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Abstract

Many recent studies have found evidence for
emergent reasoning capabilities in large language
models (LLMs), but debate persists concerning
the robustness of these capabilities, and the ex-
tent to which they depend on structured reason-
ing mechanisms. To shed light on these issues,
we study the internal mechanisms that support
abstract reasoning in LLMs. We identify an emer-
gent symbolic architecture that implements ab-
stract reasoning via a series of three computations.
In early layers, symbol abstraction heads con-
vert input tokens to abstract variables based on
the relations between those tokens. In interme-
diate layers, symbolic induction heads perform
sequence induction over these abstract variables.
Finally, in later layers, retrieval heads predict
the next token by retrieving the value associated
with the predicted abstract variable. These re-
sults point toward a resolution of the longstanding
debate between symbolic and neural network ap-
proaches, suggesting that emergent reasoning in
neural networks depends on the emergence of
symbolic mechanisms.

1. Introduction
Large language models (LLMs) have become the domi-
nant paradigm in artificial intelligence, but there is ongoing
debate concerning the limits and reliability of their capabili-
ties. One major focus of this debate has been the question
of whether they can reason systematically in an abstract or
human-like manner. Many studies have documented im-
pressive performance on various reasoning tasks (Wei et al.,
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2022; Mirchandani et al., 2023), even rivaling human per-
formance in some cases (Webb et al., 2023; Musker et al.,
2024; Webb et al., 2025), but other studies have questioned
these conclusions (Wu et al., 2024; McCoy et al., 2023;
Lewis & Mitchell, 2024). In particular, LLMs appear to
perform more poorly in some reasoning domains, such as
mathematical reasoning (Dziri et al., 2024) or planning (Mo-
mennejad et al., 2024); and, even in domains in which they
have shown strong performance such as analogical reason-
ing (Webb et al., 2023), some studies have questioned the
robustness of these capabilities (Lewis & Mitchell, 2024).

These conflicting findings raise the question: are LLMs gen-
uinely capable of structured human-like reasoning, or are
they merely mimicking this capacity by statistically approx-
imating their training data? One way to answer this ques-
tion is to look at the internal mechanisms that support this
capacity. It has long been hypothesized that innate symbol-
processing mechanisms are required to support human-like
abstraction (Marcus, 2001; Dehaene et al., 2022; Wong et al.,
2023). It has also been demonstrated that neural networks
are capable, at least in principle, of implementing some of
the key properties of symbolic systems (Smolensky, 1990;
Hummel & Holyoak, 2003; Kriete et al., 2013), and that
the incorporation of these properties as architectural induc-
tive biases can support data-efficient acquisition of abstract
symbolic reasoning (Webb et al., 2021; Altabaa et al., 2024;
Webb et al., 2024). It remains unclear, however, in the case
of transformer-based LLMs that do not obviously possess
such strong inductive biases, what mechanisms support their
emergent capability for abstraction.

Here, we report evidence for a set of emergent sym-
bolic mechanisms that support abstract reasoning in LLMs.
Specifically, we identify an emergent three-stage architec-
ture consisting of the following mechanisms: 1) in early
layers, symbol abstraction heads convert input tokens to
abstract variables (i.e., symbols) based on the relations be-
tween those tokens, 2) in intermediate layers, symbolic
induction heads, perform sequence induction over these
variables, and 3) in later layers, retrieval heads perform
next-token prediction by retrieving the value associated with
the predicted variable. These mechanisms capture two key
properties of symbol processing. First, they operate over
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Figure 1. Emergent Symbolic Architecture. Schematic depiction of the proposed three-stage architecture for abstract reasoning in
language models. Example depicts architecture as applied to an algebraic rule induction task, involving either ABA or ABB rules
instantiated with random tokens. Symbol abstraction heads identify relations between input tokens and, based on these relations, represent
the tokens using a consistent set of abstract variables aligned with their role in the relations. Symbolic induction heads perform sequence
induction over abstract variables (i.e., they predict the next variable based on the sequence observed in the previous in-context examples).
Retrieval heads predict the next token by retrieving the value associated with the predicted abstract variable.

representations of abstract variables that are invariant to
the values that they are associated with. That is, the repre-
sentation of an abstract variable is the same regardless of
which values instantiate that variable. Second, these mech-
anisms utilize indirection, meaning that variables refer to
content that is stored at a different location than the variables
themselves (i.e., they are pointers).

To identify and validate the presence of these mechanisms,
we perform experiments across three abstract reasoning
tasks – algebraic rule induction, letter string analogies, and
verbal analogies – and 13 open-source LLMs from four
model families – GPT-2 (Radford et al., 2019), Gemma-
2 (Gemma Team, 2024), Qwen2.5 (Qwen Team, 2025), and
Llama-3.1 (Dubey et al., 2024) – drawing on convergent evi-
dence from a series of causal, representational, and attention
analyses. We find robust evidence for these mechanisms
across all three tasks, and three out of four model families
(Gemma-2, Qwen2.5, and Llama-3.1; with more equivocal
results for GPT-2). Taken together, these results suggest
that emergent reasoning in LLMs depends on structured,
abstract reasoning mechanisms, rather than simple statisti-
cal approximation. More broadly, these results suggest a
resolution to the longstanding debate between symbolic and
neural network approaches, illustrating how neural networks
can learn to perform abstract reasoning via the development
of emergent symbol processing mechanisms.

2. Approach
Figure 1 depicts the proposed architecture as applied to
an algebraic rule induction task involving sequences gov-
erned by one of two identity rules, ABA or ABB. For each
problem, two in-context examples were presented, followed
by an incomplete third example. The model was expected
to generate the token that completes this third example.
We instantiated rules using tokens randomly sampled from
each model’s vocabulary (ensuring that in-context examples
within the same problem instance did not share tokens). We
begin by presenting results from this rule induction task
and the Llama-3.1 70B model, and then present results for
additional tasks and models.

We found that Llama-3.1 70B displayed a 2-shot accuracy
of 95% on the rule induction task. Although this task is
relatively simple, especially when compared with some of
the tasks that have been featured in recent debates over LLM
reasoning (e.g., matrix reasoning (Webb et al., 2023)), it nev-
ertheless offers a paradigmatic case of relational abstraction.
In particular, the use of completely arbitrary tokens ensures
that the task cannot be solved by relying on statistical pat-
terns specific to the tokens or associations among them,
and for this reason it has previously been used to argue for
the presence of symbol-processing mechanisms in human
cognition (Marcus et al., 1999), and to evaluate systematic
generalization of abstract rules in neural networks (Webb
et al., 2021). Accordingly, the ability to reliably solve this
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task is already strongly suggestive of the presence of some
form of symbol-processing. In the following sections, we
describe a specific mechanistic hypothesis for how symbol-
processing might be carried out in this model.

2.1. Symbol Abstraction Heads

Our hypothesis consists of three stages. In the first stage,
input tokens are converted to symbolic representations. The
inspiration for this hypothesis comes from the abstractor ar-
chitecture (Altabaa et al., 2024), a variant of the transformer
that implements a strong relational inductive bias (Webb
et al., 2024). In that architecture, a modified form of at-
tention (termed relational cross-attention) is employed in
which the values consist of a standalone set of learned em-
beddings, rather than being conditioned on the input tokens
as in standard self-attention. As a result, the output of this
attention operation is completely abstracted away from the
identity of the input tokens, and instead only reflects the
pattern of relations among those tokens (as encoded by the
pattern of inner products between query and key embed-
dings). These outputs can therefore be viewed as a form of
learned, distributed symbolic representations.

Here, we hypothesize that an emergent form of this rela-
tional attention operation is implemented by attention heads
in early layers of the model. We refer to these heads as
symbol abstraction heads. Concretely, the keys and query
embeddings in these heads represent the input tokens, and
the inner product between keys and queries represents the
relations between these tokens. It is natural to interpret this
operation as representing similarity relations (and this is the
relevant type of relations in the rule induction task), but it is
also possible for this operation to represent a broader class
of relations (Altabaa & Lafferty, 2024) (as necessitated by
some of the other tasks that we investigate). Importantly,
we hypothesize that the value embeddings in these heads
do not carry information about the specific identity of the
input tokens (i.e., they are invariant to the content of those
tokens), but instead represent only their position. More
precisely, we hypothesize that the value embeddings rep-
resent the relative position of a token within an in-context
example, as this is precisely the information that’s needed
to compute the abstract variable associated with that token
(e.g., the fact that the first token and the third token are the
same in an ABA rule is precisely what determines that they
share the same variable). Given that these conditions are
met, the self-attention operation is equivalent to relational
cross-attention (Altabaa et al., 2024), and the output of such
an attention head will represent an abstract variable.

2.2. Symbolic Induction Heads

In the second stage, we hypothesize that sequence induction
is performed over the abstract variables computed in the

first stage. This hypothesis is inspired by previous work
on induction heads, an emergent circuit that supports in-
context learning in transformers (Elhage et al., 2021; Olsson
et al., 2022). As originally formulated, this circuit performs
a simple sequence induction mechanism: given a sequence
that ends with a particular token, an induction head will
look for previous instances of that token, and retrieve the
token that succeeded it. Although this mechanism performs
induction based only on in-context bigram statistics, sub-
sequent work has identified heads that also compute more
complex n-gram statistics (Akyürek et al., 2024). Here, we
use the term ‘induction’ to refer to the more general process
of predicting the next token based on in-context transition
probabilities (i.e., beyond bigram statistics).

