
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LOW-LATENCY NEURAL LIDAR COMPRESSION WITH
2D CONTEXT MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Context modeling is fundamental to LiDAR point cloud compression. Existing
methods rely on computationally intensive 3D contexts, such as voxel and octree,
which struggle to balance the compression efficiency and coding speed. In this
work, we propose a neural LiDAR compressor based on 2D context models that
simultaneously supports high-efficiency compression, fast coding, and universal
geometry-intensity compression. The 2D context structure significantly reduces
the coding latency. We further develop a comprehensive context model that in-
tegrates spatial latents, temporal references, and cross-modal camera context in
the 2D domain to enhance the compression performance. Specifically, we first
represent the point cloud as a range image and propose a multi-scale spatial con-
text model to capture the intra-frame dependencies. Furthermore, we design an
optical-flow-based temporal context model for inter-frame prediction. Moreover,
we incorporate a deformable attention module and a context refinement strategy to
predict LiDAR scans from camera images. In addition, we develop a backbone for
joint geometry and intensity compression, which unifies the compression of both
modalities while minimizing redundant computation. Experiments demonstrate
significant improvements in both rate-distortion performance and coding speed.
The code will be released upon the acceptance of the paper.

1 INTRODUCTION

LiDAR point cloud, as an effective data structure to represent real-world scenes, has been used in a
wide range of applications such as autonomous driving and robotics (Guo et al., 2020). However,
the large volume of LiDAR data creates a strong demand for effective compression algorithms to
reduce storage usage and transmission costs. In recent years, neural networks have significantly
promoted the performance of LiDAR compression. A common approach is to predict symbols
based on previously decoded contextual features. Since the bitstream length is determined by the
cross-entropy between the ground truth and the estimated distribution, an accurate neural context
model can effectively reduce the bitrate in lossless compression. The context structure is particularly
crucial for improving the density estimation accuracy, leading to the development of various context
types (Gao et al., 2025; Huang et al., 2020; Wang et al., 2022a).

Although these learning-based models have greatly improved the rate-distortion performance, the
coding speed remains an issue. State-of-the-art models typically rely on an informative 3D context
to capture detailed local geometric features (Wang et al., 2025a; Wang & Liu, 2022; Zhou et al.,
2022). Nevertheless, the heavy computational burden of processing these 3D features results in run-
times that can reach or exceed hundreds of milliseconds, making them impractical for low-latency
applications. For instance, a Velodyne HDL-64E LiDAR can generate point clouds at a rate of
10 frames per second (FPS). On the other hand, although recent works (You et al., 2025) deliver
real-time coding speeds, their compression performance lags behind other state-of-the-art models.
Therefore, reducing the coding latency while preserving high compression efficiency remains an
open challenge. Besides, existing methods typically employ two separate deep neural networks to
calculate the dedicated context for geometry and intensity compression (Wang et al., 2025b). We
argue that a single hybrid context can be applied to effectively predict both geometry and intensity,
thereby reducing redundant computation and improving the coding speed.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

2D range images provide a more compact and computationally efficient representation of the LiDAR
point cloud. Intuitively, 2D context models can enable faster compression by operating directly on
range-view features. However, extracting features from the range view is challenging due to the lack
of precise 3D local contexts (Fan et al., 2021), and naively replacing the 3D context model with a
2D backbone causes severe performance degradation. To yield a superior compression ratio, state-
of-the-art range image compression methods opt to use a 3D feature extractor (Zhou et al., 2022;
Wang & Liu, 2022), which in turn compromises the coding speed.

In this work, we propose RangeCM, a fast and efficient 2D context model for LiDAR compres-
sion. It performs probability estimation based on latent features derived from a variational auto-
encoder (VAE), where transforms and context models are built by the 2D convolutional neural net-
work (CNN). By getting rid of computationally expensive 3D operators and directly working on 2D
range-view features, RangeCM achieves much faster inference speed. Meanwhile, RangeCM jointly
predicts geometry and intensity by integrating the context modeling of both attributes, which avoids
recomputing contexts and further accelerates the inference process.

To enhance the compression performance of the 2D context model, we propose a comprehensive
spatio-temporal cross-modal context structure. We first design a multi-scale context for intra-frame
prediction, which decomposes the range image into a sketch map and a detail map. The estima-
tion of details is conditioned on the sketch, which enables a coarse-to-fine next-scale prediction
strategy. For inter-frame prediction, we formulate a temporal context by warping features from the
reference frame to the current frame using a range-view optical flow. Furthermore, as the RGB
camera is often jointly deployed with the LiDAR sensor in autonomous driving and robotic appli-
cations (Yeong et al., 2021), we develop a cross-modal context that predicts LiDAR features based
on camera images. The camera context is generated using deformable attention (Zhu et al., 2021),
which adaptively projects camera features onto the range view. In addition, we employ a context
refinement strategy to precisely align LiDAR and camera features under the causality constraint. By
aggregating diverse spatial, temporal, and camera contexts, our proposed 2D comprehensive context
model even outperforms 3D counterparts by a large margin.

We evaluate RangeCM on the Waymo Open Dataset (Sun et al., 2020) and the SemanticKITTI
benchmark (Behley et al., 2019). Experiments demonstrate that RangeCM achieves significant im-
provements in both rate-distortion performance and coding speed. Compared to the state-of-the-art
geometry compression method (Zhou et al., 2022), RangeCM yields an average BD-Rate improve-
ment of 14.9% and 3.5× faster speed. Meanwhile, RangeCM reduces the inference latency by more
than 100× compared to the state-of-the-art intensity compression model (Wang et al., 2025b), while
maintaining a comparable compression efficiency. Our key contributions are as follows:

• We develop a new paradigm for low-latency LiDAR compression, where all computations
are performed in the 2D domain. The proposed framework achieves state-of-the-art rate-
distortion performance and practical coding speed while supporting both geometry and
intensity compression in a unified manner.

• We propose a comprehensive context model that integrates spatial, temporal, and camera
features for LiDAR compression. To align these distinct features, we devise a multi-scale
context model for intra-frame prediction, a flow-based model for spatio-temporal aggrega-
tion, and a deformable attention module for LiDAR-camera fusion.

• We design a joint compression backbone that predicts LiDAR geometry and intensity based
on a hybrid context, which merges the context modeling of geometry and intensity to im-
prove computational efficiency.

2 RELATED WORK

2.1 POINT CLOUD COMPRESSION

Point clouds possess geometry (i.e., point coordinates) and attribute (e.g., reflecting intensities, RGB
colors, and normals) information. Specialized methods have been developed to compress these two
feature types respectively. Geometry compression methods encode the orderless point cloud as more
regular data structures, such as octrees (Schnabel & Klein, 2006), voxel grids (Quach et al., 2019),
and range images (Wang et al., 2022b). The MPEG Geometry-based Point Cloud Compression

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(G-PCC) standard (Schwarz et al., 2018) follows the octree-based pipeline, where the octree is
encoded by a rule-based context model losslessly. Other octree-based approaches predict the octree
symbol distribution with a learning-based context model (Huang et al., 2020; Fu et al., 2022; Song
et al., 2023a; Luo et al., 2024). Voxel-based methods quantize the point cloud into discrete voxels
and predict the occupancy status of each voxel grid with a multi-scale context model (Wang et al.,
2025a; 2022a; Nguyen et al., 2021). Besides, range image is another memory-efficient data structure
to organize the point cloud. State-of-the-art range image compression methods adopt auto-regressive
(Zhou et al., 2022) or multistage (Wang & Liu, 2022) context models to encode range values.

Furthermore, geometry compression can be improved by introducing temporal references. Existing
methods build the temporal context by searching for K-nearest neighbors (KNN) in the reference
frame (Biswas et al., 2020; Song et al., 2023b; Wang et al., 2025a; Zhou et al., 2022). The symbol
distribution is then predicted based on both the spatial and temporal contexts.

Traditional attribute compression methods adopt handcrafted transforms to remove the redundancy
in the signal. For example, G-PCC uses region-adaptive hierarchical transform (RAHT) (De Queiroz
& Chou, 2016) and predicting transform (MPEG, 2021b) to analyze attribute features. Recently,
neural networks have been introduced to develop more powerful transforms and context models
(Sheng et al., 2021; Fang et al., 2022; Zhang et al., 2023; Wang et al., 2025b; Zhu et al., 2025).
However, these models need to recompute contextual features for attribute prediction after geometry
compression, which slows down the coding speed.

2.2 LIDAR-CAMERA FUSION

Multi-modal fusion has attracted growing interest in the point cloud compression community. Sev-
eral works introduce depth images as an additional prior (Wang et al., 2024; Zheng et al., 2024).
However, the depth images here are only the 2D projections of the point cloud, which do not intro-
duce additional information helpful for effective compression. In contrast, camera images present a
more promising modality, because they provide dense semantic features that the original point cloud
lacks. To the best of our knowledge, there is only one existing work that attempts to utilize the
camera context for point cloud compression (Lin et al., 2023). This approach first uses a depth esti-
mation network to lift the image to 3D space, then fuses camera and octree node features to enhance
octree-based point cloud compression. Nonetheless, its performance is limited by the inaccurate
depth estimation and unreliable LiDAR-camera alignment, achieving only marginal improvements
(e.g., around 2% bitrate reduction compared to the baseline (Fu et al., 2022) at an octree depth of
10). Therefore, how to effectively utilize the camera context remains an open question.

