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ABSTRACT

Large language models (LLMs) are typically trained to acquire behaviours from
demonstrations or experience, yet much of their training data consists of symbolic
descriptions: instructions, rules, and strategies that specify procedures without
examples. We investigate whether LLMs can learn to execute such behaviours
directly from their abstract description, a process we term Programming by Back-
prop (PBB). We study this phenomenon in two domains: first, using source code
as a canonical form of procedural description by comparing models finetuned on
algorithms versus execution examples; and second, extending beyond code to ab-
stract grammar rules, testing whether models learn to generate compliant text. Our
findings show that PBB can be elicited through targeted finetuning, demonstrat-
ing that LLMs can acquire new behaviours from symbolic descriptions, albeit not
yet with full reliability. Once elicited, PBB enables models to internalise reusable
procedural abstractions — generalising across inputs, executing procedures im-
plicitly in a forward pass, and benefiting further from chain-of-thought reasoning.
These results position PBB as a distinct pathway through which LLMs acquire
behavioural skills from symbolic descriptions, with implications for both more
efficient capability acquisition and aligning models through formal specifications
rather than demonstrations alone.

1 INTRODUCTION

When training a large language model (LLM) to learn a desired behaviour, the most common ap-
proaches involve imitation learning via sequence modelling on demonstrations (i.e., supervised fine-
tuning, SFT), or repeated trial-and-error (i.e., reinforcement learning, RL). Yet much of what LLMs
are exposed to during pretraining is not demonstrations but descriptions of procedures: instructions,
rules, or strategies that specify how to act without showing concrete input-output examples. For hu-
mans, the ability to learn from such descriptions is a core component of skill acquisition, enabling
us to augment practice with instruction manuals, strategy guides, or general discourse. Effectively
leveraging training data at a level of abstraction above explicit demonstration is a key contributor
to our remarkable sample efficiency (Dienes & Perner, |1999). For example, learning chess is ac-
celerated not only by playing games, but also by studying written accounts of opening principles,
tactics, and endgame strategies. If LLMs can similarly learn to execute behaviours from abstract
descriptions, this would represent a crucial pathway for more efficient and generalisable learning.

Indeed, prior work has found that LLMs can emulate simple character descriptions (Berglund et al.,
2023)), extract general strategies from demonstrations (Betley et al.| [2025)), and that procedural de-
scriptions in pretraining data influence related skills (Ruis et al.l [2025). Building on these ob-
servations, we formalise the specific process of acquiring behavioural competence from symbolic
descriptions as Programming by Backprop (PBB). PBB captures the concrete way in which learning
from descriptions can arise through gradient-based training — specifically, autoregressive language
modelling. By internalising abstract, input-general definitions of behaviour and later applying them
during inference, PBB offers both a practical tool, teaching models new behaviours through sym-
bolic descriptions alone, and a conceptual lens for understanding how LLMs generalise beyond
surface-level pattern matching.

Two motivations drive the study of PBB. First, it offers a scalable approach to capability building:
instead of requiring large datasets of demonstrations, models could be equipped with procedures
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Figure 1: Ilustration of Programming by Backprop (PBB) — the learning of behaviours from sym-
bolic descriptions — for the code execution tasks used in our experiments. PBB emerges in two
regimes: Proactive PBB, where models learn to interpret paired procedures before being exposed
to unpaired ones, and Retroactive PBB, where initial exposure to all procedures is followed by
activation through paired examples. Models trained under PBB internalise executable abstractions,
allowing them to execute novel programs directly in a forward pass, and to improve further when
using chain-of-thought reasoning.

expressed succinctly in symbolic form. Prior work has shown that LLMs benefit from having sym-
bolically described procedures like code snippets in-context when reasoning (Chen et al., 2023), nat-
urally motivating a study of whether the same is true for procedures described in training data. This
opens the door to training methods that are more data-efficient, interpretable, and compositional.
Second, it carries significant safety implications. If LLMs can acquire behavioural competence from
symbolic specifications, then carefully chosen formal descriptions, such as constitutional principles
or alignment objectives, may serve as a foundation for shaping model behaviour more robustly than
demonstrations or experience alone.