We hypothesize that a symbolic variant of this mechanism
is responsible for performing induction over sequences of
symbols rather than literal tokens. We refer to the attention
heads that carry out this mechanism as symbolic induction
heads. Unlike standard induction heads, which operate over
direct representations of the input tokens, symbolic induc-
tion heads operate over representations of abstract variables
(computed by symbol abstraction heads in previous layers).
The output of symbolic induction heads is a prediction of
the abstract variable associated with the next token. Em-
pirically, we find that symbolic induction heads are distinct
from standard induction heads (section 3.5).

2.3. Retrieval Heads

Finally, in the third stage, we hypothesize that a separate
mechanism is used to convert the abstract variables (sym-
bols) to their associated tokens (values), by performing a
simple form of retrieval. We refer to the attention heads
that perform this retrieval operation as retrieval heads. The
key and query embeddings in these heads represent abstract
variables, and the value embeddings represent the corre-
sponding input tokens. Retrieval heads perform the inverse
of the relational attention operation performed by symbol
abstraction heads. Given an input embedding representing
an abstract variable (the prediction computed by symbolic
induction heads in previous layers), this variable is matched
with previous instances, and the associated token is retrieved.
This can be viewed as a form of indirection, wherein a vari-
able (i.e., a pointer to a particular location in memory) is
used to retrieve the value associated with it (i.e., the data
stored at that location).

3. Results
3.1. Causal Mediation Analyses

We performed causal mediation analysis (Pearl, 2022; Meng
et al., 2022; Wang et al., 2023; Todd et al., 2024) to isolate
the hypothesized attention heads. In this analysis, embed-
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dings from one context are patched into another context.
This approach can be used to estimate the causal effect of an
embedding at a particular layer, position, or attention head.

Our analysis had two conditions. In one condition, intended
to isolate representations of abstract variables (i.e., sym-
bols), we created two contexts in which the same token is
associated with two different variables. Given a set of tokens
A1, B1, ...AN , BN (where N − 1 represents the number of
in-context examples), we created one context cabstract1 that
instantiated an ABA rule, and another context cabstract2 that
instantiated an ABB rule (equivalent to a BAA rule):

cabstract1 = A1, B1, A1, ..., AN , BN (1)

cabstract2 = B1, A1, A1, ..., BN , AN (2)

Importantly, in this analysis, the final token in each in-
context example, AN , is identical for both contexts, but it is
associated with a different variable, based on its relations to
the other tokens within the same in-context example.

We contrast this with another condition that is intended to
isolate representations of literal tokens. Given the same set
of tokens used for the previous condition, we created the
following two contexts:

ctoken1 = A1, B1, A1, ..., AN , BN (3)

ctoken2 = A1, B1, A1, ..., BN , AN (4)

In this condition, both contexts involve the same abstract
rule, but the tokens used in the final example are swapped.
We also perform a version of both analyses using the ABB
rule and average the results for the two rules.

Together, these analyses allow for a double dissociation be-
tween representations of abstract variables (abstract causal
mediation) vs. the tokens associated with those variables
(token causal mediation). For each analysis, given two con-
texts c1 and c2, and a pretrained lanuage model f(·) that
outputs logits for all possible next tokens, we computed the
causal mediation score developed by Wang et al. (2023):

s =
(
f(c∗1)[yc∗1 ]− f(c∗1)[yc1 ]

)
−
(
f(c1)[yc∗1 ]− f(c1)[yc1 ]

)
(5)

where f(c1)[y] is the logit for answer y in context c1;
f(c∗1)[y] is the logit for answer y in the patched context c∗1,
for which activations are patched from c2 to c1 at specific
layers, positions, and/or attention heads; yc1 is the correct
answer for context c1; and yc∗1 is the expected answer for
the patched context c∗1. Intuitively, this score reflects the ex-
tent to which patching activations from context c2 to c1 has
the expected effects on the model’s outputs. For cabstract,

which was designed to test whether the activations repre-
sent abstract variables, we expected that activation patching
would convert the symbol for the token that completes the
incomplete query, whereas for ctoken, we expected that
activation patching would convert the literal token. See
Section B.2 and Figures 5-7 for more details (including
illustrated examples) on this analysis.

Figures 2(a) and 2(b) show the results of these causal medi-
ation analyses when they were performed on both the aggre-
gated attention head outputs and the MLP outputs (leaving
the residual stream intact) at each sequence position and
layer within the model. Consistent with our hypothesized
architecture, the abstract causal mediation analysis (Figure
2(a)) revealed two distinct stages of processing, one in early
layers of the model, with an effect that was largely concen-
trated at the positions of the final item in each in-context
example, and one in intermediate layers, with an effect that
was concentrated at the final position in the sequence (i.e.,
the position at which the model must generate a completion
to the query). These results are consistent with the hypoth-
esized behavior (both in terms of specific positions within
the sequence, and relative order across layers) of symbol
abstraction heads and symbolic induction heads respectively.
The token causal mediation analysis (Figure 2(b)) revealed
a later stage of processing that was also concentrated at the
final position in the sequence, consistent with the hypothe-
sized behavior of retrieval heads.

Next, we performed causal mediation analysis on the output
of individual attention heads. To isolate symbol abstraction
heads, we performed the abstract causal mediation analysis
at the positions corresponding to the final item in each in-
context example. To isolate symbolic induction heads, we
performed the abstract causal mediation analysis at the final
position in the sequence. To isolate retrieval heads, we
performed the token causal mediation analysis at the final
position in the sequence. The results (Figures 2(c)-2(e))
revealed a relatively sparse selection of attention heads,
again conforming to the hypothesized three-stage structure.

3.2. Attention Analyses

We analyzed attention patterns to better understand the be-
havior of the identified attention heads. Figure 3(a) shows
the attention patterns for symbol abstraction heads. Our
hypothesis predicts that attention should be directed from
the third item in each in-context example to the first item
for ABA rules (top), and should be directed from the third
item to the second item for ABB rules (bottom). The results
largely confirmed this hypothesis (the attention patterns for
these positions are highlighted with red dashed lines). In-
terestingly, the pattern became more focused for the second
in-context example, suggesting that the symbol abstraction
heads benefit from in-context learning.
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(a) Abstract Causal Mediation
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(b) Token Causal Mediation

1 8 16 24 32 40 48 56 64
Head

1
10

20
30

40
50

60
70

80
La

ye
r

0

0.1

0.2

0.3

0.4

0.5
Ca

us
al

 M
ed

ia
tio

n 
Sc

or
e

(c) Symbol Abstraction Heads
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(d) Symbolic Induction Heads
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Figure 2. Causal Mediation Results. (a) Abstract causal mediation effects at each layer and sequence position. X-axis shows the two
contexts (cabstract1 and cabstract2 ) used for this analysis, aligned with each sequence position. (b) Token causal mediation effects at each
layer and sequence position, with corresponding ctoken1 and ctoken2 contexts shown along X-axis. (c) Identification of symbol abstraction
heads: abstract causal mediation effects for each attention head, averaged across positions corresponding to the last item in each of the
two in-context examples. (d) Identification of symbolic induction heads: abstract causal mediation effects for each attention head, for the
final token in the sequence. (e) Identification of retrieval heads: token causal mediation effects for each attention head, for the final token
in the sequence. Permutation testing was performed to estimate the family-wise error rate across all scores in each plot, and scores were
thresholded so that only scores significantly greater than zero (p < 0.05) are shown.

Figure 3(b) shows the results for symbolic induction heads.
Our hypothesis predicts that attention should be directed
from the final position in the entire sequence (the separation
token at the end of the incomplete example) to positions of
the final items in each in-context example, as these are the
positions where the previous instances of the to-be-predicted
abstract variable are located. The results confirmed this
hypothesis. Again, the pattern was stronger for the second
in-context example, consistent with a general effect of in-
context learning.

Figure 3(c)) shows the results for retrieval heads. Our hy-
pothesis predicts that attention should be directed from the
final position in the sequence to the positions correspond-
ing to the tokens that will appear next (i.e., within the in-
complete example). For ABA rules (top), we predict that
attention should be directed to the first item in the exam-
ple (corresponding to the variable A), and for ABB rules
(bottom) we predict that attention should be directed to the
second item in each example (corresponding to the vari-
able B). This prediction too was confirmed by our analyses.

Taken together, these results suggest that the model employs
a form of indirection, first computing the variable associated
with the predicted token, and then using that variable as a
pointer to retrieve the token itself.

3.3. Representational Similarity Analyses

We also performed representational similarity analy-
ses (Kriegeskorte et al., 2008) to better understand the rep-
resentations that were produced by each type of attention
head. In this analysis, representations are modeled in terms
of their similarity with one another. For each set of tokens
A1, B1, ...AN , BN , we created four prompts, intended to
dissociate representations of abstract variables (i.e., sym-
bols) vs. literal tokens. The first two prompts were the
same as the cabstract1 and cabstract2 contexts used for causal
mediation analysis, in which the same token plays differ-
ent abstract roles. The other two prompts were based on
cabstract1 and cabstract2 , but the final instances of AN and
BN were swapped. The resulting set of prompts predict one
pattern of pairwise similarity for abstract variables, and a
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(b) Symbolic Induction Heads
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(c) Retrieval Heads

Figure 3. Attention Analysis. Analysis of attention patterns for (a) symbol abstraction heads, (b) symbolic induction heads, and (c)
retrieval heads. For each type of attention head, we selected only heads with statistically significant CMA scores (shown in Figure2(c)-
2(e)), and a weighted average of their attention patterns was computed using the causal mediation scores as weights. X-axis corresponds
to keys (positions that are attended to), Y-axis corresponds to queries (positions from which attention is directed). Top row depicts
attention pattern for ABA problems, bottom row depicts attention pattern for ABB problems. Prompt templates are shown along each
axis, with tokens aligned to their corresponding positions. Red dashed lines highlight positions of interest (discussed in text). Note that
beginning-of-sequence token is omitted.

different pattern of similarity for literal tokens.

