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ABSTRACT

Context modeling is fundamental to LiDAR point cloud compression. Existing
methods rely on computationally intensive 3D contexts, such as voxel and octree,
which struggle to balance the compression efficiency and coding speed. In this
work, we propose a neural LiDAR compressor based on 2D context models that
simultaneously supports high-efficiency compression, fast coding, and universal
geometry-intensity compression. The 2D context structure significantly reduces
the coding latency. We further develop a comprehensive context model that in-
tegrates spatial latents, temporal references, and cross-modal camera context in
the 2D domain to enhance the compression performance. Specifically, we first
represent the point cloud as a range image and propose a multi-scale spatial con-
text model to capture the intra-frame dependencies. Furthermore, we design an
optical-flow-based temporal context model for inter-frame prediction. Moreover,
we incorporate a deformable attention module and a context refinement strategy to
predict LiDAR scans from camera images. In addition, we develop a backbone for
joint geometry and intensity compression, which unifies the compression of both
modalities while minimizing redundant computation. Experiments demonstrate
significant improvements in both rate-distortion performance and coding speed.
The code will be released upon the acceptance of the paper.

1 INTRODUCTION

LiDAR point cloud, as an effective data structure to represent real-world scenes, has been used in a
wide range of applications such as autonomous driving and robotics (Guo et al., 2020). However,
the large volume of LiDAR data creates a strong demand for effective compression algorithms to
reduce storage usage and transmission costs. In recent years, neural networks have significantly
promoted the performance of LiDAR compression. A common approach is to predict symbols
based on previously decoded contextual features. Since the bitstream length is determined by the
cross-entropy between the ground truth and the estimated distribution, an accurate neural context
model can effectively reduce the bitrate in lossless compression. The context structure is particularly
crucial for improving the density estimation accuracy, leading to the development of various context
types (Gao et al., 2025; Huang et al., 2020; Wang et al., 2022a).

Although these learning-based models have greatly improved the rate-distortion performance, the
coding speed remains an issue. State-of-the-art models typically rely on an informative 3D context
to capture detailed local geometric features (Wang et al., 2025a; Wang & Liu, 2022; Zhou et al.,
2022). Nevertheless, the heavy computational burden of processing these 3D features results in run-
times that can reach or exceed hundreds of milliseconds, making them impractical for low-latency
applications. For instance, a Velodyne HDL-64E LiDAR can generate point clouds at a rate of
10 frames per second (FPS). On the other hand, although recent works (You et al., 2025) deliver
real-time coding speeds, their compression performance lags behind other state-of-the-art models.
Therefore, reducing the coding latency while preserving high compression efficiency remains an
open challenge. Besides, existing methods typically employ two separate deep neural networks to
calculate the dedicated context for geometry and intensity compression (Wang et al., 2025b). We
argue that a single hybrid context can be applied to effectively predict both geometry and intensity,
thereby reducing redundant computation and improving the coding speed.
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2D range images provide a more compact and computationally efficient representation of the LiDAR
point cloud. Intuitively, 2D context models can enable faster compression by operating directly on
range-view features. However, extracting features from the range view is challenging due to the lack
of precise 3D local contexts (Fan et al., 2021), and naively replacing the 3D context model with a
2D backbone causes severe performance degradation. To yield a superior compression ratio, state-
of-the-art range image compression methods opt to use a 3D feature extractor (Zhou et al., 2022;
Wang & Liu, 2022), which in turn compromises the coding speed.

In this work, we propose RangeCM, a fast and efficient 2D context model for LiDAR compres-
sion. It performs probability estimation based on latent features derived from a variational auto-
encoder (VAE), where transforms and context models are built by the 2D convolutional neural net-
work (CNN). By getting rid of computationally expensive 3D operators and directly working on 2D
range-view features, RangeCM achieves much faster inference speed. Meanwhile, RangeCM jointly
predicts geometry and intensity by integrating the context modeling of both attributes, which avoids
recomputing contexts and further accelerates the inference process.

To enhance the compression performance of the 2D context model, we propose a comprehensive
spatio-temporal cross-modal context structure. We first design a multi-scale context for intra-frame
prediction, which decomposes the range image into a sketch map and a detail map. The estima-
tion of details is conditioned on the sketch, which enables a coarse-to-fine next-scale prediction
strategy. For inter-frame prediction, we formulate a temporal context by warping features from the
reference frame to the current frame using a range-view optical flow. Furthermore, as the RGB
camera is often jointly deployed with the LiDAR sensor in autonomous driving and robotic appli-
cations (Yeong et al., 2021), we develop a cross-modal context that predicts LiDAR features based
on camera images. The camera context is generated using deformable attention (Zhu et al., 2021),
which adaptively projects camera features onto the range view. In addition, we employ a context
refinement strategy to precisely align LiDAR and camera features under the causality constraint. By
aggregating diverse spatial, temporal, and camera contexts, our proposed 2D comprehensive context
model even outperforms 3D counterparts by a large margin.

We evaluate RangeCM on the Waymo Open Dataset (Sun et al., 2020) and the SemanticKITTI
benchmark (Behley et al., 2019). Experiments demonstrate that RangeCM achieves significant im-
provements in both rate-distortion performance and coding speed. Compared to the state-of-the-art
geometry compression method (Zhou et al., 2022), RangeCM yields an average BD-Rate improve-
ment of 14.9% and 3.5× faster speed. Meanwhile, RangeCM reduces the inference latency by more
than 100× compared to the state-of-the-art intensity compression model (Wang et al., 2025b), while
maintaining a comparable compression efficiency. Our key contributions are as follows:

• We develop a new paradigm for low-latency LiDAR compression, where all computations
are performed in the 2D domain. The proposed framework achieves state-of-the-art rate-
distortion performance and practical coding speed while supporting both geometry and
intensity compression in a unified manner.

