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ABSTRACT

Extensive experimental studies have shown that in lower mammals, neuronal
orientation preference in the primary visual cortex is organized in a disordered
"salt-and-pepper" pattern. In contrast, higher-order mammals display a continu-
ous variation in orientation preference, forming structured pinwheel-like patterns.
Despite these observations, the spiking mechanisms underlying the emergence of
these distinct topological structures and their functional roles in visual processing
remain poorly understood. To address this, we developed a self-evolving spik-
ing neural network model with Hebbian plasticity, trained using physiological
parameters characteristic of rodents, cats, and primates, including retinotopy, neu-
ronal morphology, and connectivity patterns. Our results identify critical factors,
such as the degree of input visual field overlap, neuronal density, and the balance
between localized connectivity and long-range competition, that determine the
emergence of either salt-and-pepper or pinwheel-like topologies. Furthermore, we
demonstrate that pinwheel structures exhibit lower wiring cost and enhanced sparse
coding capabilities compared to salt-and-pepper organizations. They also maintain
greater coding robustness against noise in naturalistic visual stimuli. These findings
suggest that such topological structures confer significant computational advan-
tages in visual processing and highlight their potential application in the design of
brain-inspired deep learning networks and algorithms.

1 INTRODUCTION

In the primary visual cortex (V1) of visually-advanced mammals, seminal works (Hubel & Wiesel,
1962; 1974; Blasdel & Salama, 1986; Bonhoeffer & Grinvald, 1991) revealed that neurons are orga-
nized into distinct spatial clusters, forming “pinwheel” structures centered around singularities within
the . This organization contrasts with that of some mammals, such as rodents, which exhibit “salt-
and-pepper” organizations, characterized by randomly interspersed neurons with varying orientation
preferences, or “mini-columns” that show only weak spatial clustering, revealed by studies(Girman
et al., 1999; Ringach et al., 2016; Bargmann & Newsome, 2014; Kaschube et al., 2010). Despite
these structural differences, the spiking mechanisms that give rise to these species-specific patterns,
and their roles in visual processing, remain poorly understood.

Existing computational models, such as self-organizing maps (SOM) (Kohonen, 1982), ON-OFF
theoretical models (Miller, 1994; Jang et al., 2020a; Song et al., 2021; Najafian et al., 2022), and
various artificial neural networks (Margalit et al., 2023; Chizhov & Graham, 2021) have provided
insights into the generation of orientation preference maps through mathematical abstractions or
firing rate models. However, these approaches often lack the biological realism of spiking neural
networks, which better capture the intricate temporal dynamics of real neuronal systems. Furthermore,
many existing SNN models (Lufkin et al., 2022; Chizhov & Graham, 2021; Srinivasa & Jiang, 2013)
struggle to reproduce the emergent properties of orientation preference maps over time, as they often
overlook key anatomical and physiological factors, such as shared visual inputs (Zhang et al., 2018;
Jang et al., 2020a; Najafian et al., 2022), cortical size (Meng et al., 2012), localized neuronal densities
(Weigand et al., 2017), and genetically encoded connectivity patterns (Blauch et al., 2022).

In response to these challenges, our research contributes the following:
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• We propose a retina-V1 realistic self-evolving spiking neural network (SESNN) that in-
tegrates comprehensive data on retinotopy, neuronal morphology, and connectivity from
rats, cats and primates. This model is capable of dynamically simulating cortical structure
formation across species using Hebbian-like learning rules and natural scene inputs. By
leveraging visual field overlap and neuronal density, the SESNN accurately distinguishes
between salt-and-pepper and pinwheel cortical patterns.

• Pinwheel structures arise from local synaptic plasticity rules in spiking neural networks,
where lateral connections are strengthened between neurons with similar stimulus responses
and weakened between those with dissimilar responses. This selective connectivity forms
iso-orientation domains with consistent orientation tuning. Near pinwheel centers, connec-
tions become more homogeneous, while neurons maintain diverse orientation preferences
and dynamic firing patterns. This balance between connectivity and neural diversity en-
ables efficient, sparse coding of both simple and complex visual stimuli, optimizing visual
information processing.

• We further demonstrate that pinwheel organizations exhibit superior information-cost ef-
ficiency, increased coding sparsity, and greater robustness to noise compared to salt-and-
pepper patterns. These properties enhance the detection and coding of varied orientation
features, indicating that the spatial structure of pinwheels promotes highly efficient and
reliable visual processing.

2 RETINA-V1 TOPOLOGICAL SELF-EVOLVING SPIKING NEURAL NETWORK
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Figure 1: Architecture of proposed SESNN model. a. The image set with 160 whitened natural
images. b. Stimulus images are randomly selected from the image set and presented to E neurons
for 100 ms. c. The connections between excitatory (E-) and inhibitory (I-) neurons follow HO
and CM rules. d. Recurrent connection among neurons. The spatial arrangement and periodic
boundary conditions of E- and I- neurons. E- and I- neurons share the same spatial coordinates, and
the boundaries are linked together according to the arrows shown in the diagram. Arrows of the same
color represent identical connections. e. Spatial self-organization within the neuronal population
post-training and the comparison among the SESNN model’s OPM, macaque’s OPM and SNN-based
model (baseline) (Srinivasa & Jiang, 2013). The color bars represent orientation preferences, and the
scale bar corresponds to 1 mm on the V1 cortical surface. This comparative analysis is detailed in
Table 1.

2.1 STIMULUS TRAINING SETS

We use 20 original whitened images which reduce pairwise correlations among pixels, mimicking
the processing of the lateral geniculate nucleus ((Dan et al., 1996; Zylberberg et al., 2011; Paul D.
King et al., 2013)). To ensure these images encompassed orientation details, each image is rotated
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Table 1: SESNN pinwheels vs. macaque pinwheels. (mean ± SD) for SESNN results.
Metric E-I baseline SESNN (macaque) Macaque

Pinwheel density (pinwheels/Λ2) ∼ 2.941 3.175± 0.397 ∼ 3.327
Nearest-neighbor pinwheel distance (mm) N/A 0.277± 0.043 ∼ 0.242
Hypercolumn size (mm) N/A 0.839± 0.054 ∼ 0.760

clockwise every 90-degree clockwise rotation and a subsequent flip, producing 8 variations per
original image. This method generates a total of 160 images comprising our training dataset (refer to
Fig. 1a).