Figure 4(a) shows the predicted pattern of pairwise similari-
ties for representations of abstract variables, with all pairs
involving two instances of the variable A forming one block
of high similarity, and all pairs involving two instances of
B forming another block. By contrast, Figure 4(b) shows
the predicted pattern of pairwise similarities for represen-
tations of literal tokens. This pattern displays 3 diagonal
bands, corresponding to pairs of the same token (regardless
of whether this token is assigned to the same variable).

Figure 4(c) shows the pattern of similarity observed for the
output of symbol abstraction heads at the third position in
both in-context examples (averaged across the two exam-
ples). The pattern closely resembles the abstract variable
similarity matrix, indicating that the output of symbol ab-
straction heads have a representational structure similar to
abstract variables. Figure 4(d) shows the pattern observed
for symbolic induction heads at the final sequence position.
This pattern also resembles the pattern predicted for abstract
variables. Figure 4(e) shows the patten observed for retrieval
heads at the final sequence position. This pattern closely
resembles the token similarity matrix.

Interestingly, although the output embeddings for symbol
abstraction heads and symbolic induction heads primarily
resemble the pattern predicted for abstract variables, they
also show the diagonal bands predicted by the token simi-
larity matrix, suggesting that they preserve some degree of
token identity, and thus do not exclusively represent abstract
variables. However, it is still possible for abstract variables
to be represented in an invariant manner in a subspace of
these attention heads’ outputs. To test this, we performed a
decoding analysis in which a decoder was trained to predict
the abstract rule (ABA vs. ABB) for problems involving
one set of tokens, and then tested on problems involving a
completely different set of tokens. This decoding analysis
yielded nearly perfect generalization accuracy for both sym-
bol abstraction and symbolic induction heads (> 98% test
accuracy, see Section C.7 for more details), indeed suggest-
ing that abstract variables are invariantly represented in a
subspace of the output embeddings for these heads.

To gain a more precise understanding of the identified atten-
tion heads, we also applied RSA to the key, query, and value
embeddings (Tables 2-3 and Figures 11-14). For symbol ab-
straction heads, we found that queries primarily represented
token identity, keys represented a mixture of both tokens
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Figure 4. Representational Similarity Analysis. (a) Predicted pattern of pairwise similarity for representations of abstract variables. (b)
Predicted pattern for representations of tokens. (c) Pairwise similarity for symbol abstraction head outputs, averaged across the third
position in the two in-context examples. (d) Pairwise similarity for symbolic induction head outputs at the final sequence position. (e)
Pairwise similarity for retrieval head outputs at the final sequence position. For each attention head type, we computed a weighted average
of similarity matrices from all statistically significant heads, using the causal mediation scores as weights.

and abstract variables, and values primarily represented the
abstract variables. For symbolic induction heads, queries
and keys primarily represented the relative position within
each in-context example, while values primarily represented
abstract variables. For retrieval heads, queries primarily
represented abstract variables, keys represented a mixture
of both tokens and variables, and values primarily repre-
sented the predicted token. These results further confirm the
hypothesized mechanisms, namely that abstraction heads
convert tokens to variables, symbolic induction heads make
predictions over these variables, and retrieval heads convert
variables back to tokens.

3.4. Ablation Analyses

The causal mediation analyses in section 3.1 demonstrate
that the identified attention heads are causally sufficient, in
the sense that perturbing their outputs alters the model’s
responses in a predictable manner. We also performed abla-
tion analyses to test whether these heads are necessary for
the model to perform the task.

For each type of attention head, we performed a cumulative
ablation analysis in which the heads with the top h causal

mediation scores were ablated. This was performed for the
full range of h = 1...H heads in the entire model. We
performed a control experiment in which each head ablated
in the previous experiment was replaced by the head in the
same layer with the lowest causal mediation score. Addi-
tionally, we implemented a random baseline by ablating h
randomly selected attention heads. We measured the effects
of these ablations in terms of the probability assigned to the
correct answer.

We found that these ablation experiments had a dramatic
effect for all three types of heads (Figures 15(a)-15(c)). In
the ablation condition, the probability assigned to the cor-
rect answer rapidly fell to zero as more heads were ablated,
whereas in the control conditions it was necessary to ablate
almost all attention heads to have such an effect. These
experiments confirmed that all three types of attention heads
were both sufficient and necessary to perform the rule in-
duction task.

3.5. Comparison with Induction Heads

We investigated the relationship between symbolic induction
heads and the standard induction heads identified in previous
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work (Olsson et al., 2022). In that work, it was proposed that
induction heads not only perform literal sequence induction,
but may also perform a fuzzy or abstract form of induction.
This raises the question of whether symbolic induction heads
are merely standard induction heads.

For each attention head, we computed the prefix matching
score previously used to identify induction heads (Olsson
et al., 2022), and compared this with the causal mediation
score for symbolic induction heads. We found that these
scores were very weakly correlated (r = 0.11, Figure 9(a)).
These results suggest that, despite the conceptual similarity
between these two mechanisms, they are implemented by
disjoint sets of attention heads.

3.6. Comparison with Function Vectors

We also investigated the relationship between symbolic in-
duction heads and function vectors (Todd et al., 2024), rep-
resentations of an in-context task that are generated by a
subset of attention heads. The symbolic induction heads
identified in the present work have many similarities to the
attention heads that generate function vectors, including: 1)
they are found in intermediate layers of the model, 2) they
primarily attend to the last item in each in-context example,
and 3) they are causally implicated in in-context learning
for relational tasks.

To address this, we computed the average indirect effect
for each attention head, which represents a measure of the
extent to which its outputs constitute function vectors (Todd
et al., 2024), and compared this with the causal mediation
score for symbolic induction heads. This analysis revealed
that these scores are indeed highly correlated (Figure 9(b);
r = 0.86), suggesting that they are essentially the same set
of attention heads. That is, the output of symbolic induction
heads can be thought of as function vectors. This result
provides a novel perspective on function vectors, suggesting
that, where relevant, they can be used to implement sym-
bolic forms of computation. This result also provides insight
into the mechanism that computes function vectors, suggest-
ing that it may be conceptualized as a form of sequence
induction over abstract variables. Interestingly, this is con-
sistent with recent findings that function vector heads often
develop out of induction heads (Yin & Steinhardt, 2025).

Additionally, we found that these heads are not the only
mechanism involved in computing function vectors. Specif-
ically, we found that symbol abstraction heads also play
an important role. The previous analysis was based on
function vector scores computed at the the final position in
the sequence. When function vector scores were instead
computed based on the third item in each context-example
(Figure 10), these scores were highly correlated with symbol
abstraction heads (r = 0.47), but not symbolic induction
heads (r = 0.06). These results suggest that function vec-

tors are first computed by symbol abstraction heads at the
level of individual in-context examples, and symbolic induc-
tion heads are primarily responsible for aggregating them
across in-context examples.

3.7. Evaluating Other Language Models

To determine how widespread the identified mechanisms are,
we applied our causal mediation analyses to 12 additional
open-source language models of different sizes across four
model families: GPT-2, Gemma-2, Qwen2.5, and Llama
3.1 (Figure 16). With the exception of the GPT-2 models,
all tested LLMs displayed nearly perfect accuracy on the
identity rules task with 10 in-context examples. Correspond-
ingly, all of the LLMs that performed well on the identity
rules task also displayed statistically significant scores for
each type of attention head, and these heads were arranged
in a three-stage hierarchy (Figure 16(b) and Figures 20-
22). By contrast, the GPT-2 variants did not show robust
evidence for the presence of symbol abstraction heads (Fig-
ure 16(b) and 18), consistent with their poor performance
on this task. These results further confirm the link between
the identified mechanisms and abstract reasoning in LLMs,
and suggest that symbolic mechanisms may only emerge at
certain scales (in terms of model or training data size).

3.8. More Complex Reasoning Tasks

Our results thus far have focused on a simple but paradig-
matic case of abstract reasoning – algebraic rule induction.
Do these results also extend to more complex reasoning
tasks? To test this, we extended our causal mediation analy-
ses to two other abstract reasoning tasks (Figure 23). First,
we investigated letter string analogies involving either suc-
cessor or predecessor relations (Hofstadter et al., 1995).
Second, we investigated verbal analogies involving either
antonym or synonym relations. We found that the same
basic three-stage architecture was present for both of these
tasks (Figures 24 and 25), suggesting that similar mecha-
nisms are indeed involved in more complex abstract reason-
ing tasks.

