
EXGC: Bridging Efficiency and Explainability in Graph
Condensation

Anonymity

ABSTRACT
Graph representation learning on vast datasets, like web data, has
made significant strides. However, the associated computational and
storage overheads raise concerns. In sight of this, Graph condensa-
tion (GCond) has been introduced to distill these large real datasets
into a more concise yet information-rich synthetic graph. Despite
acceleration efforts, existing GCond methods mainly grapple with
efficiency, especially on expansive web data graphs. Hence, in this
work, we pinpoint two major inefficiencies of current paradigms:
(1) the concurrent updating of a vast parameter set, and (2) pro-
nounced parameter redundancy. To counteract these two limita-
tions correspondingly, we first (1) employ the Mean-Field varia-
tional approximation for convergence acceleration, and then (2)
propose the objective of Gradient Information Bottleneck (GDIB) to
prune redundancy. By incorporating the leading explanation tech-
niques (e.g., GNNExplainer and GSAT) to instantiate the GDIB, our
EXGC, the Efficient and eXplainable Graph Condensation method
is proposed, which can markedly boost efficiency and inject ex-
plainability. Our extensive evaluations across eight datasets un-
derscore EXGC’s superiority and relevance. Code is available at
https://anonymous.4open.science/r/EXGC.

KEYWORDS
Graph Neural Networks, Graph Condensation, Model Explainability

1 INTRODUCTION
Web data, such as social networks [12], transportation systems
[45, 70], and recommendation platforms [51, 52], are often repre-
sented as graphs. These graph structures are ubiquitous in everyday
activities, including streaming on Netflix, interacting on Facebook,
shopping on Amazon, or searching on Google [2, 68]. Given their
tailor-made designs, Graph Neural Networks (GNNs) [10, 19, 25]
have emerged as a prevalent solution for various tasks on graph-
structured data and showcased outstanding achievements across a
broad spectrum of graph-related web applications [18, 22, 62, 69].

However, real-world scenarios often entail the handling of large-
scale graphs encompassing millions of nodes and edges [21, 28],
posing substantial computational burdens during the training of
GNN applications [9, 56, 60]. Worse still, the challenges are exacer-
bated when fine-tuning hyperparameters and discerning optimal
training paradigms for over-parametrized GNN models. Against
this backdrop, a crucial inquiry arises: can we effectively simplify
or reduce the graph size to accelerate graph algorithm operations,
including GNNs, while also streamlining storage, visualization, and
retrieval essential for graph data analysis [23, 42, 64]?

As a primary solution, graph sampling emphasizes selecting piv-
otal edges/nodes and omitting the less relevant ones [5, 6, 11, 41].
However, this can lead to considerable information loss, potentially
harming model performance [44, 50]. Conversely, graph distillation
aims to compress the extensive real graph T into a concise yet

Figure 1: The compression capability and limitations of current
GCond. (a) GCond adeptly compresses the dataset to just 0.1% of its
initial size without compromising the accuracy benchmarks. (b) Con-
trary to traditional graph learning, GCond’s parameters scale with
node count. (c) To avoid insufficient information capacity, GCond
typically introduces node redundancy.

information-rich synthetic graph S, enhancing the efficiency of the
graph learning training process. Within this domain, the graph
condensation (GCond) stands out due to its exceptional compres-
sion capabilities [23, 24]. For instance, as depicted in Figure 1 (a), the
graph learning model trained on the synthetic graph S (containing
just 154 nodes generated by GCond) yields a 91.2% test accuracy
on Reddit, nearly matching the performance of the model trained
on the original dataset with 153,932 nodes (i.e., 93.5% accuracy).

Despite their successes, we argue that even with various ac-
celeration strategies, current GCond methods remain facing ef-
ficiency challenges in the training process, particularly on large
graph datasets such as web data. This inefficiency arises from two
main factors:
• Firstly, as depicted in Figure 1 (b), the prolonged convergence
stems from the concurrent updating of an overwhelming number
of parameters (i.e., elements in node features of S). Specifically,
unlike conventional graph learning where parameter dimension-
ality is dataset-agnostic, in GCond, the number of parameters
grows with the nodes and node feature dimensions, imposing
substantial computational and storage demands.
• Secondly, as illustrated in Figure 1 (c), the current GCond ap-
proaches mainly exhibit node redundancy. Concretely, when
compressing new datasets, to counteract the risk of insufficient
information capacity from too few nodes, a higher node count

https://anonymous.4open.science/r/EXGC

Conference’17, July 2017, Washington, DC, USA Trovato et al.

is typically employed by S, leading to parameter redundancy in
the training process. Depending on the dataset attributes, this
redundancy can vary, with some instances exhibiting as much as
92.7% redundancy. We put further discussion in Section 3.3.

In sight of this, in this work, we aim to refine the paradigm of
GCond to mitigate the above limitations. Specifically, for the first
limitation, we scrutinize and unify the paradigms of the current
methods from the perspective of Expectation Maximization (EM)
framework [8, 33], and further formulate it as the theoretical basis
for our forthcoming optimization schema. From this foundation, we
pinpoint the efficiency bottleneck in the training process, i.e., the
computation of intricate posterior probabilities during the Expec-
tation step (E-step). This insight led us to employ the Mean-Field
(MF) variational approximation [3] – a renowned technique for
improving the efficiency of E-step with intricate variables – to re-
vise the paradigm of GCond. The streamlined method is termed
Mean-Field Graph Condensation (MGCond).

Then, for the second limitation, our solution seeks to ‘explain’
the training process of the synthetic graphS: we prioritize the most
informative nodes in S (i.e., nodes encapsulating essential informa-
tion for model training) and exclude the remaining redundant nodes
from the training process. To formulate this objective, inspired by
the principle of graph information bottleneck, we introduce the
Gradient Information Bottleneck (GDIB). Building upon GDIB, our
EXGC, the Efficient and eXplainable Graph Condensation method,
is proposed by integrating the leading explanation strategies (e.g.,
GNNExplainer [57] and GSAT [32]) into the paradigm of MGCond.

Our contribution can be summarized as follow:

• For the limitation of inefficiency, we unify the paradigms of
current approaches to pinpoint the cause and leverageMean-Field
variational approximation to propose the MGCond for boosting
efficiency (Section 3.1 & 3.2).
• For the caveat posed by node redundancy, we introduce the ob-
jective of Gradient Information Bottleneck, and utilize the lead-
ing explanation methods to develop an explainable and efficient
method, EXGC (Section 3.3 & 3.4).
• Extensive experiments demonstrate that our EXGC outperforms
the baselines by a large margin. For instance, EXGC is 11.3 times
faster than the baselines on Citeseer (Section 4).

Furthermore, it is worth mentioning that beyond the tasks of
graph condensation, the superior performance of EXGC across
various backbones (i.e., explainers) also verifies the effectiveness of
the graph explanation methods in enhancing downstream graph
tasks. To our knowledge, this stands as one of the vanguard efforts
in the application of graph explainability, addressing a crucial yet
rarely explored niche.

2 PROBLEM FORMULATION
In this part, we retrospect the objective of graph condensation.
Specifically, graph condensation endeavors to transmute a large,
original graph into a compact, synthetic, and highly informative
counterpart. The crux of this process is to ensure that the GNNs
trained on the condensed graphmanifest a performance comparable
to those trained on the original graph.

Notations. Initially, we delineate the common variables utilized in
this study. We start from the original graph T = (A,X,Y), where
A ∈ R𝑁×𝑁 is the adjacency matrix, 𝑁 is the number of nodes and
X ∈ R𝑁×𝑑 is the 𝑑-dimensional node feature attributes. Further,
we note the label of nodes as Y = {0, 1, . . . ,𝐶 − 1}𝑁 denotes the
node labels over 𝐶 classes. Our target is to train a synthetic graph
S = (A′,X′,Y′) with adjacency matrix A′ ∈ R𝑁 ′×𝑁 ′ and feature
attributes X′ ∈ R𝑁 ′×𝐷 (𝑁 ′ ≪ 𝑁), which can achieve comparable
performance with T under GNNs inference process.

Graph condensation via gradient matching. The above objec-
tive of graph condensation can be formulated as follows:

min
S
L

(
𝑓𝜃S (A,X) ,Y

)
,

s.t. 𝜃S = argmin
𝜃

L
(
𝑓𝜃 (A′,X′),Y′

)
,

(1)

where L represents the loss function and 𝑓𝜃 denotes the graph
learning model 𝑓 with parameters 𝜃 . In pursuit of this objective,
the previous works typically employ the gradient matching scheme
following [23, 24, 66]. Concretely, given a graph learning model 𝑓𝜃 ,
these methods endeavor to reduce the difference of model gradients
w.r.t. real data T and synthetic data S for model parameters [23].
Hence, the graph learning models trained on synthetic data will
converge to similar states and share similar test performance with
those trained on real data.

3 METHODOLOGY
In this section, we first unify the paradigms of current GCond
methods in Section 3.1. Building upon this, we propose theMGCond,
which employs MF approximation to boost efficiency in Section 3.2.
Furthermore, to eliminate the redundancy in the training process,
we introduce the principle of GDIB in Section 3.3 and instantiate it
to develop our EXGC in Section 3.4.

3.1 The Unified Paradigm of GCond
As depicted in Section 2, graph condensation aims to match the
model gradients w.r.t large-real graph T and small-synthetic graph
S for model parameters. This process enables GNNs trained on T
and S to share a similar training trajectory and ultimately converge
to similar states (parameters). We formulate this gradient matching
process as follows:

max
S

E𝜃∼P𝜃 𝑃 (∇
′
𝜃
= ∇𝜃),

s.t. ∇′
𝜃
=
𝜕L(𝑓𝜃 (S),Y′)

𝜕𝜃
,∇𝜃 =

𝜕L(𝑓𝜃 (T),Y)
𝜕𝜃

,
(2)

where P𝜃 denotes the distribution of 𝜃 ’s potential states during
the training process. For example, [24] defines P𝜃 as the set of
parameter states that can appear throughout a complete network
training process, while [23] simply defines it as the potential initial
states of the parameters.

