the proposed method. In the torus and Klein bottle example, we see that all the
baseline fails to capture the discontinuity in the long term. We note that as the MLP-based event
function can hardly satisfy the regularization conditions, they can easily fall in ill-conditions, which
is discussed in Appendix A. Finally we note that the latent ODE with autoencoder that learns the
continuous and discontinuous part concerrently also fails to generalize beyond training horizon.

6.2 TOPOLOGY OF THE LATENT

To verify the structure of the learned latents from the last section, we further apply the persistent
homology tool (Tralie et al., 2018) to conduct Topology Data Analysis (TDA). Given a point cloud
sampled from the latent space, the persistent homology gradually increases the radius of each data
point to form simplicial complexes, which generate chains of different dimensions to identify the

Table 1: MSE of long-horizon predictions on three benchmark systems. The proposed methods achieve the
lowest error and remain stable beyond the training horizon, while all other baselines, including Event ODE,
either exhibit large errors or fail to converge (Ill-conditioned).

Proposed (Decoder) Proposed (LM) Neural ODE Latent ODE (RNN) Koopman Latent ODE (Auto) Event ODE

Bouncing Ball 0.246 0.224 0.332 0.710 4488 1441 Ill-conditioned
Torus 0.0310 0.0327 0.0830 0.0817 7.73 48.8 Ill-conditioned
Klein Bottle 0.0259 0.0239 0.0627 0.0678 651 38.8 Ill-conditioned

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 0.5 1 1.5 2 2.5 3

0

0.2

0.4

0.6

Proposed (Decoder)

Ground Truth
Pred MSE = 0.2458

0 0.5 1 1.5 2 2.5 3

-4

-2

0

2

4

0 0.5 1 1.5 2 2.5 3

0

0.2

0.4

0.6

Proposed (LM)
Pred MSE = 0.22443

0 0.5 1 1.5 2 2.5 3

-4

-2

0

2

4

0 0.5 1 1.5 2 2.5 3

0

0.2

0.4

0.6

Neural ODE
Pred MSE = 0.33204

0 0.5 1 1.5 2 2.5 3

-4

-2

0

2

4

0 0.5 1 1.5 2 2.5 3

0

0.2

0.4

0.6

Latent ODE (RNN)
Pred MSE = 0.71053

0 0.5 1 1.5 2 2.5 3

-4

-2

0

2

4

0 0.5 1 1.5 2 2.5 3

0

0.2

0.4

0.6

Koopman
Pred MSE = 4488.7856

0 0.5 1 1.5 2 2.5 3

-4

-2

0

2

4

0 0.5 1 1.5 2 2.5 3

0

0.2

0.4

0.6

Latent ODE (Auto)
Pred MSE = 1441.7449

0 0.5 1 1.5 2 2.5 3

-4

-2

0

2

4

Figure 4: Bouncing Ball. The proposed method does not have penetrations and precisely preserves the change
at impact. After refinement by Equation (7), the inaccurate velocity estimation at the impact is eliminated.

0 1 2 3 4 5 6

0

0.5

1

Proposed (Decoder)

Ground Truth
Pred MSE = 0.031007

0 1 2 3 4 5 6

0

0.5

1

0 1 2 3 4 5 6

0

0.5

1

Proposed (LM)

Pred MSE = 0.032706

0 1 2 3 4 5 6

0

0.5

1

0 1 2 3 4 5 6

0

0.5

1

Neural ODE
Pred MSE = 0.082953

0 1 2 3 4 5 6

0

0.5

1

0 1 2 3 4 5 6

0

0.5

1

Latent ODE (RNN)
Pred MSE = 0.081688

0 1 2 3 4 5 6

0

0.5

1

0 1 2 3 4 5 6

0

0.5

1

Koopman

Pred MSE = 7.7334

0 1 2 3 4 5 6

0

0.5

1

0 1 2 3 4 5 6

0

0.5

1

Latent ODE (Auto)
Pred MSE = 48.7765

0 1 2 3 4 5 6

0

0.5

1

Figure 5: Torus. All the baseline fails to predict the reset beyond the training horizon (2 secs).