Interestingly, the causal mediation scores revealed a com-
plex pattern of within- and between-task correlations. For
the identity rules task and letter string analogies, we found
moderate to high correlations both at the within-task level
(i.e., for different relations or rules in the same task; Table 4)
and the between-task level (Table 5). However, for verbal
analogies, the correlations (both within- and between-task)
were lower or even negative. These results suggest that,
although all three tasks employed the same high-level mech-
anistic strategy, there was some specialization in the specific
tasks and relations mediated by each attention head.
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4. Related Work
There is a rich history of work illustrating how various
aspects of symbol processing might be implemented in
neural networks. Work on the tensor product representa-
tion (Smolensky, 1990) and binding-by-synchrony (Hum-
mel & Holyoak, 2003) illustrated how dynamic variable-
binding can be performed in neural networks. Kriete et
al. (2013) demonstrated how indirection, the use of one vari-
able to refer to another, can be implemented in a biologically
plausible neural network. More recently, a series of studies
illustrated how a relational bottleneck (Webb et al., 2024)–a
strong inductive bias to perform relational processing–can
enable data-efficient learning of abstract reasoning capabili-
ties in deep learning systems (Webb et al., 2021; Kerg et al.,
2022; Altabaa et al., 2024). The primary contribution of our
work, relative to these previous studies, is to demonstrate
empirically that symbolic mechanisms can emerge in a large-
scale neural network, and to illustrate how they operate to
support abstract reasoning. Notably, the symbol abstraction
heads identified in this work implement an emergent version
of the abstractor architecture that was previously proposed
to support relational learning (Altabaa et al., 2024)

There has also been much recent work investigating the in-
ternal mechanisms that support various forms of abstract
and structured task processing in large language models.
This work has identified key primitives such as induc-
tion heads (Olsson et al., 2022), function vectors (Todd
et al., 2024), concept vectors (Opiełka et al., 2025), binding
IDs (Feng & Steinhardt, 2024), and other mechanisms that
play a role in relational processing (Merullo et al., 2023).
Complementary work has also investigated how structured
mechanisms emerge in smaller models trained on synthetic
tasks (Wu et al., 2025; Grant et al., 2025; Al-Saeedi &
Härmä, 2025; Tang et al., 2025; Brinkmann et al., 2024). We
build on this previous work by identifying an integrated ar-
chitecture that brings together multiple mechanisms. These
include newly identified mechanisms – symbol abstraction
and symbolic induction heads – that, respectively, carry
out the processes of abstraction and rule induction needed
to implement an emergent form of symbol processing that
supports abstract reasoning in neural networks.

5. Discussion
In this work, we have identified an emergent architecture
consisting of several newly identified mechanistic primi-
tives, and illustrated how these mechanisms work together
to implement a form of symbol processing. These results
have major implications both for the debate over whether
language models are capable of genuine reasoning, and for
the broader debate between traditional symbolic and neural
network approaches in artificial intelligence and cognitive
science.

On the one hand, the emergent architecture identified here,
that supports abstract reasoning via an intermediate layer of
symbol processing, is strikingly at odds with characteriza-
tions of language models as mere stochastic parrots (Bender
et al., 2021) or ‘approximate retrieval’ engines (Wu et al.,
2024). These results are also at odds with claims that neural
networks will need innately configured symbol processing
mechanisms in order to perform human-like abstract reason-
ing (Marcus, 2001; Dehaene et al., 2022; Wong et al., 2023).
On the other hand, these results can be viewed as a vindica-
tion of longstanding claims that symbol-processing mecha-
nisms of some form (whether they be innate or learned) are
a necessary component supporting human cognitive abili-
ties (Fodor & Pylyshyn, 1988), insofar as they suggest that
neural networks can acquire these abilities only by develop-
ing their own form of symbol processing.

It is interesting to consider the extent to which the identified
mechanisms are truly emergent vs. dependent on innate as-
pects of the model. The transformer architecture (Vaswani
et al., 2017) does not obviously possess the strong relational
inductive biases that characterize the abstractor (Altabaa
et al., 2024) or other architectures designed to perform re-
lational abstraction (Webb et al., 2024). However, trans-
formers do have some inductive biases that seem relevant,
including: 1) an innate mechanism for computing in-context
similarity via the inner product between keys and queries,
and 2) a form of indirection, in the sense that the keys and
queries that are used to select information for retrieval are
distinct from the values that are retrieved. In future work, it
would be interesting to investigate the extent to which these
or other inductive biases contribute to the development of
emergent symbol processing mechanisms.

Finally, an important open question concerns the extent to
which language models precisely implement symbolic pro-
cesses, as opposed to merely approximating these processes.
In our representational analyses, we found that the identified
mechanisms do not exclusively represent abstract variables,
but rather contain some information about the specific to-
kens that are used in each problem. On the other hand, using
decoding analyses, we found that these outputs contain a
subspace in which variables are represented more abstractly.
A related question concerns the extent to which human rea-
soners employ perfectly abstract vs. approximate symbolic
representations. Psychological studies have extensively doc-
umented ‘content effects’, in which reasoning performance
is not entirely abstract, but depends on the specific content
over which reasoning is performed (Wason, 1968), and re-
cent work has shown that language models display similar
effects (Lampinen et al., 2024). In future work, it would be
interesting to explore whether such effects are due to the use
of approximate symbolic mechanisms, and whether similar
mechanisms are employed by the human brain.

9



Emergent Symbolic Mechanisms Support Reasoning in LLMs

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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Sablé-Meyer, M. Symbols and mental programs: a hy-
pothesis about human singularity. Trends in Cognitive
Sciences, 26(9):751–766, 2022.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan,
A., et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Dziri, N., Lu, X., Sclar, M., Li, X. L., Jiang, L., Lin, B. Y.,
Welleck, S., West, P., Bhagavatula, C., Le Bras, R., et al.
Faith and fate: Limits of transformers on compositionality.
Advances in Neural Information Processing Systems, 36,
2024.

Elhage, N., Nanda, N., Olsson, C., Henighan, T., Joseph,
N., Mann, B., Askell, A., Bai, Y., Chen, A., Conerly,
T., DasSarma, N., Drain, D., Ganguli, D., Hatfield-
Dodds, Z., Hernandez, D., Jones, A., Kernion, J., Lovitt,
L., Ndousse, K., Amodei, D., Brown, T., Clark, J.,
Kaplan, J., McCandlish, S., and Olah, C. A math-
ematical framework for transformer circuits. Trans-
former Circuits Thread, 2021. https://transformer-
circuits.pub/2021/framework/index.html.

Feng, J. and Steinhardt, J. How do language models bind en-
tities in context? In The Twelfth International Conference
on Learning Representations, 2024.

Fodor, J. A. and Pylyshyn, Z. W. Connectionism and cogni-
tive architecture: A critical analysis. Cognition, 28(1-2):
3–71, 1988.

Gemma Team. Gemma 2: Improving open language models
at a practical size. arXiv preprint arXiv:2408.00118,
2024.

Grant, S., Goodman, N. D., and McClelland, J. L. Emergent
symbol-like number variables in artificial neural networks.
arXiv preprint arXiv:2501.06141, 2025.

Hofstadter, D. R., Mitchell, M., et al. The copycat project: A
model of mental fluidity and analogy-making. Advances
in connectionist and neural computation theory, 2(205-
267):2–3, 1995.

Hummel, J. E. and Holyoak, K. J. A symbolic-connectionist
theory of relational inference and generalization. Psycho-
logical review, 110(2):220, 2003.

Kerg, G., Mittal, S., Rolnick, D., Bengio, Y., Richards, B.,
and Lajoie, G. On neural architecture inductive biases for
relational tasks. arXiv preprint arXiv:2206.05056, 2022.

Kriegeskorte, N., Mur, M., and Bandettini, P. A. Repre-
sentational similarity analysis-connecting the branches of
systems neuroscience. Frontiers in systems neuroscience,
2:249, 2008.

Kriete, T., Noelle, D. C., Cohen, J. D., and O’Reilly, R. C.
Indirection and symbol-like processing in the prefrontal
cortex and basal ganglia. Proceedings of the National
Academy of Sciences, 110(41):16390–16395, 2013.

Lampinen, A. K., Dasgupta, I., Chan, S. C., Sheahan, H. R.,
Creswell, A., Kumaran, D., McClelland, J. L., and Hill, F.
Language models, like humans, show content effects on
reasoning tasks. PNAS nexus, 3(7):pgae233, 2024.

Lewis, M. and Mitchell, M. Evaluating the robustness of
analogical reasoning in large language models. arXiv
preprint arXiv:2411.14215, 2024.

10



Emergent Symbolic Mechanisms Support Reasoning in LLMs

Marcus, G. F. The algebraic mind: Integrating connection-
ism and cognitive science. MIT press, 2001.

Marcus, G. F., Vijayan, S., Bandi Rao, S., and Vishton, P. M.
Rule learning by seven-month-old infants. Science, 283
(5398):77–80, 1999.

McCoy, R. T., Yao, S., Friedman, D., Hardy, M., and Grif-
fiths, T. L. Embers of autoregression: Understanding
large language models through the problem they are
trained to solve. arXiv preprint arXiv:2309.13638, 2023.

Meng, K., Bau, D., Andonian, A., and Belinkov, Y. Locating
and editing factual associations in gpt. Advances in Neu-
ral Information Processing Systems, 35:17359–17372,
2022.

Merullo, J., Eickhoff, C., and Pavlick, E. A mechanism for
solving relational tasks in transformer language models.
2023.

Mirchandani, S., Xia, F., Florence, P., Ichter, B., Driess,
D., Arenas, M. G., Rao, K., Sadigh, D., and Zeng, A.
Large language models as general pattern machines. In
Conference on Robot Learning, pp. 2498–2518. PMLR,
2023.

Momennejad, I., Hasanbeig, H., Vieira Frujeri, F., Sharma,
H., Jojic, N., Palangi, H., Ness, R., and Larson, J. Eval-
uating cognitive maps and planning in large language
models with cogeval. Advances in Neural Information
Processing Systems, 36, 2024.

Musker, S., Duchnowski, A., Millière, R., and Pavlick, E.
Semantic structure-mapping in llm and human analogical
reasoning. arXiv preprint arXiv:2406.13803, 2024.