However, this potential raises fundamental questions. Can LLMs already learn to execute procedures
they have only “read about” during downstream finetuning? If not, can we elicit this ability with
specific approaches to finetuning? Furthermore, what are the properties of such a learning mecha-
nism? Does the language of the description matter (e.g., code versus natural language)? Can models
combine independently learned procedures to solve new, composite problems, and does explicit rea-
soning, like chain-of-thought, help them apply this learned knowledge? Finally, does learning from
an abstract rule yield more robust and generalisable behaviour compared to learning from a narrow
or imbalanced set of examples?

In this paper, we formalise PBB as a meta-learning problem and provide a holistic, empirical in-
vestigation into these questions. We first study code as a canonical form of symbolic description,
comparing models finetuned on algorithm source code alone to those trained with input-output (I/O)
examples and those trained on a combination of the two. We then generalise to a non-coding do-
main, testing whether models trained on abstract grammar rules learn to generate compliant text.
Across these domains, we evaluate whether models can generalise from symbolic descriptions to
correct execution on inputs.



Under review as a conference paper at ICLR 2026

In our experiments, we find that PBB does not emerge reliably out-of-the-box: pretrained models
show little evidence of learning to execute behaviours after finetuning on descriptions alone. How-
ever, PBB is possible following targeted finetuning designed to elicit it. Training on a mixture of
descriptions paired with demonstrations enables models to generalise to unpaired descriptions, ac-
quiring the ability to execute procedures they have never seen demonstrated. This reveals two key
insights. First, LLMs are in principle capable of learning behaviours from symbolic descriptions, a
capacity that, once elicited, generalises across inputs and domains. Second, the fact that standard
post-training pipelines fail to reliably produce PBB highlights an important limitation in current
approaches to training LLMs. This is in keeping with prior work demonstrating key limitations in
the ability to generalise from knowledge in finetuning data (Berglund et al., [2024; |Allen-Zhu & Li,
2025). Addressing this gap may be critical both for improving efficiency in capability acquisition
and for aligning models through formal specification in addition to imitation or experience.

Our main contributions are as follows:

* We introduce and formalise Programming by Backprop (PBB), the process by which large
language models can acquire new behavioural skills by training on abstract, symbolic de-
scriptions of procedures rather than on input-output demonstrations.

* We conduct an investigation of PBB across two distinct domains: algorithmic execution
from source code and text generation from abstract grammar rules.

* We demonstrate that PBB does not emerge reliably from pretraining alone but can be
elicited through targeted finetuning strategies.

* We discover several key properties of PBB that inform future work, showing that: (1) its
efficacy is highly dependent on the description language, with formal symbolic systems
yielding substantially better results than natural language; (2) while learned procedures can
be executed implicitly in a forward pass, chain-of-thought reasoning significantly enhances
performance on algorithmic tasks; (3) models exhibit a nascent capacity for composition-
ality, retrieving and combining independently learned subroutines; and (4) PBB imparts
greater robustness to input variations compared to skills learned from narrow or imbal-
anced demonstrations.

2 RELATED WORK

Early efforts to assess whether neural sequence models can learn procedural execution focus exclu-
sively on synthetic algorithmic tasks. Zaremba & Sutskever| (2015) show that recurrent networks
trained on input-specific program code and corresponding outputs could execute short algorithms
given at test time, but their generalisation is fragile and fails outside narrow distributions. Later
work on transformers highlights similar limitations in compositional algorithmic reasoning, even
under carefully controlled training regimes (Thomm et al., 2024). These results establish the diffi-
culty of inducing procedural generalisation from demonstrations alone.

A second line of work studies how code pretraining changes model behaviour. Exposure to source
code has been shown to improve reasoning and problem-solving in natural language (Aryabumi
et al.,[2024; Petty et al.,|2024)), suggesting that the regularity and explicit structure of code (e.g., vari-
ables, control flow, compositional syntax) supports reasoning skills that transfer to natural language.
Beyond raw source code, training on synthetic procedural traces, such as edit sequences, improves
code synthesis by forcing models to represent intermediate steps in a transformation (Piterbarg et al.,
20235). Other approaches explicitly couple language models with an external interpreter, showing
that natural language reasoning can be grounded in code execution to improve accuracy (L1 et al.,
2024). Together, this work demonstrates that symbolic supervision can scaffold logical reasoning in
ways natural language alone does not.

