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ABSTRACT

Deep equilibrium layers (DEQs) have demonstrated promising performance and
are competitive with standard explicit models on many benchmarks. However,
little is known about certifying robustness for these models. Inspired by inter-
val bound propagation (IBP), we propose the IBP-MonDEQ layer, a DEQ layer
whose robustness can be verified by computing upper and lower interval bounds
on the output. Our key insights are that these interval bounds can be obtained as
the fixed-point solution to an IBP-inspired equilibrium equation, and furthermore,
that this solution always exists and is unique when the layer obeys a certain param-
eterization. This fixed point can be interpreted as the result of applying IBP to an
infinitely deep, weight-tied neural network, which may be of independent interest,
as IBP bounds are typically unstable for deeper networks. Our empirical compar-
ison reveals that models with IBP-MonDEQ layers can achieve comparable `8
certified robustness to similarly-sized fully explicit networks.1

1 INTRODUCTION

A recent development in neural network design has been the introduction of implicit layers (Amos &
Kolter, 2017; Chen et al., 2018; Agrawal et al., 2019; Bai et al., 2019; 2020; El Ghaoui et al., 2021),
where the output is defined implicity as the solution to certain sets of conditions, rather than ex-
plicitly, via closed-form functions. These layers are promising alternatives to standard explicit deep
learning layers and have demonstrated improved expressivity and inductive biases in a variety of set-
tings, for example, processing time series (Rubanova et al., 2019), generative modeling (Grathwohl
et al., 2018), solving logical reasoning tasks (Wang et al., 2019), solving two player games (Ling
et al., 2018), and many others. One particularly promising class of implicit layers is deep equilib-
rium layers (DEQs) (Bai et al., 2019), which define the output as the solution to an input-dependent
fixed point equation. DEQ-based models have matched or outperformed traditional explicit models
even in commonly benchmarked settings (Bai et al., 2019; 2020).

Though recent empirical successes of DEQs have been promising, their implicit nature and inherent
mathematical complexity also give rise to basic concerns. In order for DEQs to realize their promise,
these concerns should ideally be mitigated or resolved. For example, one major issue with DEQs
is well-posedness – a solution to the fixed point equation defining the layer might not exist. On the
other hand, explicit layers always have well-defined outputs. A recent line of work has focused on
addressing this important concern (Winston & Kolter, 2020; Revay et al., 2020; Xie et al., 2021).

This paper tackles a less-studied, but also important, question for DEQs: certified adversarial ro-
bustness. Because robustness is a basic concern for safe deployment of deep models (Szegedy et al.,
2013; Goodfellow et al., 2014), for explicit models there is a large literature dedicated to certifying
robustness, or guaranteeing correctness of the predictions even when the input is subject to imper-
ceptible adversarial perturbations (see e.g. (Raghunathan et al., 2018a; Wong & Kolter, 2018; Gowal
et al., 2018; Dvijotham et al.; Xiao et al., 2018; Cohen et al., 2019)). Many certified robustness meth-
ods require opening up the black box of the model and therefore only work for explicit models. It is
unclear how to certify robustness of DEQs, which are only defined implicitly.

1Code is available here: https://github.com/cwein3/ibp-mondeq-code.
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Figure 1: Illustration of method. We propose an equilibrium equation which takes as input vpxq
and interval bounds svpxq, vpxq, and solves jointly for z‹, the standard output of the DEQ, as well as
sz‹, z‹, interval upper and lower bounds on z‹.

The certified robustness method motivating this work is interval bound propagation (IBP) (Mirman
et al., 2018; Gowal et al., 2018), a simple and cheap way to certify robustness to `8 perturbations.
IBP computes layerwise upper and lower bounds for each coordinate of the adversarially perturbed
hidden layers. These bounds follow basic rules of interval arithmetic and are simple to obtain in
closed form as explicit functions of a layer’s weights. However, it is unclear how to apply this idea
when layers are only defined implicitly.

In this paper, we propose the IBP-MonDEQ, a deep equilibrium layer which is certifiably robust
to `8 perturbations. Motivated by principles from IBP, we define the IBP-MonDEQ output as the
solution of an augmented fixed-point equation involving 3 quantities: the unperturbed output of the
layer and upper and lower interval bounds on this output. As with IBP for explicit models, interval
bounds on the IBP-MonDEQ output are computed during the forward pass of the network and can
be composed with other layers to certify robustness of the entire model.

More concretely, we build upon monotone operator deep equilibrium (MonDEQ) layers proposed
by Winston & Kolter (2020), which take the preceding layer vpxq as input and outputs the solution
z‹, which is guaranteed existence and uniqueness, to the following fixed-point equation:

z‹ “ σpWz‹ ` vpxqq (1.1)
We propose an IBP-inspired fixed-point equation

„

sz‹

z‹



“ σ

ˆ„

pW q` pW q´
pW q´ pW q`

 „

sz‹

z‹



`

„

svpxq
vpxq

˙

(1.2)

which maps upper and lower interval bounds sv, v on v to sz‹ and z‹, which provide upper and lower
interval bounds on z‹. Figure 1 depicts this process. The augmented fixed-point equation is derived
by unrolling the computation of z‹ into an infinitely deep, explicit network and applying IBP to the
forward pass of this network.

One immediate challenge is that it is not clear that a fixed point solution to (1.2) should always exist,
especially given its interpretation as the result of applying IBP to an infinitely deep network. Indeed,
a major drawback of IBP is that its performance degrades with deeper networks, as observed by Shi
et al. (2021) and also shown in Figure 2 (left). One potential explanation for this failure is that IBP
bounds tend to be unstable with depth and can diverge for deeper models (Figure 2, right).

On the other hand, we show that a unique fixed-point solution to (1.2) is guaranteed to exist whenW
admits a simple unconstrained parameterization which is easy to enforce throughout training. Thus,
our results pinpoint a class of infinitely deep networks for which IBP bounds are provably stable,
which may be of independent interest.

We experimentally compare the proposed IBP-MonDEQ layer against IBP for standard explicit
models. We consider common certified robustness benchmark settings and evaluate architectures of
various sizes. Our results show that models with IBP-MonDEQ layers can achieve comparable `8
certified robustness relative to fully explicit models with similar parameter counts.