Olsson, C., Elhage, N., Nanda, N., Joseph, N., DasSarma,
N., Henighan, T., Mann, B., Askell, A., Bai, Y., Chen,
A., et al. In-context learning and induction heads. arXiv
preprint arXiv:2209.11895, 2022.

Opiełka, G., Rosenbusch, H., and Stevenson, C. E. Ana-
logical reasoning inside large language models: Con-
cept vectors and the limits of abstraction. arXiv preprint
arXiv:2503.03666, 2025.

Pearl, J. Direct and indirect effects. In Probabilistic and
causal inference: the works of Judea Pearl, pp. 373–392.
2022.

Qwen Team. Qwen2.5 technical report. arXiv preprint
arXiv:2412.15115, 2025.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Smolensky, P. Tensor product variable binding and the
representation of symbolic structures in connectionist
systems. Artificial intelligence, 46(1-2):159–216, 1990.

Tang, C., Lake, B., and Jazayeri, M. An explainable trans-
former circuit for compositional generalization. arXiv
preprint arXiv:2502.15801, 2025.

Todd, E., Li, M., Sharma, A. S., Mueller, A., Wallace, B. C.,
and Bau, D. Function vectors in large language models.
In The Twelfth International Conference on Learning
Representations, 2024.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., et al. Attention is all you need. Ad-
vances in neural information processing systems, 30(1):
261–272, 2017.

Wang, K. R., Variengien, A., Conmy, A., Shlegeris, B., and
Steinhardt, J. Interpretability in the wild: a circuit for in-
direct object identification in gpt-2 small. In The Eleventh
International Conference on Learning Representations,
2023.

Wason, P. C. Reasoning about a rule. Quarterly journal of
experimental psychology, 20(3):273–281, 1968.

Webb, T., Holyoak, K. J., and Lu, H. Emergent analogi-
cal reasoning in large language models. Nature Human
Behaviour, 7(9):1526–1541, 2023.

Webb, T. W., Sinha, I., and Cohen, J. Emergent symbols
through binding in external memory. In The Ninth Inter-
national Conference on Learning Representations, 2021.

Webb, T. W., Frankland, S. M., Altabaa, A., Segert, S., Kr-
ishnamurthy, K., Campbell, D., Russin, J., Giallanza, T.,
O’Reilly, R., Lafferty, J., et al. The relational bottleneck
as an inductive bias for efficient abstraction. Trends in
Cognitive Sciences, 2024.

Webb, T. W., Holyoak, K. J., and Lu, H. Evidence from
counterfactual tasks supports emergent analogical reason-
ing in large language models. PNAS Nexus, 4(5):pgaf135,
05 2025. ISSN 2752-6542. doi: 10.1093/pnasnexus/
pgaf135.

Wei, J., Tay, Y., Bommasani, R., Raffel, C., Zoph, B.,
Borgeaud, S., Yogatama, D., Bosma, M., Zhou, D., Met-
zler, D., et al. Emergent abilities of large language models.
Transactions on Machine Learning Research, 2022.

Wong, L., Grand, G., Lew, A. K., Goodman, N. D., Mans-
inghka, V. K., Andreas, J., and Tenenbaum, J. B. From
word models to world models: Translating from natural
language to the probabilistic language of thought. arXiv
preprint arXiv:2306.12672, 2023.

11



Emergent Symbolic Mechanisms Support Reasoning in LLMs

Wu, Y., Geiger, A., and Millière, R. How do transformers
learn variable binding in symbolic programs? arXiv
preprint arXiv:2505.20896, 2025.

Wu, Z., Qiu, L., Ross, A., Akyürek, E., Chen, B., Wang, B.,
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A. Code and Hardware
All code was written in Python using the TransformerLens and HuggingFace libraries. Experiments on Llama-3.1 70B and
Qwen2.5 72B were conducted on two NVIDIA 80G H100 GPUs while experiments on other models of smaller sizes were
conducted on a single H100 GPU. All model weights are loaded in the bfloat16 format.

All code and data will be released at https://github.com/yukang123/LLMSymbMech.

B. Implementation Details
B.1. Rule Induction Task: Evaluating Task Performance

To evaluate performance on the rule induction task, we randomly selected English tokens from the LLama-3 vocabulary to
form 2,000 prompts. We used the following 2-shot prompt format:

A1ˆB1ˆA1\nA2ˆB2ˆA2\n A3ˆB3ˆ

B.2. Causal Mediation Analysis

Algorithm 1 Causal Mediation Analysis
Input: context pair (c1,c2); language model f(c) ∈ RA: outputs the logits for all possible next tokens at the last position of
prompt c; vocabulary size A; the i-th value of vector f(c): f(c)[i]; the correct answer for c1: yc1 ; the expected answer for
the patched context c∗1: yc∗1 .

1: For c1, measure the difference between the output logit for yc∗1 and yc1 , i.e., ∆fc1 = f(c1)[yc∗1 ]− f(c1)[yc1 ].
2: Cache the internal activations after feeding c2 into the model.
3: Replace activations for selected model component (e.g., output of the entire attention block, or individual attention head,

at a particular layer and token position) in c1 with corresponding activations in c2, yielding patched context fc∗1 .
4: Compute logit difference for patched context:

∆fc∗1 = f(c∗1)[yc∗1 ]− f(c∗1)[yc1 ] (6)

5: Compute causal mediation score:

s = ∆fc∗1 −∆fc1 = (f(c∗1)[yc∗1 ]− f(c∗1)[yc1 ])− (f(c1)[yc∗1 ]− f(c1)[yc1 ]) (7)

Output: Causal Mediation Score s

Algorithm 1 explains the causal mediation procedure for a given context pair (c1, c2). We performed three separate versions
of this analysis, each targeting one of the hypothesized attention head mechanisms, as described below.

Targeting Symbol Abstraction Heads To target the hypothesized symbol abstraction heads, we used the context pair
(cabstract1 , cabstract2 ). In one version of this analysis, cabstract1 involved an ABA rule, and cabstract2 involved an ABB rule.
Importantly, the same tokens were used for both contexts, but with swapped variable assignments, such that the correct
answer to complete both contexts was the same. We also performed a version of this analysis in which cabstract1 was an
ABB rule and cabstract2 was an ABA rule. We used 100 prompts for each version of the analysis, yielding 200 prompts in
total. Patching was performed at the position of the final token in each of the two in-context examples. See Figure 5 for an
illustration and further explanation of this analysis.

Targeting Symbolic Induction Heads. To target the hypothesized symbolic induction heads, we performed the same
analysis described above (for symbol abstraction heads), except that patching was performed at the final position in the
sequence, i.e. the position at which the model was expected to generate the missing token. See Figure 6 for an illustration of
this analysis.

Targeting Retrieval Heads. To target retrieval heads, we used the context pair (ctoken1 , ctoken2 ). In one version of this
analysis, ctoken1 involved an ABA rule, and ctoken2 involved the same ABA prompt, but with the position of the final two
tokens swapped. We also performed a version of this analysis in which both ctoken1 and ctoken2 involved an ABB rule.
Patching was performed at the final position in the sequence. See Figure 7 for an illustration of this analysis.
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Activations. We performed CMA on two types of activations: 1) the output of the entire attention block (including both the
attention head and MLP outputs) at a specific layer and token position, and 2) the output of a specific attention head (before
the additional projection matrix over concatenated head outputs) at a specific layer and token position. The first analysis was
intended to provide a course-grained, but comprehensive, account of where the causally relevant computations were located
(i.e., which layers and token positions). The second analysis was intended to provide a more fine-grained analysis (focusing
on individual attention heads) of the causally relevant model components at those locations.

Permutation Testing. We performed statistical tests to identify significant heads for each head type. Specifically, we used
permutation testing to model the null distribution for these analyses. For each attention head h, the average causal score over
multiple context pairs measures the difference between the means of two groups, i.e., the logit difference for the original
context ∆fc1 and the logit difference for the patched context ∆fc∗1 . To model the null distribution, we randomly permuted
these two quantities, such that there was a 50% chance they would remain the same, and a 50% chance ∆fc1 would be
swapped with ∆fc∗1 and vice versa. This was repeated 5,000 times. We then identified the threshold ϵ for which there was a
family-wise error rate of p < 0.05. That is, we identified the threshold for which there was a less than 5% chance that even
a single attention head would have a causal mediation score exceeding this threshold in the null distribution. We considered
only heads with scores that passed this threshold to be statistically significant.
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Figure 5. Illustration of Causal Mediation Analysis targeting Symbol Abstraction Heads. In this example, context c1 involves an
ABA rule, and context c2 involves an ABB rule. Importantly, both contexts are formed from the same token sets, but with the tokens
assigned to different variables, such that the correct prediction for the next token is the same in both contexts (‘ks’). Patching from context
c2 to c1 should therefore not have an effect on model components that encode literal tokens (i.e., the retrieval heads), since the output of
these components should be the same in both contexts. This intervention should, however, have an effect on model components that
encode abstract variables, since these differ between the two contexts. To target symbol abstraction heads, we patched from c2 to c1 at
the position of the final tokens in each in-context example, thus intervening on the abstract variable representation for these tokens (and
therefore converting the representation of an ABA rule into a representation of an ABB rule). In this example, the correct answer yc1 for
context c1 is ‘ks’ (i.e., AN ), and the expected answer yc∗1 for the patched context c∗1 is ‘ixe’ (i.e., BN ).
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Figure 6. Illustration of Causal Mediation Analysis targeting Symbolic Induction Heads. The intervention targeting symbolic
induction heads was the same as the intervention targeting symbol abstraction heads, except that patching was performed at the final
position in the sequence, at which the model was expected to generate the final token. This intervention should have an effect on the
process of predicting the abstract variable associated with the final token, but not on the process of retrieving the final token itself.
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Figure 7. Illustration of Causal Mediation Analysis targeting Retrieal Heads. In this example, both contexts c1 and c2 involve an ABA
rule, but the order of the tokens in the final in-context examples are swapped. This means that the correct answer differs between these
two contexts, and therefore model components that encode literal tokens such as retrieval heads should be affected by this intervention.
Model components that encode abstract variables, however, should not be affected by this intervention, since the abstract rule in both
contexts is the same. To target Retrieval Heads, we patched from c2 to c1 at the final position in the sequence. In this example, the correct
answer yc1 for context c1 is ‘ks’ (i.e., AN ), and the expected answer yc∗1 for the patched context c∗1 is ‘ixe’ (i.e., BN ).
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B.3. Attention Analyses

For each individual attention head, the attention map was averaged over 1,378 prompts each for the ABA and ABB tasks,
again limiting the analysis to prompts that the model answered correctly.

