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ABSTRACT

Medical ontology graphs, which typically organize and relate comprehensive
medical concepts in a hierarchical structure, are able to map a rich set of ex-
ternal knowledge onto the specific medical codes observed in electronic health
records (EHRs). Through the connectivity in ontologies, healthcare predictive
models can utilize the ancestor, descendant, or sibling information to add supple-
mentary contexts to medical codes, thereby augmenting expressiveness of EHR
representations. However, existing approaches are limited by the heterogeneous
isolation of different ontology systems (e.g., conditions vs. drugs), that different
types of ontology concepts have to be learned individually, and only the homoge-
neous ontology relationships can be exploited. This limitation restricts the existing
methods from fully leveraging the cross-ontology relationships which could sub-
stantially enhance healthcare representations. In this paper, we propose OntoFAR,
a framework that fuse multiple ontology graphs, utilizing the collaboration across
ontologies to enhance medical concept representation. Our method jointly repre-
sents medical concepts cross multiple ontology structures by performing message
passing in two dimensions: (1) vertical propagation over levels of ontology hier-
archy, and (2) horizontal propagation over co-occurring concepts in EHR visits.
Additionally, OntoFAR leverages the large language models (LLMs) pre-trained
on massive open world information to understand each target concept with its on-
tology relationships, providing enhanced embedding initialization for concepts.
Through extensive experimental studies on two public datasets, MIMIC-III and
MIMIC-IV, we validate the superior performance of OntoFAR over the state-of-
the-art baselines. Beyond accuracy, our model also exhibits the add-on compat-
ibility to boost existing healthcare prediction models, and demonstrate a good
robustness in scenarios with limited data availability.1

1 INTRODUCTION

With the ubiquity of electronic health records (EHRs) in modern healthcare systems, developing
machine learning models to analyze comprehensive medical histories from large-scale patient pop-
ulations has shown great potential in enhancing a wide range of predictive tasks (Choi et al., 2016a;
Poulain & Beheshti, 2024; Jiang et al., 2023; Moghaddam et al., 2024). However, the inherent com-
plexity of EHRs characterized by diverse, sparse, and temporal code appearance presents a challenge
for learning expressive and robust medical concept representation. A promising solution to this chal-
lange is to integrate external medical ontology graphs. to enhance representation learning.

By providing a rich domain contexts for medical codes and their interrelationships, ontologies offer
a rich source of knowledge bases to explain the medical code we observed in EHR. For instance, the
ICD ontology classifies diseases based on symptoms, complaints, and causes, while the Anatomical
Therapeutic Chemical (ATC) ontology categorizes drugs according to organ systems, ingredients,
and functions. These ontologies provide hierarchical concepts that define specific codes, such as
diabetes, with general to specific classification. By incorporating the related concepts in different
hierarchies, the models can better capture the relevance between the medical code to improve the ro-
bustness of representations, especially in challenging scenarios such as learning rare disease. There-
fore, recent studies have increasingly explored the augmentation of EHR representation through

1The implementation code is available at https://anonymous.4open.science/r/OntoFAR-35D4
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the integration of supplementary ontology graphs (Choi et al., 2017; Shang et al., 2019; Ye et al.,
2021; Zhang et al., 2020). However, a critical limitation in the current literature lies in the inability
to accommodate multiple ontology systems in a unified learning framework. Specifically, exist-
ing methods typically focus on learning each ontology as an independent structure where only the
vertical message passing (e.g., top-down concept aggregation) is facilitated. As a result, only the
intra-ontology relationship linking the homogeneous concepts (e.g., disease-to-disease) is adopted
for representing each medical code. To this end, there exists a need of fusing multiple ontologies and
introducing the cross-ontology relationship (e.g., disease-to-drug, disease-to-procedure), so that the
rich and diverse medical knowledge bases can be fully leveraged to augment EHR representations.

To address the gap of fusing diverse ontology graphs for augmenting EHR representation, we
propose a multifaceted graph learning architecture, OntoFAR (Hierarchical Ontology Fusion for
Augmenting Representation), aiming to enable graph message passing across multiple ontologies in
both vertical and horizontal dimensions. Specifically, OntoFAR facilitates (1) intra-ontology con-
cept association through vertical propagation across hierarchical levels within each ontologies, and
(2) inter-ontology concept fusion through horizontal propagation to connect co-occurring concepts
in EHR data over all the ontology levels in parallel. By introducing the horizontal message passing
as a new dimension, OntoFAR is advantageous in (1) connecting different ontologies at all levels
of hierarchy, (2) capturing concept co-occurrence at all levels of EHR granularity, and (3) mining
EHR patterns integrally with ontology structure learning. Furthermore, OntoFAR leverages the pre-
trained knowledge of large language models (LLMs) to initialize dense embeddings that can benefit
from extensive open-world information. Last, our ontology representation framework can serve as
a add-on component to most healthcare predictive models (e.g., RETAIN) for performance boosting
and robustness enhancement.

To demonstrate the significance of our work, we conducted extensive experiments on two widely
used EHR datasets, MIMIC-III and MIMIC-IV performing the task of sequential diagnosis predic-
tion, including performance enhancement analysis when integrating to EHR models, baseline com-
parisons, data insufficiency tests, and interpretative case studies. The results demonstrate that Onto-
FAR, as a plug-in medical concept encoder, significantly improves the encoding phase of healthcare
predictive models, leading to enhanced predictive healthcare performance.