In each trial, all E-neurons process visual input from 100 random patches, each presented for 100
ms(see Fig. 1b). Each E-neuron perceives a small patch of 16×16. The visual fields of the E-neurons
are modeled as overlapping on the retina (see Fig. 1a), with the total visual input dimension being
[(16 − ε)

√
n + ε] pixels on each side (n is neuron number, visual overlap metric ε). To address

the visual overlap among adjacent neurons, which adheres to periodic boundary conditions, the
input design features a wraparound effect to ensure continuity and uniformity throughout the neural
network.

2.2 NEURAL MODEL AND THE PLASTICITY RULES

The SESNN model includes 4900 E- and 1225 I- neurons, forming a recurrent network with an E-I
ratio of 4:1 ((Alreja et al., 2022; Tao et al., 2004; Pfeffer et al., 2013)). E-neurons are stimulated
by natural images and receive background noise from other brain areas, while I-neurons indirectly
process natural image stimuli through their interactions with E-neurons. The spiking dynamics of the
network are simulated the classical leaky integrate-and-fire neurons ((Stevens et al., 2013)), which
also feature refractory periods of 3 ms and adaptive firing thresholds ((Földiák, 1990)). The detailed
description of the neuronal model can be found in the appendix A.1.

The learning process utilizes two primary forms of Hebbian-like learning rules: Hebbian Oja’s variant
(HO) and Correlation Measuring (CM) ((Oja, 1982; Zylberberg et al., 2011; Paul D. King et al.,
2013)). Consistent with experimental evidence Holmgren et al. (2003); Hofer et al. (2011), V1
pyramidal neurons exhibit weaker synaptic strengths compared to other types, crucial for avoiding
over-excitation and ensuring neural balance. To accurately model these self-evolving dynamics
within our SESNN, we implement E-E connections governed by the HO rule Oja (1982), with a
normalization factor (the second term in Eq. 1) to regulate synaptic weight growth within a 0 to 1 range.
In contrast, lateral connections between excitatory and inhibitory neurons are governed by the CM
rule, which inherently allows for stronger synaptic weights without normalization (Zylberberg et al.
(2011); Paul D. King et al. (2013)), enabling these connections to better capture correlations between
input patterns and neuronal responses. This distinction in learning rules is crucial for maintaining
functional balance and enhancing representational efficiency within the network. Specifically, the
HO rule learns the principal component of input patterns, allowing E-E connections to align with
the largest variance in the input space. While this supports self-organized structure formation, such
as oriented receptive fields, it can lead to redundancy across excitatory and inhibitory neurons.
By comparison, the CM rule captures correlations between input activity and a neuron’s response,
ensuring that predictable components of excitatory activity are expressed in inhibitory neurons. These
components can then be suppressed through E-I-E loops, a mechanism that supports predictive
coding by minimizing redundancy and promoting sparse, efficient neural representations. These
rules allow the SESNN to adaptively modify synaptic weights based on firing pattern correlations,
emulating fundamental learning processes in biological neural networks. Both HO and CM rules
support long-term potentiation and depression, functioning similarly to other rate-based learning
rules that do not require precise spike timing. We selected the HO and CM rules for their minimal
tuning requirements and their ability to stabilize recurrent excitation.

Following every 100 ms of stimulus presentation, synaptic weight changes ∆W within the network
are computed:

HO : ∆W
(K←K∗)
ij ∝ yixj − y2iW

(K←K∗)
ij , (1)
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CM : ∆W
(K←K∗)
ij ∝ yixj − ⟨yi⟩ ⟨xj⟩

(
1 +W

(K←K∗)
ij

)
, (2)

where x, y refer to the spike rate of presynaptic (j) and postsynaptic neurons (i) and K, K∗ determine
the type of neurons (E or I), the operator ⟨·⟩ indicates the lifetime average value. Following each 100
ms stimulus presentation, we compute the network’s neuronal instantaneous spike rates as exponential
moving averages, which accumulate spikes over time (see Eq. 3). Exponential moving averages
are utilized to track recent neuronal activity levels. Concurrently, lifetime average values are also
calculated using exponential moving averages, which are crucial for maintaining homeostatic stability.
This method helps stabilize the neural network by adjusting neuronal properties or synaptic strengths
to sustain consistent activity levels over time.

xj(t) = (1− ζ)xj(t− 1) + ζ · zj(t), (3)

where ζ = 1− e−
1
10 , indicating that the 10 ms is a temporal window of the moving average weighted

with exponential decay. The initialization of xj is 0. The exponential moving average is calculated
dynamically and updated along with synaptic weights. z(K

∗)
j (t) = 1 represents the spike output from

neuron j at time t, and 0 otherwise.

⟨xj⟩ := (1− ξ) · ⟨xj⟩+ ξ · xj , (4)

where ξ = 1− e−1. It is dynamically updated to ensure the sum of the weights remains constant over
time. Eq. 3 captures the short-term firing rate of neurons by tracking recent activity through a short
time window, while Eq. 4 computes the long-term average to monitor activity trends and maintain
homeostatic stability, together ensuring the network’s adaptability and balanced dynamics over
multiple timescales. xj represents the average firing rate of neuron j in one trial. The hyperparameters
of the SESNN model are as follows: the learning rates are ηFF = 0.2 (image to E-neuron), ηEE = 0.01
(E- to E-neuron), ηEI = 0.7 (I- to E-neuron), ηII = 1.5 (I- to I-neuron), and ηIE = 0.7 (E- to I-neuron),
while the neural connectivity parameters are αmax, E = 1.0 (E- max weight) and αmax, I = 0.5 (I- max
weight). These learning rate settings are crucial for stabilizing the training of the neural network.
Specifically, setting a slower learning rate for E-E connections than for others helps prevent over-
excitation among E-neurons. This approach is consistent with empirical findings Hofer et al. (2011);
Holmgren et al. (2003); Sato et al. (2016).

