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ABSTRACT

Diffusion models have achieved impressive advancements in various vision tasks.
However, these gains often rely on increasing model size, which escalates com-
putational complexity and memory demands, complicating deployment, raising
inference costs, and causing environmental impact. While some studies have ex-
plored pruning techniques to improve the memory efficiency of diffusion mod-
els, most existing methods require extensive retraining to retain the model per-
formance. Retraining a modern large diffusion model is extremely costly and
resource-intensive, which limits the practicality of these methods. In this work,
we achieve low-cost diffusion pruning without retraining by proposing a model-
agnostic structural pruning framework for diffusion models that learns a differen-
tiable mask to sparsify the model. To ensure effective pruning that preserves the
quality of the final denoised latent, we design a novel end-to-end pruning objec-
tive that spans the entire diffusion process. As end-to-end pruning is memory-
intensive, we further propose time step gradient checkpointing, a technique that
significantly reduces memory usage during optimization, enabling end-to-end
pruning within a limited memory budget. Results on state-of-the-art U-Net dif-
fusion models SD-XL and diffusion transformers (FLUX) demonstrate that our
method can effectively prune up to 20% parameters with minimal perceptible per-
formance degradation—and notably, without the need for model retraining. We
also showcase that our method can still prune on top of time step distilled diffu-
sion models.

1 INTRODUCTION

Recently, diffusion models have made remarkable progress in various vision tasks, including text-
to-image generation Brooks et al. (2023); Rombach et al. (2022); Ramesh et al. (2022); Nichol
et al. (2022), image-inpainting Saharia et al. (2022a); Lugmayr et al. (2022); Corneanu et al. (2024),
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Figure 1: We demonstrate that it is possible to prune state-of-the-art diffusion models up to 20%,
without retraining after pruning, while maintaining high-quality generated images. Our pruning
enables the deployment of SDXL on an 8GB GPU and FLUX on a 24GB GPU.

super-resolution Saharia et al. (2022b); Li et al. (2022), and video generation Ho et al. (2022); Luo
et al. (2023); Singer et al. (2022). This progress has been accompanied by architectural evolution,
from the U-Net-based Stable Diffusion 1 (SD1) Rombach et al. (2022) to the larger Stable Diffusion
XL (SDXL) Podell et al. (2024), the transformer-based Stable Diffusion 3 (SD3), and most recently,
the FLUX model Esser et al. (2024); Labs (2024). Although the development of models partially
stems from the improvement of training techniques and architectural innovations, the performance
boost is largely attributed to model size scaling. The most recent FLUX model, with 12 billion
parameters, is about 13 times larger than the SD1 (860 million) developed just two years ago Labs
(2024). The rapid growth in size has caused potential issues: larger models demand larger GPU
and more computation during inference, limit deployment on smaller computation platforms, and
substantially increase the carbon footprint.

Because of the potential issues induced by larger diffusion models, prior methods have explored
ways to reduce model size and computation, Fang et al. (2023), including model distillation Meng
et al. (2023); Huang et al. (2024) and model pruning Fang et al. (2023). Compared to distillation,
pruning usually induces less training overhead. However, pruning diffusion models present consid-
erable challenges, as even minor changes in continuous latent variables can degrade image quality.
Consequently, pruning diffusion models often require retraining to restore performance. Fang et al.
(2023) estimate that diffusion model compression can demand 10% to 20% of the original training
cost. For large models, this retraining burden is substantial. For instance, training Stable Diffusion
2 requires approximately 200, 000 GPU hours on 40GB A100 GPUs AI (2022), costing nearly $1M
on AWS Amazon Web Services (2024). Retraining a compressed version of SD2 can, therefore,
consume up to 40, 000 GPU hours. Pruning larger models, such as SDXL and FLUX, would require
even more resources, posing significant challenges for resource-constrained organizations.

In this work, we show for the first time, to the best of our knowledge, that a significant amount of
parameters can still be removed without retraining the pruned model, as illustrated in Figure 1. For
effective pruning that maintains generation ability throughout the denoising process, we formulate
an end-to-end pruning objective to preserve the final denoised latent at the last denoising step given
an initial noise input. This approach has the advantage over the alternative of minimizing the noise
prediction difference between the original and the pruned model at each time step separately, which
can introduce cumulative errors throughout the denoising steps and eventually lead to substantial
quality degradation.

However, during end-to-end pruning, backpropagation requires storing all intermediate outputs
across all diffusion steps, leading to significant memory demands. For instance, performing end-
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Figure 2: Overview of end-to-end pruning framework and time step gradient checkpointing.
In a), end-to-end pruning learns a mask that applies to all denoising steps, reduces model size while
preserving the final denoised latent for semantic integrity. In b), only checkpoints are stored during
the forward pass. During the backward pass, we first recompute the intermediates between check-
points at each step, then perform gradient calculation. Therefore, memory usage is reduced by T
times with only one additional forward pass.

to-end pruning on SDXL requires approximately 1400 GB memory–equivalent to the capacity of 15
NVIDIA H100 GPUs. To address this, we adopt gradient checkpointing Chen et al. (2016) and pro-
pose time step gradient checkpointing, which reduces the memory usage for SDXL from 1400GB
to under 30GB, with a minor overhead of an additional forward pass. An overview of end-to-end
pruning and gradient checkpointing is shown in Figure 2.