• We propose a comprehensive context model that integrates spatial, temporal, and camera
features for LiDAR compression. To align these distinct features, we devise a multi-scale
context model for intra-frame prediction, a flow-based model for spatio-temporal aggrega-
tion, and a deformable attention module for LiDAR-camera fusion.

• We design a joint compression backbone that predicts LiDAR geometry and intensity based
on a hybrid context, which merges the context modeling of geometry and intensity to im-
prove computational efficiency.

2 RELATED WORK

2.1 POINT CLOUD COMPRESSION

Point clouds possess geometry (i.e., point coordinates) and attribute (e.g., reflecting intensities, RGB
colors, and normals) information. Specialized methods have been developed to compress these two
feature types respectively. Geometry compression methods encode the orderless point cloud as more
regular data structures, such as octrees (Schnabel & Klein, 2006), voxel grids (Quach et al., 2019),
and range images (Wang et al., 2022b). The MPEG Geometry-based Point Cloud Compression
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(G-PCC) standard (Schwarz et al., 2018) follows the octree-based pipeline, where the octree is
encoded by a rule-based context model losslessly. Other octree-based approaches predict the octree
symbol distribution with a learning-based context model (Huang et al., 2020; Fu et al., 2022; Song
et al., 2023a; Luo et al., 2024). Voxel-based methods quantize the point cloud into discrete voxels
and predict the occupancy status of each voxel grid with a multi-scale context model (Wang et al.,
2025a; 2022a; Nguyen et al., 2021). Besides, range image is another memory-efficient data structure
to organize the point cloud. State-of-the-art range image compression methods adopt auto-regressive
(Zhou et al., 2022) or multistage (Wang & Liu, 2022) context models to encode range values.

Furthermore, geometry compression can be improved by introducing temporal references. Existing
methods build the temporal context by searching for K-nearest neighbors (KNN) in the reference
frame (Biswas et al., 2020; Song et al., 2023b; Wang et al., 2025a; Zhou et al., 2022). The symbol
distribution is then predicted based on both the spatial and temporal contexts.

Traditional attribute compression methods adopt handcrafted transforms to remove the redundancy
in the signal. For example, G-PCC uses region-adaptive hierarchical transform (RAHT) (De Queiroz
& Chou, 2016) and predicting transform (MPEG, 2021b) to analyze attribute features. Recently,
neural networks have been introduced to develop more powerful transforms and context models
(Sheng et al., 2021; Fang et al., 2022; Zhang et al., 2023; Wang et al., 2025b; Zhu et al., 2025).
However, these models need to recompute contextual features for attribute prediction after geometry
compression, which slows down the coding speed.

2.2 LIDAR-CAMERA FUSION

Multi-modal fusion has attracted growing interest in the point cloud compression community. Sev-
eral works introduce depth images as an additional prior (Wang et al., 2024; Zheng et al., 2024).
However, the depth images here are only the 2D projections of the point cloud, which do not intro-
duce additional information helpful for effective compression. In contrast, camera images present a
more promising modality, because they provide dense semantic features that the original point cloud
lacks. To the best of our knowledge, there is only one existing work that attempts to utilize the
camera context for point cloud compression (Lin et al., 2023). This approach first uses a depth esti-
mation network to lift the image to 3D space, then fuses camera and octree node features to enhance
octree-based point cloud compression. Nonetheless, its performance is limited by the inaccurate
depth estimation and unreliable LiDAR-camera alignment, achieving only marginal improvements
(e.g., around 2% bitrate reduction compared to the baseline (Fu et al., 2022) at an octree depth of
10). Therefore, how to effectively utilize the camera context remains an open question.

3 PRELIMINARIES

3.1 RANGE IMAGE

The LiDAR sensor generates a point cloud by emitting H ×W laser shots along H elevation angles
θ = {θ1, · · · , θH} and W azimuth angles ϕ = {ϕ1, · · · , ϕW }. To produce an H × W range
image, each point is projected to a unique pixel coordinate (m,n) according to the angles (θm, ϕn)
of the corresponding laser beam. As shown in Fig. 1, a range image pixel records the range value
r, reflected intensity s, and other optional attributes of the corresponding point. The Cartesian
coordinates of the point can be losslessly recovered from the range value by:

x = ri,j cos θi cosϕj , y = ri,j cos θi sinϕj , z = ri,j sin θj , (1)

where (i, j) denotes the coordinates of the corresponding pixel in the range image. The emission
angles θ and ϕ are fixed and determined by the predefined sensor scanning pattern, which is known
a priori at the receiver. Therefore, the point coordinates can be determined by the scalar range value
r, which is more efficient than transmitting the original 3D Cartesian positions.

3.2 CONTEXTUAL VIDEO COMPRESSION

Contextual video compression employs a conditional variational auto-encoder to exploit the tem-
poral context (Li et al., 2021a; 2024; Jia et al., 2025). Given the decoded reference frame û and
the current frame x, the model extracts an optical flow v to represent the motion between the two

3
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Figure 1: Illustration of range image representation of the LiDAR point cloud.

frames. This flow is then encoded by a hyperprior-based image compression model (Ballé et al.,
2018). Subsequently, the features of û are extracted and warped to the current frame using the re-
constructed optical flow v̂. The warped features serve as the temporal context ψt, which is fed into
transform coding modules and the entropy model. Specifically, the analysis transform produces a
latent embedding of x based on ψt as y = ga(x,ψt). The latent vector y is quantized into ŷ and
subsequently encoded by a conditional context model formulated as:

p(ŷ|ẑ,ψt) =
∏
i

(N (µi, σ
2
i ) ∗ U(−0.5, 0.5))(ŷi), (2)

µ,σ = hst(hs(ẑ), ht(ψt)), (3)
where ẑ is the quantized hyperprior encoded by a fully factorized density model p(ẑ), and
U(−0.5, 0.5) denotes a uniform distribution centered at 0 with a width of 1. Besides, hs, ht, and
hst are neural networks that predict distribution parameters based on the hyperprior and temporal
context. Finally, the synthesis transform reconstructs the current frame as x̂ = gs(ŷ,ψt).