2 RELATED WORK

EHR Predictive Models: The widespread adoption of electronic health records (EHRs) has fa-
cilitated the development of numerous machine learning models for predictive tasks in healthcare.
Early efforts began with pioneering sequential models (Choi et al., 2016a; Ashfaq et al., 2019), fol-
lowed by attention-based models (Choi et al., 2016b), and later transformer-based approaches (Li
et al., 2020; Choi et al., 2020; Nayebi Kerdabadi et al., 2023). More recently, advanced structures
like graph neural networks (GNNs) have been employed (Su et al., 2020; Lu et al., 2021b; Xu et al.,
2022; Yang et al., 2023b; Poulain & Beheshti, 2024), further enhancing predictive capabilities.

Ontology-augmented Medical Concept Representation Learning. These works aim to enhance
medical concept representation learning by augmenting structured EHR data with hierarchical med-
ical ontology, without using any other data modalities (e.g. unstructured clinical text). For instance,
GRAM (Choi et al., 2017) leverages the ontology hierarchy to represent a medical concept as a
convex combination of itself and its ancestors. Building on GRAM,MMORE (Song et al., 2019)
enhances GRAM by enabling multiple representations for each parent concept, addressing discrep-
ancies between EHR data and medical ontologies. KAME (Ma et al., 2018) further improves pre-
diction accuracy by incorporating ontology knowledge throughout the entire prediction process on
top of code representation learning. Despite improved performance from GRAM-based methods,
they only consider the unordered ancestors of a concept, limiting its expressibility by not fully lever-
aging the hierarchy. HAP (Zhang et al., 2020) overcomes this limitation by propagating attention
hierarchically across the entire ontology, enabling a medical concept to adaptively learn its embed-
ding from all concepts, not just its ancestors. ADORE (Cheong et al., 2023) utilizes the relational
ontology SNOMED to integrate multi-source medical codes, whereas KAMPNet (An et al., 2023)
employs contrastive learning to achieve effective EHR representation learning.

Multi-modal Data Augmentation for Medical Concept Representation Learning. GCL (Lu
et al., 2021a) is a collaborative graph learning model that jointly learns patient and disease repre-
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Figure 1: OntoFAR consists of three main steps: (1) Meta-KG construction, which hierarchically
join the heterogeneous medical concepts from multiple ontology systems. Meta-KG has two dimen-
sions: the vertical ontology graphs and the horizontal co-occurrence graphs. The initialization of
concept embeddings is done through LLM prompting and dense retrieval. (2) Horizontal Massage
Passing (HMP), which connect concept nodes across ontology graphs at different levels based on
concept co-occurrence in EHR visits. HMP can be facilitated by either regular graph network (e.g.,
GAT) or hypergraph network (e.g., HAT). and (3) Vertical Massage Passing (VMP), where concept
nodes in the same ontology graph are firstly propagated in bottom-up fashion through HGIP mod-
ule, secondly propagated in top-down direction using GRAM module. The resulting embedding of
medical codes at the lowest level are eventually used in downstream predictive tasks.

sentations, incorporating unstructured text with attention regulation. GRAPHCARE (Jiang et al.,
2023) extracts information from LLMs and external biomedical knowledge graphs (KGs) to build
patient-specific KGs. MedPath (Ye et al., 2021) enhances health risk prediction by incorporating per-
sonalized information by extracting a personalized knowledge graph (PKG) for each patient from
SemMed web. RAM-EHR (Xu et al., 2024) improves EHR predictions by retrieving external tex-
tual knowledge for medical concepts from multiple online sources, augmenting the local model
co-trained with consistency regularization.

3 METHODOLOGY

3.1 NOTATION AND PROBLEM DEFINITION

EHR Dataset. Denoted by D = {Xj | j ∈ J }, an EHR dataset consists of the medical histories
from a collection of patients J . For each patient, his or her history Xj consists of a sequence
of Tj clinical visits thereby Xj = {Vt}

Tj

t=1. Each visit Vt is a set of Nt medical code thereby
Vt = {ci}Nt

i=1, where each code c can indicate a diagnosis (dx), a prescription (rx), or a procedure
(px). Each medical code c can also be associated with a descriptive name S(c), which is typically a
short text snippet provided by ontology.

Medical Ontology. A medical ontology is a hierarchical tree-like structure that organizes clinically
related concepts from general categories at the upper levels, to specific code at the lower levels2. For
different systems of medical concepts (e.g. diseases vs. drugs), there exists a separated ontology
(ICD vs. ATC). A medical concept in a ontology is denoted as c(l)i ∈ c(l), where l ∈ [1 : L] indexes
the ontology level (from the highest to lowest), i ∈ [1 : N (l)] indexes the concept at the l-th level,
and c(l) represents the set of all concepts at level l. Last, we define the function Pk(c

(l)
i ), which

2A medical code in EHRs is also a “concept” locates at leaf nodes in ontologies.
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maps a concept c(l)i at level l to its ancestor or descendant concepts at level k. If k > l, it returns the
set of descendant; if k < l, it returns the ancestor; and if k = l, it returns the concept itself.