3 PRELIMINARIES

3.1 RANGE IMAGE

The LiDAR sensor generates a point cloud by emitting H ×W laser shots along H elevation angles
θ = {θ1, · · · , θH} and W azimuth angles ϕ = {ϕ1, · · · , ϕW }. To produce an H × W range
image, each point is projected to a unique pixel coordinate (m,n) according to the angles (θm, ϕn)
of the corresponding laser beam. As shown in Fig. 1, a range image pixel records the range value
r, reflected intensity s, and other optional attributes of the corresponding point. The Cartesian
coordinates of the point can be losslessly recovered from the range value by:

x = ri,j cos θi cosϕj , y = ri,j cos θi sinϕj , z = ri,jsin θi, (1)

where (i, j) denotes the coordinates of the corresponding pixel in the range image. The emission
angles θ and ϕ are fixed and determined by the predefined sensor scanning pattern, which is known
a priori at the receiver. Therefore, the point coordinates can be determined by the scalar range value
r, which is more efficient than transmitting the original 3D Cartesian positions.

3.2 CONTEXTUAL VIDEO COMPRESSION

Contextual video compression employs a conditional variational auto-encoder to exploit the tem-
poral context (Li et al., 2021a; 2024; Jia et al., 2025). Given the decoded reference frame û and
the current frame x, the model extracts an optical flow v to represent the motion between the two

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

s

LiDAR

x

y

z

Point

Range Value

Intensity

r

r

Figure 1: Illustration of range image representation of the LiDAR point cloud.

frames. This flow is then encoded by a hyperprior-based image compression model (Ballé et al.,
2018). Subsequently, the features of û are extracted and warped to the current frame using the re-
constructed optical flow v̂. The warped features serve as the temporal context ψt, which is fed into
transform coding modules and the entropy model. Specifically, the analysis transform produces a
latent embedding of x based on ψt as y = ga(x,ψt). The latent vector y is quantized into ŷ and
subsequently encoded by a conditional context model formulated as:

p(ŷ|ẑ,ψt) =
∏
i

(N (µi, σ
2
i) ∗ U(−0.5, 0.5))(ŷi), (2)

µ,σ = hst(hs(ẑ), ht(ψt)), (3)

where ẑ is the quantized hyperprior encoded by a fully factorized density model p(ẑ), and
U(−0.5, 0.5) denotes a uniform distribution centered at 0 with a width of 1. Besides, hs, ht, and
hst are neural networks that predict distribution parameters based on the hyperprior and temporal
context. Finally, the synthesis transform reconstructs the current frame as x̂ = gs(ŷ,ψt).

4 COMPREHENSIVE CONTEXT MODELING

4.1 OVERVIEW

RangeCM jointly compresses LiDAR geometry and intensity using a 2D comprehensive context. Its
overall architecture is illustrated in Fig. 2. The continuous range image x = {r, s} is quantized into
x̂ = {r̂, ŝ}, where r̂ is a multi-scale representation of the range value map, and ŝ is the quantized
intensity map. In particular, r̂ = {r̂1, r̂2} is given by a two-stage quantization as:

r̂1 = ⌈r/b1⌋, r̂2 = ⌈(r − r̂1)/b2⌋. (4)

Here, r̂1 is the sketched range value map, while r̂2 is an enhancement layer, referred to as the detail
map, which conveys more details. The reconstructed range value map is recovered as r̂ = r̂1 + r̂2.

RangeCM encodes r̂1, r̂2, and ŝ sequentially. It first adopts a deformable attention module to
generate the basic camera context ψc based on the full-precision range image r̂. Then, a 2D CNN
is employed to extract spatial features from x̂. These features, along with the basic camera context
ψc, are encoded by a VAE (Ballé et al., 2018). The spatial context ψs is derived from the synthesis
transform of the VAE, which aggregates spatial priors and the basic camera context. The temporal
context ψt is generated by a flow-based model. Subsequently, the distribution of the sketch map r̂1
is estimated based on both ψs and ψt.

Although ψc is produced by accurate LiDAR geometry, fine-grained camera features may be lost
during the transform coding of VAE. To address this, after recovering r̂1, we use another deformable
attention module to compute a refined camera context ψ̃c based on the LiDAR features provided by
r̂1. Then, the detail map r̂2 is predicted using a comprehensive context ψ, which incorporates the
spatial context ψs, the temporal context ψt, and the refined camera context ψ̃c. Finally, RangeCM
predicts the intensity map ŝ based on the diverse context ψ and the geometric features r̂.

4.2 CAMERA CONTEXT MODEL

Practical autonomous driving and robotic systems commonly rely on the combined deployment of
LiDAR and RGB cameras for robust perception. LiDAR and cameras provide complementary scene

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

STAT

Feature
Extraction

Warp

Feature
Extraction Refine CCM

AE/AD
Context
Model

Intensity Map
Camera Image

Reference Frame

Context
Model

AE/AD

Sketch Map

STAT AE/AD

Detail Map
Current Frame

Context
Model

Concat

Concat
Flow

Estimation

Base CCM

Figure 2: Architecture of RangeCM. Blue blocks indicate the spatial context model. Green blocks
constitute the temporal context model. Red blocks represent the camera context model (CCM). AT
and ST indicate analysis and synthesis transform. AE/AD stand for arithmetic encoding/decoding.

descriptions: LiDAR offers accurate geometric features, while cameras capture dense semantic in-
formation. These semantics are informative for range value prediction as well. For example, points
from the same semantic instance generally have similar range values. It may be difficult to distin-
guish whether two points belong to the same instance from the sparse point cloud, while the camera
images provide critical disambiguation. In this work, we assume that camera images are separately
encoded by another image codec and that they have been decoded before LiDAR compression.

The camera context model first utilizes 2D CNNs to extract features from the range image and the
camera images, respectively. Then, it adopts deformable attention (Zhu et al., 2021) to align these
two modalities, using LiDAR features as the query Q and camera features as the key K. For a
specific query token qn (which corresponds to a pixel in the range image), the deformable attention
module adaptively samples N key tokens and computes cross-attention as follows:

q̃n =

M∑
i=1

Ui

N∑
j=1

AijnV
T
i K(pn +∆Pijn), (5)

where i is the index of the attention head and j is the index of the sampled key. Here,K(pn+∆Pijn)
represents the jth sampled key token in the ith head, where the sampling position is specified by the
reference point pn and the learnable offset ∆Pijn. Besides,Ui and V T

i are learnable weights of two
linear layers, while A represents the weights between the query and the sampled key tokens. Both
A and ∆P are predicted based on qn using linear layers. Therefore, the functionality of deformable
attention is to dynamically aggregate N sampled camera tokens with the aggregation weights and
sampling positions determined by the LiDAR query qn. We further embed the deformable attention
layer into a Transformer block structure (Vaswani et al., 2017), as shown in Fig. 3.

The reference point pn is a critical parameter in deformable attention, since it directly determines
the correspondence between range-view and camera-view pixels. We calculate pn using the trans-
formation matrix between LiDAR and camera. For a range image pixel, we lift it to the 3D space
using Eq. (1), and project its 3D coordinates onto the camera coordinate system to obtain pn. This
approach provides deformable attention with an inductive bias to aggregate features from camera
image pixels that are spatially close to the queried range image pixel.

Notably, LiDAR geometry is necessary to generate queries and reference points. Therefore, we can-
not simply perform deformable attention using r̂, which is unavailable at the receiver. To maintain
causality, we must transmit ψc as side information and compute ψ̃c after the decoding of r̂1. On the
other hand, both r̂ and r̂1 preserve high-quality LiDAR geometric features, which enable accurate
and effective LiDAR-camera alignment in the camera context model.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Deformable
Attention

Add and
 Norm

MLP

Add and
Norm

Conv

Conv

Concat

Conv

Concat

Conv

Conv

Concat

Conv

Conv

Figure 3: Left: illustration of the deformable attention block. Right: coding pipeline of the multi-
scale context model.

4.3 FLOW-BASED TEMPORAL CONTEXT MODEL

The temporal context model uses an optical flow to capture the accurate motion between the current
and reference frames. Here, the reference frame refers to the decoded previous frame. Given the
current frame x̂ and the reference frame û, it first extracts a range-view optical flow v using a
lightweight flow estimation model (Ranjan & Black, 2017). Since this flow is not available at the
receiver, a VAE is employed to encode it as side information. Specifically, the analysis transform
encodes v into a latent embedding yv , which is quantized into ŷv and compressed based on a
hyperprior ẑv . The synthesis transform then restores v̂ from ŷv . Finally, the temporal context ψt is
produced by warping the features of û to the current view using v̂.

4.4 SPATIAL PRIOR

RangeCM extracts convolutional features from x̂ to serve as the spatial prior. This prior is then
jointly encoded with the basic camera context ψc into a latent embedding using a VAE (Ballé et al.,
2018). Inspired by the contextual video compression framework (Li et al., 2021a), the transform
coding is conditioned on the temporal context ψt. Specifically, we employ an analysis transform to
extract the latent embedding as y = ga(x̂,ψc,ψt) and generate the hyperprior as z = ha(y). Then,
the quantized latent ŷ is encoded according to Eq. (2) and Eq. (3). Finally, the synthesis transform
generates the spatial context as ψs = gs(ŷ).