In summary, our contributions are as follows: 1) We study the certified robustness of DEQs, propos-
ing the IBP-MonDEQ, a class of DEQs with a guaranteed unique fixed point with provable inter-
val bounds on the fixed point value. 2) The proposed IBP-MonDEQs form an expressive class of
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infinitely-deep models for which IBP is provably stable, which may be of independent interest. 3)
Our experiments demonstrate that IBP-MonDEQ layers are competitive with standard explicit layers
for `8-certified robustness.

2 BACKGROUND

`8 certified robustness. Consider a K-way classification task with neural network classifier F :
Rd Ñ RK . For a given input x with true label y, the classifier F is adversarially robust to `8
perturbations with radius ε if

min
δPRd:}δ}8ďε

F px` δqy ´ F px` δqy1 ą 0 @y1 ‰ y (2.1)

Safety-critical applications require certifying the robustness of F , i.e., verifying whether 2.1 holds.
Directly optimizing over δ to verify (2.1) is challenging because the objective is non-convex (Madry
et al., 2017). Thus, recent work on certified robustness has focused on verifying (2.1) via compu-
tationally tractable relaxations (Raghunathan et al., 2018a; Wong & Kolter, 2018; Dvijotham et al.;
Raghunathan et al., 2018b; Weng et al., 2018; Gowal et al., 2018; Salman et al., 2019b).

Interval bound propagation. IBP is a computationally efficient method for certifying `8 robust-
ness of neural networks (Mirman et al., 2018; Gowal et al., 2018). It proposes to verify (2.1) via
a (potentially loose) upper bound on F px ` δqy ´ F px ` δqy1 which is obtained by computing
propagating upper and lower bounds on each layer through the forward pass of the network.

More precisely, let zpxq compute some hidden layer of the network on input x. We say that szpx, εq,
zpx, εq are interval bounds on z at x for perturbation ε if the following holds for all coordinates i:

pzpx, εqqi ď min
δPRd:}δ}8ďε

pzpx` δqqi ď max
δPRd:}δ}8ďε

pzpx` δqqi ď pszpx, εqqi (2.2)

We omit dependencies on x and ε when clear from context. Letting k denote the layer index, the
bounds szk and zk are obtained inductively via simple interval arithmetic. For an affine layer zk “
Wzk´1 ` b and pre-computed bounds zk´1, szk´1, IBP computes szk, zk as follows:

„

szk
zk



“

„

pW q` pW q´
pW q´ pW q`

 „

szk´1

zk´1



`

„

b
b



(2.3)

Here pW q` fi maxtW, 0u and pW q´ fi mintW, 0u denote the matrix W with negative or positive
values truncated to 0. For simplicity we focus on ReLU networks, with σ denoting the ReLU
activation. For layers zk “ σpzk´1q which apply σ coordinate-wise, IBP computes szk “ σpszk´1q

and zk “ σpzk´1q. Initial bounds are obtained via psz0px, εq, z0px, εqq “ px` ε1, x´ ε1q, where 1
denotes the all 1’s vector.

The interval bounds are propagated through all layers of the network by following the simple rules
above. To certify (2.1) for the whole network, one straightforward method is to confirm that the
margins of the interval bounds on the logits are positive: pF px, εqqy ´ p sF px, εqqy1 ą 0 @y1 ‰ y.
One important note about IBP is that the bounds should be optimized during training in order for the
method to provide nontrivial robustness guarantees.

Monotone operator equilibrium networks. Proposed by Winston & Kolter (2020), MonDEQs are
a class of DEQs inspired by monotone operator theory (Ryu & Boyd, 2016) which have guaranteed
unique fixed point solutions to the following equilibrium equation:

z‹ “ σpWz‹ ` vpxqq (2.4)

Let Ihˆh denote the identity matrix on h dimensions, with the subscript omitted when clear. A
unique fixed-point solution is guaranteed for (2.4) for the following class of W :
Proposition 2.1 ((Winston & Kolter, 2020)). Suppose W P Rhˆh satisfies that I ´W is positive
definite (PD), i.e. I ´W ą 0. Then @vpxq P Rh, a solution z‹ to (2.4) exists and is unique.

Here 0 denotes the all 0’s matrix and A ą 0 indicates that uJAu ą 0 for all nonzero u (note
that A does not need to be symmetric). Winston & Kolter (2020) guarantee that I ´ W is PD
using the following unconstrained parameterization, which is enforced throughout training: W “

p1´mqI ´AAJ `B ´BJ, for positive hyperparameter m. Section 3.1 builds on these results to
derive certified upper and lower bounds on z‹.
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Figure 2: Difficulties of IBP with depth. Left: error v.s. depth for IBP and standard train-
ing. We train deeper models with IBP on CIFAR10 with ε “ 2

255 . We find that final certified
error increases with the depth of the model. On the other hand, depth does not hurt when mod-
els are trained and evaluated on standard clean error. This suggests that IBP performs particularly
poorly with depth. Right: convergence of interval bounds for standard MonDEQs and our
IBP-MonDEQ. We plot the the average over coordinates of szk ´ zk, where szk, zk denote bounds
computed by the k-th iteration of the equilibrium solver for (3.3). This quantity blows up for the
standard MonDEQ (Winston & Kolter, 2020) as the solver fails to find a fixed point. In contrast, the
solver converges with our IBP-MonDEQ parameterization. Implementation details are in Section B.

3 CERTIFYING ROBUSTNESS OF MONDEQS USING IBP

In this section, we describe our core methodology for developing certifiably robust MonDEQ layers.
We will first demonstrate how to obtain interval bounds for MonDEQ layers by computing the
solution to a certain IBP-inspired fixed point equation (3.3). In Section 3.1, we characterize a new
parameterization for W for which a unique fixed point exists. In Section 3.3, we provide theoretical
justification that the resulting IBP-MonDEQ layers remain expressive.

Our aim is to derive upper and lower interval bounds sz‹ and z‹ for the fixed point solution to (2.4).
A common interpretation of DEQs is that they compute an infinitely deep, unrolled explicit net-
work (Bai et al., 2019; Winston & Kolter, 2020):

zk “ σpWzk´1 ` vq (3.1)

with limkÑ8 zk “ z‹. This equivalence is informal and mainly serves to motivate our derivation of
the IBP-MonDEQ. Given interval bounds sv and v on v satisfying v ď v ď sv, where the inequalities
hold elementwise, we can also follow IBP and (2.3) to iteratively obtain interval bounds on zk:

„

szk
zk



“ σ

ˆ„

pW q` pW q´
pW q´ pW q`

 „

szk´1

zk´1



`

„

sv
v

˙

(3.2)

Just as we took limkÑ8 zk, we consider limkÑ8 szk, zk, motivating another fixed-point problem:
„

sz‹

z‹



“ σ

ˆ„

pW q` pW q´
pW q´ pW q`

 „

sz‹

z‹



`

„

sv
v

˙

(3.3)

As shown in Figure 1, this IBP-inspired fixed point equation essentially maps the region tv1 : v ď
v1 ď svu to the region tz‹1 : z‹ ď z‹1 ď sz‹u, where inequalities are coordinate-wise. If they
exist, the fixed points sz‹ and z‹ will indeed lead to valid interval bounds (as defined in (2.2)) on z‹.
Proposition 3.2 states this observation formally.