Sequential Diagnosis Predictive Task. Given a patient’s sequence of previous visits, Xj =
{V1, V2, . . . , VTj

}, the objective is to predict the diagnosis codes for the next visit VTj+1.

3.2 MODEL OVERVIEW

We present an overview of our proposed method, OntoFAR, a hierarchical multi-ontology fusing
encoder of medical concepts designed to enhance the representation of EHR data. The entire frame-
work depicted in Figure 1 is summarized in three key steps:

Step 1: Formulating the Meta-KG denoted by G, a heterogeneous knowledge graph (KG) that joins
multiple ontology graphs through each level of hierarchy. The initialization of node embeddings in
Meta-KG is gained through LLM prompting and dense retrieval. This Meta-KG has L horizontal
inter-ontology parallel graphs at each level for horizontal massage passing, and two vertical inter-
ontology graphs for each ontology, one bottom-up and one top-down, for vertical massage passing.

Step 2: Carrying out Horizontal Message Passing (HMP) over inter-ontology concept edges using
EHR information. We use two options to construct horizontal graphs in Meta-KG: (1) regular graph
structure where edges are defined based on the co-occurrence probabilities of concepts; and (2)
hypergraph structure where each edge links all the concepts in a EHR visit.

Step 3: Performing Vertical Message Passing (VMP) over intra-ontology concept edges derived
from parent-child relationships in ontology hierarchy. Within each ontology system, the process
begins with a bottom-up propagation which passes up the embedding of each concept to its ances-
tor first, then concludes with top-down propagation where concept embeddings are passed down
yielding the final embeddings for leaf nodes using GRAM (Choi et al., 2017).

3.3 STEP 1: META-KG INITIALIZATION WITH LLM

We use embedding x
(l)
i ∈ Rd to represent each medical concept c(l)i in the Meta-KG. To initialize

x
(l)
i for each concept, we extract the concept name associated with concept code c

(l)
i , denoted by

S(c(l)i ). Following this, we develop a prompting strategy specifically tailored for EHR description
to retrieve embeddings from LLMs for each concept. Impirically, the best results came from the
following prompting (Pr) strategy:

Pr =


“{type} code {c(l)i } represents {S(c(l)i )}, which is a general medical concept.” if l = 0

“{type} code {c(l)i } represents {S(c(l)i )}. It is a specific medical concept under
the categories of {P l−1(c

(l)
i )}({S(P l−1(c

(l)
i ))}, . . . , {C1(c(l)i )}({S(P1(c

(l)
i ))}).” if l > 0

where “type” refers to name of the ontology concept system (e.g. ICD9 diagnosis/procedure, and
ATC drug). Therefore, for each code, we first provide a descriptive text for the code itself and
then mention its broader concept categories or EHR ancestors by locating them at higher levels of
the ontology using the mapping function P . The code type can be a diagnosis, prescription, or
procedure. An example of an LLM prompt for a diagnosis code is as follows:

ICD9 Diagnosis 250.7: Prompt: “ICD9 diagnosis code 250.7 represents Diabetes with peripheral
circulatory disorders. It is a specific medical concept under the broader categories of 250 (Diabetes
mellitus), 249-259 (Diseases of Other Endocrine Glands), and 240-279 (Endocrine, Nutritional,
and Metabolic Diseases, and Immunity Disorders).”

We employ the OpenAI off-the-shelf LLMs, GPT text-embedding-3-small/text-embedding-3-large
(OpenAI, 2023), denoted asLLM to generate a semantic embedding, containing clinical knowledge
and context background from LLMs. We initialize the vector representation x

(l)
i ∈ Rd as follows:

x
(l)
i = LLM(Pr(c(l)i )), l = 1, . . . , L, i = 1, . . . , N (l) (1)

3.4 STEP 2: INTER-ONTOLOGY HORIZONTAL MESSAGE PASSING (HMP)

Given Meta-KG, we aim to learn horizontal graphs where medical concepts are connected within
or across different ontologies at all levels. Through the co-occurrence relationship observed from

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

EHR visits, this step will utilize the edges that connected the concepts appeared in the same visits
and perform graph message passing using GNNs. Horizontal graph edges at the higher levels of
hierarchy will be created based on the ancestor concepts that are mapped from the observed codes at
the lowest level. This operation will achieve two key goals: 1) fusing diagnosis, drug, and procedure
ontologies to capture heterogeneous code interactions, and 2) utilizing information at all levels of
granularity for EHR representation. While leaf-level EHR codes offer detailed but sparse insights,
mapping to higher-level concepts reduces the graph complexity, allowing us to leverage both fine-
grained and coarse-grained information simultaneously for representation learning.