Recent research has investigated the role of procedural text in pretraining. [Ruis et al.| (2025) show
that exposure to input-general procedures in pretraining data, such as code functions, strongly influ-
ences models’ ability to solve related input-specific reasoning problems, for example when a math
question reduces to executing the function. This motivates our in-depth study of this phenomenon
through controlled finetuning experiments. Similarly, work on in-context compositionality finds
that models can synthesise new behaviours from symbolic instructions given in-context (Chen et al.,
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2024). Our work investigates a related capability, but for procedures that are internalised in the
model’s weights, rather than provided in-context.

Internalising behaviour that generalises is not guaranteed. Parallel work on arithmetic reasoning
finds that LLMs often rely on surface heuristics rather than executing explicit algorithms (Nikankin
et al.,|2025)), though structured prompting can elicit more systematic behaviour (Chen et al., [2023)).
Mechanistic analyses further suggest that the autoregressive training objective shapes which kinds
of procedures can be internalised, constraining both successes and failure modes (McCoy et al.,
2024} 'Wang et al.,[2024). |Allen-Zhu & Li|(2025) demonstrate that while LLMs excel in knowledge
retrieval, they struggle in classification and comparison tasks when chain-of-thought (CoT) is not
used during training and inference, offering a potential explanation for LLMs’ “knowing-doing gap”
(Paglieri et al.l 2024). Lampinen et al.| (2025) investigate how LLMs generalise differently from
knowledge in-context versus in their training data. Our results contribute to this discussion by
showing that models can learn to execute procedures that are described in their training data.

Finally, our work connects to studies on how LLMs generalise from their training data in sophis-
ticated ways. This includes findings that models can perform out-of-context reasoning (OOCR)
(Berglund et al., 2023 Betley et al.,2025), exhibit forms of implicit meta-learning (Krasheninnikov
et al.||2024)), acquire latent multi-hop reasoning abilities (Yang et al.,[2024)), and infer latent structure
from training data (Treutlein et al.| [2024). We propose PBB as an under-investigated form of OOCR,
where the model learns to treat symbolic descriptions seen during training as executable procedures.
This process provides a concrete pathway for models to acquire generalisable behavioural skills di-
rectly from abstract descriptions, rather than from demonstrations alone.

3 PROGRAMMING BY BACKPROP

We define Programming by Backprop (PBB) as the process by which a sequence model My, with
parameters ¢, learns to execute a procedure f : X — ) by training on its symbolic description s
rather than on a dataset input-output execution examples (z;, f(x;)).

The core hypothesis of PBB is that the standard autoregressive training objective, when applied to a
symbolic description sy, can cause the model to internalise a general, executable representation of
the procedure f.

Let F' be a universe of procedures with symbolic descriptions S (e.g., Python functions, grammar
rules). Crucially, this universe can span multiple domains and may include novel compositions of
procedures, allowing us to test for more complex forms of generalisation. We partition this uni-
verse into two disjoint sets: a paired set Fp,iq and an unpaired set Fypaired. For each procedure
f € Fpaired, We have access to its symbolic description sy and a corresponding dataset of N exe-
cution examples Dy = {(x;, f(2;))}. For procedures in Fyypired, We possess only their symbolic
descriptions. The test task is executing procedures from Fyypaired ON a set of inputs.

This setup frames PBB as a meta-learning problem: the model learns the skill of interpreting sym-
bolic descriptions from the paired set (Fpqieq and its associated examples) and then generalises this
skill to execute the procedures from the unpaired set (Fynpairea), Which it has only seen as descrip-
tions. We propose and evaluate two distinct finetuning strategies designed to elicit this capability.

PROACTIVE PBB: PRIMING FOR INTERPRETATION

The first approach, which we call Proactive PBB, is a two-stage supervised finetuning (SFT)
pipeline designed to first teach the model the general correspondence between descriptions and
execution, and then expose it to new, unpaired procedures.