0 1 2 3 4 5 6

0

0.5

1

Proposed (Decoder)

Ground Truth
Pred MSE = 0.025978

0 1 2 3 4 5 6

0

0.5

1

0 1 2 3 4 5 6

0

0.5

1

Proposed (LM)
Pred MSE = 0.023903

0 1 2 3 4 5 6

0

0.5

1

0 1 2 3 4 5 6

0

0.5

1

Neural ODE
Pred MSE = 0.062675

0 1 2 3 4 5 6

0

0.5

1

0 1 2 3 4 5 6

0

0.5

1

Latent ODE (RNN)
Pred MSE = 0.067849

0 1 2 3 4 5 6

0

0.5

1

0 1 2 3 4 5 6

0

0.5

1

Koopman
Pred MSE = 650.8671

0 1 2 3 4 5 6

0

0.5

1

0 1 2 3 4 5 6

0

0.5

1

Latent ODE (Auto)
Pred MSE = 38.7728

0 1 2 3 4 5 6

0

0.5

1

Figure 6: Klein bottle. All the baseline fails to predict the reset beyond the training horizon (2 secs).

0.00 0.25 0.50 0.75
Birth

0.0

0.2

0.4

0.6

0.8

De
at

h

Bouncing Ball

H0
H1
H2

0.0 0.5
Birth

0.0

0.2

0.4

0.6

0.8

De
at

h

Kelin Bottle

H0
H1
H2

0.0 0.5 1.0
Birth

0.0

0.2

0.4

0.6

0.8

1.0

De
at

h

torus

H0
H1
H2

(a) Persistent diagrams of latent point clouds.

0 0.5 1 1.5 2 2.5 3
-1.4

-1.2

-1

-0.8

-0.6

Ground Truth
Predicted

0 0.5 1 1.5 2 2.5 3
1

1.2

1.4

1.6

1.8

2

0 0.5 1 1.5 2 2.5 3
0.5

1

1.5

2

0 0.5 1 1.5 2 2.5 3
0.4

0.6

0.8

1

1.2

(b) Latent trajectories of the bouncing ball.

Figure 7: Persistent homology and latent trajectory analysis. (a) Points far from the “birth=death” line cor-
respond to long-lived holes, which are more likely to be scale-invariant. (b) Latent trajectories reveal smooth
dynamics while the x-space trajectories has discontinuity.

k−dimensional homology group Hk. For the chain with different dimensions, i.e., H0, H1, · · · ,
we compute the homology groups, which characterize connected components (H0), loops (H1),
voids (H2), and higher-order cavities in the data. As the radius increases, these topological features
appear (birth) and eventually disappear (death). By recording their birth and death scales across
dimensions, we obtain persistence diagrams, which summarize the multi-scale invariant topological
structure of the data and highlight which features are robust (long persistence) versus noise (short
persistence). We then have the Betti number as β = [β0, β1, · · ·] that categorizes the data manifold.

We sample a mesh in x ∈ R2 and obtain the latent point cloud to compute the Betti number. The
persistent diagram of all three cases is illustrated in Figure 7a. For bouncing ball, the z point cloud
has a H0 point that has infinite longevity, while H1 and H2 holes vanish quickly after emergence.
Thus, we can see that the Betti number is likely to be βB = [1, 0, 0], which corresponds to the pro-
jective plane that is consistent with the topological structure of the hybrifold structure as discussed
in Simic et al. (2005). Similarly, we can see that the z point cloud of the torus has a single H0 point
that lasts forever, two H1 points that live long, and one H2 hole. Thus, the Betti number of this
point cloud is βT = [1, 2, 1], also consistent with the Betti number of the Torus. In the Klein bottle,
we see that the Betti number of the z point cloud is βK = [1, 1, 0], consistent with the topology of
the underlying hybrifold. Finally, we show the latent trajectory of the bouncing ball in Figure 7b.
Compared with Figure 4, the latent trajectory is smooth. For more visualization, see Appendix C.