To construct graph edges based on co-occurrence information, we first create a leaf (child) level
co-occurrence count matrix Q(L) ∈ RN(L)×N(L)

, where Qij denotes the number of occurrences
of leaf code c

(L)
j given the presence of leaf code c

(L)
i within a hospital visit. We then derive the

co-occurrence matrices at higher levels by aggregating the co-occurrence counts of their children as
follows:

Q(l)
pq =

∑
c
(L)
i ∈C(p)

∑
c
(L)
j ∈C(q)

Qij , l = 1, . . . , L (2)

where C(p) = PL(c
(l)
p ) and C(q) = PL(c

(l)
q ) denote the sets of leaf-level children of parent-level

nodes c
(L)
p and c

(L)
q , respectively. Next, we derive the co-occurrence conditional probability ma-

trix P (l) from the count matrix Q(l) by normalizing each entry with the total occurrences of the
corresponding node p, expressed as: P

(l)
pq = Q

(l)
pq /

∑
j Q

(l)
pj , for l = 1 : L. The co-occurrence

probability matrix is then used to define edges in the graph. Specifically, an edge between nodes p
and q is included if the co-occurrence probability exceeds a threshold τ (l). This binarization gen-
erates the adjacency matrix A(l)

h from P (l) as: A(l)
h = I(P (l) ≥ τ), where I(·) is the indicator

function, returning 1 if true and 0 otherwise. Consequently, we construct the horizontal graphs
G(l)h = (V(l), E(l)), where V(l) = c(l) and E(l) = A(l)

h , with N (l) nodes and M (l) edges at the l-th
level of the ontology. Note that since P

(l)
pq ̸= P

(l)
qp in general, A(l)

h is not necessarily a symmetric
matrix. Therefore, G(l)h represents a directed graph. We employ a regular graph neural operator, such
as GAT (Veličković et al., 2017) leveraging the multihead attention mechanism, to encode medical
codes in each level:

X
(l)
(k+1) = GAT

(
X

(l)
(k),A

(l)
h

)
, l = 1, . . . , L (3)

where X
(l)
(k+1) ∈ RN(l)×d and X

(l)
(k) ∈ RN(l)×d denote the node features at the (k + 1)-th and k-th

layers of G(l)h , respectively. Alternatively, for the leaf level of the ontology (l = L), we can utilize
a hypergraph structure due to its robust capability to capture the high-order complex relationships
between visits and medical codes (Xu et al., 2023; 2024; Cai et al., 2022). In this approach, visits
are treated as hyperedges E(L) = V , and leaf-level medical codes are treated as nodes V(L) = c(L).
This allows us to construct G(L)

h = (V(L), E(L)) at the leaf level of the ontology with N (L) nodes
and M (L) hyperedges. We employ the Hypergraph Attention Network (HAT) (Bai et al., 2021) to
encode this leaf-level hypergraph:

X
(L)
(k+1) = HAT

(
X

(L)
(k) ,H

(L)
)

(4)

Here, X(L)
(k+1) ∈ RN(L)×d and X

(L)
(k) ∈ RN(L)×d denote the node features in the (k + 1)-th and k-th

layers of G(L)
h , respectively. H(L)

h ∈ RN(L)×M(L)

is the incidence matrix mapping nodes to edges.

We avoid using hypergraphs for the ancestral levels, which involve fewer nodes. Employing hyper-
graphs at these levels would necessitate defining hyperedges with visits, resulting in an excessive
number of hyperedges relative to the fewer nodes. This leads to a dense graph where nodes are
redundantly connected, causing embeddings to become overly similar, despite representing distinct
entities. Instead, we employ a regular graph structure, allowing for one-to-one edges based on co-
occurrence, with edge inclusion controlled by a predefined co-occurrence probability threshold.

3.5 STEP 3: INTRA-ONTOLOGY VERTICAL MESSAGE PASSING (VMP)

Also in Meta-KG, we aim to utilize the vertical graphs which are the hierarchies from each individual
ontology. The message passing over ancestor to descendant levels, enables the information sharing
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across ontology concepts at different levels of granularity. Inspired by ideas of attention propagation
in (Zhang et al., 2020) and the “two-round propagation” approach in the belief propagation algorithm
(Pearl, 2022), we design the VHG module, a two-round progressive graph-based encoding technique
that can integrate information across all ontology levels.

First round, the bottom-up propagation, referred to as Hierarchical Graph Information Propagation
(HGIP), adaptively updates each concept node in the ontology as a convex combination of itself
and its child concepts using multi-head attention mechanism. This process begins by constructing
a series of directed vertical subgraphs consisting of a pair of adjacent ontology levels, starting with
G(L−1)
v (connecting level L to L − 1) and continuing up to G(1)v (connecting level 2 to level 1).

Edges in each subgraph are defined by parent-child relationships, with directed edges from nodes
in level l to their parent nodes in level l − 1, forming the adjacency matrix A(l)

v for the vertical
subgraph G(l)v . We then apply a graph attention operator, such as GAT, to each subgraph, encoding
the hierarchical structure in a bottom-up manner. Starting with G(L−1)

v , parent node embeddings in
level L− 1 are updated by aggregating information from their children in level L using multi-head
attention. These updated results are then incorporated into G(L−2)

v , where the child embeddings are
the updated parent nodes from G(L−1)

v . This sequential process continues to the root level subgraph
G(1)v , propagating information throughout the ontology. HGIP is formally expressed as:

For s = 0, . . . , L− 1 : [X
(L−s)
(k+1) ,X

(L−s+1)
(k+1) ] = GATG(L−s)

v

(
[X

(L−s)
(k) ,X

(L−s+1)
(k) ],A(L−s)

v

)
(5)

where X
(l−s)
(k) ∈ RN(l−s)×d and X

(l−s+1)
(k) ∈ RN(l−s+1)×d represent the embeddings of parent and

child nodes at the (l − s)-th and (l − s+ 1)-th level of the ontology in the layer of G(l−s)
v .