3.1 FIXED POINTS OF THE IBP-INSPIRED EQUILIBRIUM EQUATION

Following the derivation above, the IBP fixed point equation (3.3) can be interpreted as the result
of applying IBP to an infinitely deep, weight-tied neural network. However, IBP is notoriously
unstable for deeper networks, so it is unclear whether a fixed point solution to (3.3) always exists.
This section characterizes a class of W for which (3.3) does have a fixed point (Theorem 3.1).
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Figure 2 (left) demonstrates that the performance of IBP degrades for deep networks. We add linear
layers to the architecture proposed by Gowal et al. (2018) for IBP, which is a wide but shallow
network with 6 linear layers, and find that the final error certified by IBP increases with the depth of
the model. This illustrates the challenge of getting IBP to work for deep models.

The challenges associated with depth also apply to the class of MonDEQs proposed by (Winston

& Kolter, 2020). We will define xW fi

„

pW q` pW q´
pW q´ pW q`



P R2hˆ2h to be the linear transformation

for IBP. Recall that Proposition 2.1 demonstrates existence and uniqueness of a fixed point solution
to (2.4) when Ihˆh´W is PD, but this does not guarantee the positive-definiteness of I2hˆ2h´xW ,
which would be sufficient for a fixed point solution to (3.3). Indeed, Figure 2 (right) shows that
the fixed-point solver fails to solve (3.3) for the standard MonDEQ, as the interval bounds diverge.
Intuitively, this failure occurs because the spectral radius of xW is always larger than that of W (see
Lemma 3.4), so repeated application of (3.2) diverges. Thus, further restrictions on W are required.

The following theorem exactly characterizes the class of W for which I2hˆ2h´xW is PD. For these
W , existence and uniqueness of fixed points to (2.4) and (3.3) is guaranteed to hold.

Theorem 3.1. In the setting above, I2hˆ2h ´xW ą 0 if and only if W is parameterized as follows:

W “ D´1{2MD´1{2 (3.4)

where D,M P Rhˆh and D is a diagonal matrix satisfying Di,i ą
p|M |1qi`p|M |

J1qi
2 , where

|M | P Rhˆh takes the entry-wise absolute value of M . Thus, for W parameterized by (3.4), unique
solutions z‹, sz‹, z‹ to the standard (2.4) and IBP (3.6) equilibrium equations exist @ v, sv, v P Rh.

Theorem 3.1 is our main theoretical result, and proposes a simple class ofW for which the IBP equi-
librium equation has a guaranteed unique fixed point. In this characterization,M is an unconstrained
matrix (and is also treated as an unconstrained parameter in our implementation, as described in Sec-
tion 4). In Section 3.3, we theoretically analyze the expressivity of the induced class of DEQ layers.
The proof of Theorem 3.1 is discussed in Section 3.2.

Next, it remains to check that sz‹ and z‹ do provide valid interval bounds on z‹, as the derivation in
Section 3 was only heuristic. The following proposition makes this derivation rigorous.

Proposition 3.2. In the setting above, suppose xW satisfies I2hˆ2h ´xW ą 0, so that unique fixed-
point solutions sz‹, z‹ to (3.3) always exist. Define the fixed-point solution z‹pvq as a function of v
as follows: z‹pvq “ σpWz‹pvq ` vq. Then for any v ď sv and all i, it must hold that

pz‹qi ď min
vďvďsv

pz‹pvqqi ď max
vďvďsv

pz‹pvqqi ď p sz‹qi (3.5)

We present the proof in Section A. Combining Theorem 3.1 and Proposition 3.2, we finally obtain
the IBP-MonDEQ layer, which simultaneously solves two equilbrium equations to output both z‹
and valid upper and lower interval bounds sz‹, z‹ on z‹:

z‹ “ σpWz‹ ` vpxqq
„

sz‹

z‹



“ σ

ˆ„

pW q` pW q´
pW q´ pW q`

 „

sz‹

z‹



`

„

svpx, εq
vpx, εq

˙

(3.6)

To include an IBP-MonDEQ layer in a deeper model, we set vpxq to be the output of the preceding
layer, and choose svpx, εq, vpx, εq to be upper and lower interval bounds on vpxq. The interval bounds
sz‹ and z‹ can be propagated through the rest of the network following the standard IBP methods.

LBEN parameterization. We can relax the restrictions imposed by the parameterization (3.4) by
leveraging the Lipschitz-bounded equilibrium network (LBEN) parameterization proposed by Revay
et al. (2020). Revay et al. (2020) show that a guaranteed unique fixed point of (2.4) still exists if the
PD condition on I´W is relaxed to require Λ´ΛW ą 0 for Λ P Dhˆh` , the set of positive diagonal
matrices. The following result exactly characterizesW such that DΛ P Dhˆh` : Λ´Λ|W | ą 0, which
is also sufficient for guaranteeing a unique fixed point solution to (3.3).
Theorem 3.3. For weight matrix W , DΛ P Dhˆh` such that Λ´ Λ|W | ą 0 if and only if W can be
parameterized as follows:

W “ ΓD´1{2MD´1{2Γ´1 (3.7)
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for some Γ, D P Dhˆh` with D satisfying Di,i ą
p|M |1`|M |J1q

2 .

For W parameterized by (3.7), we have the following immediate consequences: 1) unique solutions
z‹, sz‹, z‹ to the equilbrium equations (3.6) exist for all v, sv, v P Rh, and 2) sz‹, z‹ are upper and
lower interval bounds on z‹ in the sense of Proposition 3.2.

The proof is provided in Section A. Note that Theorem 3.3 improves the expressivity of the IBP-
MonDEQ layer because the class of W proposed in Theorem 3.3 contains that of Theorem 3.1.
In Section 3.3, we show that, perhaps surprisingly, this more flexible parameterization allows IBP-
MonDEQ layers to express all explicit networks. Section 4 demonstrates that this parameterization
can also lead to empirical improvements.