Recent studies have shown that distilling the model into a student model with fewer generation steps
can greatly speed up the inferenceSalimans & Ho (2022); Meng et al. (2023). We showcase that our
pruning approach can be applied on top of a time-step distilled model, thereby further reducing the
runtime and memory consumption of the distilled model. To the best of our knowledge, this is the
first work to successfully prune time step distilled diffusion models.

Overall, our contribution is summarized as follows: (1) We introduce EcoDiff, a model-agnostic,
end-to-end structural pruning framework for diffusion models that learns a differentiable neuron
mask, enabling efficient pruning across various architectures. (2) We develop a novel diffusion step
gradient checkpointing technique, significantly reducing memory requirements for end-to-end prun-
ing to be feasible with lower computational resources. (3) We conduct extensive evaluations across
U-Net diffusion models and diffusion transformers, demonstrating that our method can effectively
prune 20% of model parameters without necessitating retraining. Additionally, we show that our
approach is orthogonal to diffusion step distillation.

2 METHODOLOGY

2.1 END-TO-END PRUNING OBJECTIVE

Conventional diffusion model pruning approaches consider only the changes in noise prediction at
each denoising step Fang et al. (2023). However, this can cause the error to accumulate throughout
the entire denoising process and eventually lead to significant distortion. In contrast, we formulate
an end-to-end pruning objective that considers the entire denoising process. The pruning objective
is to learn a set of masking parameters M = [M1, ...,MN ] for N target layer to minimize the
difference between the final denoised latent z0 generated by the unmasked latent denoising backbone
ϵθ and the predicted ẑ0 generated by the masked backbone ϵmask

θ under the same text prompt x and
initial noisy latent zT . To formulate the end-to-end pruning objective, we first define the complete
denoising process as F based on Equation 6:

z0 = f(f(. . . f(zi, y, 1), y, 2), . . . , y, T ) = F(zT , y, T ) (1)

We omit T for the subsequent discussion as it is a constant. The denoising process iteratively refines
and denoises the latent representation, starting from the initial time step T and proceeding to t = 0,
resulting in the final denoised latent z0. Based on Equation 1, we summarize the pruning objective
as follows:

argmin
M

EzT ,y∼C

[
∥Fϵθ (zT , y)−Fϵmask

θ
(zT , y,M)∥2

]
+ β∥M∥0 (2)
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where zT ∼ N (0, 1) is the initial noise, C =
{
yi
}N

i=1
is the dataset consisting of conditions for

conditioned generation, ∥M∥0 =
∑|M|

j=1 I(Mj ̸= 0) denotes as L0 norm for sparsity, and β is
regularization coefficient of the sparsity regularization. Algorithm 1 shows the procedure of end-to-
end pruning using gradient-based optimization.

2.2 CONTINUOUS RELAXATION OF DISCRETE MASKING

Our pruning objective in Equation 2 involves the calculation of L0 norm, which is not dif-
ferentiable. Hence, we adopt continuous relaxation of the sparse optimization by apply-
ing hard-discrete sampling originally proposed by Louizos et al. (2018). For each continu-
ous masking variable M̂ ∈ [0, 1], we adapt the hard-discrete sampling as follows: s =

σ ((log(u+ δ)− log(1− u+ δ) + λ)/α), s̄ = s(ζ − γ) + γ, M̂ = min(1,max(0, s̄)), where
σ is the sigmoid function, u ∼ U(0, 1) is sampled from a uniform distribution, λ controls the like-
lihood of masking, α is the temperature parameter, ζ and γ stretch s. Additionally, δ controls the
steepness, where a higher value of δ closely resembles a step function, and a lower value suggests
a distribution closer to a sigmoid function. Figure 4 illustrates the behavior of the hard-discrete
distribution compared to the standard sigmoid function. Hence, we can instead learn to optimize
λ ∈ R|M|. The first term in Equation 2 can be formatted as a reconstruction loss LE :

LE(λ) =
∑
y

∑
zT

∥Fϵθ (zT , y)−Fϵmask
θ

(zT , y,M̂(λ))∥2 (3)

The L0 complexity loss L0 given the hard-discrete parameter λ can be described as:

L0(λ) =

|λ|∑
j=1

Sigmoid
(
log λj − β log

−γ

ζ

)
≈ C∥λ∥1, (4)

for a constant C. Detailed derivation is in Appendix D. Finally, the end-to-end pruning loss for λ is
formulated as: L(λ) = LE(λ) + βL0(λ) = LE(λ) + β∥λ∥1. After learning the continuous mask
control variable λ, we obtain the final discrete mask M by applying a threshold τ : M(λ) = I(λ >
τ), where τ is selected to achieve a desired sparsity ratio.

2.3 TIME STEP GRADIENT CHECKPOINTING

To perform the end-to-end pruning shown in Algorithm 1, the backpropagation needs to traverse all
diffusion steps. This necessitates storing all intermediate variables across each step, leading to a
substantial increase in memory usage during mask optimization. To address this memory challenge,
we propose a novel time-step gradient checkpointing technique.