4.5 MULTI-SCALE CONTEXT MODEL

We adopt a multi-scale context model to predict r̂ in a coarse-to-fine manner, where r̂1 is utilized
as an additional context to enhance the prediction of r̂2. Each map is further decomposed into two
groups using a checkerboard pattern (He et al., 2021) as follows:

r̂1 =
{
r̂11, r̂

2
1

}
, r̂2 =

{
r̂12, r̂

2
2

}
, (6)

where r̂11 and r̂12 are anchors, while r̂21 and r̂22 are non-anchors. After this group partition, the context
model predicts each group based on the spatio-temporal-camera context and the causal context from
previous groups. The pipeline of coding r̂ is illustrated in Fig. 3. The estimation of r̂1 is conditioned
on the spatial context ψs, the temporal context ψt, and the causal context π1. In contrast, r̂2 is
predicted based on the comprehensive context ψ and the causal context π2.

As ψ combines both geometry and intensity features, this hybrid context can be applied to predict
both r̂2 and ŝ. Therefore, we adopt a lightweight prediction head to directly infer ŝ based on ψ,
instead of using another heavy network to recompute contextual features. For intensity compression,
we first use a checkerboard pattern to decompose ŝ into two groups ŝ1 and ŝ2. Then, we predict each
group ŝi based on the comprehensive contextψ, the geometry context r̂, and the causal context ŝ<i.
This workflow eliminates redundant computations and significantly improves network efficiency.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Comparison of context types, BD-Rate gains to G-PCC (%), and runtimes (in seconds). For
intensity compression, we report the total runtime for coding both geometry and intensity. The best
results are marked in bold.

Geometry Compression

Method Context Type
KITTI WOD

BD-Rate Encoding Decoding BD-Rate Encoding Decoding
Infer. Total Infer. Total Infer. Total Infer. Total

G-PCC Spatial 0 - 0.95 - 0.48 0 - 1.24 - 0.62
EHEM Spatial -31.12 1.38 - 1.61 - - - - - -
RENO Spatial -12.47 0.04 0.07 - - - - - - -

Unicorn Spatio-Temp. -27.34 2.65 2.83 2.36 2.50 - - - - -
RICNet Spatial -45.82 0.40 0.63 0.40 0.43 - - - - -

RIDDLE Spatio-Temp. -48.05 - - - - -54.21 0.49 0.53 - 0.97
RangeCM-G Comprehensive -56.07 0.04 0.09 0.03 0.14 -61.96 0.14 0.20 0.09 0.20
RangeCM-GI Comprehensive -51.56 0.04 0.09 0.03 0.14 -59.94 0.14 0.20 0.09 0.20

Intensity Compression

G-PCC Spatial 0 - 0.84 - 0.75 0 - 0.59 - 0.65
Unicorn Spatial -12.16 14.84 - 13.04 - - - - - -

RangeCM-GI Comprehensive -6.96 0.05 0.10 0.04 0.17 -20.93 0.15 0.22 0.10 0.27

4.6 LOSS FUNCTION

The training objective of RangeCM is to minimize the overall bitrate of encoding range values,
intensity map, spatial latent, and optical flow. The corresponding loss function is:

L = −Ex∼p(x)(

2∑
i=1

log p(r̂i1|πi
1,ψs,ψt) +

2∑
i=1

log p(r̂i2|πi
2,ψ) +

2∑
i=1

log p(ŝi|ŝ<i, r̂,ψ)

+ log p(ŷ|ẑ) + log p(ẑ) + log p(ŷv|ẑv) + log p(ẑv)). (7)

We adopt the discretized Logistic mixture (Salimans et al., 2017) to fit the distribution of r̂ and
ŝ. Latent variables ŷ and ŷv are modeled by a Gaussian distribution convolved with a uniform
distribution, as specified in Eq. (2). Hyperpriors ẑ and ẑv are fitted using a fully factorized density
model (Ballé et al., 2018).

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. We conduct evaluations on the Waymo Open Dataset (WOD) (Sun et al., 2020) and the
SemanticKITTI dataset (Behley et al., 2019). WOD provides raw range images and RGB camera
images from 5 different views. It also offers accurate emission angles of LiDAR beams, which
ensures lossless transformation between the range image and the point cloud. KITTI provides point
cloud data along with camera images from 2 views. However, it does not provide transformation
matrices between LiDAR and camera in the testing set. To strictly follow the official dataset division,
we do not use camera priors for experiments on KITTI. A camera-involved RangeCM model is
trained and evaluated using a different dataset partition, which is reported in Appendix D. Besides,
KITTI provides neither range images nor beam emission angles. Following the settings in existing
works (Wang & Liu, 2022; Zhou et al., 2022), our experiments are conducted on pseudo range
images derived from estimated emission angles.

Baselines. For geometry compression, RangeCM is compared against octree-based schemes G-
PCC v23 (MPEG, 2023) and EHEM (Song et al., 2023a), voxel-based models Unicorn (Wang et al.,
2025a) and RENO (You et al., 2025), and range image compressors RICNet (Wang & Liu, 2022) and
RIDDLE (Zhou et al., 2022). Notably, RIDDLE and Unicorn are spatio-temporal context models,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

1 2 3 4 5 6 7

Bits Per Point

65

70

75

80

85

90

D
1

PS
N

R
 (d

B
)

Bitrate vs. D1 PSNR (WOD)

G-PCC
RIDDLE
RangeCM-G
RangeCM-GI

1 2 3 4 5 6 7

Bits Per Point

70

75

80

85

90

95

D
2

PS
N

R
 (d

B
)

Bitrate vs. D2 PSNR (WOD)

G-PCC
RIDDLE
RangeCM-G
RangeCM-GI

0 0.5 1 1.5 2 2.5

Bits Per Point

70

75

80

85

90

95

100

In
te

ns
ity

 P
SN

R
 (d

B
)

Bitrate vs. Intensity PSNR (WOD)

G-PCC
RangeCM-GI

1 2 3 4 5 6 7 8

Bits Per Point

65

70

75

80

85

90

D
1

PS
N

R
 (d

B
)

Bitrate vs. D1 PSNR (KITTI)

G-PCC
EHEM
RENO
Unicorn
RICNet
RIDDLE
RangeCM-G
RangeCM-GI

1 2 3 4 5 6 7 8

Bits Per Point

70

75

80

85

90

95

D
1

PS
N

R
 (d

B
)

Bitrate vs. D2 PSNR (KITTI)

G-PCC
EHEM
RENO
Unicorn
RICNet
RIDDLE
RangeCM-G
RangeCM-GI

0 0.5 1 1.5 2 2.5 3

Bits Per Point

75

80

85

90

95

100

In
te

ns
ity

 P
SN

R
 (d

B
)

Bitrate vs. Intensity PSNR (KITTI)

G-PCC
Unicorn
RangeCM-GI

Figure 4: Rate-distortion curves on WOD and SemanticKITTI.

while other baseline methods only exploit the spatial context. Since RIDDLE only evaluates its
temporal context model on WOD, we compare its intra-frame prediction mode on KITTI instead.
Meanwhile, G-PCC v23 (MPEG, 2023) and Unicorn (Wang et al., 2025b) are selected as baselines
for intensity compression, where we compare RangeCM against the lossy compression modes of G-
PCC and Unicorn. We also compare RangeCM with the state-of-the-art lossless LiDAR reflectance
compressor SerLiC (Zhu et al., 2025) in Appendix D.

Implementation Details. For each dataset, we train two models named RangeCM-G and
RangeCM-GI, respectively. RangeCM-G is exclusively optimized for geometry compression, and
RangeCM-GI is trained for joint geometry-intensity compression. To avoid training multiple mod-
els for different bitrates, we randomly sample the quantization step b2 during training. We evaluate
RangeCM based on a single NVIDIA RTX A6000 GPU. Following the common test conditions of
G-PCC (MPEG, 2021a), we adopt Point-to-Point PSNR (D1 PSNR) and Point-to-Plane PSNR (D2
PSNR) to measure the reconstruction quality. Please refer to Appendix B for more details.

5.2 PERFORMANCE EVALUATION

The rate-distortion performance of RangeCM is shown in Fig. 4 and Table 1. Regarding geome-
try compression, RangeCM outperforms existing methods by a remarkable margin. Compared to
the state-of-the-art model RIDDLE, RangeCM-G and RangeCM-GI achieve the BD-rate gains of
17.14% and 12.59% on the WOD, respectively. This demonstrates the effectiveness of the proposed
comprehensive context model. Besides, it is shown that octree-based and voxel-based methods (i.e.,
G-PCC, EHEM, and Unicorn) are more effective at low bitrates, while range image compressors
(i.e., RICNet, RIDDLE, and RangeCM) perform better at high bitrates. A reasonable explanation
is that octree and voxel structures can represent the point cloud with only a few symbols for coarse
reconstructions at low bitrates, but the number of required symbols quickly increases as the PSNR
grows, leading to inferior performance at high bitrates. In contrast, the symbol number in the range
image is always fixed, thus range image compression methods are more robust to the variation of bi-
trate. For intensity compression, RangeCM surpasses G-PCC and achieves comparable performance
to the state-of-the-art method Unicorn.