3.2 PROOF OF THEOREM 3.1

We sketch the proof of Theorem 3.1. To prove I2hˆ2h ´xW ą 0, we require a simple way to reason
about the spectrum of xW . The following lemma formalizes a connection between eigenvalues of
xW`xWJ

2 and |W |`|W |J

2 .

Lemma 3.4. All eigenvalues of xW`xWJ

2 are either eigenvalues of W`W
J

2 or |W |`|W |
J

2 . As a direct
consequence, the following equivalence holds:

I2hˆ2h ´xW ą 0 ðñ Ihˆh ´ |W | ą 0 (3.8)

Note that the condition that Ihˆh ´ |W | is PD is a stricter requirement than requiring positive-
definiteness of Ihˆh ´W , as it always holds that λmaxp

|W |`|W |J

2 q ě λmaxp
W`WJ

2 q, where λmax

denotes the largest eigenvalue. Thus, in order for both (2.4) and (3.3) to have unique fixed points, it
suffices to have Ihˆh ´ |W | ą 0. The proof of Lemma 3.4 is completed in Section A and relies on
the following basic fact about structured block matrices.

Claim 3.5. Let M P R2hˆ2h be any matrix of the form M “

„

A B
B A



, where A,B P Rhˆh. Then

all eigenvalues of M are either eigenvalues of A`B or A´B.

Following Lemma 3.4, we now complete the proof of Theorem 3.1 by analyzing Ihˆh ´ |W |.

Proof of Theorem 3.1. By Lemma 3.4, it is equivalent to characterize when Ihˆh ´ |W | ą 0. We
first show that (3.4) implies positive-definiteness. We write

I ´
|W | ` |W |J

2
“ D´1{2

ˆ

D ´
|M | ` |M |J

2

˙

D´1{2 (3.9)

By the lower bound on entries of D, the matrix D ´ |M |`|M |J

2 is symmetric and strictly diagonally

dominant (SDD), and thus PD. Thus, we obtain I ´ |W |`|W |J

2 ą 0, so I ´ |W | ą 0.

For the reverse direction, we appeal to the theory of M-matrices (Plemmons, 1977). We note that
I ´ |W |`|W |J

2 is a nonsingular M-matrix, i.e., a matrix with negative off-diagonal entries whose
eigenvalues have positive real parts. By an equivalent characterization of M-matrices, there exists
a diagonal matrix E P D` such that EpI ´ |W |`|W |J

2 qE is SDD. Rearranging gives |W | “ I ´

E´1AE´1 ` S, where A is symmetric and SDD, and S is skew-symmetric (SJ “ ´S).

Now we choose M satisfying |M | “ E2 ´ A ` ESE and D “ E2, so that W has the pa-
rameterization W “ D´1{2MD´1{2. To check that Di,i ą

p|M |1qi`p|M |
J1qi

2 , we note that
p|M |1qi`p|M |

J1qi
2 “ ppE2 ´ Aq1qi “ E2

i,i ´ Ai,i ´
ř

j‰iAi,j ă E2
i,i, where we use the fact

that Ai,i ą
ř

j‰i |Ai,j | because A is SDD. Plugging in Di,i “ E2
i,i gives the desired inequality.

3.3 EXPRESSIVITY OF THE IBP-MONDEQ

Guaranteeing that (3.3) has a fixed point requires placing further restrictions on W on top of those
already proposed for MonDEQs (Winston & Kolter, 2020). This section examines the expressivity
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of the resulting IBP-MonDEQ parameterization. To sanity check that our parameterization is not
too restrictive, we first contrast against normalization techniques for controlling Lipschitz constants
in neural networks. Next, we demonstrate that with the relaxed parameterization of Theorem 3.3,
the IBP-MonDEQ is able to express traditional explicit feedforward networks.

Operator norm of W . We first investigate the operator norm of W . A number of papers constrain
the weight matrices so that their operator norms are bounded by 1, which prevents blowup of the
naive upper bound

ś

i }Wi}op on the Lipschitz constant of the whole network (Cisse et al., 2017;
Miyato et al., 2018; Farnia et al., 2018; Trockman & Kolter, 2021). This approach has applica-
tions in robustness, but there are also concerns that constraining the operator norms to 1 severely
harms expressivity (Huster et al., 2018; Anil et al., 2019). We verify that the parameterization of
Theorem 3.1 does not imply the stringent constraint }W }op ď 1.
Example 3.6. The following choice of W satisfies the parameterization (3.4) with }W }op “ 1.9:

W “

„

0 1.9
0.05 0



. We set M “W and D “ I2ˆ2, so W “ D´1{2MD´1{2 as in (3.4).

Example 3.6 may be surprising given superficial similarities between (3.4) and the following param-
eterization, which does imply }W }op ď 1: W “ D´1M , where D satisfies Di,i ě p|M |1qi.
The parameterization in Theorem 3.1 avoids this constraint because the requirement is instead
Di,i ě

p|M |1`|M |J1qi
2 , so mass in M can be asymmetrically distributed between the upper and

lower triangular halves, as in Example 3.6.

Expressing explicit feedforward networks. The following result states that using the parameteri-
zation in Theorem 3.3, a single IBP-MonDEQ layer can express all explicit feedforward networks.
Proposition 3.7. Consider explicit neural net embedding functions of the following form:

zLpxq “ σpALσpAL´1 ¨ ¨ ¨σpA1xq ¨ ¨ ¨ qq (3.10)

where zL : Rd Ñ Rh andAi P Rhˆh @1 ď i ď L. There is a DEQ layer z‹ : Rd Ñ RLh outputting
z‹pxq “ σpWz‹pxq ` Bxq, where W,B P RLhˆLh, such that W obeys the parameterization of
Theorem 3.3, and the last h coordinates of z‹ satisfy

pz‹pxqqpL´1qh:Lh “ zLpxq @x P Rd

Proposition 3.7 states that the IBP-MonDEQ parameterized in Theorem 3.3 is at least as powerful
as standard explicit networks, and is somewhat surprising given that the parameterizations (3.4)
and (3.7) may appear restrictive. The proof, provided in Section A, leverages the fact that Γ provides
flexibility in scaling the weights, essentially allowing us to cancel out the normalization matrix D.

4 EXPERIMENTS

In this section, we empirically compare models with IBP-MonDEQ layers against fully explicit mod-
els. Our results show that IBP-MonDEQ models can achieve comparable performance on common
certified robustness benchmarks relative to IBP with standard explicit models.