6.3 HYBRID STOCHASTIC OPTIMAL CONTROL

Finally, we present the algorithm for the stochastic optimal control of hybrid systems. We consider
the ball juggling problem, considering the vertical motions of a ball and a force controller paddle.
We use MuJoCo to simulate the systems with elastic collisions. The continuous dynamics of the
system, with ball position and velocity (xb, vb), paddle state (xp, vp), controlled by force f are

ẋb = vb, v̇b = −g, ẋp = vp, v̇p = f/m− g. (10)

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

We consider a low-level PD controller to generate the force f = K(vp − ak) with ak the desired
paddle velocity as the action. We collect 1024 trajectories generated by random actions ak and apply
CHyLL to learn the underlying dynamics for controller implementation.

As the ball has no energy loss in the flight phase, we consider an energy-based tracking strategy. To
avoid the paddle from directly lifting the ball at the desired position, we add a penalty ρ to avoid the
paddle from going too high or too low. Thus the optimal control problem can be derived as:

min
{ak}N

k=0

(0.5v2b,k + gxb,k − Edes)
2 + ρ(ReLu(xp,k − xp,max) + ReLu(xp,min − xp,k)) (11)

We apply the Model Predictive Path Integral (MPPI) (Williams et al., 2017) control that rolls out the
neural dynamics. We consider the same control objective Equation (11) for our method, a Neural
ODE-based model, and a Deep Koopman Operator-based model. As all the methods are trained in
continuous time, we roll out the dynamics using the RK4 integration scheme. We consider stabiliz-
ing the ball at the height of 1.2m and xp,max = 0.8. We consider the same planning horizon and
control rate for all the methods and repeat the control for 10 trials and present the result in Table 2.
We find that Koopman operator outperforms the proposed method in terms of the mean tracking
cost and has compatible standard deviations. The Neural ODE fails in this task, possibly due to the
ground penetrations that result in inaccurate collision point predictions.

Table 2: Tracking cost statistics of MPPI for ball juggling with planning horizon 0.8s with 40 HZ control rate.
1 2 3 4 5 6 7 8 9 10 Mean Std. Dev

Proposed 10.49 4.13 5.67 3.83 3.94 5.21 4.08 3.64 7.41 3.55 5.195 2.10
Koopman 8.48 7.79 1.44 3 5.56 2.88 2.15 2.71 3.72 6.19 4.392 2.33
Neural ODE 291.77 300.05 280 286.85 203.16 249.62 223.22 225.66 254.77 274.33 258.943 31.35

7 DISCUSSIONS

Role of conformal loss: We find that the conformal loss plays an important role in preventing
distortions and ensuring the decoding quality. As discussed in Cohn et al. (2022), a single MLP-
based decoder may have singularities and does not preserve the topological structures. After adding
the conformal loss, the decoding quality greatly improves even with a single MLP as the decoder.
Without this loss, atlas learning with multiple networks in different charts has poor performance.

Integration in the latent space: We roll out the trajectories in the latent space via the Neural ODE.
As the latent space Rm is the ambient space that has higher dimensions than the state space M , the
integration can not preserve the manifold structure unless additional constraints are incorporated. To
mitigate this issue, one can consider i) add additional constraints or ii) conduct the intrinsic integra-
tions scheme in a moving charts Lou et al. (2020). We note that i) may require solving differential
algebraic equations (Koch et al., 2024) or variational integrations Saemundsson et al. (2020), which
is computationally expensive, and ii) requires the Riemannian exponential or logarithmic of the in-
duced manifold of encoder Eθ(·). Though these techniques are rigorous and could be interesting
intersections between machine learning and geometric mechanics, we find integration in the ambient
space is the most viable approach at this point.