Traditional gradient checkpointing reduces memory usage by storing selected intermediate outputs
and recomputing forward passes between checkpoints Chen et al. (2016); Gruslys et al. (2016). For
a model with N layers, aggressive checkpointing achieves O(1) memory complexity but increases
the runtime complexity from O(N) to O(N2). A more balanced approach places checkpoints ev-
ery

√
N layers, yielding sublinear memory savings at the cost of an additional forward pass, thereby

maintaining O(N) runtime complexity. However, traditional checkpointing only stores intermediate
values within a single forward pass, limiting its utility for diffusion models, which require multiple
model forward passes across time steps. To address this, we propose time step gradient checkpoint-
ing, which stores intermediate denoised latent ẑ after each denoising step. This approach reduces
memory demands across diffusion steps while preserving computation efficiency. We present Algo-
rithm 2 to show how to apply time step gradient checkpointing to calculate the loss gradient w.r.t.
the mask control variable λ.

3 EXPERIMENTS

3.1 SETUP

Model: we prune state-of-the-art (SOTA) latent diffusion models, SDXL, and FLUX, representing
various latent diffusion architectures Rombach et al. (2022); Podell et al. (2024); Labs (2024). For
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Models Pruning
Ratio Methods GFLOP ↓ #Params ↓ MS COCO Flickr 30K

FID ↓ CLIP ↑ SSIM ↑ FID ↓ CLIP ↑ SSIM ↑

SDXL
U-Net

Architecture

0% Original 478K 2.6B 35.50 0.31 1 49.34 0.34 1

10%∗ DeepCache 2.6B 36.63 0.31 0.73 49.37 0.34 0.76
10% DiffPruning 430K 2.3B 108.96 0.22 0.31 97.60 0.26 0.33
10% EcoDiff (Ours) 2.3B 33.75 0.31 0.53 41.35 0.34 0.52

20%∗ DeepCache 2.6B 36.66 0.31 0.81 50.25 0.34 0.83
20% DiffPruning 382K 2.1B 404.87 0.05 0.26 438.82 0.04 0.27
20% EcoDiff (Ours) 2.1B 34.41 0.31 0.50 42.84 0.33 0.53

FLUX
(Step-Distilled)

DiT
Architecture

0% Original 281K 11.9B 30.99 0.33 1 39.70 0.35 1

10%∗ DeepCache N/A N/A N/A N/A N/A N/A N/A
10% DiffPruning 253K 10.7B 34.63 0.32 0.26 41.16 0.34 0.25
10% EcoDiff (Ours) 10.7B 32.16 0.32 0.37 42.56 0.34 0.377

15%∗ DeepCache N/A N/A N/A N/A N/A N/A N/A
15% DiffPruning 239K 10.1B 106.56 0.28 0.22 120.52 0.30 0.22
15% EcoDiff (Ours) 10.1B 31.76 0.30 0.36 43.25 0.33 0.36

Table 1: Quantitative analysis of pruned diffusion models on MS COCO and Flickr 30K
datasets. Our pruned model achieves comparable or noticeable better FID scores (on SDXL) than
the original diffusion model, demonstrating high semantic fidelity and image quality, even without
explicitly preserving structural similarity. For DeepCache, we consider speedup instead of pruning
ratio (marked with ∗). Lower FID and higher CLIP scores indicate improved performance. The
SSIM score is calculated between images generated by the pruned and original models. GFLOP is
calculated with 5 denoising steps for FLUX and 50 for SDXL.

FLUX, we employ the time-step distillation model, FLUX.1-schnell. Pruning details: we only use
text prompts from GCC3M Sharma et al. (2018) for training. Baselines: we compare our method
with the SOTA diffusion pruning methods, DiffPruning and DeepCache Ma et al. (2024b); Fang et al.
(2023). For DeepCache, we tune for acceleration, since it cannot compress the model. Evaluation
metrics: we select Fréchet Inception Distance (FID) Heusel et al. (2017), CLIP score Radford et al.
(2021), and Structural Similarity Index Measure (SSIM) Wang et al. (2004). We evaluate SSIM
by comparing the pruned and original (unmasked) models. We use pretrained CLIP encoder ViT-
B-16 to calculate the CLIP score. For quantitative evaluation, we use the MS COCO and Flickr
30k datasets Lin et al. (2014); Young et al. (2014), randomly selecting 5,000 image-caption pairs
from each. Additionally, we measure computation in Giga Floating Point Operation (GFLOP) and
the total number of parameters in the pruned models. Miscellaneous: To ensure reproducibility,
we use the Hugging Face Diffusers and Accelerator library Face (2021; 2022). All experiments are
conducted on a single NVIDIA H100 GPU with 80G VRAM. More details in Appendix E

3.2 MAIN RESULTS

To show the advantage of EcoDiff, we compare our method with several SOTA compression meth-
ods Fang et al. (2023); Ma et al. (2024b). We conduct quantitative evaluations as shown in Table 1.
For FLUX, at pruning ratios of 10% and 15%, the FID scores on the MS COCO dataset increase
by only 1.77 and 0.77, respectively. For the pruned SDXL model, the FID scores decrease by 1.75
and 1.09 at pruning ratios of 10% and 20%, respectively, indicating an improvement in generative
quality. Similarly, for the Flickr30K, we observed that our pruned SDXL model shows a noticeable
decrease in FID scores, with drops of 8 and 6.7 at pruning ratios of 10% and 20%, respectively. For
the pruned FLUX model, we observed only a slight increase in FID scores, with values of 2.86 and
3.55 at pruning ratios of 10% and 15%, respectively. Nonetheless, it remains superior to DiffPrun-
ing across most FID scores. Notably, DeepCache is not applicable to FLUX due to its exclusive
compatibility with the U-Net architecture. We also observe low SSIM scores for all our pruned
models compared to conventional pruning methods Fang et al. (2023), with all values below 0.55.
This suggests that EcoDiff can generate high-quality images without mimicking the original model.
As shown in Figure 6, our generated images’ semantic fidelity and fine-grained quality are notice-
ably superior to those of the baseline methods. Additionally, we observe that sometimes the pruned
models produce images with better semantic meaning than the original diffusion model, which sug-
gests the potential for our framework to investigate or even improve the semantic understanding of
diffusion models. Additional results on SD2 are in Appendix H. Results of using light retraining
after pruning can be found in Appendix J.
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4 CONCLUSION