Considering the computational complexity of jointly optimiz-
ing X′, A′, and Y′, and the interdependency between these three
variables, current methods typically fix the labels Y′ and design a
MLP-based model 𝑔Φ with parameters Φ to calculate A′ following

EXGC: Bridging Efficiency and Explainability in Graph Condensation Conference’17, July 2017, Washington, DC, USA

Figure 2: The paradigm of current GCond methods from the perspective of the EM schema, and the E-step of our proposed MGcond and EXGC.

A′ = 𝑔Φ (X′) [24]. In this case, Equation 2 can be rewrite as:

max
X′,Φ

E𝜃∼P𝜃 𝑃 (∇
′
𝜃
= ∇𝜃),

s.t. ∇′
𝜃
=
𝜕L(𝑓𝜃 (X′, 𝑔Φ (X′)),Y′)

𝜕𝜃
,∇𝜃 =

𝜕L(𝑓𝜃 (X,A),Y)
𝜕𝜃

.
(3)

Without loss of generality, ∇′
𝜃
and ∇𝜃 are consistently defined as

provided here in the following text, even though not all previous
methods have employed the MLP-based simplification strategy 1.

After random initialization, Equation 3 can be achieved by al-
ternately optimizing the variable X′ and the model parameters Φ,
which naturally adheres to the Expectation-Maximization schema,
as shown in Figure 2 (a). Specifically, the EM algorithm alternates
between the expectation step (E-step) and the maximization step
(M-step):
• E-step: Estimate the variable X′ while freezing the model 𝑔Φ,
then utilize it to calculate the Evidence Lower Bound (ELBO) of
the objective of the gradient matching in Equation 3.
• M-step: Fine the parameters Φwhich maximizes the above ELBO.
After instantiating the above schema, graph condensation can be
formulated as follows, where 𝑡 represents the training epoch and
∇𝜃 is a simplified notation for ∇′

𝜃
= ∇𝜃 :

• Initialization: Select the initial value of the parameter Φ(0) and
the node feature X′ (0) , then start the iteration;
• E-step: Use the model 𝑔(Φ(𝑡)) to estimate the node features
X′ (𝑡) according to 𝑃 (X′ (𝑡) |∇𝜃 ,Φ(𝑡)) and calculate the ELBO:

ELBO→ 𝐸X′ (𝑡) |∇𝜃 ,Φ(𝑡) [log
𝑃 (X′ (𝑡) ,∇𝜃 | Φ)
𝑃 (X′ (𝑡) | ∇𝜃 ,Φ(𝑡))

]; (4)

• M-step: Find the corresponding parameters Φ(𝑡+1) when the
above ELBO is maximized:

Φ(𝑡+1) := argmax
Φ

𝐸X′ (𝑡) |∇𝜃 ,Φ(𝑡) [log
𝑃 (X′ (𝑡) ,∇𝜃 | Φ)
𝑝 (X′ (𝑡) | ∇𝜃 ,Φ(𝑡))

]; (5)

• Output: Repeat the E-step and M-step until convergence, then
output the synthetic graph S according to the final X′ and Φ.
The detailed derivation of the above Equations is shown in Ap-

pendix B.

1For methods that do not adopt the simplification strategy, by replacing 𝑔Φ with A,
the subsequent theoretical sections still hold true.

Revealing the Limitation of Inefficiency. However, we have
noticed that even with various acceleration strategies [24], the
above paradigm remains facing efficiency challenges in the training
process. We attribute this limitation to the estimation process of X′
in E-step. Specifically, in contrast to traditional graph learning tasks
where the number of network parameters is dataset-agnostic, for
graph condensation task, the number of to-be-updated parameters
in E-step (i.e., elements in X′) linearly increases with the number
of nodes 𝑁 and feature dimensions 𝑑 , posing substantial burden of
gradient computation and storage.

This flaw is particularly evident on large graph datasets such as
web data with millions of nodes (𝑁) and thousands of feature di-
mensions (𝑑). Therefore, it is crucial to find a shortcut for expediting
the current paradigm.

3.2 Boost Efficiency: MGCond
To address the limitation of inefficiency, we aim to inject the Mean-
Field variational approximation [3] into the current GCond para-
digm. In practice, MF approximation has been extensively verified
to enhance the efficiency of the EM framework containing variables
with complex distributions. Hence, it precisely matches the chal-
lenge encountered in our E-step, where the to-be-updated variable
X′ possesses large dimensions. Next, we elucidate the process of
leveraging MF estimation to enhance the GCond paradigm.

Firstly, MF approximation assumes that the to-be-updated vari-
able can be decomposed into multiple independent variables, align-
ing naturallywith the property of node featuresX′ = {𝑥 ′1, 𝑥

′
2, ..., 𝑥

′
𝑁 ′ }

of S in our E-step (i.e., Equation 4):

𝑃 (X′) =
𝑁 ′∏
𝑖=1

𝑃
(
𝑥 ′𝑖
)
, (6)

where 𝑥 ′
𝑖
is the feature of the 𝑖-th node in graph S. By substituting

Equation 6 into the ELBO in Equation 4 we obtain:

ELBO =

∫ 𝑁 ′∏
𝑖=1

𝑃
(
𝑥 ′𝑖
)
log 𝑃 (∇𝜃 ,X′)𝑑X′

−
∫ 𝑁 ′∏

𝑖=1
𝑃
(
𝑥 ′𝑖
)
log

𝑁 ′∏
𝑖=1

𝑃
(
𝑥 ′𝑖
)
𝑑X′ .

(7)

Conference’17, July 2017, Washington, DC, USA Trovato et al.

In this case, while we focus on the node feature 𝑥 ′
𝑗
and fix its

complementary set X′\𝑗 = {𝑥 ′1, ...𝑥
′
𝑗−1, 𝑥

′
𝑗+1, ..., 𝑥

′
𝑁 ′ }, the ELBO in

Equation 7 can be rewritten as:

ELBO =

∫
𝑃

(
𝑥 ′𝑗
) ∫ 𝑁 ′∏

𝑖=1,𝑖≠𝑗
𝑃
(
𝑥 ′𝑖
)
log 𝑃 (∇𝜃 ,X′)𝑑𝑖≠𝑗𝑥 ′𝑖𝑑𝑥

′
𝑗

−
∫

𝑃

(
𝑥 ′𝑗
)
log 𝑃

(
𝑥 ′𝑗
)
𝑑𝑥 ′𝑗 +

𝑁 ′∑︁
𝑖=1,𝑖≠𝑗

∫
𝑃
(
𝑥 ′𝑖
)
log 𝑃

(
𝑥 ′𝑖
)
𝑑𝑥 ′𝑖 ,

(8)

where the third term can be considered as the constant 𝐶 because
X′\𝑗 is fixed. Then, to simplify the description, we define:

log 𝑃 𝑗 (X′,∇𝜃) = 𝐸∏𝑁 ′
𝑖=1,𝑖≠𝑗 𝑃 (𝑥 ′𝑖) [log 𝑃 (X

′,∇𝜃)]

=

∫ 𝑁 ′∏
𝑖=1,𝑖≠𝑗

𝑃
(
𝑥 ′𝑖
)
log 𝑃 (X′,∇𝜃)𝑑𝑖≠𝑗𝑥 ′𝑖 ,

(9)

and combine it with Equation 8 to obtain the final form of the ELBO
which is streamlined by the MF variational approximation:

ELBO =

∫
𝑃 (𝑥 ′𝑗)

log 𝑃 𝑗 (X′,∇𝜃)
𝑃 (𝑥 ′

𝑗
) 𝑑𝑥 ′𝑗 +𝐶

= −𝐾𝐿
(
𝑃 (𝑥 ′𝑗)∥ log 𝑃 (X

′,∇𝜃)
)
+𝐶,

(10)

where 𝐾𝐿 denotes the Kullback-Leibler (KL) Divergence [7]. Due
to the non-negativity of the KL divergence, maximizing this ELBO
is equivalent to equating the two terms in the above KL divergence.
Based on this, we have:

𝑃 (X′) ∝
𝑁 ′∏
𝑗=1

log 𝑃 𝑗 (X′,∇𝜃), (11)

which can be regarded as the theoretical guidance for the X′ esti-
mation process in the E-step. The detailed derivation is exhibited
in Appendix C.

The Paradigm of MGCond. Equation 11 indicates that the estima-
tion of node feature 𝑥 ′

𝑗
in E-step can be performed while keeping

its complementary features X′\𝑗 fixed. Without loss of generality,
we generalize this conclusion from individual nodes to subsets of
nodes, and distribute the optimization process of each set evenly
over multiple iterations. This optimized E-step is the key distinction
between our MGCond and the prevailing paradigm, as illustrated
in Figure 2 (b). To be more specific, the paradigm of MGCond can
be formulated as follows:
• Initialization: Select the initial value of the parameter Φ(0) and
features X′ (0) , divide the nodes in graph S into 𝐾 parts equally
i.e., X′ = {X′1,X′2, ...,X′𝐾 }, and start the iteration;
• E-step: Use the model 𝑔(Φ(𝑡)) to estimate the features in subsets
X′ (𝑡)
𝑘

for 𝑘 = {1, 2, ..., 𝐾} according to:

X′ (𝑡+1)
𝑘

=

{
maxX′𝑘 𝑃 (X′𝑘 |X′

(𝑡)
\𝑘 ,∇𝜃 ,Φ

(𝑡)), if 𝑘 = 𝑟 + 1,
X′ (𝑡)
𝑘
, otherwise,

(12)

where 𝑟 is the remainder when 𝑡 is divided by 𝐾 .

• M-step: Find the corresponding parameters Φ(𝑡+1) when the
following ELBO is maximized:

Φ(𝑡+1) := argmax
Φ

𝐸X′ (𝑡+1) |∇𝜃 ,Φ(𝑡) [log
𝑃 (X′ (𝑡+1) ,∇𝜃 | Φ)
𝑝 (X′ (𝑡+1) | ∇𝜃 ,Φ(𝑡))

];

(13)
• Output: Repeat the E-step and M-step until convergence, then
output the synthetic graph S according to the final X′ and Φ.

3.3 Node Redundancy and GDIB
After executing MGCond we summarize two empirical insights that
primarily motivated the development of our XEGC as follows:
(1) The training process of X′ in E-step exhibits a long-tail problem.