2.3 EXPERIMENTAL DATA-JUSTIFIED NEURAL CONNECTIVITY IN A 2D CORTICAL AREA

E- and I- neurons are arranged symmetrically on a two-dimensional lattice within SESNN. The initial
connection weights between neurons are modeled by a Gaussian function of Euclidean distance,
which can be expressed as:

WK←K
′

0 (i, j) = αK′ × exp

(
−d (i, j)

2

2σK′ 2

)
, (5)

where d(i, j) represents the Euclidean distance from neuron i to neuron j in a grid, α determines
the maximum connection weight, which is set to αEE = 1, αEI = 1, αIE = 0.5, αII = 0.5, and
σ governs the rate at which the weight decays with distance. The synaptic types predominantly
determine the parameters for this connection weight distribution function. To accurately replicate the
neuronal architecture of V1 in macaques. The synaptic connection range, denoted by σ, are set to
σEE = 3.5, σEI = 2.9, σIE = 2.6, σII = 2.1. These values are based on anatomical data indicating
that the axon lengths of E- and I-neurons are approximately 200 µm and 100 µm, respectively, while
the dendrite lengths are around 150 µm for E-neurons and 75 µm for I-neurons in the V1 ((Tao
et al., 2004; Stepanyants et al., 2009; Amatrudo et al., 2012)). This careful selection of parameters
and neuron distribution ensures our model’s biological fidelity, particularly in representing synaptic
connectivity and neuronal density. We discard any connection strengths below a threshold of 0.01 to
maintain computational efficiency and biological plausibility.

Given that the majority of RFs are concentrated in the area centralis Van Essen et al. (1984); Born
et al. (2015), which projects to a disproportionately large area of V1, we focus our analysis solely on
RFs within this central visual field (see table 2). To control for variables, we use a constant RF size
near the central vision, where eccentricity is close to zero.

The anatomical data for neural connectivity is based on the findings of (Tao et al., 2004; Stepanyants
et al., 2009; Amatrudo et al., 2012). The plasticity rule settings are based on the findings of (Holmgren
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et al., 2003; Hofer et al., 2011). For retinotopic data, we refer to (Srinivasan et al., 2015; Tehovnik
& Slocum, 2007; Scholl et al., 2013; Veit et al., 2014; Engelmann & Peichl, 1996; Weigand et al.,
2017; Law et al., 1988; Huberman et al., 2006; Niell & Stryker, 2008; van Beest et al., 2021; Foik
et al., 2020). The anatomical data on orientation preference maps is sourced from (Najafian et al.,
2022). The details of the data usage and visual input overlap calculation can be found in the appendix
A.2,A.3,A.4.

Table 2: Comparative anatomical data of the retina and V1 across species.

Species
V1 neurons density

(neurons/mm2)
V1 RF size

(deg)
CMF

(mm/deg)
Pinwheel numbers

(per mm2)

Macaque 243,000a 0.2b 2.0b 8
Cat 99,200a 1.0c 0.67d 3
Mouse 86,600a 4.0e 0.02f N/A

a

Srinivasan et al. (2015) b Tehovnik & Slocum (2007) c Scholl et al. (2013)
d

Veit et al. (2014) e Niell & Stryker (2008) f van Beest et al. (2021)

3 SESNN REVEALS THAT VISUAL OVERLAP BETWEEN NEURONS IS CRITICAL
FOR V1 OPM FORMATION
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Figure 2: The overlap of visual fields among adjacent neurons contribute to the formation of pinwheel
structures. a. The diverse overlapping extent of visual fields in neurons forms various iso-orientation
domains of species in the orientation preference maps when perceiving natural images. The increasing
overlap is consistent with the transition from lower to higher mammals (see the animal sketches).
b. The correlation between visual overlap and pinwheel counts. c. The relationship between visual
overlap and NNPD. d. The hypercolumn size varies with different visual overlaps. e. Comparing the
SESNN model overlap with actual anatomical data overlap percentages in different species (mice,
cats, and macaques). Color scheme: orientation preference. All data: mean ± SD.

For quantitative analysis of orientation maps, we utilize metrics including pinwheel density
(pinwheels/mm2), pinwheel counts ((Kaschube et al., 2010; Stevens et al., 2013)) (Fig. 2b), nearest-
neighbor pinwheel distance (NNPD) (mm) ((Müller et al., 2000; Kaschube et al., 2010)) (Fig. 2c),
and hypercolumn size (mm) ((Stevens et al., 2013)) (Fig. 2d). Pinwheel density is defined as the
number of pinwheels per V1 surface area mm2. NNPD refers to the shortest Euclidean distance be-
tween pinwheel centers. Pinwheel centers are identifiable via 2D Fast Fourier Transform ((Kaschube
et al., 2010)), located where the real and imaginary components of the transform intersect at zero
((Stevens et al., 2013)). A hypercolumn is defined as a region with periodicity measured by 2D FFT.
It’s noteworthy that pinwheel density is excluded from the Fig. 2 analysis, because, regardless of
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hypercolumn size, the observed pinwheel density consistently approaches π pinwheels/Λ2(Fig. 3d),
conforming to topological constraints ((Stevens et al., 2013; Kaschube et al., 2010)). This paper does
not account for left- and right-eye dominance columns, so the hypercolumn size is defined as the full
180° cycle of repeating column spacing (Λ) (mm).

Our SESNN model effectively generates various orientation selectivity patterns, from salt-and-peppers
to pinwheel structures. We modify the overlap parameter ε to range from 10 to 15 pixels (see Fig. 2).
This visualization highlights how variations in the degree of overlap in visual stimuli can influence
the density and arrangement of pinwheel structures in the visual cortex. Notably, setting the overlap
to ε2 = 9 pixels results in the model producing salt-and-pepper organizations (see the first panel of
Fig. 2a), rather than the anticipated pinwheel structures. Thus, it is evident that above the threshold of
overlap (in our scenarios, thresholdε = 10 pixels), pinwheel structures emerge. Specifically, we find
that a greater overlap (e.g., ε2 = 15 pixels) fosters the formation of stronger local clusters, resulting
in larger hypercolumn sizes (Fig. 2d), a reduced number of pinwheels (Fig. 2b), and extended NNPDs
(Fig. 2c), compared with the scenario of a smaller overlap (e.g., ε1 = 12 pixels). These findings
suggest that visual input overlap critically determines the species-specific organization patterns of V1.
The overlap degrees (ε) in visual fields vary across species (including macaques, cats, rodents, etc.)
(Fig. 2e) to accommodate the size of iso-orientation domains in the visual cortex representation as
observed by the study of (Najafian et al., 2022). When the overlap of visual stimuli is large, multiple
neurons receive similar visual inputs. This causes these neurons to form stronger local connections
through Hebbian plasticity. Neurons with similar receptive fields tend to develop highly consistent
local connections, and their orientation preferences gradually align, creating a region of locally
continuous orientation preferences. Additionally, Neuronal density is another factor that impacts the
size of hypercolumns. Although the study has reported this (Philips et al., 2017), we have included
the details in the appendix A.3.2.