In this work, we introduce EcoDiff, a structural pruning method for diffusion models that uses
differentiable neuron masking. We design an end-to-end pruning objective to consider the generation
ability across all denoising steps and preserve the final denoised latent instead of final denoised
images. With our novel pruning objective, we create a more flexible pruning target and achieve
effective pruning that maintains image quality and semantics. To address the high memory demands
of end-to-end pruning with gradient optimization, we propose time step gradient checkpointing,
which reduces memory usage by up to 50 times compared to standard training. Results on the most
recent SDXL and FLUX models show that EcoDiff is model-agnostic and can effectively prune
large diffusion models with a reasonable computing budget. Furthermore, our approach removes
up to 20% of model parameters without performance loss or the need for retraining—a substantial
improvement over prior works. Additionally, we show that we can prune on top of time step distilled
models, further reducing their latency and deployment requirement. Overall, our work establishes a
new standard for diffusion model pruning, highlighting the high parameter redundancy in diffusion
models. Future work can build on our work to achieve a higher compression level by incorporating
retraining or other compression techniques.
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A RELATED WORK

Efficient diffusion model: Several works focus on enhancing the efficiency of the diffusion models
at inference time. DDIM formulates the diffusion processes with non-Markovian transformations,
reducing the required diffusion steps for high-quality generation Song et al. (2021). The Latent
Diffusion Model adopts a two-stage generation process, performing the diffusion process in latent
space and decoding it back to the image domain using a Variational Autoencoder (VAE) Rombach
et al. (2022); Kingma & Welling (2014). Besides, some prior works accelerate diffusion inference
by sharing intermediate variables to reduce redundant computations Ma et al. (2024b;a); So et al.
(2023). However, these methods are often limited to specific architectures and do not generalize well
to newer diffusion models incorporating multi-modal attention. Early stopping methods attempt to
terminate the diffusion process once satisfactory generation is reached, but can sacrifice fine-grained
details Lyu et al. (2022). Distillation-based approaches train a student model that are either smaller
or can generate with fewer diffusion steps Salimans & Ho (2022); Meng et al. (2023); Gu et al.
(2023); Hsiao et al. (2024). Nevertheless, model distillation requires extensive retraining.

Model pruning: Pruning reduces model size, thereby lowering both memory requirements for load-
ing the model and computation demands during inference. Recent advances in model pruning have
predominantly focused on large language models (LLMs), where techniques such as unstructured
and semi-structured pruning eliminate connections between neurons, and structured pruning targets
neurons, attention heads, and layers Kwon et al. (2022a); Fang et al. (2024); Zhang et al. (2024b;a);
Yu et al. (2018); Ma et al. (2023); Kwon et al. (2022b); Sun et al. (2023). In contrast, pruning
methods for diffusion models remain relatively underexplored. Recent works have explored pruning
diffusion models. Castells et al. (2024) perform occlusion-based pruning that calculates an impor-
tance score for occluding a part through exhaustive search, but its high complexity limits scalability
to complex pruning scenarios with many candidates. Recently, Fang et al. (2023) uses gradient in-
formation as a proxy for neuron importance. Compared to the occlusion method, it scales to more
complex pruning cases. Nevertheless, both methods require retraining to retain the model perfor-
mance. Our optimization-based EcoDiff approach formulates a differentiable pruning objective to
learn a neuron mask. As a result, our method allows effective pruning without retraining.

B PRELIMINARIES

In this section, we briefly discuss some key designs of current diffusion models relevant to our
approach.

Latent diffusion model. In this study, we focus on pruning latent diffusion models (LDMs). Lever-
aging an efficient low-dimensional latent space, LDMs enables faster and more resource-efficient
image generation compared to traditional pixel-space models Rombach et al. (2022). The training
objective for LDMs is to minimize a latent noise prediction loss:

LLDM := Ez∼E(x),ϵ∼N (0,1),t

[
∥ϵ− ϵθ(zt, t)∥22

]
, (5)

where latent z is obtained via an encoder E that encodes x from image space to latent space, t is
uniformly sampled from {1, . . . , T}, and ϵθ(z, t) denotes a denoising model, which can be a U-Net
or a transformer model. The sampling process in LDMs iteratively reduces the noise in the initial
noisy latent zT ∼ N (0, I), until reaching the final denoised latent z0. This latent z0 is then decoded
via a pretrained decoder D to reconstruct image x̂ = D(z0). One denoising step can be summarized
by f(zt, y, t) as follows:

zt−1 =
1

√
αt

(
zt −

1− αt√
1− ᾱt

ϵ(zt, t, y)

)
+ σtη

= f(zt, y, t), (6)

where t ∈ {T, T−1, . . . , 1}, ϵ(zt, t, y) represents the latent denoising prediction of zt−1 conditioned
on the previous latent zt, time step t, and input condition y. The terms αt and ᾱt are noise schedule
parameters. The term σt denotes a controlled level of random noise, with η ∼ N (0, I).