Explicit models. Table 1 illustrates the explicit architectures: a smaller 3LAYER model with 2
convolutional layers and 128 output channels, and a larger 7LAYER model. The 7LAYER model is
a wide and shallow network with 17 million parameters proposed by Gowal et al. (2018) for IBP.

IBP-MonDEQ models. As shown in Table 1, we consider replacing a convolutional layer in a fully-
explicit model with an IBP-MonDEQ layer where W computes an equivalently-sized convolutional
transformation. This leads to DEQ-3 and DEQ-7 models with equivalent parameter counts as
their fully-explicit counterparts. We use `LBEN to indicate that the IBP-MonDEQ layer uses the
LBEN parameterization in Theorem 3.3. To solve for the fixed points, we use the forward-backward
algorithm with Anderson acceleration (Walker & Ni, 2011; imp, 2020).

To guarantee that (3.6) has a unique fixed point, we enforce either (3.4) or (3.7) (depending on
whether we use the LBEN parameterization) for the IBP-MonDEQ weight W . To enforce (3.4), we
set W “ D´1{2MD´1{2 where M is the only trainable parameter and D “ diag

´

p|M |`|M |Jq1
2p1´mq

¯

is a fixed function of M , where diagp¨q maps a vector to a diagonal matrix. Here m P p0, 1q is a
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Table 1: Illustration of architectures. CONV-h-kxk-s denotes a convolution with h output chan-
nels, kxk kernel size, and s stride. We consider DEQ models where a CONV layer is replaced by a
IBPMON-h-kxk-s layer with an equivalently-sized convolutional operation.

3LAYER DEQ-3 7LAYER DEQ-7

CONV-128-3x3-1
CONV-128-3x3-1

FC-10

CONV-128-3x3-1
IBPMON-128-3x3-1

FC-10

CONV-64-3x3-1
CONV-64-3x3-1

CONV-128-3x3-2
CONV-128-3x3-1
CONV-128-3x3-1

FC-512
FC-10

CONV-64-3x3-1
IBPMON-64-3x3-1

CONV-128-3x3-2
CONV-128-3x3-1
CONV-128-3x3-1

FC-512
FC-10

Table 2: Certified robustness results. We display the average certified error and standard (clean)
error for explicit and IBP-MonDEQ architectures (lower is better). We compute the mean errors over
3 independent training runs, with standard deviations in parentheses. Our results show that the IBP-
MonDEQ models can achieve smaller certifiably robust error than their fully explicit counterparts.

MNIST CIFAR10
ε “ 0.1 ε “ 0.2 ε “ 0.3 ε “ 0.4 ε “ 2

255 ε “ 8
255

Certified
error

3LAYER 4.19 (0.27) 9.16 (0.17) 19.14 (0.39) 28.98 (0.41) 53.01 (0.45) 72.38 (0.35)
DEQ-3 3.18 (0.09) 6.56 (0.11) 12.72 (0.49) 19.80 (0.66) 53.9 (0.37) 71.97 (0.31)

(+LBEN) 3.15 (0.07) 6.64 (0.13) 11.96 (0.38) 19.11 (0.32) 54.18 (0.12) 72.33 (0.59)

Standard
(Clean)

error

3LAYER 2.10 (0.06) 3.33 (0.21) 6.54 (0.09) 6.49 (0.12) 39.22 (0.16) 58.66 (0.15)
DEQ-3 1.62 (0.03) 2.62 (0.11) 4.71 (0.27) 4.44 (0.20) 40.25 (0.39) 59.35 (0.99)

(+LBEN) 1.60 (0.04) 2.49 (0.12) 4.54 (0.12) 4.58 (0.31) 40.77 (0.29) 59.41 (0.29)

Certified
error

7LAYER 2.61 (0.11) 4.21 (0.26) 7.39 (0.09) 12.41 (0.27) 48.46 (0.31) 66.95 (0.35)
DEQ-7 2.58 (0.06) 4.24 (0.07) 6.80 (0.04) 12.32 (0.37) 48.29 (0.28) 66.87 (0.34)

(+LBEN) 2.51 (0.03) 4.15 (0.04) 6.92 (0.14) 12.25 (0.03) 48.23 (0.34) 67.20 (0.37)

Standard
(clean)
error

7LAYER 0.89 (0.02) 1.27 (0.04) 2.25 (0.19) 2.29 (0.15) 32.82 (0.33) 52.84 (1.30)
DEQ-7 0.79 (0.06) 1.16 (0.03) 2.13 (0.05) 2.13 (0.07) 33.04 (0.49) 53.12 (0.88)

(+LBEN) 0.80 (0.04) 1.13 (0.02) 2.04 (0.05) 2.10 (0.07) 33.08 (0.48) 53.42 (0.58)

tunable hyperparameter governing a tradeoff between expressivity and convergence rate: a smaller
m leads to more expressivity but also slower convergence of the equilbrium solvers. For the LBEN
parameterization (3.7), we parameterize the additional diagonal scaling matrix Γ P Dhˆh` by Γ “

diag
´

γ´1
γ sigmoidpβq ` 1

γ

¯

, where γ ą 1 is a scalar hyperparameter, and β P Rh is a trainable

parameter β P Rh. This parameterization enforces that the condition number of Γ is bounded by γ.

4.1 CERTIFIED ROBUSTNESS RESULTS

Tables 2 shows certified and standard classification errors of 3 and 7 layer models trained with IBP
on the MNIST and CIFAR10 datasets for various values of ε. For most settings, IBP-MonDEQ
models are able to achieve lower mean certified errors than their fully explicit counterparts.

The improvement is particularly striking in the case of 3 layer models on MNIST, where IBP-
MonDEQ models perform much better, e.g. 9.87% better on MNIST for ε “ 0.4. We also find that
using the more relaxed LBEN parameterization (Theorem 3.3) generally leads to better performance
on MNIST, but the reverse trend may hold for CIFAR10. We hypothesize that the LBEN parameter-
ization may lead to optimization difficulties in the IBP-MonDEQ layer. Investigating and improving
the optimization of IBP-MonDEQ layers is an interesting direction for future work.

8



Published as a conference paper at ICLR 2022

Implementation details. We train using IBP with the Adam optimizer (Kingma & Ba, 2014) with
a learning rate of 5e-4, and report errors at the last epoch of training averaged over 3 runs. We use a
smooth warmup schedule for ε (Xu et al., 2020; Shi et al., 2021), interpolating between ε “ 0 and
ε “ εtrain, a target training ε lower bounded by εtest.