4 COMPREHENSIVE CONTEXT MODELING

4.1 OVERVIEW

RangeCM jointly compresses LiDAR geometry and intensity using a 2D comprehensive context. Its
overall architecture is illustrated in Fig. 2. The continuous range image x = {r, s} is quantized into
x̂ = {r̂, ŝ}, where r̂ is a multi-scale representation of the range value map, and ŝ is the quantized
intensity map. In particular, r̂ = {r̂1, r̂2} is given by a two-stage quantization as:

r̂1 = ⌈r/b1⌋, r̂2 = ⌈(r − r̂1)/b2⌋. (4)
Here, r̂1 is the sketched range value map, while r̂2 is an enhancement layer, referred to as the
detail map, which conveys more details. The full-precision range value map can be recovered as
r̂ = r̂1 + r̂2.

RangeCM encodes r̂1, r̂2, and ŝ sequentially. It first adopts a deformable attention module to
generate the basic camera context ψc based on the full-precision range image r̂. Then, a 2D CNN
is employed to extract spatial features from x̂. These features, along with the basic camera context
ψc, are encoded by a VAE (Ballé et al., 2018). The spatial context ψs is derived from the synthesis
transform of the VAE, which aggregates spatial priors and the basic camera context. The temporal
context ψt is generated by a flow-based model. Subsequently, the distribution of the sketch map r̂1
is estimated based on both ψs and ψt.

Although ψc is produced by accurate LiDAR geometry, fine-grained camera features may be lost
during the transform coding of VAE. To address this, after recovering r̂1, we use another deformable
attention module to compute a refined camera context ψ̃c based on the LiDAR features provided by
r̂1. Then, the detail map r̂2 is predicted using a comprehensive context ψ, which incorporates the
spatial context ψs, the temporal context ψt, and the refined camera context ψ̃c. Finally, RangeCM
predicts the intensity map ŝ based on the diverse context ψ and the geometric features r̂.

4.2 CAMERA CONTEXT MODEL

Practical autonomous driving and robotic systems commonly rely on the combined deployment of
LiDAR and RGB cameras for robust perception. LiDAR and cameras provide complementary scene
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Figure 2: Architecture of RangeCM. Blue blocks indicate the spatial context model. Green blocks
constitute the temporal context model. Red blocks represent the camera context model (CCM). AT
and ST indicate analysis and synthesis transform. AE/AD stand for arithmetic encoding/decoding.

descriptions: LiDAR offers accurate geometric features, while cameras capture dense semantic in-
formation. These semantics are informative for range value prediction as well. For example, points
from the same semantic instance generally have similar range values. It may be difficult to distin-
guish whether two points belong to the same instance from the sparse point cloud, while the camera
images provide critical disambiguation. In this work, we assume that camera images are separately
encoded by another image codec and that they have been decoded before LiDAR compression.

The camera context model first utilizes 2D CNNs to extract features from the range image and the
camera images, respectively. Then, it adopts deformable attention (Zhu et al., 2021) to align these
two modalities, using LiDAR features as the query Q and camera features as the key K. For a
specific query token qn (which corresponds to a pixel in the range image), the deformable attention
module adaptively samples N key tokens and computes cross-attention as follows:

q̃n =

M∑
i=1

Ui

N∑
j=1

AijnV
T
i K(pn +∆Pijn), (5)

where i is the index of the attention head and j is the index of the sampled key. Here,K(pn+∆Pijn)
represents the jth sampled key token in the ith head, where the sampling position is specified by the
reference point pn and the learnable offset ∆Pijn. Besides,Ui and V T

i are learnable weights of two
linear layers, while A represents the weights between the query and the sampled key tokens. Both
A and ∆P are predicted based on qn using linear layers. Therefore, the functionality of deformable
attention is to dynamically aggregate N sampled camera tokens with the aggregation weights and
sampling positions determined by the LiDAR query qn. We further embed the deformable attention
layer into a Transformer block structure (Vaswani et al., 2017), as shown in Fig. 3.

The reference point pn is a critical parameter in deformable attention, since it directly determines
the correspondence between range-view and camera-view pixels. We calculate pn using the trans-
formation matrix between LiDAR and camera. For a range image pixel, we lift it to the 3D space
using Eq. (1), and project its 3D coordinates onto the camera coordinate system to obtain pn. This
approach provides deformable attention with an inductive bias to aggregate features from camera
image pixels that are spatially close to the queried range image pixel.

Notably, LiDAR geometry is necessary to generate queries and reference points. Therefore, we can-
not simply perform deformable attention using r̂, which is unavailable at the receiver. To maintain
causality, we must transmit ψc as side information and compute ψ̃c after the decoding of r̂1. On the
other hand, both r̂ and r̂1 preserve high-quality LiDAR geometric features, which enable accurate
and effective LiDAR-camera alignment in the camera context model.
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Figure 3: Left: illustration of the deformable attention block. Right: coding pipeline of the multi-
scale context model.

4.3 FLOW-BASED TEMPORAL CONTEXT MODEL

The temporal context model uses an optical flow to capture the accurate motion between the current
and reference frames. Given the current frame x̂ and the reference frame û, it first extracts a range-
view optical flow v using a lightweight flow estimation model (Ranjan & Black, 2017). Since this
flow is not available at the receiver, a VAE is employed to encode it as side information. Specifi-
cally, the analysis transform encodes v into a latent embedding yv , which is quantized into ŷv and
compressed based on a hyperprior ẑv . The synthesis transform then restores v̂ from ŷv . Finally, the
temporal context ψt is produced by warping the features of û to the current view using v̂.