Transformer blocks in diffusion models. Transformer blocks are one of the major building blocks
in U-Net diffusion models Rombach et al. (2022); Podell et al. (2024). In addition, recent diffu-
sion transformers employ fully transformer-based architectures. This makes transformer blocks a
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Figure 3: Neuron masking on MHA and FFN in transformer blocks. Here, a) illustrates masking
within an attention module and b) shows masking within an FFN. λ is the mask variable.

primary target for pruning to improve efficiency. A transformer block consists of a multi-head at-
tention (MHA) layer followed by a feed-forward network (FFN) Vaswani et al. (2017). The MHA
with h attention heads is defined as,

MHA(Q,K, V ) = (attn1∥ . . . ∥attnh)W o, (7)
where each attni is a dot product attention for head i, which is computed as attni =

softmax
(

QiK
⊤
i√

dk

)
Vi, with Qi = W i

Qx, Ki = W i
Kx, and Vi = W i

vx for an input x, W i
K ∈

Rdmodel×dk , W i
Q ∈ Rdmodel×dq , W i

V ∈ Rdmodel×dv and WO ∈ Rdv×dmodel . Additionally, ∥ denotes
concatenation along the feature dimension across the attention heads. The FFN applied after MHA
is defined as

FFN(x) = σ(xW1 + b1)W2 + b2, (8)
where W1 ∈ Rdmodel×dff and W2 ∈ Rdff×dmodel . σ(·) represents an activation function like GELU or
GeGLU Hendrycks & Gimpel (2016); Shazeer (2020).

Structural Pruning via Neuron Masking. Structural pruning has one advantage over nonstructural
pruning, as no special hardware support is required. This work focuses on pruning neurons in trans-
former blocks. To incorporate sparsity, we apply a learnable discrete pruning mask M ∈ {0, 1}n
on certain neurons of MHA and FFN, which is inspired by LLM-pruner and related methods Ma
et al. (2023); Kwon et al. (2022b); Sun et al. (2023). For MHA, we apply the pruning mask on each
attention head as shown in Figure 3a, resulting in a masked multi-head attention (MHA) defined as:

MHAmask(Q,K, V,M) = (M1 · attn1∥ . . . ∥Mh · attnh)W o, (9)
where Mi ∈ {0, 1} controls the output of each head, allowing for head-wise pruning based on
learned values. The masked FFN, as shown in Figure 3b, applies a mask Mffn ∈ {0, 1}dff on the
neurons after the activation layer, resulting in:

FFNmask(x,Mffn) = (σ(xW1 + b1)⊙Mffn)W2 + b2, (10)
where ⊙ denotes as the Hadamard product. This masking design of MHA and FFN will not change
the input and output dimensions of a pruned module, resulting in easier deployment with fewer
modifications on a pruned model.

C DETAILS OF ALGORITHMS

We present algorithms for end-to-end mask learning and time step gradient checkpointing.

D DERIVATION OF REGULARIZATION LOSS

In this section, we present the derivation of the approximated regularization loss with a simpler form
in our mask optimization. The sigmoid function is defined as:

Sigmoid(x) =
1

1 + e−z
(11)

11
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Algorithm 1 End-to-End Diffusion Model Pruning
Input: Pre-trained denoise model ϵθ and masked pre-trained denoise model ϵmask

θ with masking parameters M
with initial valueMinit, text prompts x ∼ X =

{
xi
}N

i=1
, regularization coefficient β, learning rate η

Output: Learned pruning mask M
1: zT ∼ N (0, I) ▷ Initialize with latent random noise
2: for x in X do ▷ x as text prompt for training
3: z0 ← Fϵθ (zt, x) ▷ Original latent z0 via ϵθ
4: ẑ0 ← Fϵmask

θ
(zt, x,M) ▷ Masked latent ẑ0 via ϵmask

θ

5: L =
∑

x ∥ẑ0 − z0∥2 + β∥M∥0 ▷ Loss with regularization
6: M←M+ η dL

dM
7: end for
8: return M

Algorithm 2 Time Step Gradient Checkpointing

Require: masked diffusion model ϵmask
θ , target latent z0, diffusion time steps t = 1, 2, . . . , T , masking param-

eters λ, loss function L, learning rate η.
1: dL

dλ
= 0,H ← ∅ ▷ Memory initialization for intermediate latent

2: for t = T, T − 1, . . . , 1 do
3: ẑt−1 ← ϵmask

θ (zt,λ) ▷ Calculate latent
4: H ← H∪ {ẑt−1} ▷ Only store denoised latent at this step
5: end for
6: L = LE(ẑ0, z0) + βL0(λ) ▷ Calculate loss
7: dL

dλ
+ = dL

dẑ0

dẑ0
λ

8: for t = 1, 2, . . . , T − 1 do
9: ẑt−1 ← ϵmask

θ (zt,λ) ▷ Recompute to save all intermediates
10: dL

dẑt
= dL

dẑt−1

dẑt−1

dẑt
▷ Get loss gradient w.r.t. the step before

11: dL
dλ

+ = dL
dẑt

dẑt
dλ

▷ Accumulate gradient
12: end for
13: return dL

dλ

Now we expand one summation term in Equation 4 by consider C = −β log −γ
ζ :