That is, when 20% of the node featuresX′ are covered in training
(i.e., 𝑡 ≈ 0.2𝐾), the improvement in test accuracy has already
achieved 93.7% of the total improvement on average. In other
words, the remaining 80% of the node features only contribute
to 6.3% of the accuracy improvement.

(2) This long-tail problem has a larger variance. Specifically, even
for the same task with the same setting and initialization, when
20% of the X′ are covered in training, the maximum difference
between test accuracy exceeds 25% (i.e., difference between
72.4% and 98.8%), since those 20% trained nodes are randomly
selected from S.
These two observations indicate that there is a considerable

redundancy in the number of to-be-trained nodes. That is, the
synthetic graph S comprises a subset of key nodes that possess
most of the necessary information for gradient matching. If the
initial random selections pinpoint these key nodes, the algorithm
can yield remarkably high test accuracy in the early iterations. On
the other side, entirely training all node features X′ in S would not
only be computationally wasteful but also entail the potential risk
of overfitting the given graph learning model.

Therefore, it naturallymotivates us to identify and train these key
nodes in E-step (instead of randomly selecting nodes to participate
in training like MGCond). To guide this process, inspired by the
Graph Information Bottleneck (GIB) for capturing key subgraphs
[53, 61] and guiding GNNs explainability [13, 32], we propose the
GraDient Information Bottleneck (GDIB) for the compact graph
condensation with the capability of redundancy removal:

Definition 1 (GDIB): Given the the synthetic graph S with label Y′

and the GNN model 𝑓𝜃 , GDIB seeks for a maximally informative yet
compact subgraph S𝑠𝑢𝑏 by optimizing the following objective:

argmax
S𝑠𝑢𝑏

𝐼

(
S𝑠𝑢𝑏 ;∇′𝜃

)
− 𝛽𝐼 (S𝑠𝑢𝑏 ;S) , s.t. S𝑠𝑢𝑏 ∈ G𝑠𝑢𝑏 (S), (14)

where ∇′
𝜃
denotes the gradients 𝜕L(𝑓𝜃 (S),Y′)/𝜕 𝜃 ; G𝑠𝑢𝑏 (S) indi-

cates the set of all subgraphs ofS; 𝐼 represents the mutual information
(MI) and 𝛽 is the Lagrangian multiplier.

3.4 Prune Redundancy: EXGC
A Tractable Objective of GDIB. To pinpoint the crucial node
features to participate in the training process in E-step, we first
derive a tractable variational lower bound of the GDIB. Detailed
derivation can be found in Appendix D, which is partly adapted
from [32, 61].

EXGC: Bridging Efficiency and Explainability in Graph Condensation Conference’17, July 2017, Washington, DC, USA

Specifically, for the first term 𝐼 (S𝑠𝑢𝑏 ;∇′𝜃), a parameterized vari-
ational approximation 𝑄 (∇′

𝜃
| S𝑠𝑢𝑏) for 𝑃 (∇′𝜃 | S𝑠𝑢𝑏) is introduced

to derive its lower bound:

𝐼 (S𝑠𝑢𝑏 ;∇′𝜃) ≥ ES𝑠𝑢𝑏 ;∇′𝜃
[
log𝑄 (∇′

𝜃
| S𝑠𝑢𝑏)

]
. (15)

For the second term 𝐼 (S𝑠𝑢𝑏 ;S), we introduce the variational
approximation 𝑅(S𝑠𝑢𝑏) for the marginal distribution 𝑃 (S𝑠𝑢𝑏) =∑
S 𝑅 (S𝑠𝑢𝑏 | S) 𝑃 (S) to obtain its upper bound:

𝐼 (S𝑠𝑢𝑏 ;S) ≤ ES [KL (𝑃 (S𝑠𝑢𝑏 | S) ∥ 𝑅(S𝑠𝑢𝑏))] . (16)

By incorporating the above two inequalities, we derive a varia-
tional upper bound for Equation 14, serving as the objective for

argmax
S𝑠𝑢𝑏

E
[
log𝑄 (∇′

𝜃
| S𝑠𝑢𝑏)

]
− E [KL (𝑃 (S𝑠𝑢𝑏 | S) ∥ 𝑅(S𝑠𝑢𝑏))] .

(17)

Instantiation of the GDIB. To achieve the above upper bound, we
simply adopt 𝜕L(𝑓𝜃 (S𝑠𝑢𝑏),Y′)/𝜕 𝜃 to instantiate the distribution
𝑄 . Then, we specify the distribution 𝑅 in Equation 16 as a Bernoulli
distribution with parameter 𝑟 (i.e., each node is selected with prob-
ability 𝑟). As for 𝑃 (S𝑠𝑢𝑏 | S), we suppose it assigns the importance
score 𝑝𝑖 (i.e., the probability of being selected into S𝑠𝑢𝑏) to the 𝑖-th
node in S. After that, GDIB can be instantiated by the post-hoc
explanation methods such as:
• Gradient-based methods like SA [1] and GradCAM [40]. For
the 𝑖-th node, these methods first calculate the absolute values
of the elements in the derivative of L(𝑓𝜃 (S),Y′) w.r.t 𝑥𝑖 (i.e., the
features of the 𝑖-th node). After that, the importance score 𝑝𝑖 is
defined as the normalized sum of these values. More formally:

𝑝𝑖 = softmax
𝑖∈[1,2,...,𝑁]

(
| 𝜕L(𝑓𝜃 (S),Y

′)
𝜕𝑥𝑖

| · 1T
)
. (18)

• Local Mask-based methods like GNNExplainer [57] and Graph-
MASK [39]. Concretely, for the first term of Equation 17, these
methods firstly multiply the node’s features 𝑥 ′

𝑖
with the initialized

node importance score 𝑝𝑖 to get X′′ = {𝑝1𝑥 ′1, 𝑝2𝑥
′
2, ..., 𝑝𝑁 ′𝑥

′
𝑁 ′ },

and feed X′′ into model 𝑓𝜃 to obtain the output 𝑦𝑝 . Then they
attempt to find the optimal score 𝑝𝑖 by minimizing the difference
between this processed output𝑦 and the original prediction. Con-
currently, for the second term of Equation 17, these methods set
𝑟 to approach 0, making the value of the KL divergence propor-
tional to the score 𝑝𝑖 . As a result, they treat this KL divergence
as the 𝑙1-norm regularization term acting on 𝑝𝑖 to optimize the
training process of 𝑝𝑖 . After establishing these configurations,
the optimal score can be approximated through several gradient
descents following:

p = min
p
𝐷
(
𝑦;𝑦𝑝

)
+ 𝜆p · 1T, (19)

where p is defined as {𝑝1, 𝑝2, ..., 𝑝𝑁 }; 𝐷 denotes the distance
function; 𝜆 is the trade-off parameter; 𝑦 and 𝑦𝑝 represents:{

𝑦 = 𝑓𝜃 ({X′, 𝑔Φ (X′)}),
𝑦𝑝 = 𝑓𝜃 ({X′′, 𝑔Φ (X′′)}),

(20)

• Global Mask-based methods like GSAT2 [32] and PGExplainer
[31]. Here, during the instantiation process of the first term of
Equation 17, the trainable 𝑝𝑖 in Local Mask-based methods is

2The GSAT mentioned here refers to the GSAT in the post-explanation mode [32].

replaced with a trainable MLP𝜓 (i.e., 𝑝𝑖 = MLP𝜓 (𝑥 ′𝑖)) and 𝑦𝑝 is
correspondingly replaced with 𝑦MLP. Meanwhile, for the second
term in Equation 17, these methods set 𝑟 ∈ (0, 1) to instantiate
the KL divergence as the information constraint (ℓ𝐼) proposed by
[32], where ℓ𝐼 is defined as:

ℓ𝐼 =
∑︁

𝑖∈1,2,...,𝑁
𝑝𝑖 log

𝑝𝑖

𝑟
+ (1 − 𝑝𝑖) log

1 − 𝑝𝑖
1 − 𝑟 . (21)

Treating ℓ𝐼 as a regularization term acting on p, the explainers can
obtain the approximate optimal score p through several gradient
optimizations of𝜓 following:

𝜓 = min
𝜓
𝐷 (𝑦;𝑦MLP) + 𝜆ℓ𝐼 , (22)

After obtaining the importance score 𝑝𝑖 , the crucial subgraph
S𝑠𝑢𝑏 in GDIB can be composed of nodes with larger scores 𝑝𝑖 .

The Paradigm of EXGC. As illustrated in Figure 2 (c), after lever-
aging the above leading post-hoc graph explanation methods to
achieve the objective of GDIB, we summarize the paradigm of our
EXGC as follows:
• Initialization: Select the initial value of the parameter Φ(0) , the
node features X′ (0) , the set of the node index M and the ratio of
nodes optimized in each E-step as 𝜅, then start the iteration;
• E-step: Leverage the above explainers to assign an importance
score 𝑝𝑖 to the 𝑖-th node in S for the index 𝑖 in setM:

{𝑝𝑖 } = Explainer ({𝑥𝑖 }, 𝑓𝜃) , for 𝑖 ∈ M. (23)

Subsequently, remove the indices corresponding to the nodes
with the top ⌊𝜅𝑁 ′⌋ scores from setM. Then use themodel𝑔(Φ(𝑡))
to estimate the features X′ (𝑡+1) according to:

X′(𝑡+1)M = maxX′M 𝑃 (X′M |X
′ (𝑡)
\M,∇𝜃 ,Φ

(𝑡)),
X′ (𝑡+1)\M = X′ (𝑡)\M,

(24)

where X′M = {𝑥𝑖 } for 𝑖 ∈ M, and X′\M = X′ \ X′M.
• M-step: Find the corresponding parameters Φ(𝑡+1) when the
following ELBO is maximized:

Φ(𝑡+1) := argmax
Φ

𝐸X′ (𝑡+1) |∇𝜃 ,Φ(𝑡) [log
𝑃 (X′ (𝑡+1) ,∇𝜃 | Φ)
𝑝 (X′ (𝑡+1) | ∇𝜃 ,Φ(𝑡))

];

(25)
• Output: Repeat the E-step and M-step until convergence, then
output the synthetic graph S according to the final X′ and Φ.
The comparison between E-steps in the paradigms of GCond,

MGCond and EXGC is exhibited in Figure 2 (d). By leveraging graph
explanation methods to instantiate the objective of GDIB and seam-
lessly integrating it within the MGCond’s training paradigm, our
proposed EXGC adeptly identifies pivotal nodes in the synthetic
graph S during early training stages. Experimental results in the
ensuing section underline that EXGC frequently converges early
– specifically when a mere 20% of the nodes in S participate in
training – attributed to the successful identification of these key
nodes. EXGC’s computational focus on these essential nodes en-
sures resource optimization, precluding superfluous expenditure on
extraneous nodes. As a result, it can not only boost the efficiency
but also enhance the test accuracy.