4.4 SPATIAL PRIOR

RangeCM extracts convolutional features from x̂ to serve as the spatial prior. This prior is then
jointly encoded with the basic camera context ψc into a latent embedding using a VAE (Ballé et al.,
2018). Inspired by the contextual video compression framework (Li et al., 2021a), the transform
coding is conditioned on the temporal context ψt. Specifically, we employ an analysis transform to
extract the latent embedding as y = ga(x̂,ψc,ψt) and generate the hyperprior as z = ha(y). Then,
the quantized latent ŷ is encoded according to Eq. (2) and Eq. (3). Finally, the synthesis transform
generates the spatial context as ψs = gs(ŷ).

4.5 MULTI-SCALE CONTEXT MODEL

We adopt a multi-scale context model to predict r̂ in a coarse-to-fine manner, where r̂1 is utilized
as an additional context to enhance the prediction of r̂2. Each map is further decomposed into two
groups using a checkerboard pattern (He et al., 2021) as follows:

r̂1 =
{
r̂11, r̂

2
1

}
, r̂2 =

{
r̂12, r̂

2
2

}
, (6)

where r̂11 and r̂12 are anchors, while r̂21 and r̂22 are non-anchors. After this group partition, the context
model predicts each group based on the spatio-temporal-camera context and the causal context from
previous groups. The pipeline of coding r̂ is illustrated in Fig. 3. The estimation of r̂1 is conditioned
on the spatial context ψs, the temporal context ψt, and the causal context π1. In contrast, r̂2 is
predicted based on the comprehensive context ψ and the causal context π2.

As ψ combines both geometry and intensity features, this hybrid context can be applied to predict
both r̂2 and ŝ. Therefore, we adopt a lightweight prediction head to directly infer ŝ based on ψ,
instead of using another heavy network to recompute contextual features. For intensity compression,
we first use a checkerboard pattern to decompose ŝ into two groups ŝ1 and ŝ2. Then, we predict each
group ŝi based on the comprehensive contextψ, the geometry context r̂, and the causal context ŝ<i.
This workflow eliminates redundant computations and significantly improves network efficiency.
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Table 1: Comparison of context types, BD-Rate gains to G-PCC (%), and runtimes (in seconds). For
intensity compression, we report the total runtime for coding both geometry and intensity. The best
results are marked in bold.

Geometry Compression

Method Context Type
KITTI WOD

BD-Rate Encoding Decoding BD-Rate Encoding Decoding
Infer. Total Infer. Total Infer. Total Infer. Total

G-PCC Spatial 0 - 0.95 - 0.48 0 - 1.24 - 0.62
EHEM Spatial -31.12 1.38 - 1.61 - - - - - -
RENO Spatial -12.47 0.04 0.07 - - - - - - -

Unicorn Spatio-Temp. -27.34 2.65 2.83 2.36 2.50 - - - - -
RICNet Spatial -45.82 0.40 0.63 0.40 0.43 - - - - -

RIDDLE Spatio-Temp. -48.05 - - - - -54.21 0.49 0.53 - 0.97
RangeCM-G Comprehensive -56.07 0.04 0.09 0.03 0.14 -61.96 0.14 0.20 0.09 0.20
RangeCM-GI Comprehensive -51.56 0.04 0.09 0.03 0.14 -59.94 0.14 0.20 0.09 0.20

Intensity Compression

G-PCC Spatial 0 - 0.84 - 0.75 0 - 0.59 - 0.65
Unicorn Spatial -12.16 14.84 - 13.04 - - - - - -

RangeCM-GI Comprehensive -6.96 0.05 0.10 0.04 0.17 -20.93 0.15 0.22 0.10 0.27

4.6 LOSS FUNCTION

The training objective of RangeCM is to minimize the overall bitrate of encoding range values,
intensity map, spatial latent, and optical flow. The corresponding loss function is:

L = −Ex∼p(x)(

2∑
i=1

log p(r̂i1|πi
1,ψs,ψt) +

2∑
i=1

log p(r̂i2|πi
2,ψ) +

2∑
i=1

log p(ŝi|ŝ<i, r̂,ψ)

+ log p(ŷ|ẑ) + log p(ẑ) + log p(ŷv|ẑv) + log p(ẑv)). (7)

We adopt the discretized Logistic mixture (Salimans et al., 2017) to fit the distribution of r̂ and
ŝ. Latent variables ŷ and ŷv are modeled by a Gaussian distribution convolved with a uniform
distribution, as specified in Eq. (2). Hyperpriors ẑ and ẑv are fitted using a fully factorized density
model (Ballé et al., 2018).

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. We conduct evaluations on the Waymo Open Dataset (WOD) (Sun et al., 2020) and the
SemanticKITTI dataset (Behley et al., 2019). WOD provides raw range images and RGB camera
images from 5 different views. It also offers accurate emission angles of LiDAR beams, which
ensures lossless transformation between the range image and the point cloud. KITTI provides point
cloud data along with camera images from 2 views. However, it does not provide transformation
matrices between LiDAR and camera in the testing set. To strictly follow the official dataset division,
we do not use camera priors for experiments on KITTI. A camera-involved RangeCM model is
trained and evaluated using a different dataset partition, which is reported in Appendix D. Besides,
KITTI provides neither range images nor beam emission angles. Following the settings in existing
works (Wang & Liu, 2022; Zhou et al., 2022), our experiments are conducted on pseudo range
images derived from estimated emission angles.