Sigmoid(log λj + C) =
1

1 + e−(log λj+C)
(12)

=
1

1 + e− log λje−C
(13)

=
1

1 + λ−1
j e−C

(14)

=
λj

λj + e−C
(15)

= λj ∗
1

λj + e−C
(16)

= λj ∗ g(λj), (17)

where g(λj) = 1
λj+e−C . We further simplify the result by considering the new constant to be

C := e−C . The gradient of g(λj) is:

g′(λj) = − 1

(λj + C)2
. (18)

Note that λi > 0 due to log λj . Hence, − 1
C2 < g′(λj) < 0, and for larger C, we can approximately

have g′(λj) ≈ 0. Therefore, we can treat g(λj) as constant and reformulate Equation 4 as

L0(λ) =

λ∑
j=1

Sigmoid(logλj − β log
−γ

ζ
) ≈ ||λ||1. (19)
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The approximation ∥λ∥1 reflects the relationship between the regularization term and the L1 norm,
as the Sigmoid function applied to each λj induces sparsity by encouraging values closer to zero,
similar to L1 regularization. Therefore, we use the L1 norm as a regularization loss. This approxi-
mation has the benefit of reducing calculation and providing a simpler form of regularization.

E DETAILED EXPERIMENT SETTING AND EVALUATION SETTING

By default, we set the masking value λ to 5, ensuring that the effective M is approximately 1 with a
high probability to facilitate smoother training. Table 2 and Table 3 are the default sampling training
configurations.

Table 2: Training Configuration for FLUX

Parameter Value
Batch size 4
lrattn 0.05
lrffn 1
lrnorm 0.5
β 0.1
δ 0.1
Optimizer Adam
Training Steps 400
Weight decay 1× 10−2

Scheduler constant
Diffusion pretrained weight FLUX.1-schnell
Hardware used 1 × NVIDIA H100

Table 3: Training Configuration for SDXL

Parameter Value
Batch size 4
lrattn 0.15
lrffn 0.15
lrnorm 0
β 0.5
δ 0.5
Optimizer Adam
Training Steps 400
Weight decay 1× 10−2

Scheduler constant
Diffusion pretrained weight stable-diffusion-2-base
Hardware used 1 × NVIDIA H100

E.1 EVALUATION CONFIGURATION

We conduct extensive experiments to evaluate the performance of EcoDiff using both FID and CLIP
scores, as summarized in Table 1. For the CLIP score, we use a pretrained ViT-B/16 model as the
backbone. For the FID score, we utilize the FID function from torchmetrics with its default settings
(e.g., the number of features set to 2048). To accelerate the evaluation process, all images are resized
to a uniform resolution of 512× 512 using bicubic interpolation.

F HARD DISCRETE DISTRIBUTION VISUALIZATION

Figure 5 illustrates the hard discrete distributions with varying values of δ. With higher δ values,
such as 1 or 2, after 100 runs, the estimated hard discrete distribution is closer to a step function than
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Figure 4: Comparison of hard discrete and sigmoid distributions. The hard discrete distribution
yields a discrete-like, sparse output by clamping values between 0 and 1, making it well-suited for
masking tasks where controlled sparsity is beneficial. Parameters are set to β = 0.83, δ = 1×10−8,
ζ = 1.1, and γ = −0.1. Additional samples of the hard discrete distribution with varying δ values
are provided in Appendix F.

the original sigmoid function. Conversely, with lower δ, the distribution aligns more closely with
the sigmoid function. By adjusting δ, the training process can be tuned to either enhance robustness
against randomness or increase randomness to escape local minima. Further detailed ablation studies
on δ are necessary and will be addressed in future work.

G ADDITIONAL RESULTS

G.1 COMPLEXITY ASSESSMENTS

We evaluate our pruning framework’s runtime and memory consumption with SD2, as shown in Fig-
ure 8. The experiment results demonstrate the consistency with the theorem stated in Section 2.3.
By using time-step gradient checkpointing, we significantly reduce memory usage from O(T )
to O(1), as illustrated in Figure 8a). Additionally, Figure 8b) demonstrates that, despite the sig-
nificantly reduced memory usage, the runtime complexity remains O(T ) with only an 2× increase
in runtime. The time-step gradient checkpoint enables end-to-end training on resource-constrained
devices, including the largest DiT model, FLUX, with just a single 80GB GPU. We further provide
the carbon footprint analysis of performing pruning using EcoDiff in Appendix N.