Following Shi et al. (2021), we use batch normalization (BN) after every linear layer besides the
last FC-10 layer. There is no BN within an IBP-MonDEQ layer, but BN is applied to outputs of
the IBP-MonDEQ layers. For 3 layer models, we insert a 4x4 pooling layer before the FC-10 layer.
Additional details are in Section B.

5 ADDITIONAL RELATED WORKS

Implicit layers. Various fundamental properties of DEQs have been investigated in the literature,
most notably convergence to and existence of a fixed point (Winston & Kolter, 2020; Revay et al.,
2020; Bai et al., 2021). Bai et al. (2021) propose empirical Jacobian regularization techniques for
speeding up equilibrium solving in DEQs. Another studied property of DEQs is their Lipschitz-
ness: Revay et al. (2020) and Pabbaraju et al. (2020) derive bounds on the Lipschitz constants of
MonDEQs which are applicable in certified robustness settings. However, because the Lipschitz
constants are tailored to the `2 norm, these works only consider `2 bounded adversaries. Chen
et al. (2021) propose polynomial optimization programs for certifying robustness of MonDEQs,
but their methods only succeed for `2 perturbations and do not work empirically against `8 adver-
saries. Kawaguchi (2021) theoretically analyze optimization of equilibrium models.

Other prominent classes of implicit models include neural ODEs (Chen et al., 2018; Dupont et al.,
2019; Liu et al., 2019; Finlay et al., 2020), and convex optimization layers (Amos et al., 2017; Amos
& Kolter, 2017; Agrawal et al., 2019). Neural ODE outputs are implicitly defined as the solution
to some differential equation. Adversarial robustness is also an interesting topic of study for neural
ODEs, which may be more robust than explicit models (Yan et al., 2019), though the cause of this
might be gradient obfuscation (Huang et al., 2020).

Certified robustness. A common technique in certified robustness is to express a convex pro-
gram which lower bounds the worst-case perturbed output of the network, either via semidefinite
relaxations (Raghunathan et al., 2018a;b), or linear relaxations (Wong & Kolter, 2018; Wong et al.,
2018; Dvijotham et al.; Zhang et al., 2018; Wang et al., 2018). One advantage of IBP compared to
these approaches is its simplicity and efficiency, making it viable for training larger models (Gowal
et al., 2018). Zhang et al. (2019) propose CROWN-IBP, which combines IBP with linear relaxation
methods during warmup training. Xu et al. (2020) extend this approach to general computation
graphs. Shi et al. (2021) propose methods for speeding up optimization of IBP-trained networks.

Another well-studied certified robustness approach is randomized smoothing (Li et al., 2018; Cohen
et al., 2019; Lecuyer et al., 2019; Salman et al., 2019a; Yang et al., 2020), which can in theory pro-
duce probabilistic certificates of robustness for generic models (including, in theory, DEQs). How-
ever, these certificates are random, not deterministic, and have some error probability. In addition,
randomized smoothing has theoretical limitations for certifying `8 robustness for high-dimensional
data (Blum et al., 2020; Kumar et al., 2020; Yang et al., 2020).

6 CONCLUSION

This work aims to certify robustness of DEQ models. We propose the IBP-MonDEQ layer, a DEQ
layer which solves two equilibrium equations: one for the unperturbed fixed-point output, and one
for upper and lower interval bounds on adversarially perturbed values of the fixed point. Our math-
ematical analysis reveals how to parameterize the IBP-MonDEQ so that existence and uniqueness
of a fixed point is guaranteed. One interesting interpretation of these results is that they characterize
a class of infinitely deep, weight-tied neural nets for which IBP is stable. An interesting direction
for future work is to explore whether other methods besides IBP for certifying robustness of explicit
networks can also be adapted to work for DEQs.
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A MISSING PROOFS IN SECTION 3

We first fill in the proofs of Claim 3.5 and Lemma 3.4.

Proof of Claim 3.5. Let u “
„

s
t



be any eigenvector of M , with eigenvalue λ. There are two cases:

Case 1: s ‰ ´t. As λ
„

s
t



“Mu “

„

As`Bt
Bs`At



, it follows that λs “ As`Bt and λt “ Bs`At.

Thus, it follows that pA ` Bqps ` tq “ As ` Bt ` Bs ` At “ λps ` tq. As the condition of this
case assumed ps` tq ‰ 0, λ is an eigenvalue of A`B.

Case 2: s “ ´t. Then λ
„

s
´s



“Mu “

„

pA´Bqs
´pA´Bqs



. It follows that λs “ pA´Bqs, so λ is an

eigenvalue of A´B.

Using Claim 3.5, we can complete the proof of Lemma 3.4.

Proof of Lemma 3.4. Define A fi
pW q``pW q

J
`

2 and B fi
pW q´`pW q

J
´

2 , so xW “

„

A B
B A



. We note

that A ` B “
ppW q``pW q´q`ppW q``pW q´q

J

2 “ W`WJ

2 and likewise A ´ B “
|W |`|W |J

2 . We
now directly apply Claim 3.5 to conclude that eigenvalues of xW are either eigenvalues of A`B or
A´B, as desired.

To see the left-to-right implication of (3.8), we use the fact that the set of eigenvalues of xW `xWJ

contains those of |W | ` |W |J as a subset. For the right-to-left implication, we note that I ´ |W | ą
0 implies that λmaxpp|W | ` |W |

Jq{2q ă 1. Next, we can observe that λmaxp|W | ` |W |
Jq “

λmaxpxW `xWJq because eigenvalues of xW `xWJ are either eigenvalues ofW `WJ or eigenvalues
of |W |` |W |J. Now we can use the fact that λmaxpW `WJq ď λmaxp|W |` |W |

Jq, which would
give us λmaxppxW `xWJq{2q ă 1, or I ´xW ą 0.

Finally, to see that λmaxpW `WJq ď λmaxp|W | ` |W |
Jq, let v be the eigenvector corresponding

to the maximum eigenvalue ofW `WJ. The key observation is that vJpW `WJqv ď |v|Jp|W |`
|W |Jq|v| because terms in the expansion of the first quantity will be replaced by positive versions
with the same magnitude in the r.h.s.

Next, we complete the proof of Proposition 3.2.