Conference’17, July 2017, Washington, DC, USA Trovato et al.

Table 1: Test performance (%) comparison among EXGC and other baselines, from which we can easily find that EXGC achieves promising
performance in comparison to baselines even with extremely large reduction rates. 𝜌 denotes the inference speedup. In this table, we only
display the EXGC based on Global Mask-based Explainers.

Dataset Ratio Baselines Ablation Ours Storage 𝜌

Random Herding K-Center GCond-X GCond EXGC-X EXGC Full graph

Citeseer (47.1M) 0.3% 33.87±0.82 31.31±1.20 34.03±2.52 64.13±1.83 63.98±4.31 67.82±1.31 69.16±2.00 71.12±0.06 0.142M 333.3×
Citeseer (47.1M) 1.8% 42.66±1.30 40.61±2.13 51.79±3.24 67.24±1.85 66.82±2.70 69.60±1.88 70.09±0.72 71.12±0.06 0.848M 55.6×
Citeseer (47.1M) 3.6% 59.74±2.85 63.85±1.77 67.25±1.60 69.86±0.97 69.74±1.36 70.18±1.17 70.55±0.93 71.12±0.06 1.696M 27.8×
Cora (14.9M) 0.4% 37.04±7.41 43.47±0.55 46.33±3.24 69.10±0.31 72.76±0.45 80.91±0.39 82.02±0.42 80.91±0.10 0.060M 250.0×
Cora (14.9M) 1.3% 59.62±2.48 62.18±1.91 69.12±2.55 75.38±1.59 79.29±0.76 80.74±0.41 81.94±1.03 80.91±0.10 0.194M 76.9×
Cora (14.9M) 2.6% 73.29±1.03 70.91±2.12 73.66±1.85 75.98±0.93 80.02±0.69 81.65±0.77 82.26±0.90 80.91±0.10 0.388M 38.5×

Ogbn-arxiv (100.4M) 0.05% 46.83±2.60 49.74±2.30 47.28±1.15 56.49±1.69 57.39±0.65 58.46±0.85 57.62±0.64 70.76±0.04 0.050M 2000.0 ×
Ogbn-arxiv (100.4M) 0.25% 57.32±1.19 58.64±1.28 54.36±0.67 62.38±1.62 62.49±1.56 64.82±0.51 62.34±0.26 70.76±0.04 0.251M 400.0×
Ogbn-arxiv (100.4M) 0.5% 60.09±0.97 61.25±0.88 60.84±0.59 63.77±0.95 64.85±0.74 65.79±0.32 64.99±0.79 70.76±0.04 0.502M 200×

Ogbn-Product (1412.5M) 0.5% 57.49±2.53 60.10±0.36 59.46±1.22 61.59±0.61 62.15±0.36 62.71±0.91 62.09±0.74 70.76±0.04 7.063M 200.0×
Ogbn-Product (1412.5M) 1.5% 58.84±1.87 63.17±0.93 60.71±0.85 62.98±1.30 63.89±0.51 65.85±0.95 64.69±1.43 70.76±0.04 21.189M 66.7×
Ogbn-Product (1412.5M) 3% 60.19±0.47 63.87±0.41 62.60±1.38 65.82±0.59 65.30±0.92 67.50±1.05 66.37±0.72 70.76±0.04 42.378M 33.3×

Flickr (86.8M) 0.1% 41.84±1.87 43.90±0.56 43.30±0.90 46.93±0.10 46.81±0.10 46.95±0.03 47.01±0.10 47.16±0.17 0.087M 1000.0×
Flickr (86.8M) 0.5% 44.64±0.52 43.95±44.17 44.17±0.33 45.91±0.08 46.97±1.14 47.83±0.95 48.29±0.45 47.16±0.17 0.434M 200.0×
Flickr (86.8M) 1% 44.89±1.25 44.67±0.57 44.68±0.69 45.72±0.71 47.01±0.65 47.62±0.10 48.36±0.88 47.16±0.17 0.868M 100.0×
Reddit (435.5M) 0.1% 59.14±2.26 65.75±1.28 53.05±2.73 89.34±0.54 89.56±0.74 89.56±0.45 90.24±0.05 93.96±0.03 0.436M 1000.0×
Reddit (435.5M) 0.2% 65.38±2.68 71.92±1.17 58.64±3.02 88.06±0.97 90.12±0.91 90.28±0.88 90.57±0.89 93.96±0.03 0.871M 500.0×
Reddit (435.5M) 0.5% 69.92±2.32 78.68±0.94 60.14±1.84 91.14±0.59 91.06±0.93 91.73±0.52 91.84±0.73 93.96±0.03 2.178M 200.0×

4 EXPERIMENTS
In this section, we conduct experiments on six node classification
graphs and three graph classification benchmarks to answer the
following research questions:
• RQ1. How effective is our EXGC w.r.t efficiency and accuracy?
• RQ2. Can the design of EXGC be transferred to the state-of-the-
art graph condensation frameworks (e.g., DosGCond)?
• RQ3. What is the impact of the designs (e.g., the backbone ex-
plainers) on the results? Is there a guideline for node selection?
• RQ4.Does the condensed graph exhibit strong cross-architecture
capabilities?

4.1 Experimental Settings
Datasets. To evaluate the effectiveness of EXGC, we utilize six
node classification benchmark graphs, including four transductive
graphs, Cora [25], Citeseer [43], Ogbn-Arxiv and Ogbn-Product
[21] and two inductive graphs, i.e., Flickr [63] and Reddit [19]. For a
fair comparison, we adopt the setup outlined in [24] and document
the performance of various frameworks on the aforementioned
datasets. Without loss of generality, we also select three graph
classification datasets for evaluation: the Ogbg-molhiv molecular
dataset [21], the TUDatasets (DD) [34] and one superpixel dataset
CIFAR10 [10].

Backbones. In this paper, we employ a wide range of backbones
to systematically validate the capabilities of EXGC. We choose
one representative model, GCN [25], as our training model for the
gradient matching process.
• To answer RQ1, we follow GCond to employ three coreset meth-
ods (Random, Herding [48] and K-Center [14]) and two data con-
densation models (DC-Graph) and GCond provided in [24]. Here
we showcase the detailed settings in Table 2.

Table 2: We compare the information utilized during the processes
of condensation, training, and testing. Here, A′,X′ represent the
condensed graph and its features, while A,X denote the original
graph and its features, respectively.

DC DC-Graph GCond-X (EXGC-X) GCond (EXGC)

Condensation Xtrain Xtrain Atrain,Xtrain Atrain,Xtrain

Training X′ X′ X′ A′,X′
Test Xtest Atest,Xtest Atest,Xtest Atest,Xtest

• To answerRQ2, we choose the current SOTA graph condensation
method, DosGCond as backbone [23]. DosGCond eliminates the
parameter optimization process within the inner loop of GCond,
allowing for one-step optimization. This substantially reduces
the time required for gradient matching. We employ DosGCond
to further assess the generalizability of our algorithm.
• To answer RQ3, we select the explanation methods for node in S
based on gradient magnitude (SA) [1], global mask (GSAT) [32],
local mask (GNNExplainer) [57] as well as random selection, to
evaluate the extensibility of backbone explainers.
• To answer RQ4, we choose currently popular backbones, such
as APPNP [26], SGC [49] and GraphSAGE [19] to verify the
transferability of our condensed graph (GCN as backbone). We
also include MLP for validation.

Measurement metric. To ensure a fair comparison, we train our
proposed method alongside the state-of-the-art approaches under
identical settings, encompassing learning rate, optimizer, and so
forth. Initially, we generate three condensed graphs, each devel-
oped using training methodologies with distinct random seeds.
Subsequently, a GNN is trained on each of these graphs, with this
training cycle repeated thrice (Record the mean of the run time).
To gauge the information retention of the condensed graphs, we

EXGC: Bridging Efficiency and Explainability in Graph Condensation Conference’17, July 2017, Washington, DC, USA

Figure 3: The training process of EXGC and GCond across Cora, Citeseer, Ogbn-Arxiv and Ogbn-Product four benchmarks. We can observe that
EXGC achieves optimal performance ahead by 507, 1097, 832, and 366 epochs respectively, at which points training can be terminated.

proceed to train GNN classifiers, which are then tested on the real
graph’s nodes or entire graphs. By juxtaposing the performance
metrics of models on these real graphs, we discern the informa-
tiveness and efficacy of the condensed graphs. All experiments
are conducted in three runs, and we report the mean performance
along with its variance.

4.2 Main Results (RQ1)
In this subsection, we evaluate the efficacy of a 2-layer GCN on
the condensed graphs, juxtaposing the proposed methods, EXGC-X
and EXGC, with established baselines. It’s imperative to note that
while most methods yield both structure and node features, note
as A′ and X′, there are exceptions such as DC-Graph, GCond-X,
and EXGC-X. Owing to the absence of structural output from DC-
Graph, GCond-X, and EXGC-X, we employ an identity matrix as
the adjacency matrix when training GNNs predicated solely on
condensed features. Nevertheless, during the inference, we resort
to the complete graph in a transductive setting or the test graph
in an inductive setting to facilitate information propagation based
on the pre-trained GNNs. Table 1 delineates performance across
six benchmarks spanning various backbones, from which we can
make the following observations:

Obs 1. EXGC and EXGC-X consistently outperform other
baselines under extremely large condensation rates, thereby val-
idating their exceptional performance. To illustrate, on smaller
datasets such as Citeseer and Cora, our models achieve compres-
sion rates ranging from 0.3% ∼0.4%, representing an improvement
of approximately 3.84% to 8.15% over the current state-of-the-art
model, GCond and GCond-X. On larger graphs like Ogbn-product
and Reddit, EXGC surpasses GCond by 0.56% to 0.78% when aiming
for a 0.5% compression rate. These findings underscore the substan-
tial contributions of iterative optimization strategy of the subset
of the nodes in S solely to the field of graph condensation (see
Table 1). Additionally, our visualization results in Table 1 reveal
that the graphs we condensed exhibit high density and compact-
ness, with edges serving as efficient carriers of dense information,
thereby facilitating effective information storage.