Baselines. For geometry compression, RangeCM is compared against octree-based schemes G-
PCC v23 (MPEG, 2023) and EHEM (Song et al., 2023a), voxel-based models Unicorn (Wang et al.,
2025a) and RENO (You et al., 2025), and range image compressors RICNet (Wang & Liu, 2022) and
RIDDLE (Zhou et al., 2022). Notably, RIDDLE and Unicorn are spatio-temporal context models,
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Figure 4: Rate-distortion curves on WOD and SemanticKITTI.

while other baseline methods only exploit the spatial context. Since RIDDLE only evaluates its
temporal context model on WOD, we compare its intra-frame prediction mode on KITTI instead.
Meanwhile, G-PCC v23 (MPEG, 2023) and Unicorn (Wang et al., 2025b) are selected as baselines
for intensity compression, where we compare RangeCM against the lossy compression modes of G-
PCC and Unicorn. We also compare RangeCM with the state-of-the-art lossless LiDAR reflectance
compressor SerLiC (Zhu et al., 2025) in Appendix D.

Implementation Details. For each dataset, we train two models named RangeCM-G and
RangeCM-GI, respectively. RangeCM-G is exclusively optimized for geometry compression, and
RangeCM-GI is trained for joint geometry-intensity compression. To avoid training multiple mod-
els for different bitrates, we randomly sample the quantization step b2 during training. We evaluate
RangeCM based on a single NVIDIA RTX A6000 GPU. Following the common test conditions of
G-PCC (MPEG, 2021a), we adopt Point-to-Point PSNR (D1 PSNR) and Point-to-Plane PSNR (D2
PSNR) to measure the reconstruction quality. Please refer to Appendix B for more details.

5.2 PERFORMANCE EVALUATION

The rate-distortion performance of RangeCM is shown in Fig. 4 and Table 1. Regarding geometry
compression, RangeCM outperforms existing methods by a remarkable margin. Compared to the
state-of-the-art model RIDDLE, RangeCM-G and RangeCM-GI achieve BD-rate gains of 17.14%
and 12.59%, respectively. This demonstrates the effectiveness of the proposed comprehensive con-
text model. Besides, it is shown that octree-based and voxel-based methods (i.e., G-PCC, EHEM,
and Unicorn) are more effective at low bitrates, while range image compressors (i.e., RICNet, RID-
DLE, and RangeCM) perform better at high bitrates. A reasonable explanation is that octree and
voxel structures can represent the point cloud with only a few symbols for coarse reconstructions
at low bitrates, but the number of required symbols quickly increases as the PSNR grows, leading
to inferior performance at high bitrates. In contrast, the symbol number in the range image is al-
ways fixed, thus range image compression methods are more robust to the variation of bitrate. For
intensity compression, RangeCM surpasses G-PCC and achieves comparable performance to the
state-of-the-art method Unicorn.

Furthermore, RangeCM greatly reduces the coding latency compared to existing methods, which
demonstrates the advantages of the proposed 2D context model. Its coding latency is around 0.1
seconds on KITTI, which satisfies the requirements of real-time applications. Compared to the
real-time compressor RENO, RangeCM achieves comparable coding latency with significantly bet-
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Table 2: Ablation on geometry compression.

Model BD-Rate to
RangeCM-G

w/o CC +6.85%
w/o CC and TC +22.02%

w/o CC, TC, and MSC +34.19%

Table 3: Ablation on intensity compression.

Model BD-Rate to
RangeCM-GI

w/o CC +2.30%
w/o CC and TC +21.88%

w/o CC, TC, and MSC +31.75%

ter compression efficiency. For intensity compression, RangeCM is over 100 times faster than the
learning-based baseline Unicorn. Given the hybrid context, the inference latency of intensity com-
pression is only around 10 milliseconds, because RangeCM only uses several additional layers to
predict the intensity values. In contrast, Unicorn takes around 5 seconds to recompute contextual
features for intensity prediction.

Since RangeCM utilizes the camera context, it requires a serial coding of camera images and LiDAR
point clouds, while other methods may process these two modalities in parallel. However, image
compression can be quite fast on the GPU platform. For example, coding all 5 camera views with
a GPU-accelerated JPEG codec (Nvidia, 2025) takes only 2 milliseconds on WOD. Therefore, the
serial camera-LiDAR compression of RangeCM remains much faster than the LiDAR-only com-
pression of baseline methods.

On the other hand, RangeCM-G slightly outperforms RangeCM-GI in geometry compression, which
implies that the joint geometry-intensity context modeling influences the geometry compression
performance. This is probably due to the difficulty of training a versatile model. However, this
performance gap is actually marginal, while the improvements in inference speed are much more
significant. Thus, it is worthwhile to introduce the joint compression pipeline.

5.3 ABLATION STUDIES

We conduct ablation studies on WOD to validate the effectiveness of the proposed camera context
model (CC), temporal context model (TC), and multi-scale context (MSC). We gradually remove
these models from RangeCM-G to investigate their contributions to geometry compression. Then,
we sequentially remove these models from RangeCM-GI to examine their benefits on intensity com-
pression. The experimental results are shown in Tables 2 and 3.

The camera context model obviously benefits geometry compression, yielding a BD-Rate improve-
ment of 6.85%. This suggests that the proposed model effectively exploits the cross-modal depen-
dency between camera and LiDAR. However, the improvement in intensity compression is relatively
modest, which is reasonable given the weak correlation between camera images and reflectance in-
tensity. For example, the reflectance intensity is closely related to the material of real-world ob-
jects, which may be difficult to identify only from camera images. Please refer to Appendix C
for detailed discussions. Meanwhile, the temporal context model significantly enhances compres-
sion performance, with BD-Rate improvements of 15.17% and 19.58% for geometry and intensity
compression, respectively. Moreover, the multi-scale intra-frame context model leads to significant
performance improvements as well.