Furthermore, RangeCM greatly reduces the coding latency compared to existing methods, which
demonstrates the advantages of the proposed 2D context model. Its coding latency is around 0.1
seconds on KITTI, which satisfies the requirements of real-time applications. Compared to the
real-time compressor RENO, RangeCM achieves comparable coding latency with significantly bet-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Ablation on geometry compression.

Model BD-Rate to
RangeCM-G

w/o CC +6.85%
w/o CC and TC +22.02%

w/o CC, TC, and MSC +34.19%

Table 3: Ablation on intensity compression.

Model BD-Rate to
RangeCM-GI

w/o CC +2.30%
w/o CC and TC +21.88%

w/o CC, TC, and MSC +31.75%

ter compression efficiency. For intensity compression, RangeCM is over 100 times faster than the
learning-based baseline Unicorn. Given the hybrid context, the inference latency of intensity com-
pression is only around 10 milliseconds, because RangeCM only uses several additional layers to
predict the intensity values. In contrast, Unicorn takes around 5 seconds to recompute contextual
features for intensity prediction.

Since RangeCM utilizes the camera context, it requires a serial coding of camera images and Li-
DAR point clouds, while other methods may process these two modalities in parallel. However,
image compression can be quite fast on the GPU platform. For example, coding all 5 camera views
with a GPU-accelerated JPEG codec (Nvidia, 2025c) takes only 2 milliseconds on WOD. There-
fore, the serial camera-LiDAR compression of RangeCM remains much faster than the LiDAR-only
compression of baseline methods.

On the other hand, RangeCM-G slightly outperforms RangeCM-GI in geometry compression, which
implies that the joint geometry-intensity context modeling influences the geometry compression
performance. This is probably due to the difficulty of training a versatile model. However, this
performance gap is actually marginal, while the improvements in inference speed are much more
significant. Thus, it is worthwhile to introduce the joint compression pipeline.

5.3 ABLATION STUDIES

We conduct ablation studies on WOD to validate the effectiveness of the proposed camera context
model (CC), temporal context model (TC), and multi-scale context (MSC). We gradually remove
these models from RangeCM-G to investigate their contributions to geometry compression. Then,
we sequentially remove these models from RangeCM-GI to examine their benefits on intensity com-
pression. The experimental results are shown in Tables 2 and 3.

The camera context model obviously benefits geometry compression, yielding a BD-Rate improve-
ment of 6.85%. This suggests that the proposed model effectively exploits the cross-modal depen-
dency between camera and LiDAR. However, the improvement in intensity compression is relatively
modest, which is reasonable given the weak correlation between camera images and reflectance in-
tensity. For example, the reflectance intensity is closely related to the material of real-world ob-
jects, which may be difficult to identify only from camera images. Please refer to Appendix C
for detailed discussions. Meanwhile, the temporal context model significantly enhances compres-
sion performance, with BD-Rate improvements of 15.17% and 19.58% for geometry and intensity
compression, respectively. Moreover, the multi-scale intra-frame context model leads to significant
performance improvements as well.

6 CONCLUSION

In this work, we propose a fast and computationally efficient 2D context model for LiDAR point
cloud compression. All computations are executed in the 2D domain, which yields a significantly
faster inference speed compared to the 3D context models. Furthermore, the proposed method
integrates the features of the current frame, reference frame, and camera images, constituting a hy-
brid context to facilitate effective compression. Moreover, we develop a joint geometry-intensity
compression workflow by predicting both modalities based on the same hybrid context, thereby sig-
nificantly accelerating the coding process. Extensive experiments on the WOD and SemanticKITTI
datasets demonstrate that the proposed universal 2D context model achieves state-of-the-art com-
pression performance and delivers a fast coding speed that is applicable to low-latency applications.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin Hwang, and Nick Johnston. Variational
image compression with a scale hyperprior. In International Conference on Learning Represen-
tations, 2018.

Jens Behley, Martin Garbade, Andres Milioto, Jan Quenzel, Sven Behnke, Cyrill Stachniss, and
Jurgen Gall. SemanticKITTI: A dataset for semantic scene understanding of lidar sequences.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9297–9307,
2019.

Sourav Biswas, Jerry Liu, Kelvin Wong, Shenlong Wang, and Raquel Urtasun. MuSCLE: Multi
sweep compression of lidar using deep entropy models. Advances in Neural Information Pro-
cessing Systems, 33:22170–22181, 2020.

Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu, Anush
Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal dataset for
autonomous driving. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 11621–11631, 2020.

Zhengxue Cheng, Heming Sun, Masaru Takeuchi, and Jiro Katto. Learned image compression with
discretized gaussian mixture likelihoods and attention modules. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 7939–7948, 2020.

Ricardo L De Queiroz and Philip A Chou. Compression of 3d point clouds using a region-adaptive
hierarchical transform. IEEE Transactions on Image Processing, 25(8):3947–3956, 2016.

Lue Fan, Xuan Xiong, Feng Wang, Naiyan Wang, and Zhaoxiang Zhang. RangeDet: In defense
of range view for lidar-based 3d object detection. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 2918–2927, 2021.

Guangchi Fang, Qingyong Hu, Hanyun Wang, Yiling Xu, and Yulan Guo. 3DAC: Learning attribute
compression for point clouds. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 14819–14828, 2022.

Chunyang Fu, Ge Li, Rui Song, Wei Gao, and Shan Liu. Octattention: Octree-based large-scale
contexts model for point cloud compression. In Proceedings of the AAAI conference on artificial
intelligence, volume 36, pp. 625–633, 2022.

Wei Gao, Liang Xie, Songlin Fan, Ge Li, Shan Liu, and Wen Gao. Deep learning-based point cloud
compression: An in-depth survey and benchmark. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2025.

Yulan Guo, Hanyun Wang, Qingyong Hu, Hao Liu, Li Liu, and Mohammed Bennamoun. Deep
learning for 3d point clouds: A survey. IEEE transactions on pattern analysis and machine
intelligence, 43(12):4338–4364, 2020.

Dailan He, Yaoyan Zheng, Baocheng Sun, Yan Wang, and Hongwei Qin. Checkerboard context
model for efficient learned image compression. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 14771–14780, 2021.

Lila Huang, Shenlong Wang, Kelvin Wong, Jerry Liu, and Raquel Urtasun. Octsqueeze: Octree-
structured entropy model for lidar compression. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 1313–1323, 2020.

Zhaoyang Jia, Bin Li, Jiahao Li, Wenxuan Xie, Linfeng Qi, Houqiang Li, and Yan Lu. Towards
practical real-time neural video compression. arXiv preprint arXiv:2502.20762, 2025.

Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong Yang, and Oscar Beijbom. Point-
Pillars: Fast encoders for object detection from point clouds. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 12697–12705, 2019.

Chenhao Li, Trung Thanh Ngo, and Hajime Nagahara. Inverse rendering of translucent objects using
physical and neural renderers. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 12510–12520, 2023a.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Hongyang Li, Chonghao Sima, Jifeng Dai, Wenhai Wang, Lewei Lu, Huijie Wang, Jia Zeng, Zhiqi
Li, Jiazhi Yang, Hanming Deng, et al. Delving into the devils of bird’s-eye-view perception: A
review, evaluation and recipe. IEEE Transactions on Pattern Analysis and Machine Intelligence,
46(4):2151–2170, 2023b.

Jiahao Li, Bin Li, and Yan Lu. Deep contextual video compression. Advances in Neural Information
Processing Systems, 34:18114–18125, 2021a.

Jiahao Li, Bin Li, and Yan Lu. Neural video compression with feature modulation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 26099–26108,
2024.

Li Li, Khalid N Ismail, Hubert PH Shum, and Toby P Breckon. Durlar: A high-fidelity 128-channel
lidar dataset with panoramic ambient and reflectivity imagery for multi-modal autonomous driv-
ing applications. In 2021 International Conference on 3D Vision (3DV), pp. 1227–1237, 2021b.

Yuhuan Lin, Tongda Xu, Ziyu Zhu, Yanghao Li, Zhe Wang, and Yan Wang. Your camera improves
your point cloud compression. In IEEE International Conference on Acoustics, Speech and Signal
Processing, 2023.

Zhijian Liu, Haotian Tang, Alexander Amini, Xinyu Yang, Huizi Mao, Daniela L Rus, and Song
Han. BEVFusion: Multi-task multi-sensor fusion with unified bird’s-eye view representation. In
2023 IEEE international conference on robotics and automation, pp. 2774–2781, 2023.

Ao Luo, Linxin Song, Keisuke Nonaka, Kyohei Unno, Heming Sun, Masayuki Goto, and Jiro Katto.
SCP: Spherical-coordinate-based learned point cloud compression. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38, pp. 3954–3962, 2024.

MPEG. Common Test Conditions for G-PCC. ISO/IEC JTC1/SC29/WG7 N00106, 2021a.

MPEG. G-PCC Codec Description v12. ISO/IEC JTC1/SC29/WG7 N00151, 2021b.

MPEG. G-PCC TMC13 v23, 2023. URL https://github.com/MPEGGroup/
mpeg-pcc-tmc13.

Dat Thanh Nguyen, Maurice Quach, Giuseppe Valenzise, and Pierre Duhamel. Lossless coding of
point cloud geometry using a deep generative model. IEEE Transactions on Circuits and Systems
for Video Technology, 31(12):4617–4629, 2021.