Obs 2. Both EXGC and EXGC-X can achieve an extreme
compression rate compared with the original graph without
significant performance degradation. On all six datasets, when com-
pressing the original graph to a range of 0.05% to 5% of its original
size, the compressed graph consistently maintains the performance

Table 3: Comparing the time consumption and performance across
different backbones. All results in seconds should be multiplied by
100. We activate 5% of the nodes every 50 epochs and stop training
if the loss does not decrease for 4 consecutive epochs, subsequently
reporting the results (results should be multiplied by 100).

Dataset Ratio GCond EXGC DosGCond EXDos

Cora 0.4% 29.78s (72.76%) 6.89s (81.13%) 3.22s (74.05%) 1.13s (81.64%)
Citeseer 0.3% 30.12s (63.98%) 2.67s (67.45%) 2.83s (67.73%) 0.56s (69.81%)

Ogbn-arxiv 0.05% 184.90s (57.39%) 96.31s (57.22%) 20.49s (58.22%) 5.60s (58.63%)
Flicker 0.1% 8.77s (46.81%) 4.54s (47.21%) 1.16s (46.04%) 0.65s (46.80%)
Reddit 0.1% 53.04s (89.56%) 19.83s (89.86%) 5.75s (87.45%) 1.71s (89.11%)
DD 0.2% – – 1.48s (72.65%) 0.59s (72.90%)

CIFAR10 0.1% – – 3.57s (30.41%) 1.85s (29.88%)
Ogbg-molhiv 0.01% – – 0.49s (73.22%) 0.31s (73.46%)

of the original data while significantly accelerating the inference
speed. This enhancement proves to be highly advantageous for
information extraction and reasoning. Furthermore, as the stor-
age requirement is reduced to a fraction of the original data’s size
(even better in some cases), this greatly facilitates the transmis-
sion of graph-type information in the web space, underscoring the
exceptional contribution of our model to web systems.

4.3 Generalizability on DosGCond (RQ2)
To answer RQ2, we choose a gradient-based explainer as the back-
bone explainer. We transfer the SA into the current SOTA graph
condensation method, DosGCond, and named as EXDos. We record
the performance and training time of each backbone. As shown
in Table 3 and Figure 3, we can make the observations as following:

Obs 3. Upon incorporating the backbone explainers, signif-
icant reductions in the training time of GCond are achieved.
Furthermore, when our approach is applied to DosGCond, EXDos
still exhibits substantial efficiency gains. Specifically, we observe
efficiency improvements ranging from 1.78 ∼ 5.05 times on five
node classification datasets and speed enhancements of 1.58 ∼ 2.51
times on graph classification datasets. These findings validate the
effectiveness of our algorithm, offering a viable solution for efficient
data compression.

Obs 4. When employing the backbone explainers, the al-
gorithm accelerates without noticeable performance decline.
As shown in Table 3, we find that on the eight datasets, the model
consistently achieves acceleration without evident performance de-
terioration. Particularly, it gains performance improvements rang-
ing from 2.08% ∼ 9.26% on the Cora and Citeseer datasets. These

Conference’17, July 2017, Washington, DC, USA Trovato et al.

Figure 4: Performance comparison across six benchmarks under various explanation methods.

findings demonstrate that while reducing training and inference
time, our approach does not lead to performance degradation and
can even enhance the performance of the condensed graph.

Table 4: Time comusing of different backbone explainers. We set the
compress ratio of Cora, Citesser and Ogbn-Arxiv as 0.4%, 0.3%, 0.05%,
respectively. As for graph classification, we set DD, CIFAR10 and
Ogbg-molhiv as 0.2%, 0.1% and 0.01%. All displayed results should be
multiplied by 100.

Method EXGC EXDO

Cora Citeseer Ogbn-Arxiv DD CIFAR10 Ogbg-molhiv

Random 7.24s 2.84s 7.32s 0.87s 2.07s 0.32s
SA 6.89s 2.67s 6.31s 0.59s 1.85s 0.31s

GSAT 10.37s 4.50s 9.45s 0.76s 2.61s 0.34s
GNNEXplainer 11.62s 5.97s 11.23s 0.99s 2.80s 0.42s

4.4 Selection guidelines of EXGC (RQ3)
In this section, we choose a backbone explainer for nodes inS based
on gradient magnitude (SA), random selection, and explainable al-
gorithms (GNNExplainer and GSAT). Our target is to determine
whether different backbone explainers influence the performance
of the EXGC. We employ a 2-layer GCN and introduce an early
stopping mechanism, halting the network training if the loss fails
to decrease over 4 consecutive epochs. Subsequently, we monitor
and record the model’s performance. By leveraging various back-
bone explainers, every 50 epochs, we select an additional 5% of the
elements in X′. Here we can make the observations:

Obs 5. As shown in Table 4, EXDO denotes our backbone ex-
plainers transitioned into the overall framework of DosGCond. We
discovered that the convergence time is similar for both random
and gradient-based explainers. However, explainable algorithms
necessitate considerable time due to the training required for the
corresponding explainer. Intriguingly, despite the GNNExplainer-
based selection method incurring the most substantial time cost, it
still remains lower than the conventional DosGCond algorithm (see
Table 3). Going beyond our explanation strategies, we need to fur-
ther observe the performance of models under different algorithms
to better assist users in making informed trade-offs.

Obs 6. After examining the efficiency, as illustrated in Figure 4,
we observed that while balancing efficiency, GSAT can achieve the
best results. In contrast, GNNExplainer has the lowest efficiency.
Interestingly, while SA and random have similar efficiencies, SA
manages to yield superior results in comparison.

Table 5: Transferability of condensed graphs from the different ar-
chitectures. Test performance across three popular GNN backbones,
i.e., APPNP, SGC and GraphSAGE using 2-layer GCN as training set-
ting is exhibited.

Method GCond (backbone=GCN) EXGC

APPNP SGC SAGE APPNP SGC SAGE

Cora 69.32±4.26 67.95±6.10 60.34±4.83 75.17±3.93 74.02±4.88 66.49±4.25
Citeseer 61.27±5.80 62.43±4.52 61.74±5.01 67.34±3.83 68.58±4.42 66.62±4.17

Ogbn-Arxiv 58.50±1.66 59.11±1.35 59.04±1.13 59.37±0.89 60.07±1.82 58.72±0.99
Flicker 45.94±2.37 45.82±3.73 43.46±2.65 44.06±1.72 46.15±2.18 45.10±2.43
Reddit 85.42±1.76 87.33±2.97 84.80±1.34 87.46±2.73 86.10±1.55 87.59±2.92

4.5 Transferability of EXGC (RQ4)
Finally, we illustrate the transferability of condensed graphs from
the different architectures. Concretely, we show test performance
across different GNN backbones using a 2-layer GCN as the training
setting. We employ popular backbones, APPNP, SGC and Graph-
SAGE, as test architectures. Table 5 exhibits that:

Obs 7. Across five datasets, our algorithm consistently outper-
forms GCond and demonstrates relatively lower variance, validat-
ing the effectiveness of our approach. Notably, on the Cora dataset,
our model achieves a performance boost of nearly 6.0%∼7.0%. On
the Citesser, we can observe that our framework achieves a perfor-
mance improvement of approximately 5% to 6% over GCond. These
results all underscore the transferability of our algorithm.

5 LIMITATION & CONCLUSION
Limitation. Our EXGC mitigates redundancy in the synthetic
graph during training process without benefiting inference speed in
downstream tasks. Moving forward, we aim to refine our algorithm
to directly prune redundant nodes from the initialization of the
synthetic graph, enabling simultaneous acceleration of both train-
ing and application phases. Additionally, we hope to adopt more
advanced explainers in the future to better probe the performance
boundaries.
Conclusion. In this work, we pinpoint two major reasons for the
inefficiency of current graph condensation methods, i.e., the concur-
rent updating of a vast parameter set and the pronounced parameter
redundancy. To address these limitations, we first employ the Mean-
Field variational approximation for convergence acceleration and
then incorporate the leading explanation techniques (e.g., GNNEx-
plainer and GSAT) to select the important nodes in the training
process. Based on these, we propose our EXGC, the efficient and
explainable graph condensation method, which can markedly boost
efficiency and inject explainability.

EXGC: Bridging Efficiency and Explainability in Graph Condensation Conference’17, July 2017, Washington, DC, USA

REFERENCES
[1] Federico Baldassarre and Hossein Azizpour. 2019. Explainability Techniques for

Graph Convolutional Networks. CoRR abs/1905.13686 (2019).
[2] Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. 2006. Manifold regulariza-

tion: A geometric framework for learning from labeled and unlabeled examples.
Journal of machine learning research 7, 11 (2006).

[3] Christopher M Bishop and Nasser M Nasrabadi. 2006. Pattern recognition and
machine learning. Vol. 4. Springer.

[4] George Cazenavette, Tongzhou Wang, Antonio Torralba, Alexei A. Efros, and
Jun-Yan Zhu. 2022. Dataset Distillation by Matching Training Trajectories. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022.
10708–10717.

[5] Jie Chen, Tengfei Ma, and Cao Xiao. 2018. Fastgcn: fast learning with graph
convolutional networks via importance sampling. arXiv preprint arXiv:1801.10247
(2018).

[6] Tianlong Chen, Yongduo Sui, Xuxi Chen, Aston Zhang, and Zhangyang Wang.
2021. A unified lottery ticket hypothesis for graph neural networks. In Interna-
tional Conference on Machine Learning. PMLR, 1695–1706.

[7] Thomas M. Cover and Joy A. Thomas. 2001. Elements of Information Theory.
Wiley.

[8] A. P. Dempster. 1977. Maximum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society 39 (1977).