1. Stage 1 (Meta-Learning): A pretrained base model My, is finetuned on the paired pro-

cedures’ symbolic descriptions S, and their corresponding execution examples Dg;‘r';d.
This stage explicitly trains the model to associate a symbolic description with its behaviour,
priming it to interpret new procedures it encounters.

aired

2. Stage 2 (Acquisition): The resulting model, Mage-1 s further finetuned on the symbolic
descriptions Sg,, ... During this stage, the model is expected to implicitly internalise these
new procedures by leveraging the interprative skill learned in Stage 1.
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Mgiage-2 s then evaluated on a test set of execution tasks Duenspaired for the procedures Funpaired-

RETROACTIVE PBB: ACTIVATING LATENT PROCEDURES

Our second approach, Retroactive PBB, reverses the training sequence. It first exposes the model
to all symbolic procedures and then “activates” the ability to execute them by finetuning on a subset
of paired examples.

1. Stage 1 (Exposure): The base model My, is first finetuned on the full set of symbolic
descriptions Sr. In this stage, the model learns representations of all procedures without
any explicit signal that they are executable.

2. Stage 2 (Activation): The resulting model M1 is then finetuned on the execution
examples Dg(,i‘#éd corresponding to the paired set Fpureq. The hypothesis is that this will
retroactively teach the model to treat all procedures that it learned in Stage I as executable,

including those from Fyppaired-

4 EXPERIMENTAL SETUP

To investigate Programming by Backprop (PBB), we conduct experiments across two distinct do-
mains: algorithmic reasoning in Python and formal grammar generation. Our setup is designed to
test whether models can internalise and execute procedures from symbolic descriptions they have
not seen demonstrated.

4.1 DATASETS AND TASKS

We create three synthetic datasets to provide a controlled environment for studying PBB. We ad-
ditionally experiment with a real-world coding dataset and corresponding execution task. For each
dataset, we define a universe of procedures F', which is partitioned into a paired and unpaired set.

Algorithmic Reasoning. These tasks test whether models can learn to execute Python functions
from their source code.

* Random Arithmetic: This dataset contains 1,000 unique Python functions that map inte-
gers to integers. The functions are synthetically generated by composing basic control flow
(for loops, if / else conditionals) and arithmetic operators (+, —, *, //, %, >, <, exp,
abs). This allows us to control for procedural complexity (i.e., the number of operations).
For our main experiments, we use 100 functions for Fpuireq and 100 for Fyppaired-

* Leetcode: This dataset consists of 702 real-world algorithmic problems and their Python
solutions, sourced from the competitive programming platform. This tests PBB on more
complex and naturalistic procedures. We use 500 problems for Fpireq and 100 for Fuypaired-

* Ciphers: To test generalisation to novel, OOD procedures, we create three custom ciphers
(Alice, Bob, Kevin) that are variations of standard ciphers (Caesar, Atbash, Vigenere).
We assume these novel ciphers are absent from the model’s pretraining data, allowing for
controlled experimentation. The same 500 Leetcode problems are used for Fjireq and the
three custom ciphers form F{ppaireq- For this task, we also generate demonstrations from an
imbalanced distribution (Appendix [E), reflecting the greater occurrence of examples with
specific shift values in pretraining data (McCoy et al.| [2024). This allows us to compare
learning ciphers via PBB to learning from imbalanced demonstration data, thus revealing
whether PBB can provide a data-efficient way of overcoming biases from pretraining.

For all tasks, input-output examples are framed as word problems. We generate ground-truth so-
lutions by executing the corresponding Python code. To test the benefits of intermediate reason-
ing, we also generate chain-of-thought (CoT) solutions for each problem using GPT-4o0 in a post-
rationalisation step (Zelikman et al., [2022).
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Example Context-Free Grammar and Generations

’VenShi’ Grammar (terminals omitted for brevity):

S — NP VP | VPNP
VP — VNP | VAdv | V
NP — DetAdjN | N

Sample *VenShi’ generations:

-> sleeps car the ancient tree
-> the blue wizard shines dog

Formal Grammar Generation. To test PBB beyond code, we construct a procedurally generated
suite of artificial grammars that define syntactic constraints on sentence formation. Concretely, we
generate a universe of 200 unique context-free grammars (CFGs). Each grammar is produced by
sampling from a compact, interpretable parameter space that controls typological properties (word
order families such as SVO, SOV, VSO, etc.), modifier placement (adjectives pre/post-nominal, de-
terminers pre/post-nominal, adverbs pre/post-verbal), and optional structural features. Each gram-
mar is represented symbolically as a small set of production rules (nonterminals and productions).
We use a single, shared lexicon when sampling example strings.