Nvidia. NVIDIA Ampere GA102 GPU Architecture Whitepa-
per, 2025a. URL https://www.nvidia.com/content/PDF/
nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf.

Nvidia. NVIDIA DRIVE AGX Thor Development Platform, 2025b.
URL https://developer.download.nvidia.com/drive/docs/
nvidia-drive-agx-thor-platform-for-developers.pdf.

Nvidia. A nvImageCodec library of GPU- and CPU- accelerated codecs featuring a unified interface,
2025c. URL https://github.com/NVIDIA/nvImageCodec.

Maurice Quach, Giuseppe Valenzise, and Frederic Dufaux. Learning convolutional transforms for
lossy point cloud geometry compression. In IEEE International Conference on Image Processing,
pp. 4320–4324. IEEE, 2019.

Anurag Ranjan and Michael J Black. Optical flow estimation using a spatial pyramid network. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4161–
4170, 2017.

Tim Salimans, Andrej Karpathy, Xi Chen, and Diederik P Kingma. PixelCNN++: Improving the
pixelcnn with discretized logistic mixture likelihood and other modifications. International Con-
ference on Learning Representations, 2017.

Ruwen Schnabel and Reinhard Klein. Octree-based point-cloud compression. In Proceedings of the
3rd Eurographics, pp. 111–121, 2006.

11

https://github.com/MPEGGroup/mpeg-pcc-tmc13
https://github.com/MPEGGroup/mpeg-pcc-tmc13
https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf
https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf
https://developer.download.nvidia.com/drive/docs/nvidia-drive-agx-thor-platform-for-developers.pdf
https://developer.download.nvidia.com/drive/docs/nvidia-drive-agx-thor-platform-for-developers.pdf
https://github.com/NVIDIA/nvImageCodec

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Sebastian Schwarz, Marius Preda, Vittorio Baroncini, Madhukar Budagavi, Pablo Cesar, Philip A
Chou, Robert A Cohen, Maja Krivokuća, Sébastien Lasserre, Zhu Li, et al. Emerging MPEG
standards for point cloud compression. IEEE Journal on Emerging and Selected Topics in Circuits
and Systems, 9:133–148, 2018.

Xihua Sheng, Li Li, Dong Liu, Zhiwei Xiong, Zhu Li, and Feng Wu. Deep-PCAC: An end-to-end
deep lossy compression framework for point cloud attributes. IEEE Transactions on Multimedia,
24:2617–2632, 2021.

Rui Song, Chunyang Fu, Shan Liu, and Ge Li. Efficient hierarchical entropy model for learned point
cloud compression. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 14368–14377, 2023a.

Rui Song, Chunyang Fu, Shan Liu, and Ge Li. Large-scale spatio-temporal attention based entropy
model for point cloud compression. In 2023 IEEE International Conference on Multimedia and
Expo, pp. 2003–2008. IEEE, 2023b.

Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien Chouard, Vijaysai Patnaik, Paul Tsui,
James Guo, Yin Zhou, Yuning Chai, Benjamin Caine, et al. Scalability in perception for au-
tonomous driving: Waymo open dataset. In Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pp. 2446–2454, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Sourabh Vora, Alex H Lang, Bassam Helou, and Oscar Beijbom. PointPainting: Sequential fusion
for 3D object detection. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 4604–4612, 2020.

Jianqiang Wang, Dandan Ding, Zhu Li, Xiaoxing Feng, Chuntong Cao, and Zhan Ma. Sparse
tensor-based multiscale representation for point cloud geometry compression. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 45(7):9055–9071, 2022a.

Jianqiang Wang, Ruixiang Xue, Jiaxin Li, Dandan Ding, Yi Lin, and Zhan Ma. A Versatile Point
Cloud Compressor Using Universal Multiscale Conditional Coding–Part I: Geometry. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2025a.

Jianqiang Wang, Ruixiang Xue, Jiaxin Li, Dandan Ding, Yi Lin, and Zhan Ma. A Versatile Point
Cloud Compressor Using Universal Multiscale Conditional Coding – Part II: Attribute. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 47(1):252–268, 2025b.

Miaohui Wang, Runnan Huang, Hengjin Dong, Di Lin, Yun Song, and Wuyuan Xie. msLPCC: A
multimodal-driven scalable framework for deep lidar point cloud compression. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 38, pp. 5526–5534, 2024.

Sukai Wang and Ming Liu. Point cloud compression with range image-based entropy model for
autonomous driving. In European Conference on Computer Vision, pp. 323–340. Springer, 2022.

Sukai Wang, Jianhao Jiao, Peide Cai, and Lujia Wang. R-PCC: A baseline for range image-based
point cloud compression. In 2022 International Conference on Robotics and Automation, pp.
10055–10061, 2022b.

Waymo. Meet the 6th-generation waymo driver: Optimized for costs, designed to handle more
weather, and coming to riders faster than before, 2024. URL https://waymo.com/blog/
2024/08/meet-the-6th-generation-waymo-driver.

De Jong Yeong, Gustavo Velasco-Hernandez, John Barry, and Joseph Walsh. Sensor and sensor
fusion technology in autonomous vehicles: A review. Sensors, 21(6):2140, 2021.

Kang You, Tong Chen, Dandan Ding, M Salman Asif, and Zhan Ma. RENO: Real-time neural com-
pression for 3d lidar point clouds. In Proceedings of the Computer Vision and Pattern Recognition
Conference, pp. 22172–22181, 2025.

12

https://waymo.com/blog/2024/08/meet-the-6th-generation-waymo-driver
https://waymo.com/blog/2024/08/meet-the-6th-generation-waymo-driver

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Junteng Zhang, Jianqiang Wang, Dandan Ding, and Zhan Ma. Scalable point cloud attribute com-
pression. IEEE Transactions on Multimedia, 2023.

Huiming Zheng, Wei Gao, Zhuozhen Yu, Tiesong Zhao, and Ge Li. ViewPCGC: View-guided
learned point cloud geometry compression. In Proceedings of the 32nd ACM International Con-
ference on Multimedia, pp. 7152–7161, 2024.

Xuanyu Zhou, Charles R Qi, Yin Zhou, and Dragomir Anguelov. RIDDLE: Lidar data compression
with range image deep delta encoding. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 17212–17221, 2022.

Jiahao Zhu, Kang You, Dandan Ding, and Zhan Ma. Efficient lidar reflectance compression via
scanning serialization. In Forty-second International Conference on Machine Learning, 2025.

Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. Deformable DETR: De-
formable transformers for end-to-end object detection. In International Conference on Learning
Representations, 2021.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Appendix

A MODEL ARCHITECTURE

Spatial Context Extraction. The architecture of the VAE for spatial context extraction is shown
in Fig. 5. This model aims to compress the spatial embedding of the range image along with the
basic camera context. To produce the latent embedding y, the H ×W range image is downsampled
by 4× 64 times, and the derived y contains 96 channels. Distribution of ŷ is estimated based on the
hyperprior ẑ and the temporal context ψt. The dimension of the spatial context ψs is 64.

Temporal Context Model. The temporal context model consists of a flow estimation module, a
VAE for flow compression, and a motion compensation module. The flow prediction module follows
the design of the spatial pyramid network (Ranjan & Black, 2017). The structure of the VAE and
motion compensation module is shown in Fig. 6. The latent variable yv and the temporal context
ψt include 128 and 64 channels, respectively.

Camera Context Model. The camera context model first employs CNN to extract features from
the range image and camera images, as shown in Fig. 7. Then, it adopts two deformable attention
blocks to align LiDAR and camera features. The architecture of the attention block is represented
in Fig. 3 in the main paper. The deformable attention is calculated in a 128-dimensional feature
space, while the camera context ψc contains 64 channels. The head number in deformable attention
is 4, and we sample 8 key tokens in each attention head. For those range image pixels that are not
projected onto any camera views, their camera features ψc are set to a zero tensor.

Multi-Scale Context Model. After obtaining the spatial, temporal, and camera contexts, the
multi-scale context model aggregates these features and predicts the distribution of r̂1, r̂2, and ŝ
sequentially. The logistic mixture consists of 3 components, with each component characterized by
mean, scale, and weight. Therefore, we predict 9 parameters for each symbol. The architecture of
the context fusion model is shown in Fig. 8.

B IMPLEMENTATION DETAILS

B.1 EXPERIMENT DETAILS

RangeCM-G and RangeCM-GI are trained using the same settings. The model is optimized for 2M
and 0.7M steps on the WOD and SemanticKITTI, respectively. We use an AdamW optimizer to
train the model, and the batch size is set to 8. During training, the learning rate is initially set to
1e− 4, while it decreases to 5e− 5 after 60% training steps. All network modules are trained in an
end-to-end manner following the loss function of Eq. 7.

For geometry compression, RangeCM uses a two-stage quantization, as defined by Eq. 4, where the
quantization steps are assigned as b1 = 2 and b2 = {1/5, 1/10, 1/25, 1/50, 1/100}. For intensity
compression, we adopt different settings on different datasets. The original intensity values in KITTI
have been quantized into 100 levels in [0, 1]. We further apply another quantization with a step of
2 × b2 to trade off the bitrate and reconstruction quality. For example, when the range values are
quantized by b2 = 1/100 in geometry compression, the intensity values are quantized with a step of
1/50.