Instead of defining a single graph for the entire ontology, we represent it as a series of sequential sub-
graphs, each corresponding to a pair of adjacent levels. This approach firstly ensures that each parent
node in the hierarchy contains the curated distilled information of all its descendants in lower levels.
Second, it allows us to effectively control the order of node embedding updates across the main
graph. This enhances the bottom-up HAP method (Zhang et al., 2020) in two ways: 1) it employs
a sequential GNN structures for efficient, parallel node updates, and 2) it integrates a multi-head
attention mechanism to compute attention weights, enabling expressive multi-view representations
and addressing inconsistencies between EHR co-occurrences and ontologies (Song et al., 2019).

Second round, we apply GRAM (Choi et al., 2017) to compute the final representation of the leaf-
level nodes by adaptively aggregating information from their ancestors using attention mechanism.
The final representation zi ∈ Rdc of each leaf-level code c

(L)
i , where i = 1 : N (L), is computed as

a convex combination of child embedding x
(L)
i and all its ancestors’ embeddings:

GRAM : zi =

L∑
l=1

αilP l(x
(L)
i ), αil ≥ 0, for l = 1, . . . , L (6)

where αil ∈ R+ denotes the attention weight for the code embedding P l(x
(L)
i ) in computing zi.

The attention weight αil is computed using the softmax function as:

αil =
exp(f(x

(L)
i ,P l(x

(L)
i ))∑L

k=1 exp(f(x
(L)
i ,Pk(x

(L)
i ))

(7)

where f(a, b) is a multi-layer perceptron that produces a scalar energy representing the raw attention
between a and b. The softmax function normalizes the energies into attentions between 0 and 1.

3.6 ENHANCING DOWNSTREAM TASK WITH ONTOFAR

We introduce OntoFAR as a complementary medical concept representation learning module. The
final concept representations produced by OntoFAR, z1, z2, . . . , zN(L) , are concatenated to form
the embedding matrix Z ∈ Rd×N(L)

, where zi is the i-th column of Z. This embedding matrix
will be used in a downstream task, such as diagnosis prediction. Formally, for sequential diagnosis

6
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prediction we have f : ({V1, V2, . . . , Vt})→ ŷt+1, where ŷt+1 ∈ RN
(L)
dx is a multi-hot vector, with

N
(L)
dx denoting the total number of diagnosis codes:

Z = [z1, z2, . . . , zN(L) ]← OntoFAR(x(L)
1 ,x

(L)
2 , . . . ,x

(L)

N(L))

v1,v2, . . . ,vt = Z[u1,u2, . . . ,ut]

h1,h2, . . . ,ht = Encoder(v1,v2, . . . ,vt)

hp = Aggregate(h1,h2, . . . ,ht)

ŷt+1 = Sigmoid(Whp + b)

(8)

For each visit Vt, we obtain a representation vt ∈ Rd by multiplying the final embedding matrix Z

with a multi-hot vector ut = {0, 1}N
(L)

, which represents clinical events existence in the visit. The
sequence of visit representations {v1,v2, . . . ,vt} serves as input to a main encoder, Encoder(·),
such as a Transformer or Retain, producing the encoded hidden embedding ht for the t-th visit.
The patient representation hp ∈ Rd is derived by aggregating visit embeddings using a function,
Aggregate(·), which may be summation, averaging, or attention-pooling. The final prediction is
computed by applying a Sigmoid function to the linear transformation of hp, with W ∈ RN(L)×d

and b ∈ RN(L)

as the weight and bias, respectively. The output ŷt+1 is the predicted vector in
RN(L)

. The loss at each timestamp is calculated using cross-entropy between the ground truth yt+1

and predicted visit ŷt+1. Algorithm 1 in Appendix A.1 outlines the OntoFAR process.

4 EXPERIMENTAL SETTING

Datasets: We utilize two publicly available datasets: MIMIC-III (Johnson et al., 2016) and
MIMIC-IV (Johnson et al., 2023). MIMIC-III (2001–2012) uses ICD-9 codes, while MIMIC-IV
(2008–2019) includes both ICD-9 and ICD-10 and provides more comprehensive longitudinal data.
Prescription codes in both datasets follow the National Drug Code (NDC) system, which we map to
the Anatomical Therapeutic Chemical (ATC) Classification. Table 1 presents the cohort statistics.
This task is predicting ICD-9 diagnosis codes for the next visit (4,283 unique codes in MIMIC-III,
8,818 in MIMIC-IV). We present experiments on mortality and readmission prediction in Appendix
A.2.

Table 1: Data statistics for MIMIC-III and MIMIC-IV
Metric MIMIC-III MIMIC-IV Metric MIMIC-III MIMIC-IV
# Samples 12,430 25,028 Conditions/sample 29.02 66.84
# Patients 7,515 18,829 Drugs/sample 70.10 118.17
# Visits 12,430 25,028 Unique drugs 471 510
# Labels/ sample 13.32 11.89 Procedures/sample 7.01 5.77
# Unique conditions (ICD) 4,283 7,054 Unique procedures 1328 2033

Implementations: We report the mean and confidence intervals of the results after 5-fold cross-
validation experimentation. OntoFAR uses 4 attention heads for horizontal graphs, 2 for vertical
graphs, dropout rates of 0.1 and 0.2, respectively, and a shared embedding dimension of d = 128
for all nodes in the Meta-KG. We use a 3-level hierarchy (L = 3) for the ICD-9 diagnosis, ICD-9
prescription, and ATC drug ontologies in our experiments. Our implementation is compatible with
PyHealth (Yang et al., 2023a).