Comparison with Koopman operator: We find that though the long-term performance of the deep
Koopman operator is worse than the proposed method, the short-term performance is compatible or
even better. This is due to the infinite-dimensional formulations that have guarantees on the linearity
of the latent dynamics. To enhance the prediction performance, we can also increase the latent
dimensions in the proposed method.

8 CONCLUSIONS

In this work, we presented the CHyLL (Continuous Hybrid System Learning in Latent Space) to
learn the dynamics of hybrid systems from only time-series data without trajectory segmentation,
event functions, or mode switching. The insight of CHyLL is to reformulate the state space of the
hybrid system as a continuous quotient manifold glued by the reset map, and then learn the flow on
it. CHyLL learns the glued manifold and the latent vector field concurrently via a topology-inspired
loss function. We show that CHyLL can accurately recover the flow of hybrid systems, where the
other method fails. By the topological data analysis, we further showcase that CHyLL is capable
of identifying the topological structure of the learned quotient manifold. Finally, we applied the
proposed method in downstream task like stochastic optimal control.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Henry Adams, Tegan Emerson, Michael Kirby, Rachel Neville, Chris Peterson, Patrick Shipman,
Sofya Chepushtanova, Eric Hanson, Francis Motta, and Lori Ziegelmeier. Persistence images: A
stable vector representation of persistent homology. Journal of Machine Learning Research, 18
(8):1–35, 2017.

Aaron D. Ames, Keith Galloway, Matthew Powell, Kyoungchul Kong, and Jonathan W. Hurst.
Human-inspired robotic walking and running on prostheses and exoskeletons via a hybrid sys-
tem approach. In 2014 IEEE International Conference on Robotics and Automation (ICRA), pp.
568–575. IEEE, 2014. doi: 10.1109/ICRA.2014.6906905.

David F. Anderson, Mark A. J. Chaplain, Athanasios Reppas, and David Wild. Stochastic hy-
brid systems: a powerful and versatile framework for modeling and simulation of gene reg-
ulatory networks. Journal of Mathematical Biology, 54(4):617–644, 2007. doi: 10.1007/
s00285-007-0053-0.

Bibit Bianchini, Mathew Halm, and Michael Posa. Simultaneous learning of contact and continuous
dynamics. In Conference on Robot Learning, pp. 3966–3978. PMLR, 2023.

Bibit Bianchini, Minghan Zhu, Mengti Sun, Bowen Jiang, Camillo J Taylor, and Michael Posa.
Vysics: Object reconstruction under occlusion by fusing vision and contact-rich physics. arXiv
preprint arXiv:2504.18719, 2025.

Samuel A Burden, Humberto Gonzalez, Ramanarayan Vasudevan, Ruzena Bajcsy, and S Shankar
Sastry. Metrization and simulation of controlled hybrid systems. IEEE Transactions on Automatic
Control, 60(9):2307–2320, 2015.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Ricky TQ Chen, Brandon Amos, and Maximilian Nickel. Learning neural event functions for ordi-
nary differential equations. arXiv preprint arXiv:2011.03902, 2020.

Thomas Cohn, Nikhil Devraj, and Odest Chadwicke Jenkins. Topologically-informed atlas learning.
In 2022 International Conference on Robotics and Automation (ICRA), pp. 3598–3604. IEEE,
2022.

Congyue Deng, Or Litany, Yueqi Duan, Adrien Poulenard, Andrea Tagliasacchi, and Leonidas J
Guibas. Vector neurons: A general framework for so (3)-equivariant networks. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 12200–12209, 2021.

Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. Augmented neural odes. Advances in neural
information processing systems, 32, 2019.

Herbert Edelsbrunner and John Harer. Computational topology: an introduction. American Mathe-
matical Soc., 2010.

Carlos Esteves, Christine Allen-Blanchette, Ameesh Makadia, and Kostas Daniilidis. Learning so
(3) equivariant representations with spherical cnns. In Proceedings of the european conference
on computer vision (ECCV), pp. 52–68, 2018.