6 CONCLUSION

In this work, we propose a fast and computationally efficient 2D context model for LiDAR point
cloud compression. All computations are executed in the 2D domain, which yields a significantly
faster inference speed compared to the 3D context models. Furthermore, the proposed method
integrates the features of the current frame, reference frame, and camera images, constituting a hy-
brid context to facilitate effective compression. Moreover, we develop a joint geometry-intensity
compression workflow by predicting both modalities based on the same hybrid context, thereby sig-
nificantly accelerating the coding process. Extensive experiments on the WOD and SemanticKITTI
datasets demonstrate that the proposed universal 2D context model achieves state-of-the-art com-
pression performance and delivers a fast coding speed that is applicable to low-latency applications.

9
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Appendix

A MODEL ARCHITECTURE

Spatial Context Extraction. The architecture of the VAE for spatial context extraction is shown
in Fig. 5. This model aims to compress the spatial embedding of the range image along with the
basic camera context. To produce the latent embedding y, the H ×W range image is downsampled
by 4× 64 times, and the derived y contains 96 channels. Distribution of ŷ is estimated based on the
hyperprior ẑ and the temporal context ψt. The dimension of the spatial context ψs is 64.

Temporal Context Model. The temporal context model consists of a flow estimation module, a
VAE for flow compression, and a motion compensation module. The flow prediction module follows
the design of the spatial pyramid network (Ranjan & Black, 2017). The structure of the VAE and
motion compensation module is shown in Fig. 6. The latent variable yv and the temporal context
ψt include 128 and 64 channels, respectively.

Camera Context Model. The camera context model first employs CNN to extract features from
the range image and camera images, as shown in Fig. 7. Then, it adopts two deformable attention
blocks to align LiDAR and camera features. The architecture of the attention block is represented
in Fig. 3 in the main paper. The deformable attention is calculated in a 128-dimensional feature
space, while the camera context ψc contains 64 channels. The head number in deformable attention
is 4, and we sample 8 key tokens in each attention head. For those range image pixels that are not
projected onto any camera views, their camera features ψc are set to a zero tensor.

Multi-Scale Context Model. After obtaining the spatial, temporal, and camera contexts, the
multi-scale context model aggregates these features and predicts the distribution of r̂1, r̂2, and ŝ
sequentially. The logistic mixture consists of 3 components, with each component characterized by
mean, scale, and weight. Therefore, we predict 9 parameters for each symbol. The architecture of
the context fusion model is shown in Fig. 8.

B IMPLEMENTATION DETAILS

B.1 EXPERIMENT DETAILS

For geometry compression, RangeCM uses a two-stage quantization, as defined by Eq. 4, where the
quantization steps are assigned as b1 = 2 and b2 = {1/5, 1/10, 1/25, 1/50, 1/100}. For intensity
compression, we adopt different settings on different datasets. The original intensity values in KITTI
have been quantized into 100 levels in [0, 1]. We further apply another quantization with a step of
2 × b2 to trade off the bitrate and reconstruction quality. For example, when the range values are
quantized by b2 = 1/100 in geometry compression, the intensity values are quantized with a step of
1/50.

Intensity values in the WOD are unbounded and continuous, so we first preprocess the data as:

s̃ = ⌈clip(s, 0, 1)× 255⌋/255. (8)

To adjust the bitrate and reconstruction quality, s̃ is further quantized using a step of b2.

Some pixels in the range image may be empty, where the laser beam does not detect any object along
the corresponding direction. We represent these empty pixels with a particular symbol and encode
them as ordinary pixels. In this way, the decoder can recognize these pixels.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Conv1×4, c192, s1×4

Conv1×4, c192,s1×4

Conv3×3, c192, s2×2

Conv3×3, c192, s2×2

Concat

Conv1×1, c192

Conv1×1, c192

Conv1×1, c192

Context Model

Q Q

AE

AD

Analysis Transform

AE

AD

C
on

v3
×

3,
 c

96

C
on

v3
×

3,
 c

96

C
on

v3
×

3,
 c

96
, s

2×
2

R
es

 B
lo

ck
, c

19
2,

 s
1×

4

R
es

 B
lo

ck
, c

96

R
es

 B
lo

ck
, c

96
, s

1×
4

A
tt

en
ti

on
 B

lo
ck

, c
96

R
es

 B
lo

ck
, c

96

R
es

 B
lo

ck
, c

96
, s

2×
2

R
es

 B
lo

ck
, c

96

C
on

v3
×

3,
 c

96
, s

2×
2

A
tt

en
ti

on
 B

lo
ck

, c
96

S
P

C
on

v,
 c

96
, s

2×
2

C
on

v3
×

3,
 c

96

C
on

v3
×

3,
 c

96

R
es

 B
lo

ck
, c

96

R
es

 B
lo

ck
, c

96
, s

2×
2

A
tt

en
ti

on
 B

lo
ck

, c
96

R
es

 B
lo

ck
, c

96

R
es

 B
lo

ck
, c

96
, s

2×
2

A
tt

en
ti

on
 B

lo
ck

, c
96

R
es

 B
lo

ck
, c

96

R
es

 B
lo

ck
, c

96
, s

1×
4

R
es

 B
lo

ck
, c

64

R
es

 B
lo

ck
, c

64
, s

1×
4

Synthesis Transform

Context 
Model

Figure 5: Architecture of the spatial context extraction model. Res Block indicates the residual
block. SPConv denotes the subpixel convolution layer. Attention Block is the convolution-based
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Figure 6: Left: Architecture of the optical flow compression network. TConv indicates the transpose
convolution layer. Right: Structure of the motion compensation module.
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Figure 7: Architecture of the camera and LiDAR feature extraction network in the camera context
model.
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Figure 8: Architecture of the context fusion model. MConv indicates the convolution layer with a
checkerboard mask (He et al., 2021).