G.2 ABLATION STUDY

Evaluation with different pruning ratios. With our proposed framework, the learned pruning
mask M acts as a score-based mask, indicating the redundancy of each network component. The
pruning ratio can be flexibly adjusted by applying different thresholds τ in Equation ??. Figure 7
demonstrates how the quality of the generated image changes with different pruning ratios. The
quality of generated images can be preserved up to a pruning ratio of 20%. At pruning ratios of 10%
and 15%, for the prompt, “A cat and a dog are playing chess,” the generated image even exhibits
enhanced semantic meaning compared to the original image, further validating the decreased FID
score in Table 1 and Figure 9. With higher pruning ratio, model performance starts to degrade
at 20% pruning rate for FLUX and 25% for SDXL. Hyperparameter ablations. We perform an
ablation study on the regularization coefficient β in Equation B as well as the training dataset size.
An optimal β value, such as 0.5, is necessary to promote sparsity while maintaining high semantic
fidelity. However, as illustrated in Table 4, excessively high values of β can easily lead to training
divergence. Additionally, we conduct experiments across various training dataset sizes, ranging
from 1 to 512, as shown in Table 5. Notably, even when training with a single randomly selected text
prompt, the performance degradation relative to a dataset size of 100 remains minimal, suggesting
that the pruned or masked components of the network are largely independent of the dataset size.
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(a) Hard Discrete with δ = 0.05

(b) Hard Discrete with δ = 0.1

(c) Hard Discrete with δ = 0.2

Figure 5: Hard discrete distribution with varying δ values. (a) δ = 0.05, (b) δ = 0.1, (c) δ = 0.2.
We use the default hard discrete setting as it states in Figure 4.

Other ablations. More ablation studies in Appendix K. We show the compatibility of EcoDiff with
time step distillation and feature reuse methods in Appendix I.

H RESULTS ON STABLE DIFFUSION 2

EcoDiff is designed to be versatile, adaptable and model-agnostic. For Stable Diffusion 2 (SD2),
we specifically focus our pruning approach on the attention (Attn) and feed-forward network (FFN)
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Figure 6: Example images for comparison. We intentionally use ChatGPT to generate prompts
with rich semantics. No retraining is performed for all methods. DeepCache does not reduce the
model size. More examples are provided in Appendix L.
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Figure 7: Masking diffusion model, SDXL-base, with different pruning ratios. These examples
highlight the versatility of our framework in applying different pruning ratios to mask the diffusion
model effectively. In addition, pruning redundant parts can sometimes fix the incorrect seman-
tics, as shown in the second row (10% and 15% pruning ratio cases). More examples are provided
in Appendix M.

blocks. Table 6 highlights the model-agnostic feature of EcoDiff, demonstrating its ability to opti-
mize diverse architectures without requiring model-specific adjustments or design changes.

I COMPATIBILITY WITH OTHER METHODS

I.1 COMPATIBILITY WITH STEP DISTILLATION

I.2 COMPATIBILITY WITH FEATURE REUSE

EcoDiff demonstrates high versatility by efficiently integrating with feature reuse methods like
DeepCache Ma et al. (2024b) as shown in Figure 10. Additionally, combining EcoDiff with Deep-
Cache enables significant reductions in effective GFLOPs and runtime, highlighting its compatibil-
ity and effectiveness in optimizing resource usage.
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Figure 8: VRAM usage and runtime per training step comparison with and without gradient
checkpointing on SD2. Measurements are averaged over five runs.

Figure 9: Evaluation on different pruning ratios. Models start to degrade at 20% pruning for
FLUX and 25% for SDXL.

J MORE RESULTS ON LIGHT RETRAINING

Figure 11 and Table 7 illustrate that the pruned model’s performance with EcoDiff drops signif-
icantly beyond a 20% pruning ratio. To mitigate this, we adopt a lightweight retraining strategy
using LoRA fine-tuning with only 100 image-text pairs. The images, generated using the same
prompts from GCC3M Sharma et al. (2018), are synthesized by the original diffusion model rather
than the original dataset. The retraining, conducted around 12 hours and 10,000 steps, demonstrates
the compatibility of our EcoDiff framework. As seen in Figure 11, prompts such as A robot dog
exploring an abandoned spaceship, A mystical wolf howling under a glowing aurora, and A cozy li-
brary with a roaring fireplace highlight that while semantic fidelity is largely preserved, fine-grained
features degrade significantly in the pruned model. After LoRA retraining, these fine-grained de-
tails are substantially recovered while maintaining semantic fidelity with some exceptions with a
significant reduction in FID score and a noticeable increase in CLIP score as is shown in Table 8.

17



Published as a workshop paper at SCOPE - ICLR 2025

β 0.01 0.1 0.5 1 2

FID ↓ 41.23 34.23 33.74 67.78 121.2
CLIP ↑ 0.29 0.30 0.30 0.221 0.19

Table 4: Ablation study on β. Evaluated on MS COCO dataset with a fixed pruning ratio of 20%
on SDXL

Size 1 8 64 100 256 512

FID ↓ 35.18 36.17 34.13 33.74 33.76 33.68
CLIP ↑ 0.30 0.31 0.31 0.30 0.31 0.31

Table 5: Ablation study on training data size. Evaluated on MS COCO dataset with a fixed
pruning ratio of 20% on SDXL. We can achieve good pruning result with even one sample.

K MORE ABLATION STUDY

K.1 ABLATION ON PRUNING SINGLE MODULES

Figure 13 demonstrates the flexibility of our pruning mask, allowing for adjustable thresholding
across different blocks, such as pruning exclusively in the Attn or FFN blocks. Notably, image
quality retains high fidelity regardless of the targeted pruning module. However, minor variations
in fine-grained details and semantic meaning are observed, and we will investigate them further in
future work.

K.2 ABLATION ON PRUNING SETTING

We apply a threshold τ to mask the head and FFN layers. Thresholding can be applied in two ways:
globally across all blocks or locally within each block (e.g., FFN, Norm, Attn). Global thresholding
uses a single threshold τ applied to the entire mask M. In contrast, local thresholding applies
τ individually within each block, treating them independently. To evaluate these approaches, we
conduct an ablation study, and the results are shown in Figure 12. The global thresholding approach
demonstrates superior results, accounting for the interactions and trade-offs between layers and
blocks, leading to more effective masking. In contrast, local thresholding results in a deterioration
in quality.