[9] Keyu Duan, Zirui Liu, Peihao Wang, Wenqing Zheng, Kaixiong Zhou, Tianlong
Chen, Xia Hu, and ZhangyangWang. 2022. A comprehensive study on large-scale
graph training: Benchmarking and rethinking. arXiv preprint arXiv:2210.07494
(2022).

[10] Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent,
Yoshua Bengio, and Xavier Bresson. 2020. Benchmarking graph neural networks.
arXiv preprint arXiv:2003.00982 (2020).

[11] Talya Eden, Shweta Jain, Ali Pinar, Dana Ron, and C Seshadhri. 2018. Provable
and practical approximations for the degree distribution using sublinear graph
samples. In Proceedings of the 2018 World Wide Web Conference. 449–458.

[12] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin.
2019. Graph neural networks for social recommendation. In The world wide web
conference. 417–426.

[13] Junfeng Fang, Xiang Wang, An Zhang, Zemin Liu, Xiangnan He, and Tat-Seng
Chua. 2023. Cooperative Explanations of Graph Neural Networks. In WSDM.
ACM.

[14] Reza Zanjirani Farahani and Masoud Hekmatfar. 2009. Facility location: concepts,
models, algorithms and case studies. Springer Science & Business Media.

[15] Jonathan Frankle andMichael Carbin. 2018. The lottery ticket hypothesis: Finding
sparse, trainable neural networks. arXiv preprint arXiv:1803.03635 (2018).

[16] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M Roy, and Michael Carbin.
2019. Stabilizing the lottery ticket hypothesis. arXiv preprint arXiv:1903.01611
(2019).

[17] Hongyang Gao and Shuiwang Ji. 2019. Graph u-nets. In international conference
on machine learning. PMLR, 2083–2092.

[18] Atika Gupta, PriyaMatta, and Bhasker Pant. 2021. Graph neural network: Current
state of Art, challenges and applications. Materials Today: Proceedings 46 (2021),
10927–10932.

[19] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In Advances in Neural Information Processing Systems.
1024–1034.

[20] Po-Wei Harn, Sai Deepthi Yeddula, Bo Hui, Jie Zhang, Libo Sun, Min-Te Sun, and
Wei-Shinn Ku. 2022. IGRP: Iterative Gradient Rank Pruning for Finding Graph
Lottery Ticket. In 2022 IEEE International Conference on Big Data (Big Data). IEEE,
931–941.

[21] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen
Liu, Michele Catasta, and Jure Leskovec. 2020. Open graph benchmark: Datasets
for machine learning on graphs. arXiv preprint arXiv:2005.00687 (2020).

[22] Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, and S Yu Philip. 2021.
A survey on knowledge graphs: Representation, acquisition, and applications.
IEEE transactions on neural networks and learning systems 33, 2 (2021), 494–514.

[23] Wei Jin, Xianfeng Tang, Haoming Jiang, Zheng Li, Danqing Zhang, Jiliang Tang,
and Bing Yin. 2022. Condensing Graphs via One-Step Gradient Matching. In
KDD. 720–730.

[24] Wei Jin, Lingxiao Zhao, Shichang Zhang, Yozen Liu, Jiliang Tang, and Neil Shah.
2022. Graph Condensation for Graph Neural Networks. In ICLR.

[25] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In Proceedings of the 5th International Conference
on Learning Representations (Palais des Congrès Neptune, Toulon, France).

[26] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. 2019. Pre-
dict then Propagate: Graph Neural Networks meet Personalized PageRank. In
7th International Conference on Learning Representations, ICLR 2019, New Orleans,
LA, USA, May 6-9, 2019.

[27] Junhyun Lee, Inyeop Lee, and Jaewoo Kang. 2019. Self-attention graph pooling.
In International conference on machine learning. PMLR, 3734–3743.

[28] Guohao Li, Chenxin Xiong, Ali Thabet, and Bernard Ghanem. 2020. Deepergcn:
All you need to train deeper gcns. arXiv preprint arXiv:2006.07739 (2020).

[29] Chuang Liu, Xueqi Ma, Yibing Zhan, Liang Ding, Dapeng Tao, Bo Du, Wenbin
Hu, and Danilo P Mandic. 2023. Comprehensive graph gradual pruning for sparse
training in graph neural networks. IEEE Transactions on Neural Networks and
Learning Systems (2023).

[30] Gang Liu, Tong Zhao, Jiaxin Xu, Tengfei Luo, and Meng Jiang. 2022. Graph
Rationalization with Environment-based Augmentations. In KDD. ACM, 1069–
1078.

[31] Dongsheng Luo, Wei Cheng, Dongkuan Xu,Wenchao Yu, Bo Zong, Haifeng Chen,
and Xiang Zhang. 2020. Parameterized Explainer for Graph Neural Network. In
NeurIPS.

[32] Siqi Miao, Mia Liu, and Pan Li. 2022. Interpretable and Generalizable Graph
Learning via Stochastic Attention Mechanism. In ICML. 15524–15543.

[33] Todd K. Moon. 1996. The expectation-maximization algorithm. IEEE Signal
Process. Mag. 13 (1996), 47–60.

[34] Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel,
and Marion Neumann. 2020. TUDataset: A collection of benchmark datasets
for learning with graphs. CoRR abs/2007.08663 (2020). arXiv:2007.08663 https:
//arxiv.org/abs/2007.08663

[35] Timothy Nguyen, Roman Novak, Lechao Xiao, and Jaehoon Lee. 2021. Dataset
distillation with infinitely wide convolutional networks. Advances in Neural
Information Processing Systems 34 (2021), 5186–5198.

[36] Md Khaledur Rahman and Ariful Azad. 2022. Triple Sparsification of Graph
Convolutional Networks without Sacrificing the Accuracy. arXiv preprint
arXiv:2208.03559 (2022).

[37] Ekagra Ranjan, Soumya Sanyal, and Partha Talukdar. 2020. Asap: Adaptive struc-
ture aware pooling for learning hierarchical graph representations. In Proceedings
of the AAAI Conference on Artificial Intelligence, Vol. 34. 5470–5477.

[38] Kashob Kumar Roy, Amit Roy, AKM Mahbubur Rahman, M Ashraful Amin,
and Amin Ahsan Ali. 2021. Structure-Aware Hierarchical Graph Pooling using
Information Bottleneck. In 2021 International Joint Conference on Neural Networks
(IJCNN). IEEE, 1–8.

[39] Michael Sejr Schlichtkrull, Nicola De Cao, and Ivan Titov. 2021. Interpreting
Graph Neural Networks for NLP With Differentiable Edge Masking. In ICLR.

[40] Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedan-
tam, Devi Parikh, and Dhruv Batra. 2017. Grad-CAM: Visual Explanations from
Deep Networks via Gradient-Based Localization. In IEEE International Conference
on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. 618–626.

[41] Yongduo Sui, Xiang Wang, Tianlong Chen, Xiangnan He, and Tat-Seng Chua.
2022. Inductive Lottery Ticket Learning for Graph Neural Networks.

[42] Lucian Toader, Alexandru Uta, Ahmed Musaafir, and Alexandru Iosup. 2019.
Graphless: Toward serverless graph processing. In 2019 18th International Sym-
posium on Parallel and Distributed Computing (ISPDC). IEEE, 66–73.

[43] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. stat 1050 (2017), 20.

[44] Kun Wang, Yuxuan Liang, Pengkun Wang, Xu Wang, Pengfei Gu, Junfeng Fang,
and Yang Wang. 2023. Searching Lottery Tickets in Graph Neural Networks: A
Dual Perspective. In The Eleventh International Conference on Learning Represen-
tations.

[45] Kun Wang, Zhengyang Zhou, Xu Wang, Pengkun Wang, Qi Fang, and Yang
Wang. 2022. A2DJP: A two graph-based component fused learning framework
for urban anomaly distribution and duration joint-prediction. IEEE Transactions
on Knowledge and Data Engineering (2022).

[46] Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A Efros. 2018.
Dataset distillation. arXiv preprint arXiv:1811.10959 (2018).

[47] Yuwen Wang, Shunyu Liu, Kaixuan Chen, Tongtian Zhu, Ji Qiao, Mengjie Shi,
Yuanyu Wan, and Mingli Song. 2023. Adversarial Erasing with Pruned Elements:
Towards Better Graph Lottery Ticket. arXiv preprint arXiv:2308.02916 (2023).

[48] Max Welling. 2009. Herding dynamical weights to learn. In Proceedings of the
26th Annual International Conference on Machine Learning. 1121–1128.

[49] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian
Weinberger. 2019. Simplifying graph convolutional networks. In International
conference on machine learning. PMLR, 6861–6871.

[50] Junran Wu, Xueyuan Chen, Ke Xu, and Shangzhe Li. 2022. Structural Entropy
Guided Graph Hierarchical Pooling. In International Conference on Machine Learn-
ing. PMLR, 24017–24030.

[51] Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. 2022. Graph neural
networks in recommender systems: a survey. Comput. Surveys 55, 5 (2022), 1–37.

[52] ShuWu, Yuyuan Tang, Yanqiao Zhu, Liang Wang, Xing Xie, and Tieniu Tan. 2019.
Session-based recommendation with graph neural networks. In Proceedings of
the AAAI conference on artificial intelligence, Vol. 33. 346–353.

[53] Tailin Wu, Hongyu Ren, Pan Li, and Jure Leskovec. 2020. Graph Information
Bottleneck. In NeurIPS.

[54] Ying-Xin Wu, Xiang Wang, An Zhang, Xiangnan He, and Tat-Seng Chua.
2022. Discovering Invariant Rationales for Graph Neural Networks. CoRR
abs/2201.12872 (2022).

https://arxiv.org/abs/2007.08663
https://arxiv.org/abs/2007.08663
https://arxiv.org/abs/2007.08663

Conference’17, July 2017, Washington, DC, USA Trovato et al.

[55] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
S Yu Philip. 2020. A comprehensive survey on graph neural networks. IEEE
transactions on neural networks and learning systems 32, 1 (2020), 4–24.

[56] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful
are Graph Neural Networks?. In International Conference on Learning Representa-
tions.

[57] Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec.
2019. GNNExplainer: Generating Explanations for Graph Neural Networks. In
NeurIPS. 9240–9251.