Gabriel Gomes and Roberto Horowitz. Hybrid systems modeling of large-scale traffic networks.
Transportation Research Part C: Emerging Technologies, 14(2):127–161, 2006. doi: 10.1016/j.
trc.2006.03.002.

Jessy W. Grizzle, Gabriel Abba, and Franck Plestan. Asymptotically stable walking for biped robots:
analysis via systems with impulse effects. IEEE Transactions on Automatic Control, 46(1):51–64,
2001. doi: 10.1109/9.898695.

Morris W Hirsch. Differential topology, volume 33. Springer Science & Business Media, 2012.

Wanxin Jin, Alp Aydinoglu, Mathew Halm, and Michael Posa. Learning linear complementarity
systems. In Learning for dynamics and control conference, pp. 1137–1149. PMLR, 2022.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

James Koch, Madelyn Shapiro, Himanshu Sharma, Draguna Vrabie, and Jan Drgona. Learning
neural differential algebraic equations via operator splitting. arXiv preprint arXiv:2403.12938,
2024.

Chien Erh Lin, Jingwei Song, Ray Zhang, Minghan Zhu, and Maani Ghaffari. Se (3)-equivariant
point cloud-based place recognition. In Conference on Robot Learning, pp. 1520–1530. PMLR,
2023.

Hang Liu, Sangli Teng, Ben Liu, Wei Zhang, and Maani Ghaffari. Discrete-time hybrid automata
learning: Legged locomotion meets skateboarding. arXiv preprint arXiv:2503.01842, 2025.

Aaron Lou, Derek Lim, Isay Katsman, Leo Huang, Qingxuan Jiang, Ser Nam Lim, and Christo-
pher M De Sa. Neural manifold ordinary differential equations. Advances in Neural Information
Processing Systems, 33:17548–17558, 2020.

Bethany Lusch, J Nathan Kutz, and Steven L Brunton. Deep learning for universal linear embeddings
of nonlinear dynamics. Nature communications, 9(1):4950, 2018.

Michael Moor, Max Horn, Bastian Rieck, and Karsten Borgwardt. Topological autoencoders. In
International conference on machine learning, pp. 7045–7054. PMLR, 2020.

Jose A Perea and John Harer. Sliding windows and persistence: An application of topological
methods to signal analysis. Foundations of computational mathematics, 15(3):799–838, 2015.

Samuel Pfrommer, Mathew Halm, and Michael Posa. Contactnets: Learning discontinuous contact
dynamics with smooth, implicit representations. In Conference on Robot Learning, pp. 2279–
2291. PMLR, 2021.

Nikolaos Pitelis, Chris Russell, and Lourdes Agapito. Learning a manifold as an atlas. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1642–1649,
2013.

Michael Poli, Stefano Massaroli, Luca Scimeca, Sanghyuk Chun, Seong Joon Oh, Atsushi Ya-
mashita, Hajime Asama, Jinkyoo Park, and Animesh Garg. Neural hybrid automata: Learning
dynamics with multiple modes and stochastic transitions. Advances in Neural Information Pro-
cessing Systems, 34:9977–9989, 2021.

Michael Posa, Cecilia Cantu, and Russ Tedrake. A direct method for trajectory optimization of rigid
bodies through contact. 33(1):69–81, 2014.

Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality reduction by locally linear embed-
ding. science, 290(5500):2323–2326, 2000.

Steindor Saemundsson, Alexander Terenin, Katja Hofmann, and Marc Deisenroth. Variational inte-
grator networks for physically structured embeddings. In International Conference on Artificial
Intelligence and Statistics, pp. 3078–3087. PMLR, 2020.

Slobodan N Simic, Karl Henrik Johansson, John Lygeros, and Shankar Sastry. Towards a geometric
theory of hybrid systems. Dynamics of Continuous, Discrete and Impulsive Systems Series B:
Applications and Algorithms, 12(5-6):649–687, 2005.