Evaluation Metrics: (1) AUPRC: Measures the area under the precision-recall curve, reflecting
the trade-off between precision and recall across different thresholds. (2) Acc@k: The number
of correct diagnosis codes among the top k predictions divided by min(k, ∥yt∥) where ∥yt∥ is the
number of labels in the (t+1)-th visit. (3) AUROC: Measures the area under the receiver operating
characteristic curve, which captures the trade-off between true positive and false positive rates. (4)
F1-score: The harmonic mean of precision and recall, providing a balance between the two.

5 EVALUATION RESULTS

We investigate the following research questions: : RQ1 Does our method improve various EHR
models when added as a medical concept encoder? RQ2 How does OntoFAR compare to existing
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Figure 2: Performance enhancement evaluation before and after integrating OntoFAR into three
diagnosis prediction models, using the MIMIC-III and MIMIC-IV datasets.

medical code encoders? RQ3 What is the impact of each OntoFAR’s component on performance?
RQ4 How does our method can alleviate the limitations of data insufficiency?

5.1 RQ1: PERFORMANCE ENHANCEMENT ANALYSIS

We propose that incorporating our medical concept encoder, OntoFAR, into existing EHR machine
learning predictors to boost downstream performance through concept representation enhancement.
To verify this, we integrated OntoFAR into three various predictive models: (1) Transformer
(Vaswani, 2017), which leverages the power of the self-attention mechanism; (2) RETAIN (Choi
et al., 2016b), an RNN-based model for EHRs that utilizes a two-level reverse time attention mecha-
nism; and (3) TCN (Bai et al., 2018), a temporal convolutional network that uses causal convolutions
to capture temporal dependencies in sequential data. We conducted experiments with each model
both with and without OntoFAR. Figure 2 presents grouped bar plots that illustrate the compara-
tive results, demonstrating that OntoFAR consistently improves predictive accuracy across all four
models, validating its effectiveness in learning superior medical concept representations.

5.2 RQ2: BASELINE COMPARISON

We compare our method with four existing medical ontology structure encoders: GRAM (Choi
et al., 2017), MMORE (Song et al., 2019), KAME (Ma et al., 2018), and HAP (Zhang et al., 2020).
These encoders are designed for ontology-based augmentation of EHR representation and can also
be added to predictive models as an extension to boost performance. We used the Transformer as
the main diagnosis prediction model and tested five setups: (1) the main model without any medical
concept encoder; (2) the main model with each of the four existing encoders; and (3) the main model
with OntoFAR. We then compare the performance of each setup. General performance section in
table 2 shows that OntoFAR outperforms the existing encoders in enhancing the predictive per-
formance of the Transformer, demonstrating its effectiveness as a complementary medical concept
encoder. We also test two different graph encoding techniques for G(L)

h . Both techniques outper-
formed baselines: HAT excelled on MIMIC-IV with a larger search space (8,818 codes), while GAT
performed best on MIMIC-III with a narrower search space (4,283 codes).

Table 2: Performance comparison on MIMIC-III and MIMIC-IV based on PR-AUC, F1 score, and
Acc@20. The reported values include means and 95% confidence intervals.

D Model General Performance Label Category Performance (AUPRC)
PR-AUC F1 Acc@20 0-25% 25-50% 50-75% 75-100%

M
IM

IC
-I

V

Transformer 28.83±0.35 22.87±0.25 39.83±0.60 28.95±0.38 52.22±0.29 56.23±1.5 67.99±1.6

GRAM 29.96±0.45 24.31±0.09 41.24±0.46 30.11±0.46 53.12±0.32 55.51±2.3 68.99±0.27

MMORE 30.06±0.25 25.11±1.60 41.46±0.32 30.15±0.30 53.37±0.55 57.97±1.09 68.07±1.3

KAME 29.13±0.32 23.39±0.32 40.28±0.32 28.84±0.32 52.22±0.32 55.66±0.32 68.08±0.32

HAP 30.01±0.23 23.38±1.30 41.40±0.34 30.09±0.26 53.58±1.0 58.32±2.4 70.30±1.0

OntoFARw/ GAT 30.97±0.09 26.83±0.09 42.89±0.07 31.03±0.02 55.11±0.97 58.79±0.86 71.35±0.29

OntoFARw/ HAT 31.14±0.79 27.11±0.06 42.60±0.79 31.10±0.81 55.86±1.0 59.62±0.49 69.88±0.29

M
IM

IC
-I

II

Transformer 28.23±0.24 22.36±0.33 38.03±0.34 28.07±0.38 54.20±0.29 50.62±1.5 74.14±0.10