3.1 THE EMERGENCE OF THE PINWHEEL STRUCTURE AND MECHANISM

We investigate the development of orientation preference maps in V1 of animals at eye-opening using
the SESNN model, where the initial visual experience of natural stimuli are retinotopically mapped
to V1 neurons (Fig. 3a) ((Stevens et al., 2013)). Our comparative analysis with empirical ferret data
((Stevens et al., 2013; Chapman et al., 1996; Chapman & Stryker, 1993)) shows a high correlation
(r = 0.98, Pearson correlation) for orientation preference maps observed from postnatal day 33 (P33)
to P41 when they reach high stability (Fig. 3b). By normalizing the time scale, we are able to align
the SESNN model’s developmental trajectory with ferret empirical data. To quantitatively assess how
the stability change over time, we use the orientation stability index (SI) ((Chapman et al., 1996)),
calculated as follows:

SI = 1− 4

nπ

n∑
i=1

∣∣∣(Fi −Oi)mod
(π
2

)∣∣∣ . (6)

The SI is computed by iterating over all n data points, where i indexes individual pixels, Fi represents
the final orientation preference value of the neurons, and Oi denotes the orientation preference at a
prior developmental stage. The higher SI at later development stage of the orientation preference maps
implying that the orientation preference maps remain unchanged during their continued exposure to
varying natural stimuli (Fig. 3b). Furthermore, we also investigated whether the model’s performance
would change if trained with a new set of images after stabilization. Our results show that while some
detailed aspects of the pinwheel structure altered slightly, the overall locations of the pinwheel centers
and the domains remained largely unchanged, indicating strong stability. The changes in neuron
tuning toward specific orientations were also observed (detailed in Appendix A.5). Additionally, we
examine the relationship between dimensionless pinwheel densities (ρ) and hypercolumn areas (Λ2)
across the SESNN model, ferrets, galagos, and tree shrews, comparing findings with empirical data
(Fig. 3d).

Considering the trained connections Wij , we follow the hypothesis that the information capacity can
be depicted by the entropy of weight distribution in the complete connection matrix (distribution of all
the trained connection strength) and the energy cost of synaptic transmission is inversely proportional
to the connection strength. We have the Information-Cost Efficiency ICE defined as:

ICE =
H

C
; H = −

∑
k

Pklog (Pk) ; C =
∑
i,j

1

Wij
, (7)
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Figure 3: Orientation preference map development in SESNN model. a. The temporal evolution of
the SESNN model’s orientation preference maps, presented in HSV format. The final trial orientation
map displays measured density per hypercolumn area (Λ2). b. The correlation between orientation
preference maps from the SESNN model and observed orientation preference maps in the ferret over
a normalized time scale.c. The changes in three different metrics—wiring cost, information capacity,
and information-cost-efficiency during orientation map development. d. Comparative analysis of
pinwheel densities relative to hypercolumn areas for ferrets, galagos, and tree shrews ((Kaschube
et al., 2010; Stevens et al., 2013)), alongside the SESNN model. e-h. Subplots with insets of pinwheel
structures identify focal neurons and depict changes in connection strength among E-neurons with
various orientation tunings before and after training (dashed and solid lines: mean). e-g. Display
heterogeneous connection weights that bias toward IOD. h. The subplot shows that the homogeneous
connection weights contributed equally from nearby iso-orientation domains. The thickness of the
arrows represents connection strength. All shaded areas: SD.

where H represents the information encoding capacity, and C represents the energy cost of synaptic
transmission, Pk is the discrete probability of the distribution, that is, the normalized count of Wij

in k-bins of the same size (0.01). Here, the calculation of wiring costs is based on Equation 4 from
Bertens & Lee (2022). In this approach, the network wiring cost is inversely proportional to the
summed synaptic connection weights between pairs of neurons, indicating that stronger synaptic
weights not only facilitate efficient communication but also contribute to lower wiring costs. In Fig.
3c, we observed decreasing wiring costs during the development, which is consistent with previous
research Koulakov & Chklovskii (2001). Meanwhile, the growing information capacity and the ICE
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suggest that the emergence of the pinwheel structure effectively maximizes coding capacity under the
constraint of energy cost.

To further understand the circuit mechanisms underlying the emergence of pinwheel structure, we
examine the connections between E-neurons for ones at the iso-orientation domains (e.g., Fig. 3e-g)
and ones at the pinwheel centers (e.g., Fig. 3h). All connections of E-neurons are initialized with
Gaussian-distributed strengths (see Eq. 5) and distributed uniformly across neurons of different
orientation preference (determined after stabilized), as indicated by the gray dashed curves. After the
orientation preference maps stabilized, the connectivity patterns has significantly evolved leading to a
selective strong connection to neurons with similar orientation preference, clearly demonstrated by
the red solid curves and the varied thickness of arrows. The temporal in-variance of the connection
distribution at the pinwheel center over time (except for increase in overall strength) therefore clearly
demonstrated that the iso-orientation domains must take form first, as also visually verified in early
trials of our model (Fig. 3a). This local continuity of IOD is consistent with the demand of Hebbian-
like learning rule (Eq. 1) together the overlap between receptive fields. The exact size of the domain,
as explained earlier, is determined by the extent of the E-connections; while their swirling patterns
are instead demanded by the rich local orientations in each stimuli (as described in Section 2.1)
such that the animal would be able to perceive different orientations in the same local visual field
but still satisfying most of the continuity locally. Note that in the salt-and-pepper organization,
the mechanisms are disrupted due to reduced overlap. The local continuity of IOD is consistent
with the Hebbian-like learning rule (Eq. 1) and the overlap between receptive fields. The domain
size is determined by the extent of E-connections, while swirling patterns arise from the diverse
local orientations in stimuli (as described in Section 2.1). This allows animals to perceive varying
orientations within the same local visual field while maintaining local continuity. In salt-and-pepper
organizations, reduced overlap disrupts these mechanisms. Hence, visual stimulus overlap critically
shapes orientation preference maps in V1: greater overlap promotes pinwheel structures, while
reduced overlap leads to salt-and-pepper patterns.