We sample deriviation trees from each CFG by repeatedly expanding nonterminals according to
that grammar until a depth cutoff. A sampled derivation tree is used to produce a sentence by in-
stantiating terminals from the shared lexicon. From the 200 grammars, we designate 100 as Fjireq
(grammars paired with example sentences) and 100 as Fyppaired (grammars for which symbolic spec-
ification is shown during training, but not example sentences). We evaluate model generations with
a strict, grammar-based validity test: a candidate sentence is accepted if it can be parsed by the
requested CFG (we use a chart/Earley parser). Accuracy on a grammar is thus the fraction of model
outputs that produce at least one valid parse under that grammar. For this task, we do not employ
CoT during training or evaluation.

4.2 TRAINING DETAILS

We use instruction-tuned L1ama-3 models (1B, 3B, 8B) (Dubey et al.,[2024)) as our primary set of
base models and conduct additional experiments with GPT-40 (OpenAl et al.||2024) via the OpenAl
finetuning API to investigate PBB in a large frontier model. We also repeat two core experiments
with instruction-tuned Qwen—3 models (4B, 8B) (Qwen et al., [2025) to see if trends are consistent
across model families (Appendix [A). All training runs use a single epoch. For RL runs, we use
GRPO (Shao et al.,2024) with a group size of 8 and no KL regularisation (3 = 0). For SFT and RL
runs, the training batch size is set to 32 and we use a constant learning rate of 1 x 1075, We use a
sampling temperature ¢ = 0.8 during RL training and for evaluation. All evaluations are averaged
over 16 samples and 95% confidence intervals are reported.

5 RESULTS

5.1 RANDOM ARITHMETIC

We first test whether models of different scales can use proactive PBB to execute programs for
which no input—output examples are available. Results are shown in Figure ] (left). We find that
eliciting PBB is highly scale-dependent: 1B models show little to no ability to execute unseen pro-
grams, while 3B and 8B models display measurable improvements, particularly when using chain-
of-thought (CoT). Explicit reasoning allows these models to handle longer programs with more
operations. Implicit execution in a forward pass is significantly less reliable and performance more
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Figure 2: Left: Accuracy following proactive PBB on executing unpaired random arithmetic pro-
grams of different lengths. Right: Accuracy following retroactive PBB.

notably declines as program complexity increases. However, the fact that an 8B model can recall
and execute programs of up to 3 successive operations, knowledge of which comes exclusively from
having encountered them as code during finetuning, with an accuracy greater than 10% is promising.

The two-stage proactive PBB pipeline also has clear benefits over a single mixed finetuning stage
(Appendix [C). Because the initial meta-learning in stage 1 teaches a general code-execution map-
ping, the same program source code needs to appear fewer times in stage 2 for the model to succeed.
This shows that a curriculum which first builds the interpretive skill makes learning from symbolic
descriptions more efficient compared to combining the meta-learning and acquisition stages.
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Figure 3: Left: Accuracy following proactive PBB on executing unpaired random arithmetic pro-
grams represented as natural language or code. Right: Accuracy following proactive PBB for com-
positions of two programs that have been trained on independently.

Next, we examine how the representation of procedures affects proactive PBB. Substituting source
code for semantically equivalent natural language descriptions of functions markedly reduces per-
formance (Figure[3] left). This suggests that the formal structure of code provides scaffolding that
LLMs can more readily internalise as algorithmic abstractions. Prompt/response preamble aug-
mentations further improve performance by diversifying training examples, echoing findings from
OOCR (Berglund et al., 2023), though we find that augmenting surrounding text (i.e., prompt and
answer preamble) is sufficient; no modification of the source code itself is required.