B.4. Representational Similarity Analyses

For one set of tokens [(An, Bn)]n=1..N , we built four different contexts, i.e.,

A1, B1, A1, ..., AN , BN (8)
A1, B1, A1, ..., BN , AN

B1, A1, A1, ..., BN , AN

B1, A1, A1, ..., AN , BN

We randomly selected 40 token sets formed into the above contexts to measure the similarity of attention head activations at
certain token positions. We then compared these similarity matrices with hypothesized similarity matrices based on either
abstract variables or token identities. We applied this analysis to four separate attention head components: keys, values,
queries, and outputs. Figure 4 shows the RSA on the output of significant heads for each head type.

For symbol abstraction heads, we measured query similarity and output similarity at the third item in the first two in-context
examples, and keys and values at the first two items. For symbolic induction heads, we compared the values at the third
item in the first two in-context examples and the outputs at the final position of the prompt. For retrieval heads, we used the
queries and outputs at the final sequence position and keys and values at the first two items in the last incomplete query.
These positions were chosen because they most directly targeted the hypothesized computations in the proposed three-stage
architecture.

For the keys and queries of symbolic induction heads, we tested two hypotheses. Inspired by the original induction head
hypothesis (Olsson et al., 2022), the first hypothesis is that these embeddings represent the abstract variable at the previous
position (just as the key and query embeddings in induction heads represent the token at the previous position). However,
this mechanism is limited to performing induction via bigram statistics. An alternative hypotehsis is that these embeddings
represent the relative position within an in-context example. This mechanism can support induction based on more complex
n-gram statistics. Our original task, involving either ABA or ABB rules, does not enable us to distinguish between these two
hypotheses, as both hypotheses predict the same similarity matrix. To address this, we tested a variant of this task in which
the two hypotheses dissociate. Specifically, we used a task involving the following length-4 identity rules: AABA, ABCB,
and ABCC. We performed RSA based on the similarity of the embeddings at the third and fourth items in each in-context
example.

B.5. Ablation Analyses

We randomly selected a set of 40 prompts that do not overlap with the prompts used in causal mediation analyses. Starting
from the heads with highest causal mediation scores, we gradually increased the number of ablated heads, and evaluated the
effect on the probability of the correct answer. As a control, we performed the same analysis, but replaced each ablated head
with the head in the same layer with the lowest causal mediation score. We also included a random baseline by randomly
selecting heads to ablate. The results in Figure 15 are averaged over both ABA and ABB tasks.

B.6. Induction Heads

Following (Olsson et al., 2022), we used the prefix matching score as a measure for induction heads. We created a prompt
involving a repeated sequence of 50 random tokens. The prefix matching score is defined as the average attention score from
each token to the tokens that directly follow the previous instance of the same token. We averaged results over 4 random
seeds.
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B.7. Function Vectors

As described in (Todd et al., 2024), function vectors are aggregated over heads with a high causal mediation score. The
answers for each in-context example are shuffled to form a corrupted prompt and the causal indirect effect (CIE) is defined
as the recovery of the probability for correct answers after replacing the attention head output at the final position in the
corrupted run with the average embedding across multiple prompts from the clean run. The average indirect effect (AIE)
was taken over 50 prompts each for ABA and ABB tasks.

C. Additional Experimental Results
C.1. Comparison of Symbol Abstraction Heads, Symbolic Induction Heads, and Retrieval Heads
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Figure 8. (a) Comparison of symbol abstraction head scores and symbolic induction head scores. (b) Comparison of symbol abstraction
head scores and retrieval head scores. (c) Comparison of symbolic induction head scores and retrieval head scores. Each dot represents a
single attention head, with all heads across all layers displayed. The scores for each type of attention head are largely orthogonal to each
other, indicating that they form disjoint sets of attention heads.
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C.2. Comparison with Induction heads and Function Vectors

We compared the symbolic induction head scores with prefix matching scores, used as a measure for standard induction
heads (Olsson et al., 2022), and average indirect effects, used as a measure for function vectors (Todd et al., 2024), across all
attention heads (Figure 9).
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Figure 9. (a) Comparison of symbolic induction heads and standard induction heads. (b) Comparison of symbolic induction heads and
function vector attention heads.

Apart from the original implementation in (Todd et al., 2024) on the embeddings at the final sequence position (Section B.7),
we also computed the function vector scores by patching the activations at the position of the third item in each in-context
example. Table 1 and Figure 10 show the result of comparing function vector scores based on either of these two positions
(last position in sequence vs. position of third item in each in-context example) to the scores for symbol abstraction heads
and symbolic induction heads. The results indicate that symbol abstraction head scores are correlated with function vector
scores at the third item in each in-context example, while symbolic induction head scores are correlated with function vector
scores at the final position in the sequence.

Symbol Abstraction Head Score Symbolic Induction Head Score

Third-item-position Function Vector Score 0.47 0.06
Final-position Function Vector Score 0.06 0.86

Table 1. Comparison between Function Vectors and Symbol Abstraction Heads/Symbolic Induction Heads. Function vector scores
(average indirect effect) are computed based on embeddings either at the third item in each in-context example, or at the final position in
the sequence (original implementation in (Todd et al., 2024)). Results reflect the correlation coefficient for comparisons between function
vector scores and symbol abstraction head and symbolic induction head scores. Corresponding scatter plots are shown in Fig. 10.
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Figure 10. Scatter Plots for Comparisons between Function Vectors and Symbol Abstraction Heads/Symbolic Induction Heads.
Each dot represents a single attention head, with all heads across all layers displayed. (a) Symbol abstraction head scores were correlated
with function vector scores evaluated at the third items in the in-context examples, but (c) not at the final position. (d) Symbolic induction
head scores were highly correlated with function vector scores evaluated at the final position, but (b) not at the third items in the in-context
examples.
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C.3. Representational Similarity Analyses for Different Attention Head Components

Figures 4-14 show the hypothesized similarity matrices and the actual similarity matrices computed from the key, query,
value, and output embeddings. For illustration purposes, we used only 10 different token sets to compute the similarity in
Figures 11-14.
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Figure 11. Representational Similarity Analysis for Symbol Abstraction Heads. (a), (b), (e), and (f) are the predicted abstract or token
similarity matrices; (c), (d), (g), and (h) are the actual embedding similarity matrices.
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Figure 12. Representational Similarity Analysis for Retrieval Heads. (a), (b), (e), and (f) are the predicted abstract or token similarity
matrices; (c), (d), (g), and (h) are the actual embedding similarity matrices.
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Figure 13. Representational Similarity Analysis for Symbolic Induction Heads (Outputs and Values). (a), (b), (d), and (e) are the
predicted abstract or token similarity matrices; (c) and (f) are the actual embedding similarity matrices.
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Figure 14. Representational Similarity Analysis for Symbolic Induction Heads (Queries and Keys). (a), (b), (d), and (e) are the
predicted abstract or token similarity matrices; (c) and (f) are the actual embedding similarity matrices.
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The Pearson correlation coefficients for all representational similarity analyses (representing the correlation between each
hypothesized similarity matrix and the similarity matrix for a specific attention head component) are shown in Tables 2 and 3.
These coefficients were computed based on the lower triangular parts of each similarity matrix (excluding the diagonal).

Embedding Symbol Abstraction Heads Symbolic Induction Heads Retrieval Heads
Abstract RSA Token RSA Abstract RSA Token RSA Abstract RSA Token RSA

Queries 0.30 0.41 0.57 0.06
Keys 0.62 0.22 0.50 0.23
Values 0.67 0.17 0.69 0.19 0.07 0.55
Outputs 0.56 0.24 0.69 0.03 0.11 0.35

Table 2. RSA Summary Results. Pearson correlation between hypothesized similarity matrices and similarity matrices for specific model
components. Each column represents the pearson correlation between a hypothesized similarity matrix (abstract vs. token RSA) and the
similarity matrix for a particular component (query, key, value, or output embeddings) of a particular set of attention heads. Output RSA
results correspond to those shown in Figure 4. Similarity matrices for query, key, and value embeddings are shown in Figures 11-13. For
the key and query embeddings in symbolic induction heads, we tested two additional hypotheses requiring a modified task (see Table 3).