3.2 CODING EFFICIENCY AND ROBUSTNESS EMERGENCE WITHIN PINWHEELS

To assess the response reliability of neurons under stochastic conditions—vital for trustworthy and
robust neural information processing—we analyze neuron reliability within orientation preference
maps under noisy environments (N (0, σ2

r)). We utilize a spike-based measurement approach to
quantify this reliability. Specifically, for each neuron, we examine spike time sequences generated
under identical stimulus conditions with added noise, calculating the mean cross-correlation between
these sequences. We then determine the neuron’s reliability by identifying the maximum in the
average cross-correlation. For each neuron, we analyze n spike trains of duration T. After normalizing
the mean of each train to zero, we systematically calculate the cross-correlation coefficient between
each pair of sequences from these n trains:

Rxy(m) = E [xT+myT ] , (8)

where m denotes lag, the range of which can extend over the length of the time sequence T. x and y
denote two different spike trains. Through this procedure, the average correlation coefficient of the
same neuron can be determined:

Rxy(m) =

∑n
i=1 Rxy(m)

n
. (9)

We posit that the maximum lag for similar time sequences generated by the same neuron cannot
exceed half the length of the time sequence. Consequently, the reliability is obtained as follows:

Reliability = max
−T

2 ≤m≤
T
2

Rxy(m). (10)

To assess the response reliability of the SESNN model, we use a noise-corrupted natural image as
the input. This involves superimposing Gaussian white noise onto the image. The model is then
stimulated with this noise-modified image, with the same variance noise applied in 10 trials.

Our findings indicate that neurons within orientation maps featuring distinct pinwheel structures
demonstrate higher reliability compared to those in salt-and-peppers or mini-columns (Fig. 4b-d).
This suggests that pinwheel structures in higher mammals (Fig. 4c-d.) enhance the ability to process
signals reliably against noise and contribute to improved visual perception. In Fig. 4e, we analyze
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Figure 4: Population response analysis investigates neurons across different orientation preference
maps. a. The SESNN model is trained using natural image inputs that include background distur-
bances characterized by Gaussian noise (σr ∈ [0, 0.3]). b. The response reliability of all neurons in
the salt-and-peppers gradually decreases as σr increases. c-d. The response reliability about noise
level decreases distinctly for neurons within pinwheel center and surrounding areas across different
hypercolumn sizes. Insets illustrate these patterns, with color bars indicating orientation preferences.
A dashed blue line at y = 0.5 acts as a benchmark for comparing the responses of neuron types
under specific noise conditions. e. Comparisons of three metrics—wiring cost, information capacity,
and ICE—across between pinwheels and salt-and-peppers. f. The averaged population response
sparseness of neurons increases for pinwheels with larger hypercolumn sizes. (Data presented as
mean ± SD, statistical significance denoted as ***p<0.001, ****p<0.0001).

three metrics—wiring cost, information capacity, and Information Cost Efficiency (ICE)—across
pinwheels and salt-and-pepper organizations. Pinwheels show lower wiring costs but high information
capacity compared to salt-and-peppers. The ICE metric Crumiller et al. (2013), which measures
the efficiency of wiring cost relative to information capacity, indicates that pinwheels are more
efficient due to their significantly greater information capacity and lower costs. We also calculate
the population sparseness Vinje & Gallant (2000) for neurons across different orientation map types
when exposed to 100 natural image patches within a 100 ms time window each (Fig. 4d). Population
sparseness refers to the distribution of responses among a population of neurons to a single patch, as
depicted below:

Population sparseness =
1−

(∑ ⟨ai⟩
m

)2
/
∑(

⟨ai⟩2
m

)
1− 1

m

, (11)

where ai refers to the mean spike rate of a neuron i out of a total of m neurons in a time window.

The model’s findings reveal a pattern in which population sparseness intensifies with the enlargement
of hypercolumn sizes, spanning from small to large across various species. This pattern is illustrated in
Fig. 4f, which displays the progressively rising average population sparseness about hypercolumn size
across 100 patches. Our model’s findings are consistent with empirical data (population sparseness:
SESNN pinwheels ∼ 0.74 vs. ∼ 0.67 macaque pinwheels Zandvakili & Kohn (2015), SESNN
salt-and-pepper organizations ∼ 0.25 vs. ∼ 0.36 mice Froudarakis et al. (2014).

4 RELATED WORKS

Traditional models Traditional models such as SOM (Kohonen, 1982), ON-OFF theoretical models
(Miller, 1994; Jang et al., 2020a; Song et al., 2021; Najafian et al., 2022), and artificial neural networks
(Margalit et al., 2023; Chizhov & Graham, 2021) have explored orientation map mechanisms but
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often lack the complexity found in SNNs. Recent SNNs (Lufkin et al., 2022; Keane & Gong, 2015;
Chizhov & Graham, 2021) have struggled with static inputs and connections, failing to accurately
capture neural dynamics. Most importantly, no previous spiking neuronal networks with plasticity
have actually successfully reproduced pinwheel structures. Line discontinuity instead discrete point
discontinuity (as in real pinwheel and our model) plague the functional map (Srinivasa & Jiang,
2013).

Thus, as a major improvement, our model’s quantitative match with experiment results greatly
enhanced the explaining power of its mechanisms.

Visual overlap among neighboring neurons Numerous studies have explored the variability in V1
neuronal organization and its impact on afferent segregation, with factors like visual sampling density
playing a significant role (Baden et al., 2016; Román Rosón et al., 2019; Srinivasan et al., 2015;
Najafian et al., 2022; Jin et al., 2011; Lee et al., 2016; Kremkow et al., 2016; Jang et al., 2020a; Lien
& Scanziani, 2013). While these studies have highlighted the importance of anatomical factors such
as visual overlap and neuronal density in distinguishing pinwheel structures from salt-and-pepper
organizations, they primarily rely on phenomenological static models, lacking detailed mechanisms
for how these factors influence functional organization. Our study provides a clear mechanism
by demonstrating that visual input overlap is crucial in forming pinwheel structures. Through our
spiking neural network model, we show that increased overlap between neighboring neurons enhances
local connectivity and functional clustering in iso-orientation domains, leading to the emergence of
pinwheels. In contrast, reduced overlap weakens these local connections, resulting in the disorganized
salt-and-pepper patterns. This finding establishes a direct link between the structure of input overlap
and the functional organization of V1, making the connection between structure and function explicit.