Figure 9: Visualization of the LiDAR point cloud and camera images. Points are colored according
to their range value. Best viewed zoomed in.

B.2 BASELINE SETTINGS

In geometry compression, the PSNR between the original point cloud P and the reconstructed point
cloud P̂ is calculated by:

PSNR(P, P̂ ) = 10× log10

 3r2

max
{

MSE(P, P̂ ),MSE(P̂ , P )
}
 , (9)

where r is a user-specified parameter called peak value. A common practice is setting r to the
maximum nearest neighbor distance across the entire dataset D (Biswas et al., 2020):

r = max
P∈D

max
pi∈P

min
j ̸=i

||pi − pj ||2. (10)

Following this formulation, we set r to 57.41 and 59.70 on WOD and KITTI, respectively. While
most baselines (e.g., EHEM (Song et al., 2023a) and RICNet (Wang & Liu, 2022)) use the same
peak values as ours, the settings of Unicorn (Wang et al., 2025a) and RIDDLE (Zhou et al., 2022)
are different. Therefore, we recompute their PSNRs under our setting to guarantee a fair comparison.
Unicorn presents the MSE results, so we directly recompute the PSNR according to Eq. 9. RIDDLE
releases neither source codes nor MSE results, while the chamfer distance results are provided.
As the distortion of RIDDLE is completely determined by the quantization applied to the range
image, we first find the quantization steps that match the reconstructed point cloud with the provided
chamfer distance. Then, we use the above steps to reproduce their reconstructed point clouds, and
calculate the PSNR using our peak values accordingly.

C DISCUSSION ON CAMERA CONTEXT MODEL

LiDAR-camera fusion has emerged as an effective solution to improve the perception algorithms
in autonomous driving (Li et al., 2023b; Vora et al., 2020; Liu et al., 2023). Motivated by these
multi-modal perception models, the proposed comprehensive context introduces camera images as
additional contexts for LiDAR compression. Although it necessitates a serial camera-LiDAR com-
pression workflow, the image coding time is negligible using a well-optimized GPU-accelerated
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Figure 10: Left: Rate-distortion curves on the KITTI dataset. CCM means the camera context
model. Right: Downstream task performance on the KITTI.

Table 4: Ablation study on camera context re-
finement (CCR).

Model
BD-Rate to

RangeCM-G
w/o CCR +5.11%
w/o CCM +6.85%

Table 5: Coding latency (in seconds) tested on
the RTX 3080.

Model Encoding Decoding
Infer. Total Infer. Total

RangeCM-G 0.147 0.212 0.102 0.225
RangeCM-GI 0.162 0.239 0.118 0.268

codec (Nvidia, 2025), and we can deploy this image codec and RangeCM on the same GPU to min-
imize the overall coding latency. The success of these multi-modal perception methods also proves
the practicality of deploying this LiDAR-camera fusion system in real-world applications.

Although most autonomous driving vehicles are equipped with both camera and LiDAR sensors,
there may be special applications that require the standalone LiDAR compression (e.g., in-the-wild
LiDAR compression). In this case, we can simply remove the camera context, which corresponds
to the RangeCM w/o CC model in Table 2 and Table 3. Notably, this RangeCM variant maintains a
BD-rate gain of 11.18% compared to the state-of-the-art method RIDDLE. Therefore, RangeCM is
flexible in choosing whether to utilize the camera context, and it is not limited to applications where
the camera context is available.

Besides, Table 2 and Table 3 show that the camera context is more effective on geometry compres-
sion. This is because the camera data provides dense semantic features that the sparse LiDAR point
clouds lack, and these semantics are correlated to the range values, as shown in Fig. 9. However,
predicting the reflectance intensity from images is challenging. Light reflectance is closely related
to the materials of real-world objects. Nevertheless, it is difficult to predict the object materials
from visual images. For example, wax, plastic, and crystal may appear similar in the image, while
they have different reflectance properties (Li et al., 2023a). Even though the materials are known, it
is still difficult to estimate the reflectance intensity without referring to the corresponding physical
models. Therefore, camera context has a more significant impact on geometry compression than on
intensity compression.

D ADDITIONAL EXPERIMENTS

D.1 EVALUATING COMPREHENSIVE CONTEXT MODEL ON KITTI

The KITTI dataset does not provide the transformation matrices between LiDAR and camera on
the testing set (i.e., sequences 11 to 21). Since all baseline methods follow the official dataset
partition for training and evaluation, we exclude the camera context in our main paper to ensure the
comparison is conducted on the same testing set. Here, we reorganize the KITTI dataset to evaluate
the performance of the comprehensive context model. Specifically, sequences 00, 01, 02, 04, 05,
06 are selected for training, while sequences 07, 08, 09, 10 constitute the testing set. Furthermore,
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Table 6: BD-Rate gains to G-PCC and total coding time (in seconds) on NuScenes dataset.

Method Geometry Compression Intensity Compression

BD-Rate Encoding
Time

Decoding
Time BD-Rate Encoding

Time
Decoding

Time
G-PCC 0 0.25 0.17 0 0.47 0.32

RangeCM-GI -37.89 0.08 0.07 -16.89 0.09 0.08

Table 7: BD-Rate gains to G-PCC and total coding time (in seconds) on DurLAR dataset.

Method Geometry Compression Intensity Compression

BD-Rate Encoding
Time

Decoding
Time BD-Rate Encoding

Time
Decoding

Time
G-PCC 0 1.30 0.64 0 1.93 1.33

RangeCM-GI -42.71 0.22 0.20 -9.34 0.26 0.26

we train a baseline model without the camera context under this dataset division. Results in Fig. 10
show that the camera context model leads to a 4.77% BD-Rate reduction compared to the baseline.