Embedding Previous Abstract Variable RSA Within-instance Position RSA

Queries 0.33 0.63
Keys 0.29 0.73

Table 3. Symbolic Induction Head RSA Results. We tested two hypotheses for the key and query embeddings in the symbolic induction
heads. The first hypothesis (Previous Abstract Variable RSA) was that these embeddings represent the abstract variable at the previous
position. This hypothesis is based on the induction head mechanism, where keys and queries represent the previous token. The second
hypothesis (Within-instance Position RSA) was that these embeddings represent the relative position of a token within the current
in-context example. The results indicated that the key and query embeddings more closely matched the second hypothesis. Similarity
matrices are shown in Figure 14.

C.4. Ablation Results
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(b) Symbolic Induction Heads
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Figure 15. Ablation Analyses. (a) Cumulative ablation of symbol abstraction heads in decreasing order of causal mediation scores.
Control condition involves ablation of heads in the same layers but with the lowest causal mediation scores. Random refers to randomly
selecting heads for ablation. (b) Cumulative ablation of symbolic induction heads. (c) Cumulative ablation of retrieval heads. Error bars
for random baseline reflect standard deviation over 10 runs.
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C.5. Evaluating Other Language Models

Figure 16 summarizes the accuracy of 13 models on identity rule tasks averaged over both ABA and ABB rules and the
number of significant heads found in each model. Figure 17 shows the model performance for problems involving either
ABA or ABB rules separately. Figures 18-22 show the causal mediation results for this task in all models. Note that GPT-2
does not show robust evidence for the presence of symbol abstraction heads (Figure 19).
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Figure 16. Results for different language models on the identity rules task. (a) Accuracy for each model as a function of the number
of in-context examples. Error bars reflect 95% binomial confidence intervals. (b) Number of statistically significant symbol abstraction
heads, symbolic induction heads, and retrieval heads in each model. We applied the same causal mediation analyses as in Section 3.1 using
10-shot prompts. Permutation testing was performed to estimate the family-wise error rate across all heads, and statistical significance was
determined based on a threshold of p < 0.05.
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Figure 17. Model Performance for Identity Rules Tasks. We tested model performance on 500 prompts each for the ABA and ABB
rules, across different numbers of in-context examples. Error bars reflect 95% binomial confidence intervals.
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(c) GPT-2 Large (774M)
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(d) GPT-2 XL (1.5B)

Figure 18. Causal Mediation Results for GPT-2 Models. From left to right, the heatmaps display significant symbol abstraction heads,
symbolic induction heads, and retrieval heads. Permutation testing was performed to estimate the family-wise error rate, and statistical
significance was determined based on a threshold of p < 0.05.
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(a) GPT-2 Small (124M)
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(b) GPT-2 Medium (335M)
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(c) GPT-2 Large (774M)
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(d) GPT-2 XL (1.5B)

Figure 19. Symbol Abstraction Heads in GPT-2 Models for ABA vs. ABB Rules. Permutation tests revealed (Left) very few significant
abstraction heads for problems involving ABA rules, and (Right) no significant abstraction heads for problems involving ABB rules.
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(a) Gemma-2 2B
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(b) Gemma-2 9B
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(c) Gemma-2 27B

Figure 20. Causal Mediation Results for Gemma-2 Models. From left to right, the heatmaps display significant abstraction heads,
symbolic induction heads, and retrieval heads. Permutation testing was performed to estimate the family-wise error rate, and statistical
significance was determined based on a threshold of p < 0.05.

28



Emergent Symbolic Mechanisms Support Reasoning in LLMs

1 3 6 9 12 15 18 21 24 28
Head

1
3

6
9

12
15

18
21

24
28

La
ye

r
Symbol Abstraction Head

0

1.3

2.6

3.9

5.2

Ca
us

al
 M

ed
ia

tio
n 

Sc
or

e

1 3 6 9 12 15 18 21 24 28
Head

1
3

6
9

12
15

18
21

24
28

La
ye

r

Symbolic Induction Head

0

0.8

1.6

2.4

3.2

Ca
us

al
 M

ed
ia

tio
n 

Sc
or

e

1 3 6 9 12 15 18 21 24 28
Head

1
3

6
9

12
15

18
21

24
28

La
ye

r

Retrieval Head

0

1

2

3

4

Ca
us

al
 M

ed
ia

tio
n 

Sc
or

e

(a) Qwen2.5 7B
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(b) Qwen2.5 14B
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(c) Qwen2.5 32B
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(d) Qwen2.5 72B

Figure 21. Causal Mediation Results for Qwen2.5 Models. From left to right, the heatmaps display significant abstraction heads,
symbolic induction heads, and retrieval heads. Permutation testing was performed to estimate the family-wise error rate, and statistical
significance was determined based on a threshold of p < 0.05.
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(a) Llama-3.1 8B
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(b) Llama-3.1 70B

Figure 22. Causal Mediation Results for Llama-3.1 Models. From left to right, the heatmaps display significant abstraction heads,
symbolic induction heads, and retrieval heads. Permutation testing was performed to estimate the family-wise error rate, and statistical
significance was determined based on a threshold of p < 0.05.
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C.6. More Complex Abstract Reasoning Tasks

[ i j k ]

[ b c d ]

[ w x y ]

[ i j l ]

[ b c e ]

[

Letter string analogies

Successor

[ j k l ]

[ c d e ]

[ x y z ]

[ i k l ]

[ b d e ]

[

Predecessor

Verbal analogies

Synonym

impoverished : poor

courageous : brave

lazy :

Antonym

rich : poor

fearful : brave

energetic :

Figure 23. Letter String Analogy and Verbal Analogy Tasks. Letter string analogy problems involved either successor or predecessor
relations. Verbal analogy problems involved either antonym or synonym relations. Similar to the identity rules task, problems were
constructed so as to enable the creation of pairs of problems that involved the same completion tokens governed by different abstract
rules. For instance, in the example verbal analogies, the answer to both problems is ‘idle’. Holding the completion tokens constant, while
varying the abstract rule, enabled the causal mediation analysis to dissociate attention heads involved in coding abstract variables vs.
literal tokens.

Figure 23 depicts the letter string analogy and verbal analogy tasks. Similar to the design of the identity rules task, these
tasks were designed in a manner that allowed a dissociation between representations of literal tokens vs. abstract variables.

C.6.1. LETTER STRING ANALOGY TASK

Task Setup. Letter string analogies were originally developed by (Hofstadter et al., 1995). Here, we adopted an imple-
mentation similar to (Webb et al., 2023), who developed a letter string analogy dataset for testing LLMs. Our dataset
involved 2-shot problems, governed either by a successor or a predecessor relation. For the successor relation, a set of three
letters (e.g., [i j k]) was transformed such that the final letter was converted into its alphabetic successor (e.g., [i j l]). For
the predecessor relation, a set of three letters (e.g., [j k l]) was transformed such that the first letter was converted into its
alphabetic predecessor (e.g., [i k l]). This design made it possible to construct pairs of problems using the same set of tokens,
where the first and third letters of the transformed set were the same in both the successor and predecessor problems. This
was important for our causal mediation analyses, as described below. We created 500 prompts each for the predecessor
and successor tasks, randomly sampling token sets for each pair of problems. We evaluated Llama-3.1 70B on this task,
counting responses as correct only if all three letters in the completion set were correct. The model achieved 99.2% and
82.0% 2-shot accuracy for the successor and predecessor tasks respectively.

Causal Mediation Analyses. We performed causal mediation analysis to identify attention heads involved in representing
either abstract variables or literal tokens. By using the same set of tokens to create successor vs. predecessor problems,
we were able to dissociate attention heads involved in these two processes. Specifically, the successor and predecessor
problems for each pair had completion sets that shared the first and third letter. For instance, given the following instance of
a successor relation: [i j k] [i j l], and the following instance of a predecessor relation: [j k l] [i j l], the first and third letters
in the completion sets of both problems are ‘i’ and ’l’. But despite involving the same tokens, these letters shared different
relations with the corresponding letters in the first set. Specifically, in the successor relation, the first letter stays the same,
and the third letter is transformed into its successor, whereas in the predecessor relation, the first letter is transformed into
its predecessor, and the third letter stays the same. To target mechanisms involved in representing abstract variables, we
therefore focused our causal mediation analysis on the first and third letters in the completion set.
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To target symbol abstraction heads, we patched attention head outputs from corresponding successor to predecessor problems
(or vice versa) at the position of the first and third letters in the completion sets for the two in-context examples. For instance,
in the example shown in Figure 23, patching was performed on the letters ‘i’ and ‘l’ in the second set of brackets on the first
row, and the letters ‘b’ and ‘e’ in the second set of brackets on the second row.

To target symbolic induction heads, we first appended the correct answer to the prompt. We then targeted the tokens that
immediately preceded the first and third letters in the completion set for the final (incomplete) query example. These are the
token positions at which the model is required to generate the first and third letters for the completion set. For instance, in
the example shown in Figure 23, the correct answer ‘[w x z]’ was appended to the successor problem, and the correct answer
‘[w y z]’ was appended to the predecessor problem. Patching was then performed from the open bracket in the second set of
brackets in the third row, and the second letter in the appended correct answer completion sets (e.g., ‘x’ in the successor
problem, and ‘y’ in the predecessor problem).

The expected answer for both of these causal mediation analyses (i.e., the expected output given that the patching was
effective) was obtained by applying the alternative rule to each problem. For instance, in the successor problem shown in
Figure 23, the expected completion to ‘[w x y]’ was obtained by applying the predecessor relation, yielding ‘[v x y]’. We
used the sum of the causal mediation scores defined in Algorithm 1 at the positions preceding the first and third letters in the
completion set.