K.3 ABLATION STUDY ON FLUX

Table 9 and Table 10 present the results of our ablation studies on FLUX. Similar results are ob-
served with the SDXL model. Notably, even with just a single training data point, FLUX can pro-
duce relatively competitive results, highlighting its robustness and efficiency in resource-constrained
scenarios.

L ADDITIONAL SAMPLE RESULTS

Figure ?? demonstrate the additional samples with baseline approaches, DeepCache and DiffPrun-
ing Ma et al. (2024b); Fang et al. (2023).

M SEMANTIC CHANGING WITH DIFFERENT PRUNING RATIOS

Figure 15 and Figure 14 show the superior performance of EcoDiff with up to 20% of pruning ratio
for SDXL and 15% for FLUX.
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Model MS COCO Flickr30K
FID CLIP FID CLIP

SD2 30.15 0.33 36.10 0.35

EcoDiff Pruning 10%* 30.61 0.32 38.12 0.34

EcoDiff Pruning 20%* 31.16 0.32 42.67 0.34

Table 6: Ablation study of SD2 models. Metrics include FID and CLIP scores on MS COCO and
Flickr30K datasets. * denotes as the model pruning ratio on the Attn and FFN only.

Model MS COCO Flickr30K
FID CLIP FID CLIP

FLUX Dev 35.59 0.32 45.68 0.34

FLUX-Schnell Step-Distilled 30.99 0.33 39.70 0.35

FLUX EcoDiff Pruning 10% 32.16 0.32 42.56 0.34

FLUX EcoDiff Pruning 15% 31.76 0.30 43.25 0.33

Table 7: Ablation study of Flux models, Flux-dev, Flux-schnell. Metrics include FID and CLIP
scores on MS COCO and Flickr30K datasets.

N CARBON FOOTPRINT ANALYSIS

We conduct a carbon footprint analysis for EcoDiff training. The analysis uses training configura-
tions with only 200 training steps, as most configurations converge within 400 steps. The carbon
footprint calculations are based on the default configurations outlined in Appendix E. All calcula-
tions follow the methodology used in the SD2 carbon footprint analysis Rombach et al. (2022).

19



Published as a workshop paper at SCOPE - ICLR 2025

Original EcoDiff 
20% pruning

EcoDiff  
+ DeepCache

A 
flo

at
in

g 
ci

ty
 a

bo
ve

 th
e 

cl
ou

ds
 a

t s
un

se
t.

A 
m

ag
ic

al
 tr

ee
 w

ith
  

gl
ow

in
g 

fr
ui

t i
n 

a 
 d

ar
k 

fo
re

st

A 
m

ed
ie

va
l c

as
tle

  
su

rr
ou

nd
ed

 b
y 

fo
g

A 
ro

bo
t d

og
 e

xp
lo

rin
g 

an
 

ab
an

do
ne

d 
sp

ac
es

hi
p

Figure 10: EcoDiff with DeepCache
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Figure 11: EcoDiff Pruning with light retraining.

Model MS COCO Flickr30K
FID CLIP FID CLIP

SDXL original 35.50 0.31 49.34 0.34

EcoDiff with retraining Pruning 25% 35.65 0.31 46.47 0.34

EcoDiff without retraining
Pruning 25% 36.24 0.30 47.49 0.31

EcoDiff with retraining Pruning 30% 40.21 0.30 48.98 0.32

EcoDiff without retraining Pruning 30% 79.84 0.25 75.07 0.27

Table 8: Performance comparison with and without light retraining on SDXL
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Figure 12: EcoDiff Pruning with global thresholding and local thresholding
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Figure 13: EcoDiff Prunig with masking on single Module, FFN module or Attn module.

β 0.001 0.005 0.01 0.1 0.5

FID ↓ 43.21 44.50 43.24 87.5 323.1
CLIP ↑ 0.32 0.34 0.33 0.21 0.03

Table 9: Ablation study on β. Evaluated on Flickr30K dataset with a fixed pruning ratio of 15%
on FLUX.

Size 1 8 100 256 512

FID ↓ 29.79 31.51 31.76 77.48 33.25
CLIP ↑ 0.31 0.30 0.30 0.26 0.33

Table 10: Ablation study on training data size. Evaluated on MS COCO dataset with a fixed
pruning ratio of 15% on FLUX.

Model MS COCO Flickr30K
FID CLIP FID CLIP

SDXL Original 35.50 0.31 49.34 0.34

EcoDiff 20% Global 34.41 0.31 42.84 0.33

EcoDiff 20% Local 92.84 0.26 117.18 0.27

Table 11: Ablation study of SDXL models with different pruning setting

Model Training
Time(hours)

VRAM
Usage GPU hours Carbon

Footprint
SD2 3 4.6G 0.16 12.0g

SDXL 4.4 22.9G 1.24 93.0g
FLUX 0.54 64.2G 0.42 31.50g

Table 12: Carbon Footprint and Running hours.
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Figure 14: More Samples with masking diffusion model, SDXL-base, with different pruning
ratios.
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Figure 15: More Samples with masking diffusion model, FLUX-schnell, with different pruning
ratios.
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