Shoji Takada. Multiscale modeling and simulation of biological molecules. Accounts of Chemical
Research, 48(12):3026–3033, 2015. doi: 10.1021/acs.accounts.5b00338.

Joshua B Tenenbaum, Vin de Silva, and John C Langford. A global geometric framework for
nonlinear dimensionality reduction. science, 290(5500):2319–2323, 2000.

Christopher Tralie, Nathaniel Saul, and Rann Bar-On. Ripser.py: A lean persistent homology library
for python. The Journal of Open Source Software, 3(29):925, Sep 2018. doi: 10.21105/joss.
00925. URL https://doi.org/10.21105/joss.00925.

Max van den Berg, Nathan van de Wouw, and W. P. M. H. Heemels. Piecewise-affine switched
models and control for freeway traffic. IEEE Transactions on Intelligent Transportation Systems,
18(2):407–418, 2016. doi: 10.1109/TITS.2016.2561278.

11

https://doi.org/10.21105/joss.00925

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Eric R Westervelt, Jessy W Grizzle, and Daniel E Koditschek. Hybrid zero dynamics of planar biped
walkers. IEEE transactions on automatic control, 48(1):42–56, 2003.

Grady Williams, Andrew Aldrich, and Evangelos A Theodorou. Model predictive path integral
control: From theory to parallel computation. Journal of Guidance, Control, and Dynamics, 40
(2):344–357, 2017.

Wen Yang, Zhixian Xie, Xuechao Zhang, Heni Ben Amor, Shan Lin, and Wanxin Jin. Twintrack:
Bridging vision and contact physics for real-time tracking of unknown dynamic objects. arXiv
preprint arXiv:2505.22882, 2025.

Yi Zhou, Connelly Barnes, Jingwan Lu, Jimei Yang, and Hao Li. On the continuity of rotation
representations in neural networks. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 5745–5753, 2019.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

APPENDIX

A REGULARIZATION CONDITION OF H

We introduce several regularization conditions ofH that define the well-behaved hybrid system and
account for some difficulties in the Event Neural ODE. This part directly adapts from the assump-
tions shown in (Simic et al., 2005).

A1 H is deterministic and non-blocking.

A2 There exists a d such that each domain Di is a connected n-dimensional smooth subman-
ifold of Rd, with piecewise smooth boundary. The angle between any two intersecting
smooth components of the boundary is nonzero.

A3 Each guard is a smooth (n − 1)-dimensional submanifold of the boundary of the corre-
sponding domain. The boundary of each guard is piecewise smooth (or possibly empty).

A4 Each reset is a diffeomorphism from its domain G(e) onto its image. The image of every
reset lies on the boundary of the corresponding domain. Moreover, if e = (i, j) ∈ E and
Re(p) = q, then Vi(p) = 0 if and only if Vj(q) = 0.

A5 Elements of G∪R (i.e., sets which are closures of guards and images of resets) can intersect
only along their boundaries. Furthermore, if p ∈ Ḡ ∪ R̄, then p can be of only one of the
following four in (Simic et al., 2005).

A6 For all e = (i, j) ∈ E, the following holds: on intG(e), Vi points outside intDi; on
int (imRe) , Vj points inside D̄j .

A7 Each vector field Vi is the restriction to Di of some smooth vector field, which we also
denote by Vi, defined on a neighborhood of Di in {i} ×Rn. Each reset map Re extends to
a map R̃e defined on a neighborhood of G(e) in Di such that Re is a diffeomorphism onto
its image, which is a neighborhood of imRe in Dj .

A8 If p ∈ Di is on the boundary of Di and Vi(p) points inside Di then p is in the image of
some reset.

These regularization conditions avoid pathological behaviors in learning, such as: A1) ensures H
has unique solutions; A3) ensures H does not have infinitely many state changes at a single time;
A6) ensures the trajectories will not go back and forth around the guard surface.

We note that learning each component of H explicitly using Event Neural ODE or its discrete vari-
ants generally does not have guarantees on the satisfaction of these conditions. According to our
experience, it is easy to have infinitely many state changes that stall the training process.

