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Abstract
We have developed a semi-automatic annotation tool – “CVL

Annotator” – for bounding box ground truth generation in videos.
Our research is particularly motivated by the need for reference
annotations of challenging nighttime traffic scenes with highly dy-
namic lighting conditions due to reflections, headlights and halos
from oncoming traffic. Our tool incorporates a suite of differ-
ent state-of-the-art tracking algorithms in order to minimize the
amount of human input necessary to generate high-quality ground
truth data. We focus our user interface on the premise of minimiz-
ing user interaction and visualizing all information relevant to the
user at a glance. We perform a preliminary user study to measure
the amount of time and clicks necessary to produce ground truth
annotations of video traffic scenes and evaluate the accuracy of
the final annotation results.

Introduction
In the context of computer vision and machine learning al-

gorithms for assisted/autonomous driving, the need for training
and evaluation data in the automotive industry is increasing sig-
nificantly. The goal is to ultimately deploy autonomous vehicles
into traffic that is subject to unpredictable environmental influ-
ences, such as changing weather and lighting conditions. Various
scientific groups and companies have created and published road
scene ground truth datasets (e.g. Argoverse [2], CityScapes [3],
BDD100K [4], KITTI [7], CamVid [5], D2-City [6], VIPER [8])
to further research on autonomous vehicles and machine learning.

The work presented in this paper is embedded in the CarVi-
sionLight (CVL) project, which aims to develop an object de-
tection algorithm for night scenes with temporal consistency (see
also [1]). To achieve this goal with a supervised machine learning
algorithm, we defined the following requirements, which a train-
ing dataset should ideally meet:

• non-urban roads (e.g. highway or country roads)
• nighttime
• at least 20FPS temporal density
• realistic lighting in a real-world environment.

Table 1 gives an overview of various datasets (both road scenes
as well as general scenes) we have reviewed. Several datasets
(e.g. GOT10k [18], VOT2017 [19], VIPER [8], D2-City [6],
BDD100K [4]) have the temporal density needed for our appli-
cation. While temporally dense night scenes are included in some
of them ([2], [6]), we noticed a shortage of footage from non-
urban roads. In the case of snythetically generated videos, such
as in ([8]), we observed a lack of natural lighting variability (high
dynamic contrast, glaring, halos or reflections).

Dataset Non-Urban Night ≥ 20 FPS Real
Argoverse [2] 7 3 3 3

BDD100k [4] 3 3 7 3

CamVid [5] 7 7 7 3

CityScapes [3] 7 7 7 3

D2-City [6] 7 3 3 3

KITTI [7] 3 7 3 3

VIPER [8] 3 3 3 7

GOT10k [18] 7 7 3 3

VOT2017 [19] 7 7 3 3

Table 1: Overview of datasets regarding selected require-
ments.

From our investigation of these existing datasets we con-
cluded that currently there is no publicly available ground truth
dataset which fully meets our requirements. This motivated
the development of an annotation tool that supports the efficient
ground truth generation for self-recorded nighttime traffic scenes.
The further parts of this paper are organized as follows. The Re-
lated Work section outlines publicly available video annotation
tools. In the subsequent Method section, we review the design
process of our newly developed CVL Annotator (CVLA) tool in-
cluding considerations on tracker selection and user interface (UI)
design. In the Results section, we present the findings of our pre-
liminary user study, comparing CVLA to the Scalabel annotation
tool [4] regarding annotation accuracy and time. Finally, in the
last section of this paper, we discuss these results and suggest
possible future work.

Related Work
In order to increase the speed of video data ground truth an-

notation, the scientific community has already put a lot of effort
developing tools and algorithms to help in this matter. Notable
video annotation tools include VATIC [9], ViTBAT [12], CVAT
[10], Scalabel [4] or BeaverDam [20]. In this section, we take a
look at the platform, user interface and data propagation choices
of these tools.

Platform
With the exception of ViTBAT, the aforementioned tools

work as web applications with the browser acting as the user fac-
ing front end and a web server acting as the back end, keeping
track of all of the data. The focus on web technologies is primar-
ily rooted in the fact that annotation tasks can then be accessed
through a simple URL and can therefore be included into crowd-
sourcing services such as Mechanical Turk. ViTBAT, on the other
hand, chose to offer a tool that runs locally on the annotator’s ma-
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chine, removing the latency associated with network connections
and thus theoretically enabling higher interactive speeds.