Wiring cost minimization and sparse coding strategy Research suggests that wiring minimization
optimizes orientation maps (Koulakov & Chklovskii, 2001; Petitot, 2017; Dai et al., 2018). Our
study expands on this by not only examine the wiring costs but also the information capacity, thereby
finding the ICE of pinwheel structure much improved compared to salt-and-pepper organizations.
Studies also suggest that sparseness in neural coding enhances precision and reduces redundancy
(Zhou & Yu, 2018; Yu et al., 2014; Ba & Dj, 1997; Olshausen & Field, 1997; Rolls & Tovee, 1995;
Vinje & Gallant, 2000). We found that pinwheel structures strike a balance between reliability
and coding sparsity. Lateral connections in pinwheels strengthen synapses among neurons with
similar orientations and weaken those with dissimilar orientations. Thus, by enhancing functional
clustering in the iso-orientation domains, these neurons boost reliability with some redundancy
but still effectively implement sparse coding by suppressing nearby domain. While near pinwheel
centers, where connections are less selective, neurons display varied response patterns instead of
clear orientation preferences, therefore implements sparse coding of high-order pattern in addition to
plain feature space of single orientations.

5 CONCLUSION

The SESNN model integrates anatomical and physiological factors like visual overlap, neuronal den-
sity, and synaptic plasticity, providing a more realistic, dynamic representation of spiking mechanisms
in V1, especially in pinwheel formation. Our study identifies visual overlap, neuron density, and local
plasticity as key factors driving the transition from salt-and-pepper to pinwheel topologies, linking
structural features to functional performance—a significant advancement in understanding visual
coding efficiency. By addressing wiring cost minimization and information capacity, our findings
reveal optimal cortical network strategies for sparse and robust visual encoding. These insights can
inform the design of more efficient brain-inspired computational models.
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A APPENDIX

A.1 DETAILED NEURAL MODEL

The spiking neuronal dynamics are iteratively formulated as follows:

u
(K)
i (t+ 1) = u

(K)
i (t)e

− η

τ(K) + hK(i)
∑
j

FF
(E←image)
ij Xj

+
∑
K∗

∑
j

β
(K←K∗)
ij ·W (K←K∗)

ij · z(K
∗)

j (t) + noise,
(12)

hK(i) =

{
1, if i is an E-neuron ID,

0, if i is an I-neuron ID,
(13)

∆θ
(K∗)
i ∝ pi(z

(K∗)
i = 1)− p

(K∗)
i , (14)

where K = E-neurons or I-neurons; i = 1, 2, . . . , N (numbers of E-neurons and I-neurons).

In Eq. 12, u(K)
i (t) represents the membrane potential of neuron i at time t, applicable to neurons of

class K. The decay rate of the membrane potential is governed by the resistor-capacitor circuit time
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constant τ , set at τ (E) = 10 ms for E-neurons and τ (I) = 5 ms for I-neurons, reflecting the faster
firing rate of I-neurons compared to E-neurons ((Paul D. King et al., 2013; Thomson & Lamy, 2007)).
This configuration reduces reconstruction error and speeds up system convergence, enhancing the
representation of input stimuli. The feedforward (FF) connection, FF(E←image)

ij , connects pixel Xj

from a whitened image patch (normalized to zero mean and unit variance) to E-neuron i. Connection
weight W (K←K∗)

ij from neuron j of class K∗ to neuron i of class K includes a sign β
(K←K∗)
ij indicating

excitatory (+1) or inhibitory (-1) connections. z(K
∗)

j (t) = H
(
u
(K∗)
j (t)− θ

(K∗)
j

)
, where H(x) is the

Heaviside step function, defined as H(x) = 1 if x > 0 and 0 otherwise. Here, z(K
∗)

j (t) represents
the spike output from neuron j at time t, which triggers a reset of the membrane potential to 0
after reaching the spike threshold θ (initially set at 2). The firing threshold θ adapts based on the
discrepancy between the current and target firing rates pi (t) and p

(K)
i (p(E) = 0.02, p(I) = 0.04)

within a 10 ms time window (see Eq. 14 (Földiák, 1990)). For computational efficiency, the time
step η is set at 1 ms.

A.2 ANATOMICAL DATA INTEGRATION

NEURAL CONNECTION DATA

The experimental subjects include six adult cats with unknown genders, with data sourced from
research by Armen Stepanyants et al.(Stepanyants et al., 2009); and eight macaques, aged 5-11
years, including six males and two females, with data sourced from research by Joseph Amatrudo et
al.(Amatrudo et al., 2012).

NEURONAL SYNAPTIC PLASTICITY

The subjects are rats aged 14-16 days, with unknown gender and quantity, with data sourced from
research by Holmgren et al.(Holmgren et al., 2003); transgenic mice, with unknown quantity and
gender, with data sourced from research by Hofer et al. (Hofer et al., 2011).

RETINAL-V1 TOPOLOGICAL PROJECTION DATA

Receptive field data: V1 neuron counts for macaques, cats, tree shrews, ferrets, mice, rats, and gray
squirrels respectively come from Tehovnik et al. (Tehovnik & Lee, 1993) (subjects: 3 macaques,
unknown gender and age), Scholl et al. (Scholl et al., 2013) (subjects: cats, unknown gender and age),
Veit et al.(Veit et al., 2014) (subjects: 9 male and 7 female tree shrews, aged 3-8 years), Huberman et
al.(Huberman et al., 2006) (subjects: 8 ferrets, unknown gender and age), Niell et al.(Niell & Stryker,
2008) (subjects: mice, aged 2–6 months, unknown gender), Foik et al.(Foik et al., 2020)(subjects: 21
rats, unknown gender and age), and Hall et al.(Hall et al., 1971) (subjects: 17 gray squirrels, unknown
gender and age). V1 neuronal density: neuronal density data for macaques, cats, mice, rats, and gray
squirrels come from Srinivasana et al.(Tehovnik & Slocum, 2007) (subjects: unknown gender and
age); tree shrew, ferret, and gray squirrel density data respectively come from Weigand et al.(Weigand
et al., 2017).