B EXPERIMENTAL SETUP

We emphasize reproducibility and transparency. All code, configuration files, and preprocessed data
used in these experiments will be released under an open-source license upon publication.1 The
following paragraphs describe the model architecture, hyper-parameters, and training schedule in
sufficient detail to enable exact replication.

B.1 MODEL ARCHITECTURE AND PARAMETERS

All neural components are implemented as multilayer perceptrons (MLPs) with ReLU activations.
Table 3 summarizes the hidden-layer configurations for the event-driven Neural ODE (vector field,
guard, and reset functions). Table 4 summarizes the parameters for latent Neural ODE with RNN
encoders. Table 5 details the full parameterization for every baseline and ablation, including our
proposed method, continuous ODE variants, and Koopman baselines.

1The repository URL will be provided in the camera-ready version.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 3: Hidden layers for each component of the event-driven Neural ODE. Brackets indicate layer width;
“×k” denotes k identical layers.

Vector Field Guard Reset Function Vector Field Dim.

Event ODE [64]×2 [64]×3 [64]×3 2

Table 4: Hidden layers for each component of the ODE (RNN).
Vector Field Encoder Decoder Vector Field Dim.

ODE (RNN) [100]×2 GRU(100) Linear×3 20

B.2 TRAINING SCHEDULE

We adopt a curriculum strategy in which the rollout horizon grows from 10 to 200 steps according to
the sequence {10, 20, 40, 80, 150, 200}. Each horizon is trained for 2 000 gradient-descent updates,
except the final 200-step stage, which is trained for 4 000 updates to ensure stability at long time
horizons. The trajectory rollout batch size is fixed at 4 096 throughout all phases. Unless otherwise
stated, all models are optimized with the same learning-rate schedule and weight initialization to
ensure fair comparison.

This level of specification, combined with our forthcoming open-source release, is intended to make
the reported results fully reproducible and to facilitate direct benchmarking by the research commu-
nity.

C MORE VISUALIZATIONS

C.1 LATENT TRAJECTORIES

The latent trajectories for the Klein bottle and the torus are presented in Figure 8 and 9. We see that
both trajectories are continuous even the original flows are highly discontinuous.

More trajectories for the Torus, Klein bottle, and bouncing balls are shown as follows:

Table 5: Model parameters for all other methods. “N/A” indicates the component is not used.
Proposed ODE Koopman ODE (Auto)

Vector Field [64]×2 [128]×2 Linear [64]×2
Encoder [64]×3 N/A [64,128,256] [64]×3
Decoder [128]×8 N/A [256,128,64] [64]×3
Vector Field Dim. 4 2 256 4

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1
Ground Truth
Predicted

0 1 2 3 4 5 6
-1

-0.5

0

0 1 2 3 4 5 6
-0.5

0

0.5

1

0 1 2 3 4 5 6

-0.5

0

0.5

1

Figure 8: Latent trajectories of Klein bottle systems

0 1 2 3 4 5 6
-1

-0.5

0

0.5

Ground Truth
Predicted

0 1 2 3 4 5 6
-1

-0.5

0

0.5

0 1 2 3 4 5 6

0

0.5

1

1.5

0 1 2 3 4 5 6
-1

-0.5

0

0.5

Figure 9: Latent trajectories of torus systems

0 0.5 1 1.5 2 2.5 3

0

0.1

0.2

0.3

0.4

Proposed (Decoder)