[58] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren,Will Hamilton, and Jure
Leskovec. 2018. Hierarchical graph representation learning with differentiable
pooling. Advances in neural information processing systems 31 (2018).

[59] Haoran You, Zhihan Lu, Zijian Zhou, Yonggan Fu, and Yingyan Lin. 2022. Early-
bird gcns: Graph-network co-optimization towards more efficient gcn training
and inference via drawing early-bird lottery tickets. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 36. 8910–8918.

[60] Yuning You, Tianlong Chen, Zhangyang Wang, and Yang Shen. 2020. L2-gcn:
Layer-wise and learned efficient training of graph convolutional networks. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2127–2135.

[61] Junchi Yu, Tingyang Xu, Yu Rong, Yatao Bian, Junzhou Huang, and Ran He.
2021. Graph Information Bottleneck for Subgraph Recognition. In ICLR. OpenRe-
view.net.

[62] Xiang Yue, ZhenWang, Jingong Huang, Srinivasan Parthasarathy, Soheil Moosav-
inasab, Yungui Huang, Simon M Lin, Wen Zhang, Ping Zhang, and Huan Sun.
2020. Graph embedding on biomedical networks: methods, applications and
evaluations. Bioinformatics 36, 4 (2020), 1241–1251.

[63] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor
Prasanna. 2019. GraphSAINT: Graph Sampling Based Inductive Learning Method.
arXiv preprint arXiv:1907.04931 (2019).

[64] Shichang Zhang, Yozen Liu, Yizhou Sun, and Neil Shah. 2021. Graph-less neu-
ral networks: Teaching old mlps new tricks via distillation. arXiv preprint
arXiv:2110.08727 (2021).

[65] Zhenyu Zhang, Xuxi Chen, Tianlong Chen, and ZhangyangWang. 2021. Efficient
lottery ticket finding: Less data is more. In International Conference on Machine
Learning. PMLR, 12380–12390.

[66] Bo Zhao and Hakan Bilen. 2021. Dataset condensation with differentiable siamese
augmentation. In International Conference on Machine Learning. PMLR, 12674–
12685.

[67] Bo Zhao and Hakan Bilen. 2023. Dataset condensation with distribution matching.
In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer
Vision. 6514–6523.

[68] Dengyong Zhou, Jiayuan Huang, and Bernhard Schölkopf. 2005. Learning from
labeled and unlabeled data on a directed graph. In Proceedings of the 22nd inter-
national conference on Machine learning. 1036–1043.

[69] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu,
Lifeng Wang, Changcheng Li, and Maosong Sun. 2020. Graph neural networks:
A review of methods and applications. AI open 1 (2020), 57–81.

[70] Zhengyang Zhou, Yang Wang, Xike Xie, Lei Qiao, and Yuantao Li. 2021. STU-
aNet: Understanding uncertainty in spatiotemporal collective human mobility.
In Proceedings of the Web Conference 2021. 1868–1879.

A RELATEDWORK
Graph neural networks (GNNs). GNNs [10, 19, 25, 55] han-
dle variable-sized, permutation-invariant graphs and learn low-
dimensional representations through an iterative process that in-
volves transferring, transforming, and aggregating representations
from topological neighbors. Though promising, GNNs encounter
significant inefficiencies when scaled up to large or dense graphs
[44]. To address this challenge, existing research lines prominently
focus on graph sampling and graph distillation as focal points
for enhancing computational efficiency.
Graph Sampling & Distillation. Graph sampling alleviates the
computational demands of GNNs by selectively sampling sub-graphs
or employing pruning techniques [5, 6, 11, 17, 27, 41]. Nevertheless,
aggressive sampling strategies may precipitate significant informa-
tion loss, potentially diminishing the representational efficacy of
the sampled subset. In light of this, the research trajectory of graph
distillation [37, 38, 58] is influenced by dataset distillation (DD),
which endeavors to distill (compress) the embedded knowledge

within raw data into synthetic counterparts, ensuring that models
trained on this synthetic data retain performance [4, 35, 46, 67].
Recently, within the domain of graph distillation, the notion of
graph condensation [23, 24] via training gradient matching serves
to compress the original graph into an informative and synthesized
set, which also resides within the scope of our endeavor.
Graph Lottery Ticket (GLT) Hypothesis. The Lottery Ticket
Hypothesis (LTH) articulates that a compact, efficacious subnet-
work can be discerned from a densely connected network via an
iterative pruning methodology [15, 16, 65]. Drawing inspiration
from the concepts of LTH, [6] pioneered in amalgamating the con-
cept of graph samping with GNN pruning, under the umbrella of
Graph Lottery Ticket (GLT) research trajectory. Precisely, GLT
is conceptualized as a coupling of pivotal core subgraphs and a
sparse sub-network, which can be collaboratively extracted from
the comprehensive graph and the primal GNN model. The ensu-
ing amplification of GLT theory [59], coupled with the advent of
novel algorithms [20, 29, 36, 47], has significantly enriched the
graph pruning research narrative, delineating GLT as a prominent
cornerstone in this field.
Explainable Graph Learning.Another line of research intimately
related to our work delves into the explainability of graph learning.
This line aims to reveal the black-box of the decision-making pro-
cess by identifying salient subgraphs named rationales. Specifically,
IB [53] and IB-subgraph [61] transplant the concept of information
bottlenecks into graph learning to pinpoint compact yet informa-
tive subgraphs; GSAT [32] utilizes a stochastic attention mechanism
to assign a probability to each edge in the input graph, determining
whether it should be chosen as part of the explanatory subgraphs;
DIR [54], based on causal inference, removes the label-irrelevant
features from the original graph and treating the remaining portion
as the graph’s rationale; GREA [30] employs data augmentation
methods based on both removal and replacement to target the
original graph, aiming to explore the salient nodes.

B DERIVATION OF THE EQUATION 4 AND 5
In this section we detail the derivation process of the Equation 4
and Equation 5 in Section 3.1. Specifically, to find a optimal model
parameters Φ, the objective can be formulated as:

Φ = argmax
Φ

log 𝑃 (∇𝜃 | Φ) . (26)

We define the value of this logarithm as 𝐹 (Φ) and rewrite it:

𝐹 (Φ) = log
∑︁
X′
𝑃
(
X′

) 𝑃 (X′,∇𝜃 | Φ)
𝑃 (X′) , (27)

then we can derive a low bound of 𝐹 (Φ) according to the Jensen
Inequality:

𝐹 (Φ) ≥ 𝐿(Φ) =
∑︁
X′
𝑃
(
X′

)
log

𝑃 (X′,∇𝜃 | Φ)
𝑃 (X′) , (28)

where 𝐿(Φ) is the Variational Lower Bound of our objective.

EXGC: Bridging Efficiency and Explainability in Graph Condensation Conference’17, July 2017, Washington, DC, USA

To maximize the objective of 𝐿(Φ), we endeavour to derive the
gap between 𝐿(Φ) and 𝐹 (Φ) following:

𝐿(Φ) =
∑︁
X′
𝑃
(
X′

)
log

𝑃 (∇𝜃 ,X′ |Φ)
𝑃 (X′)

=
∑︁
X′
𝑃
(
X′

)
log

𝑃 (X′ | ∇𝜃 ,Φ) 𝑃 (∇𝜃 |Φ)
𝑃 (X′)

= log 𝑃 (∇𝜃 |Φ) −
∑︁
X′
𝑃
(
X′

)
ln

𝑃 (X′)
𝑃 (X′ | ∇𝜃 ,Φ)

= 𝐹 (Φ) − 𝐾𝐿(𝑃 (X′)∥𝑝 (X′ | ∇𝜃 ;Φ)).

(29)

It is well known that the KL divergence is non-negative. Therefore,
with Φ fixed and optimizing X′, maximizing this lower bound is
equivalent to:

𝑃 (X′) ← 𝑃 (X′ |∇𝜃 ,Φ). (30)

Moreover, maximizing 𝐿(Φ) is equivalent to maximizing the
ELBO:

ELBO→ 𝐸X′ |∇𝜃 ,Φ [log
𝑃 (X′,∇𝜃 | Φ)
𝑃 (X′ | ∇𝜃 ,Φ)

] (31)

by maximizing the conditional probability expectation following:

Φ = argmax
Φ

𝐿(Φ)

= argmax
Φ

∑︁
X′
𝑝
(
X′ | ∇𝜃 ,Φ

)
ln

{
𝑝 (∇𝜃 ,X′ | Φ)
𝑝 (X′ | ∇𝜃 ,Φ)

}
= argmax

Φ
(
∑︁
X′
𝑝
(
X′ | ∇𝜃 ,Φ

)
ln𝑝 (∇𝜃 ,X′ | Φ)−∑︁

X′
𝑝
(
X′ | ∇𝜃 ,Φ

)
ln𝑝

(
X′ | ∇𝜃 ,Φ

)
︸ ︷︷ ︸

𝑐𝑜𝑛𝑠𝑡

),

(32)

which is exactly what the current M-step does.

C DERIVATION OF THE MF APPROXIMATION
Let’s start with Equation 7 to derive the optimized E-step based on
mean-filed approximation. Specifically, by substituting Equation 6
into the ELBO in Equation 4 we obtain:

ELBO =

∫ 𝑁∏
𝑖=1

𝑃
(
𝑥 ′𝑖
)
log 𝑃 (∇𝜃 ,X′)𝑑X′

−
∫ 𝑁∏

𝑖=1
𝑃
(
𝑥 ′𝑖
)
log

𝑁∏
𝑖=1

𝑃
(
𝑥 ′𝑖
)
𝑑X′ .

(33)

For simplicity, let’s make some variable assumptions below:

A =

𝑁 ′∏
𝑖=1

𝑃
(
𝑥 ′𝑖
)
log 𝑃 (X′,∇𝜃)𝑑X′

B =

∫ 𝑁 ′∏
𝑖=1

𝑃
(
𝑥 ′𝑖
)
log

𝑁 ′∏
𝑖=1

𝑃
(
𝑥 ′𝑖
)
𝑑X′ .