We then probe compositional generalisation by holding out composite functions (i.e., definitions
built from the composition of two unpaired random arithmetic functions). Here, L1 ama—-3 models
fail to perform implicit execution. However, they sometimes succeed with CoT reasoning (Figure[3}
right). GPT—-40 achieves partial success at composition even without CoT, demonstrating retrieval
and sequential execution of independently learned subroutines within a single forward pass. Per-
formance nevertheless declines with increasing program length, consistent with cumulative recall
and/or execution error likelihood across successive operations.
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Figure 4: Left: Accuracy of following each stage of proactive PBB on executing unpaired Leetcode
programs. Right: Accuracy following retroactive PBB.

Finally, we evaluate retroactive PBB. Results in Figure [2| (right) show that elicitation strength de-
pends on both model scale and training algorithm. Notably, reinforcement learning (RL) in stage 2
substantially outperforms supervised finetuning (SFT): even a 1B model with RL surpasses the final
performance of an 8B model trained with SFT. This indicates that online learning plays a crucial
role in activating latent procedure representations, consistent with prior work on the benefits of RL
for generalisation (Held & Hein, |1963; |Ostrovski et al.l [2021}; Kirk et al., 2024} |(Chu et al.| [2025).
Appendix [D] further isolates the contributions of negative samples versus on-policy data by using
DPO, showing that both are beneficial but GRPO remains the most effective.

5.2 LEETCODE

We test whether PBB extends to more naturalistic, real-world programs in Figure ] For proactive
PBB, stage 1 alone (i.e., training on paired descriptions and input-output examples) yields strong
gains on unpaired programs, likely reflecting the presence of code similar, or equivalent, to the un-
paired Leetcode programs in the base model’s training data. Prior knowledge of these programs
means that improved execution ability could generalise to them in a manner similar to stage 2 of
retroactive PBB. However, proactive PBB’s second stage further improves performance by expos-
ing the model to the held-out program source code, confirming that PBB can be elicited even in
domains with substantial prior familiarity, improving a model’s ability to execute previously en-
countered procedures. For retroactive PBB, we again see that larger models benefit more during the
RL activation stage: while all models begin with nonzero zero-shot performance, only the 3B and
8B models show strong gains from stage 2 of finetuning.

GPT-40 SFT for Ciphers

5.3 CIPHERS

We investigate transfer to novel, synthetic ci-

phers exclusively with GPT-40 because the 0
open-source models we consider struggle with
accurate encryption even if the ciphers are pro-
vided in-context. GPT-40’s zero-shot accu-
racy, when the custom ciphers are only refer- 0z
enced by name in-context, is at chance, confirm- Tain on Skewed 1o

ing that these procedures are absent from pre- 00 T - - = =
training. Remarkably, Figure [5] shows that after st

stage 1 of proactive PBB on Leetcode, further

finetuning on cipher source code alone is suffi- Figure 5: Accuracy of GPT-40 when encrypting
cient for the model to learn and apply these ci- text with ciphers trained on only as code, or when
phers with reasonable accuracy, demonstrating trained on as demonstrated execution traces with
that PBB can support the acquisition of OOD be- unevenly distributed shifts.

haviours. Compared to training on demonstra-

tions with imbalanced shifts, PBB yields more uniform accuracy, demonstrating the benefits of
learning from descriptions of procedures for generalisation. As functional source code abstracts
away the values of input parameters, such as shift in this case, PBB enables the model to learn an
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executable, input-general representation of the procedure, leading to robustness across inputs and
suggesting a path towards overcoming the “embers of autoregression” (McCoy et al., [2024).