CORTICAL MAGNIFICATION FACTOR

Cortical magnification factor data for macaques, cats, tree shrews, ferrets, mice, rats, and gray
squirrels are sourced from Tehovnik et al.(Tehovnik & Lee, 1993) (subjects: 3 macaques, unknown
gender and age), Veit et al.(Veit et al., 2014)(subjects: cats, unknown gender and age), Bosking et
al.(Bosking et al., 1997)(subjects: tree shrews, unknown gender and age), Rockland et al. (Law et al.,
1988)(subjects: 9 ferrets, female, unknown age), Beest et al.(van Beest et al., 2021)(subjects: 28 mice,
11 males and 17 females, ages 2-14 months), Keller et al.(Keller et al., 2000) (subjects: male rats, age
3 months), and Hall et al.(Hall et al., 1971) (subjects: 17 gray squirrels, unknown gender and age).
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Table 3: Comparative anatomical data of the retina and V1 across species.

a. Species
(mean)

b. Retina
(mm2)

c. V1 size
(mm2)

d. V1 neurons
density

(neurons/mm2)

e. V1 RF
size (deg)

f. RFs density
((c)× (d)/(b))
(RFs/mm2)

Macaque 636a 1,090b 243,000b 0.2c 416,462.26
Cat 510a 380b 99,200b 1.0d 73,913.73
Tree shrew 122a, e 73b, a 192,800f 2.0g 115,363.93
Ferret 83h, a 78b 95,813f 3.0i 90,041.13
Mouse 15a 2.5b 86,600b 4.0j 14,433.33
Rat 52a, k 7.1b 90,800b 3.0l 12,397.69
Gray squirrel 205a 32a 84,213f 2.0m 13,145.44

a Jang et al. (2020b) b Srinivasan et al. (2015) c Tehovnik & Slocum (2007)
d Scholl et al. (2013) e Engelmann & Peichl (1996) f Weigand et al. (2017)
g Veit et al. (2014) h Law et al. (1988) i Huberman et al. (2006)
j Niell & Stryker (2008) k Hughes (1979) l Foik et al. (2020)
m Hall et al. (1971)
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Figure 5: A linear classifier based on RFD (y = 4.42 × 104x) effectively differentiates species
with salt-and-pepper organizations (rats, mice, gray squirrels) from those with pinwheel structures
(macaques, ferrets, cats, tree shrews). textbfa. This classifier reflects variations in V1 organizations
across species. b. A plot categorizing species by the ratio of V1 neuron number to retina size acts as
a divider, implying a critical ratio for the formation of pinwheel structures.

A.3 UNVEILING SPECIES-SPECIFIC FACTORS DISTINGUISHING PINWHEELS AND
SALT-AND-PEPPERS

A.3.1 ANATOMICAL DATA SUGGESTS RFS DENSITY UNDERLYING V1 ORGANIZATIONS

We analyzed anatomical data from seven species, including primates (e.g., macaques) and non-
primates (e.g., mice, rats, cats, tree shrews, gray squirrels, and ferrets), as detailed in Table 3. We first
find that V1 RFD (ρRF) acts as a linear classifier (y = 4.42×104x), effectively distinguishing species
with pinwheel structures from those with salt-and-pepper organizations. In this classifier, species
like macaques, cats, tree shrews, and ferrets, which have higher RFD, are associated with pinwheel
structures (light red area in Fig 5) and exceed the classification threshold. In contrast, species with
lower RFD, such as mice, rats, and gray squirrels, are linked to salt-and-pepper organizations (light
blue area in Fig 5). Thus, V1 RFD serves as a predictive metric for V1 organizational patterns across
species. The ρRF is calculated as follows:

ρRF =
n

sr
=

n

[(sRF − ε) (
√
n− 1) + sRF]

2 , (15)

where n denotes the total number of neurons in V1, sr indicates the retinal surface area. The variable
ε quantifies the degree of visual input overlap among adjacent neurons, and sRF represents the RF
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size. Concerning the Eq. 15 and anatomical data (Table 3), the two main factors influencing RFD
ρRF are the overlap ε of visual inputs between adjacent RFs and V1 neuronal density ρV 1. We discuss
the overlap in the main text. Neuronal density is discussed in the following sections.

A.3.2 SESNN REVEALS NEURONAL DENSITY INFLUENCING V1 CLUSTERS
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Figure 6: Synaptic connection range within V1 contributes to the formation of pinwheel structures. a.
Modifying the synaptic connection range reshapes the dimensions of pinwheel structures. b-d. The
relationship between the synaptic connection range (σ) and the number of pinwheels, NNPD (mm),
and hypercolumn size (mm). The scale bar: 1 mm in V1 cortical surface. Color scheme: orientation
preference. Lines: mean. Shaded area: SD.

The anatomical data in Table 3d for seven species show variability in V1 neuronal density (ρV1),
which influences inter-neuronal spacing and connection strength. We explore how V1 cortical
orientation patterns form by adjusting the lateral connection range, impacting axon reach among E-
and I-neurons, as depicted in Fig. 6. We modulate axonal arborization through parameter σ to adjust
the connection range, allowing us to simulate neuronal connections in areas with varying densities.
This setup enables the SESNN model to predict changes in cortical patterns (Fig. 6). Our observations
indicate that increasing axon lengths, thereby extending the connection range, enlarges hypercolumn
sizes within pinwheel structures (Fig. 6d), reduces the overall number of pinwheels (Fig. 6b), and
increases NNPD (Fig. 6c). These findings underscore the critical role of neural synaptic connection
range in organizing orientation maps.

A.4 QUANTITATIVE DATA ON CORTICAL PINWHEEL STRUCTURES

The visual input overlap is quantified as follows:

εpercentage =
2
√
ρV1Sunit − LunitM

RFsize
2
√
ρV1Sunit − 1

× 100% (16)

where Sunit represents the unit cortical area, RFsize denotes the size of the RF in V1, represents the
unit area, and ρV1 represents the density of neurons in V1. We consider only an effective cortical
layer composed of output neurons. This is because the apparent overlap within a vertical cortical
column primarily contributes to intermediary processing stages for the same input. Therefore, such
overlaps should not be conflated with overlaps in the input space. Consequently, the 1/3 root of
the symbol ρV1 is calculated as the product of two factors: 2/3, representing the overlap between
columnar structures, and 1/2, indicating one side of a 2D cortical rectangular area. M refers to
the CMF. The trend shown in Fig. 2e indicates increasing overlap for mice, macaques, and cats,
which is consistent with the overlap settings of our model. This escalation in overlap corresponds to
the expansion of iso-orientation domains and pinwheels, presented by our model’s predictions and
anatomically detailed by Najafian et al.Najafian et al. (2022).
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Figure 7: Plasticity of the pinwheel structure in response to new natural images. (a) Stabilized
orientation map and orientation map after training with new natural images. (b) Number of pinwheels.
(c) Hypercolumn size. (d) Nearest-neighbor pinwheel distance. (e) Pairwise cosine similarity between
neuronal representations before and after introducing new environments.