GRAM 28.99±0.34 23.62±0.48 39.14±0.52 28.84±0.41 54.58±1.3 50.58±0.34 74.44±0.77

MMORE 29.11±0.38 23.67±0.70 39.14±0.53 28.87±0.43 54.92±0.87 51.29±0.25 74.42±0.25

KAME 28.52±0.32 23.18±0.09 38.36±0.45 28.19±0.38 55.13±0.16 50.09±0.32 73.79±0.23

HAP 29.28±0.41 23.25±0.88 39.46±0.55 29.10±0.45 55.11±0.99 52.19±0.27 76.28±0.24

OntoFARw/ GAT 30.43±0.37 26.25±0.30 40.80±0.40 30.18±0.03 56.23±0.03 52.93±0.04 76.97±0.05

OntoFARw/ HAT 30.27±0.38 26.05±1.00 40.52±0.54 30.08±0.46 55.67±0.14 53.22±0.3 76.64±0.23
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Table 3: Ablation study of OntoFAR using MIMIC-III and MIMIC-IV datasets. The reported values
include means and 95% confidence intervals.

Model MIMIC-III MIMIC-IV
PR-AUC F1 Acc@20 PR-AUC F1 Acc@20

w/o HMP 29.33±0.33 24.99±0.68 39.47±0.44 30.30±0.41 26.04±1.00 41.78±0.54

w/o HGIP 29.83±0.43 24.77±0.47 40.20±0.39 29.71±0.33 25.13±0.44 41.38±0.45

w/o LLM 29.43±0.31 24.68±0.52 39.43±0.38 30.20±0.40 25.18±0.70 41.36±0.42

OntoFAR 30.43±0.37 26.25±0.30 40.80±0.40 31.14±0.79 27.11±0.06 42.60±0.79

5.3 RQ3: ABLATION STUDY

As shown in Table 3, we conduct an ablation study to evaluate OntoFAR by removing key compo-
nents: (1) w/o HMP: no horizontal message passing, (2) w/o HGIP: no hierarchical graph infor-
mation propagation in vertical message passing, and (3) w/o LLM: no LLM for concept embedding
initialization. All ablated versions showed performance drops, with w/o HMP removing ontology
fusion, w/o HGIP weakening the use of hierarchical relationships for infomation sharing, and w/o
LLM reducing domain knowledge integration. These results highlight the importance of each com-
ponent in boosting model performance.
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Figure 3: Performance evaluation across code frequency categories before and after integrating
OntoFAR to three diagnosis prediction models, using the MIMIC-III and MIMIC-IV datasets.
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Figure 4: Performance evaluation across different training set sizes using the MIMIC-III and
MIMIC-IV datasets. An asterisk (*) next to each encoder indicates the integration of OntoFAR.

5.4 RQ4: DATA INSUFFICIENCY ANALYSIS

To assess our model’s robustness under data insufficiency, we conducted two experiments:

Experiment 1: Performance on Predicting Rare Medical Codes. We sort all diagnosis labels
in the training set by frequency and divid them into four groups: 0-25%, 25-50%, 50-75%, and
75-100% percentiles, where the 0-25% group represents the rarest medical codes and the 75-100%
group represents the most common. These varying frequencies can reflect different levels of data
insufficiency. To evaluate our model’s effectiveness in predicting rare medical codes, we compare its
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Figure 5: Performance comparison of baseline integration into the Transformer model across differ-
ent training set sizes using the MIMIC-III and MIMIC-IV datasets.

performance across these groups. Figure 3 illustrates the performance improvement of integrating
OntoFAR into each model based on PRAUC, revealing a substantial boost, especially for rare codes.

Figure 6: Case study: An example demon-
strating how OntoFAR learns representation for
a ICD-9 medical concept 428.0 representing
“Congestive heart failure” or “CHF”.

Right side of Table 2 further compares our
method against other medical concept encoder
baselines for rare code prediction, showing that
OntoFAR consistently outperforms, particularly
when data is insufficient for learning robust rep-
resentations.

Experiment 2: Varying Training Data Size.
In the second experiment, we vary the size of
the training dataset to evaluate the model’s per-
formance under limited data conditions. Fig-
ure 4 shows that even with reduced training
data, our model still improves the performance of
EHR models significantly. Additionally, Figure
5 demonstrates that our model consistently out-
performs its components in data-scarce scenarios,
confirming its superiority and effectiveness.

5.5 CASE STUDY ANALYSIS

Figure 6 illustrates how OntoFAR learns the
representation of the ICD-9 code 428.0, which
denotes “Congestive heart failure, unspecified”
(CHF), through a two-dimensional massage pass-
ing paradigm for rich medical concept represen-
tations. Vertically, OntoFAR retrieves all ances-
tors of this code across levels, and horizontally,
it gathers co-occurring codes (red for procedures,
green for diagnosis, and blue for drugs) for each
parent and the target code across all ontologies. The figure shows the extracted sub-KG for ICD-
9 code 428.0 within the Meta-KG. Representation learning begins by initializing each node using
LLM prompting and embedding retrieval. OntoFAR then performs horizontal propagation, apply-
ing graph attention to aggregate information from neighboring nodes across all levels. Next, the
HGIP propagates information upward, updating each parent node using its children’s embeddings
via graph attention. Finally, the node embedding is refined through a convex combination of its
own representation and those of its ancestors. The weights for all graph edges during horizontal
and vertical propagation are learned through attention techniques, with edge thickness in the figure
indicating the relative attention assigned to each edge.