Intensity values in the WOD are unbounded and continuous, so we first preprocess the data as:

s̃ = ⌈clip(s, 0, 1)× 255⌋/255. (8)

To adjust the bitrate and reconstruction quality, s̃ is further quantized using a step of b2.

Some pixels in the range image may be empty, where the laser beam does not detect any object along
the corresponding direction. We represent these empty pixels with a particular symbol and encode
them as ordinary pixels. In this way, the decoder can recognize these pixels.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Conv1×4, c192, s1×4

Conv1×4, c192,s1×4

Conv3×3, c192, s2×2

Conv3×3, c192, s2×2

Concat

Conv1×1, c192

Conv1×1, c192

Conv1×1, c192

Context Model

Q Q

AE

AD

Analysis Transform

AE

AD

C
on

v3
×

3,
 c

96

C
on

v3
×

3,
 c

96

C
on

v3
×

3,
 c

96
, s

2×
2

R
es

 B
lo

ck
, c

19
2,

 s
1×

4

R
es

 B
lo

ck
, c

96

R
es

 B
lo

ck
, c

96
, s

1×
4

A
tt

en
ti

on
 B

lo
ck

, c
96

R
es

 B
lo

ck
, c

96

R
es

 B
lo

ck
, c

96
, s

2×
2

R
es

 B
lo

ck
, c

96

C
on

v3
×

3,
 c

96
, s

2×
2

A
tt

en
ti

on
 B

lo
ck

, c
96

S
P

C
on

v,
 c

96
, s

2×
2

C
on

v3
×

3,
 c

96

C
on

v3
×

3,
 c

96

R
es

 B
lo

ck
, c

96

R
es

 B
lo

ck
, c

96
, s

2×
2

A
tt

en
ti

on
 B

lo
ck

, c
96

R
es

 B
lo

ck
, c

96

R
es

 B
lo

ck
, c

96
, s

2×
2

A
tt

en
ti

on
 B

lo
ck

, c
96

R
es

 B
lo

ck
, c

96

R
es

 B
lo

ck
, c

96
, s

1×
4

R
es

 B
lo

ck
, c

64

R
es

 B
lo

ck
, c

64
, s

1×
4

Synthesis Transform

Context
Model

Figure 5: Architecture of the spatial context extraction model. Res Block indicates the residual
block. SPConv denotes the subpixel convolution layer. Attention Block is the convolution-based
attention block (Cheng et al., 2020). c represents the output dimension of the corresponding block.
s indicates the stride of the downsampling or upsampling layer.

Analysis Transform

Synthesis Transform

Q

AE

AD

Q

C
on

v3
×

3,
 c

64

C
on

v3
×

3,
 c

64
, s

2×
2

AE

AD

C
on

v3
×

3,
 c

25
6

C
on

v3
×

3,
 c

64

5
×

 (
C

on
v3

×
3,

 c
64

)

C
on

v3
×

3,
 c

2

C
on

v1
×

4,
 c

12
8,

 s
1×

4

C
on

v1
×

4,
 c

12
8,

 s
1×

4

C
on

v3
×

3,
 c

12
8,

 s
2×

2

C
on

v3
×

3,
 c

12
8,

 s
2×

2

T
C

on
v1

×
4,

 c
2,

 s
1×

4

T
C

on
v1

×
4,

 c
12

8,
 s

1×
4

S
P

C
on

v3
×

3,
 c

12
8,

 s
2

S
P

C
on

v3
×

3,
 c

12
8,

 s
2

S
P

C
on

v3
×

3,
 c

12
8,

 s
2

3
×

 (
C

on
v1

×
1)

, c
25

6

Conv3×3, c64

Res Block, c64

Warp

Res Block, c64

Conv3×3, c64

Motion Compensation

C
on

ca
t

Figure 6: Left: Architecture of the optical flow compression network. TConv indicates the transpose
convolution layer. Right: Structure of the motion compensation module.

C
o
n

v
4

×
4
,
c6

4
,
s4

×
4

C
o

n
v

5
×

5
,
c1

2
8

,
s2

×
2

C
o
n

v
4

×
4
,
c6

4
,
s4

×
4

C
o

n
v

5
×

5
,
c1

2
8

,
s2

×
2

C
o

n
v

3
×

3
,
c1

9
2

,
s2

×
2

C
o
n

v
3
×

3
,
c1

9
2

C
o

n
v

3
×

3
,
c1

9
2

,
s2

×
2

C
o
n

v
3
×

3
,
c1

9
2

C
o
n

v
3

×
3

,
c2

5
6

,
s2

×
2

C
o
n

v
3
×

3
,
c2

5
6

C
o
n

v
3

×
3

,
c2

5
6

,
s2

×
2

C
o
n

v
3
×

3
,
c2

5
6

S
P

C
o

n
v
3

×
3

,
c1

9
2

,
s2

C
o
n

v
3
×

3
,
c1

9
2

C
o
n

ca
t

C
o

n
v

3
×

3
,
c1

9
2

S
P

C
o

n
v
3

×
3

,
c1

9
2

,
s2

C
o
n

v
3
×

3
,
c1

9
2

C
o
n

ca
t

C
o

n
v

3
×

3
,
c1

9
2

S
P

C
o

n
v

3
×

3
,

c1
2

8
,

s2

C
o
n

v
3
×

3
,
c1

2
8

C
o
n

ca
t

C
o
n

v
3
×

3
,
c1

9
2

S
P

C
o

n
v

3
×

3
,

c1
2

8
,

s2

C
o
n

v
3
×

3
,
c1

2
8

C
o
n

ca
t

C
o
n

v
3
×

3
,
c1

9
2

Camera Feature Extraction

C
a
m

er
a

 I
m

a
g
es

C
a

m
er

a
 F

e
a
tu

re
s

C
o
n

v
4

×
4
,
c6

4
,
s4

×
4

C
o

n
v

5
×

5
,
c1

2
8

,
s2

×
2

C
o

n
v

3
×

3
,
c1

9
2

,
s2

×
2

C
o
n

v
3
×

3
,
c1

9
2

C
o
n

v
3

×
3

,
c2

5
6

,
s2

×
2

C
o
n

v
3
×

3
,
c2

5
6

S
P

C
o

n
v
3

×
3

,
c1

9
2

,
s2

C
o
n

v
3
×

3
,
c1

9
2

C
o
n

ca
t

C
o

n
v

3
×

3
,
c1

9
2

S
P

C
o

n
v

3
×

3
,

c1
2

8
,

s2

C
o
n

v
3
×

3
,
c1

2
8

C
o
n

ca
t

C
o
n

v
3
×

3
,
c1

9
2

Camera Feature Extraction

C
a
m

er
a

 I
m

a
g
es

C
a

m
er

a
 F

e
a
tu

re
s

LiDAR Feature
Extraction

C
o

n
v

5
×

5
,
c6

4

R
e
s

B
lo

ck
,

c6
4

R
a
n

g
e

Im
a

g
e

C
a

m
er

a
 F

e
a
tu

re
s

C
o

n
v

5
×

5
,
c6

4

R
e
s

B
lo

ck
,

c6
4

R
a
n

g
e

Im
a

g
e

C
a

m
er

a
 F

e
a
tu

re
s

Figure 7: Architecture of the camera and LiDAR feature extraction network in the camera context
model.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Conv1×1, c64

Conv1×1, c64

MConv5×5, c64

Concat

Conv1×1, c64

Conv1×1, c9Conv3×3, c9

Predicting

Conv3×3, c64

Conv3×3, c64

Concat

Conv1×1, c128

Conv1×1, c9

Conv1×1, c64

Conv1×1, c64

Conv1×1, c64

Conv1×1, c64

Conv1×1, c128

MConv5×5, c64

Concat

Conv1×1, c9

Predicting

3×(Conv3×3, c64)

Concat

Conv3×3, c128

Res Block, c128

Conv3×3, c9

Conv1×1, c64

Conv1×1, c64

MConv5×5, c64

Concat

Conv1×1, c64

Conv1×1, c9

Predicting

Figure 8: Architecture of the context fusion model. MConv indicates the convolution layer with a
checkerboard mask (He et al., 2021).

Figure 9: Visualization of the LiDAR point cloud and camera images. Points are colored according
to their range value. Best viewed zoomed in.

B.2 BASELINE SETTINGS

In geometry compression, the PSNR between the original point cloud P and the reconstructed point
cloud P̂ is calculated by:

PSNR(P, P̂) = 10× log10

 3r2

max
{

MSE(P, P̂),MSE(P̂ , P)
}
 , (9)

where r is a user-specified parameter called peak value. A common practice is setting r to the
maximum nearest neighbor distance across the entire dataset D (Biswas et al., 2020):

r = max
P∈D

max
pi∈P

min
j ̸=i

||pi − pj ||2. (10)

Following this formulation, we set r to 57.41 and 59.70 on WOD and KITTI, respectively. While
most baselines (e.g., EHEM (Song et al., 2023a) and RICNet (Wang & Liu, 2022)) use the same
peak values as ours, the settings of Unicorn (Wang et al., 2025a) and RIDDLE (Zhou et al., 2022)
are different. Therefore, we recompute their PSNRs under our setting to guarantee a fair comparison.
Unicorn presents the MSE results, so we directly recompute the PSNR according to Eq. 9. RIDDLE
releases neither source codes nor MSE results, while the chamfer distance results are provided.
As the distortion of RIDDLE is completely determined by the quantization applied to the range
image, we first find the quantization steps that match the reconstructed point cloud with the provided
chamfer distance. Then, we use the above steps to reproduce their reconstructed point clouds, and
calculate the PSNR using our peak values accordingly.