Proof of Proposition 3.2. By results of Winston & Kolter (2020), there exists 0 ă α ď 1 such that
the damped iteration

„

suk
uk



“ p1´ αq

„

szk´1

zk´1



` α

ˆ

xW

„

szk´1

zk´1



`

„

sv
v

˙

„

szk
zk



“ σ

ˆ„

suk
uk

˙ (A.1)

is guaranteed to converge for any initial sz0, z0: limkÑ8 szk, zk “ sz‹, z‹. For any v satisfying
v ď v ď sv, we consider iterating (A.1) with sz0 “ z0 “ z‹pvq.

We claim that the following invariant holds: szk ě z‹pvq ě zk @k ě 0. To see this, we also consider
the damped iteration for z‹pvq, noting that the following equality holds by (Winston & Kolter, 2020):

u‹ “ p1´ αqz‹pvq ` αpWz‹pvq ` vq

z‹pvq “ σpu‹q
(A.2)

Now we apply induction on k. The base case k “ 0 given by our choice of sz0, z0. We compare
corresponding terms in (A.1) and (A.2) for computing su, u, and u‹. We note that szk´1 ě z‹pvq by

the inductive hypothesis,
ˆ

xW

„

szk´1

zk´1

˙

0:h

ě z‹pvq by the inductive hypothesis and properties of
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the IBP iteration, and sv ě v by assumption. Thus, it follows that suk ě u‹, and likewise, uk ď u‹.
Since σ is nondecreasing, we obtain szk ě z‹pvq ě zk, completing the induction. Taking limits as
k Ñ8, we obtain sz‹ ě z‹pvq ě z‹, as desired.

Next, we complete the proof of Theorem 3.3. The following lemma will be useful.
Lemma A.1. In the setting of Theorem 3.3, suppose that W satisfies Λ ´ ΛW ą 0 for some
Λ P Dhˆh` . Then there exists 0 ă α ď 1 such that the following iteration converges:

zk “ σppI ´ αΛqzk´1 ` αΛpWzk´1 ` vqq (A.3)

with limkÑ8 zk “ z‹, where z‹ is the solution to the fixed point equation z‹ “ σpWz‹ ` vq.

Proof of Lemma A.1. We first observe that the linear operator I ´ αpΛ ´ ΛW q is contractive for
sufficiently small α, as Λ ´ ΛW ą 0. Thus, since ReLU is 1-Lipschitz, the iteration in (A.3)
contracts and therefore converges to a fixed point. To check that this gives the same fixed point
as (3.3), we will check that the following holds:

z‹ “ σppI ´ αΛqz‹ ` αΛpWz‹ ` vqq (A.4)

Note that for coordinates i where pWz‹ ` vqi ą 0, the definition of z‹ implies z‹i “ pWz‹ ` vqi,
so (A.4) is verified for such coordinates. Otherwise, for coordinates i where pWz‹ ` vqi ď 0, since
σ is the ReLU activation, z‹i “ 0, so we can again verify (A.4) for these coordinates.

We now complete the proof of Theorem 3.3.

Proof of Theorem 3.3. First, we consider any W of the form (3.7). Taking Λ “ Γ´2, we have
Λ ´ ΛW “ Γ´1pI ´ D´1{2MD´1{2qΓ´1. Now by invoking Theorem 3.1, we conclude that the
middle term in this product is PD, so Λ´ ΛW ą 0.

To prove the reverse implication, we note that Λ ´ Λ|W | “ Λ1{2pI ´ Λ1{2|W |Λ´1{2qΛ1{2, so
Λ ´ Λ|W | ą 0 ðñ I ´ Λ1{2|W |Λ´1{2 ą 0. By invoking Theorem 3.1, it follows that we have
the parameterization Λ1{2WΛ´1{2 “ D1{2MD1{2, so setting Γ “ Λ´1{2 and rearranging gives the
desired result.

Next, we check that (2.4) and (3.3) have guaranteed unique fixed points whenever W is parameter-
ized as in (3.7). Using the observation derived above, we can check that

Λ´ Λ|W | ą 0 (A.5)

ùñ I ´ Λ1{2|W |Λ´1{2 ą 0 (A.6)

ùñ I ´ Λ1{2WΛ´1{2 ą 0 (A.7)
ùñ Λ´ ΛW ą 0 (A.8)

Thus, we can apply Theorem 1 of (Revay et al., 2020) to conclude the existence of a unique fixed

point for (2.4). For (3.3), we apply Lemma 3.4 to conclude that pΛ´pΛxW ą 0, where pΛ fi

„

Λ 0
0 Λ



P

R2hˆ2h. Thus, Theorem 1 of (Revay et al., 2020) can also be used to conclude that (3.3) has a unique
fixed point.

Finally, it remains to check that sz‹ and z‹ are indeed valid interval bounds on z‹. The proof of
Proposition 3.2 no longer directly applies because the damped iteration (A.1) might not converge,
as we no longer have the guarantee I2hˆ2h ´xW ą 0. Instead, we invoke Lemma A.1, which states
the existence of 0 ă α ď 1 such that the following iteration converges:

„

szk
zk



“ σ

ˆ

pI2hˆ2h ´ αpΛq

„

szk´1

zk´1



` αpΛ

ˆ

xW

„

szk´1

zk´1



`

„

sv
v

˙˙

(A.9)

with limkÑ8 szk “ sz‹, limkÑ8 zk “ z‹. Using this modified iteration but keeping other steps the
same, we can follow Proposition 3.2 to complete the proof.

Next, we provide the proof of Proposition 3.7.
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Proof of Proposition 3.7. We set B “

»

—

—

–

A1 0 ¨ ¨ ¨ 0
0 0 ¨ ¨ ¨ 0
...

...
...

...
0 0 ¨ ¨ ¨ 0

fi

ffi

ffi

fl

. According to (3.7), the weight matrix

W should take the following form: W “ ΓD´1{2MD´1{2Γ´1. We choose Γ to take the following
form:

Γ “

»

—

—

–

γ1Ihˆh 0 ¨ ¨ ¨ 0
0 γ2Ihˆh ¨ ¨ ¨ 0
...

...
...

...
0 ¨ ¨ ¨ 0 γLIhˆh

fi

ffi

ffi

fl

(A.10)

M will take the following lower triangular block form:

M “

»

—

—

—

—

–

0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 0
A2 0 ¨ ¨ ¨ ¨ ¨ ¨ 0
0 A3 0 ¨ ¨ ¨ 0
...

...
...

...
...