6 CONCLUSION

We introduced OntoFAR, a multi-ontology fusion framework to augment medical concept represen-
tation in EHR models. OntoFAR extracts cross-ontology relationships through message passing in
two dimensions: vertical and horizontal, and initializes concept embeddings with LLM prompting
and dense retrieval. The proposed framework improves EHR prediction accuracy over state-of-the-
art methods. Additionally, we showcase the robustness of OntoFAR in data-limited scenarios and
validate its add-on compatibility to enhance existing healthcare models.
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A APPENDIX

A.1 ONTOFAR OPTIMIZATION PROCESS

Algorithm 1 presents the OntoFAR training process. Though it assumes stochastic gradient updates
for clarity, it can be readily extended to other gradient-based optimization methods, such as mini-
batch.

Algorithm 1 OntoFAR Optimization
1: LLM Embedding Retrival for Meta-KG Initialization: Initialize the node embeddings inside Meta-KG

with LLM prompting using Eq. 1
2: Meta-KG Edge Construction: (1) For HPG construct edges based on co-occurrence information. (2) For

VHG construct edges using parent-child relationships.
3: repeat
4: Xj ← random patient from dataset D
5: for visit Vt in Xj do
6: for code ci in Vt do
7: Refer to G to find its ancestors in all ontology levels (l = 1 : L) and their neighboring nodes
8: Horizontal Massage Passing (HMP): Update the embeddings of the nodes and its ancestors

in each horizontal graph G(l)h by aggregating neighboring nodes or hyperedges (Eq. 4, Eq. 3).
9: Vertical Massage Passing (VMP): Use the HGIP module to (1) propagate information

from the child node to its parents using the chain of sequential subgraphs Glv (Eq. 5). (2) derive
the final node representation zi using GRAM (Eq. 6).

10: end for
11: Utilize final code representations to perform the downstream task (Eq. 8)
12: end for
13: Calculate the prediction loss and update the network parameters
14: until convergence

A.2 COMPLEMENTARY EXPERIMENTAL RESULTS

Table 4 presents a performance comparison of OntoFAR with baseline models for the tasks of mor-
tality prediction and readmission prediction using the MIMIC-III dataset. Additionally, Table 5
provides a comparison of baseline models for the diagnosis prediction task, incorporating a broader
set of baselines compared to Table 2, also using the MIMIC-III dataset. MIMIC-IV results will be
added soon.
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Table 4: Prediction Performance for Hospital Readmission and Mortality using MIMIC-III

Model Task 1: Mortality Prediction Task 2: Readmission Prediction

PRAUC (%) ROCAUC (%) PRAUC (%) ROCAUC (%)

Transformer (Vaswani, 2017) 10.17 56.91 66.22 62.75
retain (Choi et al., 2016b) 11.06 57.66 68.14 63.99
GCT (Choi et al., 2020) 10.48 58.99 68.16 65.48
TCN (Bai et al., 2018) 10.77 57.78 68.27 64.28
GRASP (Zhang et al., 2021) 10.75 58.72 69.70 65.24
StageNet (Gao et al., 2020) 10.62 57.79 68.20 65.22
AdaCare Ma et al. (2020) 11.00 58.77 68.73 64.86
Deepr (Nguyen et al., 2016) 11.18 59.74 69.63 65.59
GRAM (Choi et al., 2017) 12.27 58.50 68.32 64.36
MMORE (Song et al., 2019) 12.37 59.77 68.13 64.60
KAME (Ma et al., 2018) 12.15 57.98 67.89 63.69
HAP (Zhang et al., 2020) 11.15 57.10 67.82 63.85
ARCI (Hadizadeh Moghaddam et al., 2024) 11.93 60.19 68.03 65.17
HyTransf (Xu et al., 2023) 12.31 57.63 67.51 63.30
OntoFAR 14.39 63.69 70.41 66.15

Table 5: Performance comparison on Sequential Diagnosis Prediction based on PR-AUC, F1 score,
and Acc@20.

D Model General Performance Label Category Performance (AUPRC)

PR-AUC F1 Acc@20 0-25% 25-50% 50-75% 75-100%

M
IM

IC
-I

II

Transformer (Vaswani, 2017) 28.23 22.36 38.03 28.07 54.20 50.62 74.14
GRAM (Choi et al., 2017) 28.99 23.62 39.14 28.84 54.58 50.58 74.44
MMORE (Song et al., 2019) 29.11 23.67 39.14 28.87 54.92 51.29 74.42
KAME (Ma et al., 2018) 28.52 23.18 38.36 28.19 55.13 50.09 73.79
HAP (Zhang et al., 2020) 29.28 23.25 39.46 29.10 55.11 52.19 76.28
HyTransformer (Xu et al., 2023) 28.54 24.17 38.86 28.48 53.64 52.47 76.79
ARCI (Hadizadeh Moghaddam et al., 2024) 29.19 25.84 39.06 28.88 53.95 52.49 76.61
Model (w/ GAT) 30.43 26.25 40.80 30.18 56.23 52.93 76.97
Model (w/ HAT) 30.27 26.05 40.52 30.08 55.67 53.22 76.64
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