Proactive-PBB on Formal Grammar Generation
5.4 FORMAL GRAMMAR GENERATION T vomesz-10mstrct

Llama-3.2-3B-Instruct I
Llama-3.1-8B-Instruct

To test whether PBB can be applied beyond 0t
code, we evaluate its ability to acquire be- I
haviours from abstract grammar rules. The task
is to generate sentences that comply with a given
context-free grammar (CFG) that the model has
not seen demonstrated, but that has appeared in
its symbolic form in training data. For this task,
we only train and evaluate without CoT, mean- I

ing that the model must parametrically retrieve g L Lok I
the rules of the grammar and immediately gen-
erate a valid sentence. Results in Figure [ show

that PBB successfully extends to this non-coding  Fjgure 6: Compliance to unpaired grammars fol-

symbolic domain, but only when the full proac-  Jowing each stage of proactive PBB.
tive PBB pipeline is used. Zero-shot perfor-

mance is negligible, as models have never seen these synthetic grammars before. Crucially, neither
training phase is indpendently effective: training on paired grammars alone or on unpaired grammar
rules alone provides minimal benefit.

e
w

Sentence Accuracy
°
S

0.1

Zero-shot Stage 1 Only Stage 2 Only Stages 1 + 2

However, the complete two-stage pipeline yields a dramatic increase in sentence accuracy. This
demonstrates that the meta-learning phase (Stage 1) successfully teaches the model a general skill
of interpreting symbolic rules, which it then leverages in Stage 2 to internalise and execute the novel,
unpaired grammars. Consistent with our findings in algorithmic tasks, this capability is highly scale-
dependent, with the 8B model substantially outperforming the smaller models.

6 CONCLUSION

In this paper, we show that LLMs can learn to execute novel procedures from their symbolic descrip-
tions, a capability we term Programming by Backprop (PBB). We demonstrate this by eliciting the
generalisation through targeted finetuning pipelines. We introduce two such pipelines that success-
ful induce this skill. Proactive PBB uses a two-stage curriculum that first uses descriptions paired
with demonstrations to meta-learn a general interpretation skill before acquiring new, unpaired pro-
cedures from descriptions alone. In contrast, retroactive PBB first exposes a model to all symbolic
descriptions and then “activates” its ability to execute these procedures, a process we found is sub-
stantially more effective when driven by RL than SFT. Across multiple domains — from synthetic
arithmetic and out-of-distribution ciphers to formal grammars — our results reveal a consistent set of
principles governing PBB. First, the capability is highly scale-dependent, with larger models proving
significantly more adept at internalising and executing symbolic rules. Second, representation mat-
ters; source code provides a far more effective learning signal than semantically equivalent natural
language, suggesting that its syntax acts as a crucial scaffold for building algorithmic abstractions.
Third, PBB on algorithmic tasks benefits considerably from explicit reasoning, indicating that while
models can internalise procedures for implicit execution in their forward pass, using the internalised
procedure as a guide for explicit computation is more effective.

The implications of PBB are significant. For capability acquisition, it points towards a more data-
efficient and interpretable learning paradigm, where new skills can be imparted through concise,
formal descriptions rather than extensive demonstrations. PBB also offers a promising new avenue
for alignment; our results with formal grammars show that models can internalise abstract rules
governing their output. While performance can be considerably improved, particularly on complex
compositional tasks, this work establishes PBB as a distinct and viable learning mechanism within
LLMs. Future work should focus on integrating these principles into pretraining and exploring
other “code-like” formalisms for alignment. Ultimately, PBB reframes our approach to teaching
models, suggesting a future where learning is driven as much by abstract instruction as by concrete
example, moving us closer to models that don’t just mimic patterns, but internalise and execute
explicit principles.
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7 REPRODUCIBILITY STATEMENT

We are open-sourcing all code and datasets needed to reproduce our experiments at https://
anonymous.4open.science/r/Programming—by-Backprop. This includes data gen-
eration scripts and training code.
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Figure 7: Left: Accuracy following proactive PBB on executing unpaired random arithmetic pro-
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B DATA SCALING

B.1 ABLATION OVER DATASET SIZE

Figure[9compares the performance of Llama models (1B, 3B and 8B parameters) for varying dataset
size on the evaluation of Random Arithmetic programs. Here, ‘dataset size’, refers specifically to the
amount of unique code functions included in the dataset. Performance is evaluated on three separate
sets:

* The w/ IO Train set: both the function and the IO pairs are observed during training

e The w/ IO Test set: uses the same functions as w/ IO Train but different IO pairs, not
included in the training data

* The w/o 10 Test set: evaluates IO pairs for functions seen only as code during training

The results show that accuracy on both w/ IO and w/o 10 sets generally increases with larger dataset
sizes and larger model scales. Notably, model performance is strongly tied to parameter count; for
example, the 8B model trained on only 100 unique functions achieves comparable performance on
the w/o 10 set to the 1B model trained on 800 functions.