C DISCUSSION ON CAMERA CONTEXT MODEL

LiDAR-camera fusion has emerged as an effective solution to improve the perception algorithms
in autonomous driving (Li et al., 2023b; Vora et al., 2020; Liu et al., 2023). Motivated by these
multi-modal perception models, the proposed comprehensive context introduces camera images as
additional contexts for LiDAR compression. Although it necessitates a serial camera-LiDAR com-
pression workflow, the image coding time is negligible using a well-optimized GPU-accelerated

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

1 2 3 4 5 6 7 8

Bits Per Point

65

70

75

80

85

90

D
1

PS
N

R
 (d

B
)

Bitrate vs. D1 PSNR (KITTI)

G-PCC
RangeCM-G w/o CCM
RangeCM-G

2 4 6 8 10 12 14 16

Bits Per Point

70

71

72

73

74

75

76

77

78

79

80

A
ve

ra
ge

 P
re

ci
si

on
 (C

ar
)

Bitrates vs. Detection Accuracy (KITTI)

No Compression

RangeCM-GI
G-PCC

Figure 10: Left: Rate-distortion curves on the KITTI dataset. CCM means the camera context
model. Right: Downstream task performance on the KITTI.

codec (Nvidia, 2025c), and we can deploy this image codec and RangeCM on the same GPU to
minimize the overall coding latency. The success of these multi-modal perception methods also
proves the practicality of deploying this LiDAR-camera fusion system in real-world applications.

Although most autonomous driving vehicles are equipped with both camera and LiDAR sensors,
there may be special applications that require the standalone LiDAR compression (e.g., in-the-wild
LiDAR compression). In this case, we can simply remove the camera context, which corresponds
to the RangeCM w/o CC model in Table 2 and Table 3. Notably, this RangeCM variant maintains a
BD-rate gain of 11.18% compared to the state-of-the-art method RIDDLE. Therefore, RangeCM is
flexible in choosing whether to utilize the camera context, and it is not limited to applications where
the camera context is available.

Besides, Table 2 and Table 3 show that the camera context is more effective on geometry compres-
sion. This is because the camera data provides dense semantic features that the sparse LiDAR point
clouds lack, and these semantics are correlated to the range values, as shown in Fig. 9. However,
predicting the reflectance intensity from images is challenging. Light reflectance is closely related
to the materials of real-world objects. Nevertheless, it is difficult to predict the object materials
from visual images. For example, wax, plastic, and crystal may appear similar in the image, while
they have different reflectance properties (Li et al., 2023a). Even though the materials are known, it
is still difficult to estimate the reflectance intensity without referring to the corresponding physical
models. Therefore, camera context has a more significant impact on geometry compression than on
intensity compression.

D ADDITIONAL EXPERIMENTS

D.1 EVALUATING COMPREHENSIVE CONTEXT MODEL ON KITTI

The KITTI dataset does not provide the transformation matrices between LiDAR and camera on
the testing set (i.e., sequences 11 to 21). Since all baseline methods follow the official dataset
partition for training and evaluation, we exclude the camera context in our main paper to ensure the
comparison is conducted on the same testing set. Here, we reorganize the KITTI dataset to evaluate
the performance of the comprehensive context model. Specifically, sequences 00, 01, 02, 04, 05,
06 are selected for training, while sequences 07, 08, 09, 10 constitute the testing set. Furthermore,
we train a baseline model without the camera context under this dataset division. Results in Fig. 10
show that the camera context model leads to a 4.77% BD-Rate reduction compared to the baseline.

This improvement slightly decreases compared to the one on WOD, because KITTI only includes
2 camera views, while WOD comprises 5 cameras. Consequently, fewer points can find the camera
references in KITTI, thereby the benefits of the camera context are weakened. Nevertheless, modern
autonomous vehicles are commonly equipped with numerous cameras (e.g., the sixth-generation
Waymo Driver incorporates 13 cameras (Waymo, 2024)). As a result, most points can find the
camera context in practice, leading to an effective camera context.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 4: Runtime (in seconds) comparison among different methods. The coding times of RangeCM
are evaluated on the RTX 3080 GPU. Best results are marked in bold.

Geometry Compression

Method
SemanticKITTI WOD

Encoding Decoding Encoding Decoding
Infer. Total Infer. Total Infer. Total Infer. Total

G-PCC - 0.95 - 0.48 - 1.24 - 0.62
EHEM 1.38 - 1.61 - - - - -
RENO 0.04 0.07 - - - - - -

Unicorn 2.65 2.83 2.36 2.50 - - - -
RICNet 0.40 0.63 0.40 0.43 - - - -

RIDDLE - - - - 0.49 0.53 - 0.97
RangeCM-G 0.05 0.09 0.05 0.09 0.15 0.21 0.10 0.23
RangeCM-GI 0.05 0.09 0.05 0.09 0.15 0.21 0.11 0.24

Intensity Compression
G-PCC - 0.84 - 0.75 - 0.59 - 0.65
Unicorn 14.84 - 13.04 - - - - -

RangeCM-GI 0.06 0.12 0.04 0.12 0.16 0.24 0.12 0.27

D.2 ABLATION STUDIES ON CONTEXT REFINEMENT

In this section, we validate the effectiveness of the context refinement strategy. Specifically, we
train a RangeCM-G model without the refined camera context ψ̃c while preserving the basic camera
context ψc. The context refinement strategy improves the BD-Rate by 5.11%, which verifies its
importance. On the other hand, this model still outperforms the baseline without the entire camera
context model (CCM), proving the benefits of the basic camera context.

D.3 DOWNSTREAM TASK PERFORMANCE

We conduct object detection based on the decoded point clouds to investigate how compression
influences the downstream task performance. Specifically, we compress both the geometry and
intensity information of the point cloud, and evaluate the accuracy of the PointPillars detector (Lang
et al., 2019). Results are shown in Fig. 10. Compared to G-PCC, RangeCM yields higher detection
accuracy at similar bitrates.

D.4 CODING SPEED ON ENTRY-LEVEL GPU

In the main paper, we evaluate RangeCM with an A6000 GPU. Here, we further test its coding
latency with an RTX 3080 GPU. Results in Table 4 show that RangeCM still preserves faster speed
than most baseline methods on this less powerful GPU.

D.5 EVALUATION ON DIFFERENT LIDAR TYPES

In addition to 64-line LiDAR, we evaluate the performance of RangeCM on 32-line LiDAR dataset
NuScenes (Caesar et al., 2020) and 128-line dataset DurLAR (Li et al., 2021b). Experimental results
in Table 5 and Table 6 demonstrate that RangeCM maintains satisfactory performance on these
different LiDAR types.

D.6 LOSSLESS REFLECTANCE INTENSITY COMPRESSION

In this section, we compare RangeCM to the lossless LiDAR reflectance compressor SerLiC (Zhu
et al., 2025) on KITTI and NuScenes datasets. Results in Table 7 show that RangeCM yields a
comparable compression ratio to SerLiC with faster coding speed. The joint geometry-intensity
compression of RangeCM remains faster than the reflectance compression of SerLiC, which demon-
strates the superiority of the proposed 2D context model.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 5: BD-Rate improvements over G-PCC and total coding time (in seconds) on NuScenes
dataset.

Method Geometry Compression Intensity Compression

BD-Rate Encoding
Time

Decoding
Time BD-Rate Encoding

Time
Decoding

Time
G-PCC 0 0.25 0.17 0 0.47 0.32

RangeCM-GI -37.89 0.08 0.07 -16.89 0.09 0.08

Table 6: BD-Rate improvements over G-PCC and total coding time (in seconds) on DurLAR dataset.

Method Geometry Compression Intensity Compression

BD-Rate Encoding
Time

Decoding
Time BD-Rate Encoding

Time
Decoding

Time
G-PCC 0 1.30 0.64 0 1.93 1.33

RangeCM-GI -42.71 0.22 0.20 -9.34 0.26 0.26

Table 7: Bits per point and total coding time (in seconds) for lossless reflectance compression on Se-
mantcKITTI (left) and NuScenes (right) dataset. Please note that the coding time of RangeCM is for
joint geometry-intensity compression, while the time of SerLiC is for reflectance-only compression.

Method BPP Enc. Time Dec. Time
SerLiC 3.64 0.18 0.23

RangeCM 3.66 0.11 0.12

Method BPP Enc. Time Dec. Time
SerLiC 2.52 - -

RangeCM 2.75 0.09 0.10

Table 8: Bitrate distribution over different variables.