This improvement slightly decreases compared to the one on WOD, because KITTI only includes
2 camera views, while WOD comprises 5 cameras. Consequently, fewer points can find the camera
references in KITTI, thereby the benefits of the camera context are weakened. Nevertheless, modern
autonomous vehicles are commonly equipped with numerous cameras (e.g., the sixth-generation
Waymo Driver incorporates 13 cameras (Waymo, 2024)). As a result, most points can find the
camera context in practice, leading to an effective camera context.

D.2 ABLATION STUDIES ON CONTEXT REFINEMENT

In this section, we validate the effectiveness of the context refinement strategy. Specifically, we
train a RangeCM-G model without the refined camera context ψ̃c while preserving the basic camera
context ψc. As shown in Table 4, the context refinement strategy improves the BD-Rate by 5.11%,
which verifies its importance. On the other hand, this model still outperforms the baseline without
the entire camera context model (CCM), proving the benefits of the basic camera context.

D.3 DOWNSTREAM TASK PERFORMANCE

We conduct object detection based on the decoded point clouds to investigate how compression
influences the downstream task performance. Specifically, we compress both the geometry and
intensity information of the point cloud, and evaluate the accuracy of the PointPillars detector (Lang
et al., 2019). Results are shown in Fig. 10. Compared to G-PCC, RangeCM yields higher detection
accuracy at similar bitrates.

D.4 CODING SPEED ON ENTRY-LEVEL GPU

In the main paper, we evaluate RangeCM with an A6000 GPU. Here, we further test its coding
latency on the WOD with a RTX 3080 GPU. We report the geometry compression time of RangeCM-
G, and the overall coding time of geometry-intensity compression for RangeCM-GI. Results in Table
5 show that RangeCM still preserves practical coding speed on this less powerful GPU.

D.5 EVALUATION ON DIFFERENT LIDAR TYPES

In addition to 64-line LiDAR, we evaluate the performance of RangeCM on 32-line LiDAR dataset
NuScenes (Caesar et al., 2020) and 128-line dataset DurLAR (Li et al., 2021b). Experimental results
in Table 6 and Table 7 demonstrate that RangeCM maintains satisfactory performance on these
different LiDAR types.
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Table 8: Bits per point and total coding time (in seconds) for lossless reflectance compression on Se-
mantcKITTI (left) and NuScenes (right) dataset. Please note that the coding time of RangeCM is for
joint geometry-intensity compression, while the time of SerLiC is for reflectance-only compression.

Method BPP Enc. Time Dec. Time
SerLiC 3.64 0.18 0.23

RangeCM 3.66 0.11 0.12

Method BPP Enc. Time Dec. Time
SerLiC 2.52 - -

RangeCM 2.75 0.09 0.10

Table 9: Bitrate distribution over different variables.

Rate Point ẑv ŷv ẑ ŷ r̂11 r̂21 r̂12 r̂22 ŝ1 ŝ2
b2=1/5 0.57% 1.61% 1.24% 9.47% 15.09% 12.18% 24.68% 18.75% 8.84% 7.51%
b2=1/10 0.42% 1.20% 0.94% 7.79% 10.75% 8.82% 27.64% 22.20% 10.93% 9.29%
b2=1/25 0.27% 0.76% 0.60% 5.89% 6.79% 5.59% 29.81% 25.12% 13.55% 11.57%
b2=1/50 0.19% 0.55% 0.44% 4.54% 4.87% 4.02% 30.34% 26.41% 15.38% 13.26%
b2=1/100 0.14% 0.41% 0.33% 3.42% 3.62% 2.99% 30.13% 27.01% 17.04% 14.87%

D.6 LOSSLESS REFLECTANCE INTENSITY COMPRESSION

In this section, we compare RangeCM to the lossless LiDAR reflectance compressor SerLiC (Zhu
et al., 2025) on KITTI and NuScenes datasets. Results in Table 8 show that RangeCM yields a
comparable compression ratio to SerLiC with faster coding speed. The joint geometry-intensity
compression of RangeCM remains faster than the reflectance compression of SerLiC, which demon-
strates the superiority of the proposed 2D context model.

D.7 BIT ALLOCATION OVER VARIABLES

Table 9 presents the bitrate consumption distribution over symbol groups and latent variables. Most
bits are spent on coding r̂ and ŝ, while the latent variables ẑv , ŷv , ẑ, and ŷ only constitute a minor
proportion of the bitstream.

E VISUALIZATION

We visualize the sampling locations and attention weights predicted by the deformable attention
model in Fig. 11. Specifically, these results are collected from the last attention block in the basic
camera context model. It is shown that deformable attention tends to aggregate features from similar
semantic objects. In addition, the sampling points close to the reference point generally have higher
attention scores.

Furthermore, we visualize the reconstructed optical flow v̂ given by the temporal context model, as
shown in Fig. 12. We also present range value maps of the current and reference frame to visualize
the ground-truth motion patterns. These results prove that the estimated flow effectively captures
the motions between adjacent frames, which provides accurate correlations for temporal context
modeling. Besides, we also visualize the original and decoded point clouds in Fig. 13.

F LLM USAGE STATEMENT

LLM is not applied for any research ideation. We only use the LLM to detect grammar errors and
polish the human-written manuscript.
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Figure 11: Visualization of the deformable attention model. Red triangle indicates the reference
point, i.e., the 2D projection of the query. Dots represent the predicted sampling locations, and they
are colored according to their attention scores.
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Figure 12: Visualization of the current frame, reference frame, and reconstructed optical flow.
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Figure 13: Visualization of the ground truth and reconstructed point clouds at different bitrates.
Color indicates the chamfer distance between the ground truth and the decoded point cloud.
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