0 ¨ ¨ ¨ 0 AL 0

fi

ffi

ffi

ffi

ffi

fl

(A.11)

where if we split M into a grid of h ˆ h blocks, the block in the i-th row and i ´ 1-th column has
value Ai, and all other blocks are 0. Finally, D will take the form:

D “

»

—

—

–

β1Ihˆh 0 ¨ ¨ ¨ 0
0 β2Ihˆh ¨ ¨ ¨ 0
...

...
...

...
0 ¨ ¨ ¨ 0 βLIhˆh

fi

ffi

ffi

fl

(A.12)

In order to satisfy the constraints of (3.7), we require β1 ą maxjPrhs
p|A|J2 1qj

2 , βL ą

maxjPrhs
p|A|L1qj

2 , and βi ą maxjPrhs
pp|A|i`|A|

J
i`1q1qj

2 for 2 ď i ď L ´ 1. We now observe
that W is of the form

W “

»

—

—

—

—

—

—

–

0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 0

γ2β
´1{2
2 A2β

´1{2
1 γ´1

1 0 ¨ ¨ ¨ ¨ ¨ ¨ 0

0 γ3β
´1{2
3 A3β

´1{2
2 γ´1

2 0 ¨ ¨ ¨ 0
...

...
...

...
...

0 ¨ ¨ ¨ 0 γLβ
´1{2
L ALβ

´1{2
L´1 γ

´1
L´1 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(A.13)

We observe now that we have L degrees of freedom in choosing γ, so we can choose γ such that
γiβ

´1{2
i β

´1{2
i´1 γ´1

i´1 “ 1 @2 ď i ď L, as this only imposes L ´ 1 constraints. For example, we can
set γ1 “ 1, and set γ2, . . . , γL in sequence so that the desired equalities hold. This gives W “ M .
Finally, it is straightforward to see that the equilibrium for this constructed W and B concatenates
all of the hidden layers of the network, so the desired equivalence between the DEQ and explicit
network holds.

B ADDITIONAL IMPLEMENTATION DETAILS

Implementation details for Section 4. For all models, we use a batch size of 128 and anneal
the learning rate, which is initially 5e-4, by a factor of 0.2 at certain steps. For models trained
on MNIST and CIFAR10 with ε “ 2{255, annealing occurs at the 120th and 280th epochs, and for
CIFAR10 with ε “ 8{255, annealing occurs at the 240th and 280th epochs. We use gradient clipping
with a max `2 norm of 10. To preprocess the data, all inputs are normalized to the range r0, 1s
before we subtract the mean and divide by the standard deviation of the training images across each
input channel. Note that the ε adversarial perturbations are applied to the r0, 1s-normalized image
before subtracting the mean and dividing by the standard deviation. For MNIST, we do not use data

16



Published as a conference paper at ICLR 2022

Table 3: εtrain v.s. εtest for MNIST.

εtest 0.1 0.2 0.3 0.4
εtrain 0.2 0.3 0.4 0.4

augmentation, and for CIFAR10 we use random crops and horizontal flips. We note that during both
training and testing, when computing IBP bounds we elide the last FC-10 transformation with the
output margins of the model (which can be expressed as a linear function of the logits), as Gowal
et al. (2018) show that this leads to performance benefits.

For CIFAR10, we choose εtrain “ εtest, whereas for MNIST we use a larger value of εtrain, follow-
ing Gowal et al. (2018) and Shi et al. (2021). The values are displayed in Table 3. To schedule ε, we
set ε “ 0 for the first epoch of training, and afterwards we smoothly increase ε following Xu et al.
(2020). The ε schedule interpolates between ε “ 0 and ε “ εtrain in a smooth manner: for the first
1
4 of the ramp-up iterations, ε increases according to a degree 4 monomial. After this, ε increases
linearly until it reaches a final value of εtrain. The linear slope and coefficient of the monomial are
chosen so that the derivative of ε is continuous. For CIFAR10 with ε “ 8{255, we use 159 ramp-up
epochs; otherwise, we use 79 ramp-up epochs. For models trained on MNIST, we also use the IBP
initialization proposed by (Shi et al., 2021) for all explicit layer weights, which helps prevent IBP
bounds from exploding at initialization.

All models besides the DEQ-3 can be trained within a day on a single NVIDIA TitanXp GPU. The
DEQ-3 can take up to two days because the hidden layer size is larger (128 output channels), so
each iteration of the equilibrium solver is more costly. In all, the training times of the IBP-MonDEQ
models vary based on the current model weights but generally are 3-10 times longer than the fully-
explicit models. As it is already known that DEQ models tend to compare unfavorably to fully
explicit models in terms of runtime (Bai et al., 2019; 2021), improving the runtime discrepancy is
deferred to future work.

Finally, we provide additional IBP-MonDEQ-specific implementation details. For IBP-MonDEQ
layers, we set m “ 0.1 in DEQ-3 models and m “ 0.5 in DEQ-7 models. We find that m “ 0.5
outperformsm “ 0.1 for DEQ-7 models despite the reduced expressivity, likely due to optimization
difficulties. We set γ “ 3 when training models with the more relaxed LBEN parameterization. For
DEQ-7 models, we also find it helpful for optimization to use a warmup schedule on the value of
m matching the schedule on ε, and set mcurrent “ m ` p0.99 ´mqp1 ´ εcurrent

εtrain
q so that the value of

mcurrent interpolates between 0.99 and m ă 0.99 throughout training. The stopping criterion for the
fixed-point solver is }zk`1´zk}2

}zk`1}2
ď t, where t “1e-5 is the tolerance threshold, and zk denotes the

k-th iterate of the fixed-point solving method. For models with the LBEN parameterization, we tie
the trainable scaling parameter β across channels, so that β has the same shape as the convolutional
bias parameter.

Details for Figure 2. The models trained in Figure 2 (left) are obtained by taking the 7LAYER model
and adding additional CONV-128-3x3-1 layers to reach the desired depth. For Figure 2 (right),
the bounds are computed for randomly initialized models. We obtain the bounds by attempting to
solve (3.3) for DEQ models where W corresponds to a fully-connected layer with output dimension
128. We obtain these bounds on MNIST with ε “ 0.1 and average the mean of szk ´ zk for each k
over the entire MNIST test set. We use the damped forward-backward algorithm as the equilibrium
solver with damping factor α “ 0.1 (see (A.1)). We note that the standard equilibrium iteration (2.4)
converges for both MonDEQ and IBP-MonDEQ models, whereas (3.3) fails to converge for Mon-
DEQ models only.
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