A.5 STABILITY AND ADAPTABILITY OF PINWHEEL STRUCTURES

We conducted additional experiments to examine the plasticity of the pinwheel structure in response
to new visual environments. A new set of natural images, including forests, large stones, tree branches
and leaves, reeds, stones of various sizes, tree trunks, leaves, and grasses, was introduced after the
pinwheel structure had stabilized. After further training with these new images, we observed slight
modifications in some finer aspects of the pinwheel structure; however, the overall structure, including
the locations of the pinwheel centers, remained largely stable (Fig. 7a).

To quantitatively assess these changes, we employed three different metrics: (i) the number of
pinwheels, (ii) hypercolumn size, and (iii) nearest-neighbor pinwheel distance. These metrics were
used to compare the pinwheel structure before and after introducing the new images (Fig. 7b, c, d).
Additionally, we utilized pairwise cosine similarity to measure the representation similarity of the
neuronal spike train population (Fig. 7e).

Although we did not observe significant changes in the morphology of the pinwheels, some detailed
aspects of the pinwheel structure did change. Specifically, while the locations of the pinwheel centers
and the overall domains remained nearly unchanged, some neurons exhibited tuning adjustments
towards specific orientations. Furthermore, the representation of neurons to the same stimulus
remained overall stable, with minor variations before and after the introduction of new environments,
suggesting that the pinwheel structure is highly adaptable (Fig. 7).

These results indicate that the model’s organizational structure is deeply rooted in the statistical
features of natural images and demonstrates a strong capacity for adaptation to new environments
while preserving its core structural properties.

A.6 ORIENTATION MAP FORMATION FROM OUR PROPOSED SPIKING NETWORK MODEL
(NEW SECTION)

1. HO Rule Learns V1 Receptive Field: The HO rule learns receptive fields from visual images, as
described by the following formula:

∆FF
(E←Image)
im ∝ yixm − y2i FF

(E←Image)
im , (17)

where xm and yi represent the gray value of pixel m and instantaneous firing rate of post-synaptic
neuron i. This rule ensures that weights converge when:
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FFim =
⟨yixm⟩
⟨y2i ⟩

=
STAi

⟨y2i ⟩
. (18)

Corresponding to the normalized spike-triggered average (STA). HO rule stabilizes learning by
constraining synaptic growth, resulting in biologically realistic V1-like RFs.

2. Retinotopic Topographic Constraints: Each neuron encodes only a small portion of the visual
field (Fig. 1a), with the small patch ∈ RH′×W ′

smaller than the input image I ∈ RH×W . The
population’s collective response is needed to represent the full stimulus, aligning with the topographic
mapping from retina to cortex.

3. High-Overlap Strengthens Local Excitatory-Excitatory Connections for Orientation Map
Continuity: Excitatory connections align adjacent neurons’ firing activities, promoting similar
orientation preferences. This requires a high overlap (Fig. 2), where correlated feedforward input
initially strengthens local excitatory connections, ensuring continuous orientation preference and
forming iso-orientation domains with similar orientation preferences (Fig. 3e-h).

4. CM rule’s Anti-Correlation via E-I-E loops Ensures Orientation Diversity and Map Coverage:
Inhibitory neurons, through the CM rule:

∆W
(K←K∗)
ij ∝ yixj − ⟨yi⟩⟨xj⟩

(
1 +W

(K←K∗)
ij

)
, (19)

where xj and yi represent the instantaneous firing rates of pre- and post-synaptic neuron j and i. The
operator ⟨·⟩ denotes the moving average value (refer to Eq. 4).

At equilibrium, the CM rule converges to:

Wij =
⟨yixj⟩ − ⟨yi⟩⟨xj⟩

⟨yi⟩⟨xj⟩
. (20)

We have:
Wij ∝ ⟨yixj⟩ − ⟨yi⟩⟨xj⟩ = Cov(yi, xj). (21)

Covariance shapes neural connectivity based on activity covariance, where synaptic weights are
strengthened between correlated neurons and weakened between uncorrelated ones. This mechanism
ensures that inhibitory neurons regulate overall activity between neighbouring E neurons through
the E-I-E loops (lateral inhibition), suppressing predictable responses to maintain sparse coding.
This also prevents excitatory neurons from excitatory connections overly responding to the same
orientation, enabling preference for other orientations and ensuring full coverage. Over larger
connection ranges, highly correlated feedforward correlations are disrupted and inhibitory neurons
drive diverse responses, resulting in distinct domains with varying preferred orientations, forming
pinwheel structures within the functional orientation map.

A.7 COMPUTING INFRASTRUCTURE

CPU Intel® Xeon(R) Gold 6348 CPU @ 2.60GHz
GPU A100

Memory 512 GB
Operating system Ubuntu 20.04.6 LTS

Simulation platform MATLAB R2023a and Python 3.9

Table 4: Computing infrastructure

A.8 ACRONYM
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Acronym Term
V1 Primary Visual Cortex

SESNN Self-Evolving Spiking Neural Network
HO Hebbian Oja’s variant
CM Correlation Measuring
ICE Information-Cost Efficiency

CMF Cortical Magnification Factor
E-I Excitatory-Inhibitory
FF Feedforward
RF Receptive Field

SNN Spiking Neural Networks

Table 5: List of acronyms and their corresponding terms

23


	Introduction
	Retina-V1 topological self-evolving spiking neural network
	Stimulus training sets 
	Neural model and the plasticity rules
	Experimental Data-Justified Neural Connectivity in a 2D Cortical Area

	SESNN reveals that visual overlap between neurons is critical for V1 OPM formation
	The emergence of the pinwheel structure and mechanism
	Coding efficiency and robustness emergence within pinwheels

	Related works
	Conclusion
	Appendix
	Detailed neural model
	Anatomical Data Integration
	Unveiling species-specific factors distinguishing pinwheels and salt-and-peppers
	Anatomical data suggests RFs density underlying V1 organizations
	SESNN reveals neuronal density influencing V1 clusters

	Quantitative data on cortical pinwheel structures
	Stability and Adaptability of Pinwheel Structures
	Orientation Map Formation from Our Proposed Spiking Network Model (New Section)
	Computing infrastructure
	Acronym