Model: Llama-3.2-1B-Instruct
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Figure 9: Performance comparison of Llama models across 1B, 3B and 8B on paired (w/ I0) and
unpaired (w/o 10) Random Arithmetic program evaluation. Each model is trained and tested across
varying dataset sizes. Dataset size refers to the number of unique functions present in the dataset.

B.2 ABLATION OVER NUMBER OF 10 PAIRS

In Figure [I0] we vary the number of IO training pairs (per program) provided for the w/ IO set, and
examine the results. This analysis specifically uses the Llama—-3.2-3B-Instruct model on
the Random Arithmetic dataset, which for this experiment consists of 200 distinct functions. Per-
formance is reported across the same sets as the ones described in Appendix [B.I] The results show
how increasing the quantity of 10 examples for each program affects not only direct generalisation
in the w/ IO Test set, but also the model’s ability to accurately execute w/o IO programs.
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Model: Llama-3.2-3B-Instruct
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Figure 10: Impact of varying the number of IO training pairs for paired (w/ IO) programs and un-
paired (w/o 10) sets evaluation accuracy. Results are shown for the Llama-3.2-3B-Instruct
model using a Random Arithmetic dataset comprising 200 distinct functions.

C SINGLE-STAGE PROGRAMMING BY BACKPROP

In Figure[TT] we show the accuracy of Llama-3.1-8B-Instruct on unpaired (w/o I0) Random Arith-
metic program evaluation following proactive PBB in comparison to a single SFT stage with all
training data in a single mixture. As we scale the number of times the same piece of unpaired (w/o
10) source code appears in the dataset, with prompt and response preamble augmentations, single-
stage SFT approaches the performance of proactive PBB. The greater sample efficiency of proactive
PBB is likely because initial train steps on source code are waisted in single-stage SFT, as a code-1/0
relationship has not yet been learned.

1-Stage vs. 2-Stage PBB
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Figure 11: Comparing two-stage proactive PBB to a single SFT stage on the full Random Arithmetic
training data mixture for different numbers of repeated source code samples. The base model is
Llama-3.1-8B-Instruct.
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D ONLINE VS. OFFLINE RETROACTIVE-PBB

In Figure [T2] we compare different finetuning algorithms for the second stage of retroactive PBB
with Llama-3.1-8B-Instruct on Random Arithmetic. DPO allows for learning from both positive and
negative samples, considerably outperforming SFT. GRPO is an online RL algorithm, meaning that
the model learns from on-policy data, which could be why it yields further improvements.

Retroactive-PBB Algorithm Comparison

SFT DPO GRPO

Figure 12: Comparing finetuning algorithms for the second stage of retroactive PBB on Random
Arithmetic with Llama-3.1-8B-Instruct. DPO is an offline method, but allows for learning from
positive and negative examples. GRPO is online and thus has the added benefit of learning from
on-policy data.
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E CIPHERS DATA

A plot showing the distribution of IO pairs used in Figure[5]is provided in Figure[T3]

Figure 13: Sampled shifts for cipher I/O pairs.
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F NATURAL LANGUAGE DESCRIPTIONS

Here, we include an example of a random arithmetic program and its natural language description.

Program:
def Blaankle (x):
t0 = x + x

tl = 1 = abs (t0)
return tl

Description: A Blaankle is a process that takes an input value, doubles it, and then returns the
absolute value of the doubled result.
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G COMPUTE REQUIREMENTS
All experiments with L1ama models can be run on two GPUs with 40GB vVRAM. We used data
parallelism over 4 NVIDIA L40s GPUs to run these experiments.

Experiments with GPT-4 0 made use of the OpenAl finetuning API. Data generation (Leetcode word
problems and post-rationalised chain-of-thought ground truth outputs for all datasets) and finetuning
runs came to a total cost just over 500 USD.
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