Finally, to target retrieval heads, we created variants of the problems described above in which the query example used
completely different tokens. For instance, given the successor problem shown in Figure 23, with the following complete
query example: [w x y] [w x z], we created an alternative problem with the following query example: [q r s] [q r t]. The
correct answer was appended to both contexts, and patching was performed between two instances with the same rule (either
successor or predecessor), at the positions preceding the three letters in the completion set (i.e., beginning with the open
bracket, and including the first and second letters). The expected answer for this analysis is obtained simply by appending
the tokens from the alternative context in a pair. For instance, when patching from ‘[q r s] [q r t]’ to ‘[w x y] [w x z]’, the
expected completion set is ‘[q r t]’. We measured the causal mediation scores at the positions preceding all three letters in
the completion set.

Figure 24 shows the results of this analysis in Llama-3.1 70B. The analysis was performed on a set of 100 prompts for each
rule. Only prompts that the model answered correctly were used. Permutation testing was performed to identify attention
heads with scores that were significantly greater than 0 (p < 0.05). The results were averaged over both patching directions
(i.e., successor→predecessor and predecessor→successor). The results were qualitatively similar to the pattern observed
for the identity rules tasks. That is, symbol abstraction heads appeared primarily in early layers, symbolic induction heads
appeared primarily in intermediate layers, and retrieval heads appeared primarily in later layers.
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(a) Symbol Abstraction Heads
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(b) Symbolic Induction Heads
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(c) Retrieval Heads

Figure 24. Letter String Analogy Results. Causal mediation scores for the letter string analogy task in Llama-3.1 70B. Permutation
testing was performed to estimate the family-wise error rate, and statistical significance was determined based on a threshold of p < 0.05.
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C.6.2. VERBAL ANALOGY TASK

Task Setup. We developed a dataset of four-term verbal analogies. Verbal analogies are a common analogy format, involving
two pairs of words that share the same relation. We created problems that involved either an antonym or a synonym relation.
The format used for presenting problems is shown in Figure 23. We created pairs of problems, one involving an antonym
relation, and the other involving a synonym relation, in which the correct answer was the same word. For instance, the pair
‘lazy : idle’ involves a synonym relation, while the pair ‘energetic : idle’ involves an antonym relation, despite both pairs
ending with the word ‘idle’. To create this dataset, we prompted GPT-4 to generate sets of words, in which the first pair of
words were synonyms, the second pair of words were also synonyms, but the first and second pairs of words were antonyms
with eachother (e.g., lazy, idle, energetic, and active). We then manually inspected each set of words (to ensure that they
involved the correct relation), and we filtered any sets that were redundant. This yielded 46 unique word sets.

We then created 500 pairs of synonym and antonym problems by sampling from these word sets. Each problem involved
two in-context examples and an incomplete query example, each created from one of the sampled word sets. We then
evaluated Llama-3.1 70B on this task. Accuracy was computed by comparing the logit assigned to the correct answer
with the logit assigned to an incorrect answer generated by applying the incorrect relation to the query word. For instance,
in an antonym problem with the query word ‘energetic’, the correct answer was ‘idle’ (generated by correctly applying
the antonym relation), and the incorrect answer was ‘active’ (generated by applying a synonym relation). This procedure
ensured that the model was not penalized for generating an unanticipated but correct answer (since there are typically many
valid synonyms and antonyms for any given word). Llama-3.1 70B displayed a 2-shot accuracy of 77.0% and 88.4% for the
synonym and antonym tasks respectively.

Causal Mediation Analyses. To identify attention heads involved in representing abstract variables, we patched from
synonym to antonym problems in the same pair, or from antonym to synonym problems. Each pair of problems had the
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(a) Symbol Abstraction Heads (Antonym)
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(b) Symbol Abstraction Heads (Synonym)
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(c) Symbolic Induction Heads (Antonym)
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(d) Symbolic Induction Heads (Synonym)
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(e) Retrieval Heads (Both)

Figure 25. Verbal Analogy Results. Causal mediation scores for the verbal analogy task in Llama-3.1 70B. Permutation testing was
performed to estimate the family-wise error rate, and statistical significance was determined based on a threshold of p < 0.05. Because
the scores for symbol abstraction heads and symbolic induction heads have low or even negative within-task correlations, we display
separate figures for these heads for antonym vs. synonym relations.
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same correct answer, despite involving different relations. To identify symbol abstraction heads, patching was performed
at the position of the second word in each of the two in-context examples (e.g., ‘poor’ and ‘brave’ in the example shown
in Figure 23). To identify symbolic induction heads, patching was performed at the position of the final colon, i.e., the
token at which the model was required to generate the completion to the query example. The expected output for both
of these analyses was obtained by applying the incorrect relation to the prompt. For instance, when patching from the
synonym example to the antonym example in Figure 23, the expected answer (given that patching was effective) was ‘active’
(generated by applying the synonym relation to ‘energetic’). To target retrieval heads, we patched between two problems
involving the same relation, but using different sets of words. Patching was again performed at the position of the final colon.
We measure the causal mediation scores following Algorithm 1. For answers that involve multiple tokens (i.e., when a single
word was tokenized into multiple tokens), instead of computing the causal mediation scores based on logits for individual
tokens, we computed these scores based on joint log probabilities for each answer (i.e., summing the log probabilities over
all tokens for each answer).

Figure 25 shows the results of this analysis in Llama-3.1 70B. The analysis was performed on a set of 100 prompts for each
rule, and only prompts that the model answered correctly were used. The same permutation testing procedure as used in the
other tasks was applied. For symbol abstraction and symbolic induction heads, we found that causal mediation scores for the
synonym task (identified by patching from synonym to antonym problems) and the antonym task (identified by patching
from antonym to synonym problems) were weakly or even negatively correlated (see Table 4). We therefore present these
results separately for antonym vs. synonym relations. For retrieval heads, we found that the scores for these relations were
correlated, so results were averaged over both patching directions. The results were again consistent with the hypothesized
three-stage architecture, with symbol abstraction, symbolic induction, and retrieval heads appearing in early, intermediate,
and later layers respectively.

Attention Head Type IR LSA VA

Symbol Abstraction Heads 0.49 0.33 0.19
Symbolic Induction Heads 0.54 0.57 -0.63
Retrieval Heads 0.83 0.94 0.46

Table 4. Within-task Correlation Results. Results reflect Pearson correlation coefficient between causal mediation scores for two
relation types within each task. Each column represents a task. IR: identity rules (ABA vs. ABB); LSA: letter string analogy (successor
vs. predecessor); VA: verbal analogy (antonym vs. synonym). All correlation coefficients pass two-sided permutation tests (p < 0.05).

Head Score Type IR vs LSA VA vs LSA VA vs IR

Symbol Abstraction Heads 0.20 0.08 0.08
Symbolic Induction Heads 0.42 0.34 0.36
Retrieval Heads 0.43 -0.05 -0.10

Table 5. Between-task Correlation Results. Results reflect Pearson correlation coefficient between causal mediation scores for two
separate tasks. Each column represents a correlation between two tasks. IR: identity rule; LSA: letter string analogy; VA: verbal analogy.
All correlation coefficients pass two-sided permutation tests (p < 0.05).
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(b) Successor

Figure 26. MLP Involvement in Computing More Complex Relations. For tasks that do not involve same/different relations, relational
inference cannot be performed by retrieval alone. We tested the role that the MLP layer played in computing relational transformations
for more complex relations. For the letter string analogy task, we found that causal mediation effects in MLP layers were primarily
concentrated after the appearance of retrieval heads. This result suggests that the model first retrieves the corresponding letter from the
incomplete query example, and then uses subsequent MLP layers to apply the relational transformation (i.e., successor or predecessor).

C.7. Decoding Abstract Variables

We trained a one-layer linear probe to decode abstract variables (A vs. B) based on the outputs of symbol abstraction and
symbolic induction heads. We used the heads identified in Llama-3.1 70B. For symbol abstraction heads, we used outputs
corresponding to the position of the final item in each in-context example. For symbolic induction heads, we used outputs
corresponding to the final position in the sequence. We created 500 prompts for each rule (ABA and ABB), each involving
completely disjoint token sets. We split these into a training set of 200 prompts, a validation set of 100 prompts, and a
test set of 200 prompts. Importantly, the prompts in the training and test sets involved completely disjoint sets of tokens.
This ensured that any ability to generalize from the training to test set would be based on an invariant representation of the
abstract variable, rather than the specific tokens used to create the problems. Table 6 shows the results of this analysis.

Symbol Abstraction Head Symbolic Induction Head

Decoding Test Accuracy 98.63% 98.10%

Table 6. Abstract Symbol Decoding Results. Results for linear decoder trained to predict abstract variables based on output of symbol
abstraction and symbolic induction heads in Llama-3.1 70B. Results show test accuracy. Training and test sets involved completely
disjoint token sets.

C.8. Error Analyses

We compared RSA results for symbol abstraction and symbolic induction heads in correct vs. error trials. Specifically, we
computed the Pearson correlation between the similarity matrices for these attention head outputs and the hypothesized
similarity matrix based on abstract variables. The results (Table 7) indicated that abstract variables were better represented
in the correct trials than in the error trials.

Symbol Abstraction Head Symbolic Induction Head

Correct Trials 0.52 0.63
Error Trials 0.47 0.49

Table 7. Comparisons of Abstract Variable RSA between Correct Trials and Error Trials. Scores reflect the correlation between
pairwise similarity matrix of head outputs and expected similarity pattern defined by abstract variables. These scores are significantly
higher in correct vs. error trials for both symbol abstraction heads and symbolic induction heads (permutation test, p < 0.05). RSA
correlation scores are averaged across all the statistically significant heads for each head type.

35