Rate Point ẑv ŷv ẑ ŷ r̂11 r̂21 r̂12 r̂22 ŝ1 ŝ2
b2=1/5 0.57% 1.61% 1.24% 9.47% 15.09% 12.18% 24.68% 18.75% 8.84% 7.51%
b2=1/10 0.42% 1.20% 0.94% 7.79% 10.75% 8.82% 27.64% 22.20% 10.93% 9.29%
b2=1/25 0.27% 0.76% 0.60% 5.89% 6.79% 5.59% 29.81% 25.12% 13.55% 11.57%
b2=1/50 0.19% 0.55% 0.44% 4.54% 4.87% 4.02% 30.34% 26.41% 15.38% 13.26%
b2=1/100 0.14% 0.41% 0.33% 3.42% 3.62% 2.99% 30.13% 27.01% 17.04% 14.87%

D.7 BIT ALLOCATION OVER VARIABLES

Table 8 presents the bitrate consumption distribution over symbol groups and latent variables. Most
bits are spent on coding r̂ and ŝ, while the latent variables ẑv , ŷv , ẑ, and ŷ only constitute a minor
proportion of the bitstream.

D.8 ROBUSTNESS TO SCANNING PATTERN

In this section, we validate the robustness of RangeCM to different LiDAR scanning patterns (i.e.,
laser elevation and azimuth angles). We fine-tune RangeCM-GI on the SemanticKITTI dataset based
on the model trained on WOD, as the laser emission angles are different for these two datasets. In
particular, this experiment is conducted on the reorganized KITTI dataset (as introduced in Appendix
D.1), because the pretrained model exploits the camera context while the testing set of the original
dataset does not provide the transformation matrices between LiDAR and camera sensors. The
pretrained model is fine-tuned for 9K steps. Compared to the model trained on the reorganized
KITTI, the fine-tuned model yields a minor BD-Rate increase of 3.84% and 3.25% for geometry and
intensity compression, respectively. The results demonstrate that the pretrained RangeCM model
can be readily extended to different scanning patterns based on a simple fine-tuning process.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 9: Performance comparison of RangeCM-GI when compressing complete and partial LiDAR
scans. For partial scan compression, we record the total bitrate for coding both left and right parts,
and compute the BD-Rate against the performance of the complete scan compression. The coding
time represents the runtime (in seconds) for coding complete or partial scans. Results are evaluated
on the WOD.

Data Geometry
BD-Rate

Intensity
BD-Rate

Encoding
Time

Decoding
Time

Complete Scan 0% 0% 0.22 0.27
Partial Scan +0.24% +0.18% 0.14 0.16

Table 10: The BD-Rate improvements (%) over baseline methods achieved by RangeCM-G and
RangeCM-GI, which are evaluated on the SemanticKITTI (left) and WOD (right), respectively.

Geometry Compression
Method RangeCM-G RangeCM-GI
G-PCC -56.07 -51.56
EHEM -36.23 -26.98
RENO -49.12 -43.52

Unicorn -38.78 -32.43
RICNet -12.99 -2.90

RIDDLE -15.41 -6.53
Intensity Compression

G-PCC - -6.96
Unicorn - +7.03

Geometry Compression
Method RangeCM-G RangeCM-GI
G-PCC -61.96 -59.94
EHEM - -
RENO - -

Unicorn - -
RICNet - -

RIDDLE -17.14 -12.59
Intensity Compression

G-PCC - -20.93
Unicorn - -

D.9 PARTIAL SCAN COMPRESSION

The common practice of LiDAR point cloud compression is to encode the complete scan. In this
setting, the codec compresses the current frame xt when the sensor is scanning the next frame
xt+1, and the quantized previous frame x̂t−1 is used as the temporal context. Nevertheless, in some
latency-sensitive applications, the LiDAR compressor needs to compress the partial point cloud
during the scanning of the sensor. To validate the performance of RangeCM on encoding the partial
scan, we split the range image vertically into two uniform parts. Then, RangeCM-GI is employed
to encode the left and right parts of the image independently. The experimental results are shown
in Table 9. When compressing the partial scan, RangeCM achieves almost the same performance
as encoding the complete scan. Therefore, RangeCM can be directly applied to coding partial point
clouds. Moreover, the coding latency for partial scan compression decreases accordingly.

D.10 MORE BASELINES

In the main paper, RangeCM is compared against state-of-the-art LiDAR compression methods.
Here, we additionally compare it with another baseline MuSCLE (Biswas et al., 2020). MuSCLE
utilizes a spatio-temporal context and supports both geometry and intensity compression. However,
it did not provide the PSNR results on intensity compression or the coding latency, so we only
compare RangeCM with it regarding geometry compression performance. On the SemanticKITTI
dataset, RangeCM-GI outperforms MuSCLE with a BD-Rate of -49.69%, which verifies the strength
of RangeCM.

D.11 BD-RATE TO BASELINES

In the main paper, we compare the BD-Rate improvements over G-PCC yielded by different meth-
ods. Here, we provide the specific BD-Rate improvements of RangeCM compared to each baseline
method. The corresponding results are shown in Table 10.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Figure 11: Visualization of camera images captured in the dark scene.

E VISUALIZATION

We visualize the sampling locations and attention weights predicted by the deformable attention
model in Fig. 12. Specifically, these results are collected from the last attention block in the basic
camera context model. It is shown that deformable attention tends to aggregate features from similar
semantic objects. In addition, the sampling points close to the reference point generally have higher
attention scores.

Furthermore, we visualize the reconstructed optical flow v̂ given by the temporal context model, as
shown in Fig. 13. We also present range value maps of the current and reference frame to visualize
the ground-truth motion patterns. These results prove that the estimated flow effectively captures
the motions between adjacent frames, which provides accurate correlations for temporal context
modeling. Besides, we also visualize the original and decoded point clouds in Fig. 14.

F DISCUSSION ON IN-VEHICLE DEPLOYMENT

This paper evaluates RangeCM’s efficiency on the general-purpose GPU such as RTX A6000 and
RTX 3080. In practice, the in-vehicle GPU platform provides comparable or even stronger comput-
ing performance. For example, the Nvidia Drive AGX Thor platform offers 1000 Tera Operations
Per Second (TOPS) for processing INT8 data (Nvidia, 2025b). In contrast, the RTX A6000 and
RTX 3080 GPU offer only 619.4 and 476 TOPS (Nvidia, 2025a). Furthermore, the AGX Thor plat-
form is built on the latest Blackwell architecture, while the RTX A6000 and RTX 3080 are based on
the previous-generation Ampere architecture. Besides, the peak memory consumption of RangeCM
is only 3GB, while AGX Thor has 64GB system memory (shared by CPU and GPU), which is suf-
ficient to deploy our model. Finally, the AGX Thor platform adopts hardware-level optimization to
accelerate the I/O of camera and LiDAR data, which enables fast I/O speed. Therefore, we believe
RangeCM can preserve low-latency coding capability in practical in-vehicle deployment.

G LIMITATION

As RangeCM utilizes the camera images as the context, its performance may be affected by the
image quality. For example, the camera images are less informative in low visibility weather condi-
tions (e.g., fog and rain) or dark scenes (e.g., night), which in turn influences the effectiveness of the
proposed method. Compared to its average performance, we found that RangeCM costs 24.4% more
bitrates to encode a sequence captured in the dark environment. The images from this sequence are
visualized in Fig. 11.

Furthermore, the intensity compression performance may decline when dealing with real-world ob-
jects that have complex reflectance properties. For instance, it is difficult to predict the accurate
reflectance intensity from woodland, water, and snow.

H LLM USAGE STATEMENT

LLM is not applied for any research ideation. We only use the LLM to detect grammar errors and
polish the human-written manuscript.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Figure 12: Visualization of the deformable attention model. Red triangle indicates the reference
point, i.e., the 2D projection of the query. Dots represent the predicted sampling locations, and they
are colored according to their attention scores.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Current Frame

Reference Frame

Optical Flow

Current Frame

Reference Frame

Optical Flow

Current Frame

Reference Frame

Optical Flow

Current Frame

Reference Frame

Optical Flow

Current Frame

Reference Frame

Optical Flow

Current Frame

Reference Frame

Optical Flow

Current Frame

Reference Frame

Optical Flow

Current Frame

Reference Frame

Optical Flow

0 1

Figure 13: Visualization of the current frame, reference frame, and reconstructed optical flow.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Figure 14: Visualization of the ground truth and reconstructed point clouds at different bitrates.
Color indicates the chamfer distance between the ground truth and the decoded point cloud.

24

	Introduction
	Related Work
	Point Cloud Compression
	LiDAR-Camera Fusion

	Preliminaries
	Range Image
	Contextual Video Compression

	Comprehensive Context Modeling
	Overview
	Camera Context Model
	Flow-based Temporal Context Model
	Spatial Prior
	Multi-Scale Context Model
	Loss Function

	Experiments
	Experimental Setup
	Performance Evaluation
	Ablation Studies

	Conclusion
	Model Architecture
	Implementation Details
	Experiment Details
	Baseline Settings

	Discussion on Camera Context Model
	Additional Experiments
	Evaluating Comprehensive Context Model on KITTI
	Ablation Studies on Context Refinement
	Downstream Task Performance
	Coding Speed on Entry-Level GPU
	Evaluation on Different LiDAR Types
	Lossless Reflectance Intensity Compression
	Bit Allocation Over Variables
	Robustness to Scanning Pattern
	Partial Scan Compression
	More Baselines
	BD-Rate to Baselines

	Visualization
	Discussion on In-Vehicle Deployment
	Limitation
	LLM Usage Statement