(34)

In this case, the ELBO can be rewritten as:

ELBO = A − B . (35)

Before deriving A and B, we first fix the complementary set of
𝑥 ′
𝑗
, i.e., X′\𝑗 = {𝑥 ′1, ...𝑥

′
𝑗−1, 𝑥

′
𝑗+1, ..., 𝑥

′
𝑁 ′ }. Then A is equal to:

A =

∫
𝑃

(
𝑥 ′𝑗
) ∫ 𝑁 ′∏

𝑖=1,𝑖≠𝑗
𝑃
(
𝑥 ′𝑖
)
log 𝑃 (∇𝜃 ,X′)𝑑𝑖≠𝑗𝑥 ′𝑖𝑑𝑥

′
𝑗 , (36)

where:∫ 𝑁 ′∏
𝑖=1,𝑖≠𝑗

𝑃
(
𝑥 ′𝑖
)
log 𝑃 (X′,∇𝜃)𝑑𝑖≠𝑗𝑥 ′𝑖 = 𝐸∏𝑁 ′

𝑖=1,𝑖≠𝑗 𝑃 (𝑥 ′𝑖) [log 𝑃 (X
′,∇𝜃)] .

(37)
By substituting Equation 37 into the Equation 36 we obtain:

A =

∫
𝑃

(
𝑥 ′𝑗
)
· 𝐸∏𝑁 ′

𝑖=1,𝑖≠𝑗 𝑃 (𝑥 ′𝑖) [log 𝑃 (X
′,∇𝜃)]𝑑𝑥 ′𝑗 . (38)

Next we focus on the term B. We first rewritten it following:

B =

∫ 𝑁 ′∏
𝑖=1

𝑃
(
𝑥 ′𝑖
)
·
[
log 𝑃

(
𝑥 ′1
)
+ log 𝑃

(
𝑥 ′2
)
+ · · · + log 𝑃

(
𝑥 ′𝑁 ′

)]
𝑑X′ .

(39)
Note that for each terms in B we have:∫ 𝑁 ′∏

𝑖=1
𝑃
(
𝑥 ′𝑖
)
· log 𝑃

(
𝑥 ′1
)
=

∫
𝑃
(
𝑥 ′1
)
log 𝑃

(
𝑥 ′1
)
𝑑𝑥 ′1 . (40)

Hence, the value of B can be simplified as:

B =

𝑁 ′∑︁
𝑖=1

∫
𝑃
(
𝑥 ′𝑖
)
log 𝑃

(
𝑥 ′𝑖
)
𝑑𝑥 ′𝑖 . (41)

Since X\𝑗 is fixed, we can separate out the constants 𝐶 from B:

B =

∫
𝑃

(
𝑥 ′𝑗
)
log 𝑃

(
𝑥 ′𝑗
)
𝑑𝑥 ′𝑗 +𝐶. (42)

Combining the expression forA mentioned above, we can obtain
a new form of ELBO:

ELBO = A − B =

∫
𝑃

(
𝑥 ′𝑗
)
log

𝐸∏𝑁 ′
𝑖=1,𝑖≠𝑗 𝑃 (𝑥 ′𝑖) [log 𝑃 (X

′,∇𝜃)]

𝑃

(
𝑥 ′
𝑗

) 𝑑𝑥 ′𝑗

= −𝐾𝐿
(
𝑃 (𝑥 ′𝑗)∥ log𝐸∏𝑁 ′

𝑖=1,𝑖≠𝑗 𝑃 (𝑥 ′𝑖) [log 𝑃 (X
′,∇𝜃)]

)
≤ 0.

(43)
Therefore, when KL is equal to 0, ELBO can reach its maximum

value, so the value of 𝑃
(
𝑥 ′
𝑗

)
derived here is:

𝑃

(
𝑥 ′𝑗
)
= 𝐸∏𝑁 ′

𝑖=1,𝑖≠𝑗 𝑃 (𝑥 ′𝑖) [log 𝑃 (X
′,∇𝜃)] . (44)

Themethods for solving for distributions of 𝑃
(
𝑥 ′
𝑖

)
for 𝑖 ∈ {1, ..., 𝑗−

1, 𝑗 + 1, ..., 𝑁 ′} are the same.

D DERIVATION OF THE GDIB
In this section we focus on the detailed derivation process in Section
3.4, which mainly contribute to the instantiation process of GDIB:

argmax
S𝑠𝑢𝑏

𝐼

(
S𝑠𝑢𝑏 ;∇′𝜃

)
− 𝛽𝐼 (S𝑠𝑢𝑏 ;S) , s.t. S𝑠𝑢𝑏 ∈ G𝑠𝑢𝑏 (S) . (45)

Conference’17, July 2017, Washington, DC, USA Trovato et al.

At first, for the first term in GDIB, i.e., 𝐼
(
S𝑠𝑢𝑏 ;∇′𝜃

)
, by definition:

𝐼 (S𝑠𝑢𝑏 ;∇′𝜃) = 𝐻 (∇
′
𝜃
) − 𝐻 (∇′

𝜃
| S𝑠𝑢𝑏)

= 𝐸∇′
𝜃
,S𝑠𝑢𝑏

log
𝑃

(
S𝑠𝑢𝑏 | ∇′𝜃

)
𝑃

(
∇′
𝜃

) .
(46)

Since 𝑃
(
S𝑠𝑢𝑏 | ∇′𝜃

)
is intractable, an variational approximation

𝑄

(
S𝑠𝑢𝑏 | ∇′𝜃

)
is introduced for it. Then the LBO of the 𝐼 (∇′

𝜃
,S𝑠𝑢𝑏)

can be obtained following:

𝐼

(
S𝑠𝑢𝑏 ;∇′𝜃

)
=𝐸S𝑠𝑢𝑏 ,∇′𝜃

log
𝑄

(
∇′
𝜃
| S𝑠𝑢𝑏

)
𝑃 (∇′

𝜃
)

+ 𝐸S𝑠𝑢𝑏 ,∇′𝜃

log
𝑃

(
∇′
𝜃
| S𝑠𝑢𝑏

)
𝑄

(
∇′
𝜃
| S𝑠𝑢𝑏

)
=𝐸S𝑠𝑢𝑏

[
KL

(
𝑄

(
∇′
𝜃
|S𝑠𝑢𝑏

)
∥ 𝑃

(
∇′
𝜃

))]
+ 𝐸S𝑠𝑢𝑏 [KL

(
𝑃

(
∇′
𝜃
|S𝑠𝑢𝑏

)
∥𝑄

(
∇′
𝜃
|S𝑠𝑢𝑏

))
]

≥ 𝐸S𝑠𝑢𝑏
[
KL

(
𝑄

(
∇′
𝜃
|S𝑠𝑢𝑏

)
∥ 𝑃

(
∇′
𝜃

))]
︸ ︷︷ ︸

𝐿𝐵𝑂

.

(47)

Then, for the second term in GDIB, i.e., 𝐼
(
S𝑠𝑢𝑏 ;∇′𝜃

)
, by defini-

tion:
𝐼 (S,S𝑠𝑢𝑏) = 𝐻 (S) − 𝐻 (S | S𝑠𝑢𝑏)

= 𝐸S,S𝑠𝑢𝑏

[
log

𝑃 (S𝑠𝑢𝑏 | S)
𝑃 (S𝑠𝑢𝑏)

]
.

(48)

Considering that 𝑃 (S𝑠𝑢𝑏) is intractable, an variational approxi-
mation𝑅(S𝑠𝑢𝑏) is introduced for themarginal distribution 𝑃 (S𝑠𝑢𝑏) =∑
S 𝑃 (S𝑠𝑢𝑏 | S) 𝑃 (S). Then the UBO of the 𝐼 (S,S𝑠𝑢𝑏) can be ob-

tained following:

𝐼 (S,S𝑠𝑢𝑏) =𝐸S𝑠𝑢𝑏 ,S
[
log

𝑃 (S𝑠𝑢𝑏 | S)
𝑅 (S𝑠𝑢𝑏)

]
− KL (𝑃 (S𝑠𝑢𝑏) ∥𝑅 (S𝑠𝑢𝑏))

≤ 𝐸S [KL (𝑃 (S𝑠𝑢𝑏 | S) ∥𝑅 (S𝑠𝑢𝑏))]︸ ︷︷ ︸
𝑈𝐵𝑂

.

(49)
The main paper presents an instantiation of 𝑃 (S𝑠𝑢𝑏 |S) which

assigns the importance score 𝑝𝑖 (i.e., the probability of being selected
into S𝑠𝑢𝑏) to the 𝑖-th node in S. Additionally, the distribution 𝑅
is specified as a Bernoulli distribution with parameter 𝑟 (i.e., each
node is selected with probability 𝑟). This instantiation is consistent
with the information constraint ℓ𝐼 proposed by GSAT [32], where 𝑟
falls within the range of (0, 1), resulting in a collapse of the UBO to
the ℓ𝐼 :

ℓ𝐼 =
∑︁

𝑖∈1,2,...,𝑁
𝑝𝑖 log

𝑝𝑖

𝑟
+ (1 − 𝑝𝑖) log

1 − 𝑝𝑖
1 − 𝑟 . (50)

When 𝑟 → 0 we have:

𝑝𝑖 log
𝑝𝑖

𝑟
>> (1 − 𝑝𝑖) log

1 − 𝑝𝑖
1 − 𝑟 . (51)

Then the Equation 50 collapses to:

ℓ𝐼 =

𝑁 ′∑︁
𝑖∈1

𝑝𝑖 log
𝑝𝑖

𝑟
. (52)

Since the value of Equation 52 is proportional to the value of 𝑝𝑖 ,
when 𝑟 → 0, ℓ𝐼 can be instantiated as the 𝑙1-norm of 𝑝𝑖 .

	Abstract
	1 Introduction
	2 Problem Formulation
	3 Methodology
	3.1 The Unified Paradigm of GCond
	3.2 Boost Efficiency: MGCond
	3.3 Node Redundancy and GDIB
	3.4 Prune Redundancy: EXGC

	4 Experiments
	4.1 Experimental Settings
	4.2 Main Results (RQ1)
	4.3 Generalizability on DosGCond (RQ2)
	4.4 Selection guidelines of EXGC (RQ3)
	4.5 Transferability of EXGC (RQ4)

	5 Limitation & Conclusion
	References
	A Related Work
	B Derivation of the Equation 4 and 5
	C Derivation of the MF approximation
	D Derivation of the GDIB