Ground Truth
Pred MSE = 0.2458

0 0.5 1 1.5 2 2.5 3

-2

0

2

0 0.5 1 1.5 2 2.5 3

0

0.1

0.2

0.3

0.4

Proposed (LM)
Pred MSE = 0.22443

0 0.5 1 1.5 2 2.5 3

-2

0

2

0 0.5 1 1.5 2 2.5 3

0

0.1

0.2

0.3

0.4

Neural ODE
Pred MSE = 0.33204

0 0.5 1 1.5 2 2.5 3

-2

0

2

0 0.5 1 1.5 2 2.5 3

0

0.1

0.2

0.3

0.4

Latent ODE (RNN)
Pred MSE = 0.71053

0 0.5 1 1.5 2 2.5 3

-2

0

2

0 0.5 1 1.5 2 2.5 3

0

0.1

0.2

0.3

0.4

Koopman
Pred MSE = 4488.7856

0 0.5 1 1.5 2 2.5 3

-2

0

2

0 0.5 1 1.5 2 2.5 3

0

0.1

0.2

0.3

0.4

Latent ODE (Auto)
Pred MSE = 1441.7449

0 0.5 1 1.5 2 2.5 3

-2

0

2

Figure 10: Bouncing ball trajectories

0 0.5 1 1.5 2 2.5 3
-1.2

-1

-0.8

-0.6

Ground Truth
Predicted

0 0.5 1 1.5 2 2.5 3
0.8

1

1.2

1.4

1.6

1.8

0 0.5 1 1.5 2 2.5 3
0.4

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2 2.5 3

0.4

0.6

0.8

1

Figure 11: Latent of bouncing ball by CHyLL

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5 6

0

0.5

1

Proposed (Decoder)

Ground Truth
Pred MSE = 0.031007

0 1 2 3 4 5 6

0

0.5

1

0 1 2 3 4 5 6

0

0.5

1

Proposed (LM)

Pred MSE = 0.032706

0 1 2 3 4 5 6

0

0.5

1

0 1 2 3 4 5 6

0

0.5

1

Neural ODE
Pred MSE = 0.082953

0 1 2 3 4 5 6

0

0.5

1

0 1 2 3 4 5 6

0

0.5

1

Latent ODE (RNN)
Pred MSE = 0.081688

0 1 2 3 4 5 6

0

0.5

1

0 1 2 3 4 5 6

0

0.5

1

Koopman

Pred MSE = 7.7334

0 1 2 3 4 5 6

0

0.5

1

0 1 2 3 4 5 6

0

0.5

1

Latent ODE (Auto)
Pred MSE = 48.7765

0 1 2 3 4 5 6

0

0.5

1

Figure 12: Torus trajectories

0 1 2 3 4 5 6
-1

-0.5

0

0.5

Ground Truth
Predicted

0 1 2 3 4 5 6
-1

-0.5

0

0.5

0 1 2 3 4 5 6
-0.5

0

0.5

1

1.5

0 1 2 3 4 5 6
-1

-0.5

0

0.5

Figure 13: Latent of torus by CHyLL

0 1 2 3 4 5 6

0

0.5

1

Proposed (Decoder)

Ground Truth
Pred MSE = 0.025978

0 1 2 3 4 5 6

0

0.5

1

0 1 2 3 4 5 6

0

0.5

1

Proposed (LM)
Pred MSE = 0.023903

0 1 2 3 4 5 6

0

0.5

1

0 1 2 3 4 5 6

0

0.5

1

Neural ODE
Pred MSE = 0.062675

0 1 2 3 4 5 6

0

0.5

1

0 1 2 3 4 5 6

0

0.5

1

Latent ODE (RNN)
Pred MSE = 0.067849

0 1 2 3 4 5 6

0

0.5

1

0 1 2 3 4 5 6

0

0.5

1

Koopman

Pred MSE = 650.8671

0 1 2 3 4 5 6

0

0.5

1

0 1 2 3 4 5 6

0

0.5

1

Latent ODE (Auto)
Pred MSE = 38.7728

0 1 2 3 4 5 6

0

0.5

1

Figure 14: Klein bottle trajectories

0 1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1
Ground Truth
Predicted

0 1 2 3 4 5 6
-1

-0.5

0

0.5

0 1 2 3 4 5 6
-0.5

0

0.5

1

0 1 2 3 4 5 6

-0.5

0

0.5

1

Figure 15: Latent of Klein bottle by CHyLL

16