User Interface
Regarding the user interfaces of video annotation tools, we

found that Shen has done an excellent analysis in his thesis for
the BeaverDam tool [20]. Here are his main findings, which we
mostly incorporated into CVLA (see Method section):

• Keyframe visibility:
displaying a keyframe icon increases awareness, requires
less guesswork, and therefore increases annotation speed

• Fast playback
caching the whole video in advance eliminates server time-
outs on frame changes

• Click reduction
drawing new objects without the need to click “new object”,
and the object type is pre-selected as the most common class
(“car”) or the previous selection

• Frame exit/enter
being able to drag bounding boxes outside of the frame in-
creases speed, as annotators do not have to align their mouse
perfectly with the image border

Data Propagation
Regarding data propagation, we found that the existing video

annotation tools all offer linear interpolation between keyframes.
This can be very helpful when dealing with footage from a sta-
tionary camera. But when the camera itself is moving, the amount
of keyframes needed to follow objects in screen space greatly in-
creases due to abrupt movements in the camera path (e.g. road
bumps, sharp turns).

Method
In this section, we explain our way of evaluating which track-

ers to include into CVLA as well as the user interface choices we
made. Additionally, we present the design of the preliminary user
study we performed to assess possible improvements of CVLA
compared to Scalabel [4] on metrics such as (i) annotation time
per bounding box, and (ii) annotation data accuracy.

As opposed to existing annotation tools reviewed in the Re-
lated Work section, which contain only linear interpolation as
their propagation method, the incorporation and evaluation of
state-of-the-art object tracking algorithms is a major component
of our work. We have performed an extensive test of different
state-of-the-art algorithms on synthetic night scenes of the VIPER
[8] dataset to determine which tracking algorithms are the most
promising candidates for nighttime footage.

User Interface
We opted to develop CVLA in the programming language

Python, as we have found that the research community releases
most of the state-of-the-art trackers in Python. Secondly, we
chose to build an application running directly on the annotator’s
machine because we wanted to achieve fast responses times with-
out network latency. Figure 1 shows a screenshot of CVLA’s user
interface. Our tool is aiming to reduce user interaction while giv-
ing a clear overview of the annotation data in a timeline view (bot-
tom half of Figure 1) as proposed by Shen [20]. As in Shen’s

work, we reduce mouse clicks by not forcing the user select the
type of object they are annotating every time after drawing a
bounding box, but instead automatically assign the same type as
the previously annotated object. The same applies for selecting
the current tracker for the object. The red and green lines on top of
the object tracks in the timeline view indicate, whether the bound-
ing box has already been propagated by the selected algorithm or
not. This propagation can either be done in the background by
enabling “Automatic Tracking” (top right of Figure 1), or when
going through the video on a frame-by-frame basis. On the top
right of Figure 1, one can also see our gamma correction slider,
which can help improve visibility when trying to identify object
boundaries in dark scenes.

Tracker Selection
To assess which trackers to include in our annotation tool,

we performed an extensive test of five different trackers on night
scenes of the VIPER dataset. The trackers we chose to evaluate
are: ATOM [13], SiamRPN [14], MedianFlow [15], KCF [16]
and CSRT [17]. The first two were chosen because of their good
results in the VOT challenge [19], whereas the last three were cho-
sen for their fast update times. Out of all the night scenes in the
VIPER dataset, we included all object tracks, where the bound-
ing box has a minimum area of 30 pixels over at least 10 frames,
and where the bounding box area difference between consecutive
frames was at most 20%. In total, we evaluated the trackers on
3159 different object tracks. To measure the quality of the trackers
we chose two weakly correlated measures: Mean IoU (φ̂ , equa-
tion 1) and reset rate (r̂, equation 3) as described by Kristan et al.
[19]. The IoU measure (φt ) is described in equation 2, where RG

t
denotes the ground truth region at time t, and RT

t is the tracker’s
proposed region. Figure 2 shows a visual explanation of this.

φ̂ = ∑
t

φt

N
(1)

φt =
RG

t ∩RT
t

RG
t ∪RT

t
(2)

Figure 2. Visual explanation of IoU measure. Leftmost image shows

ground truth (RG
t , green) and tracker’s proposed region (RT

t , red), middle

image shows region intersection (RG
t ∩RT

t , magenta), and rightmost image

shows union (RG
t ∪RT

t , blue).

Reset rate (r̂) describes the amount of frames where the IoU
went below a threshold (τ) and had to be reset, divided by the total
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Figure 1. Screenshot of CVLA tool, showing gamma correction slider, video area, and data overview/timeline area.

number of frames N. See figure 3 for an example of an IoU / time
graph, with two resets. The reset threshold we chose was 51%,
and in order to have a fair calculation of the mean IoU for each
tracker, we only took tracked frames and no initialization frames
– which would have an IoU of 100% – into account.

r̂ =
||{t|φt < τ}N

t=1||
N

(3)

time (frames)

threshold

Io
U

Figure 3. Plot of IoU over time, with two tracker resets – where IoU falls

below threshold – shown in red.

Preliminary User Study Design
To compare CVLA against Scalabel, we performed a prelim-

inary user study with two annotators, annotating 12 videos with
3349 frames and 150 object tracks. We again used the VIPER
dataset as our ground truth data and chose nighttime scenes on
non-urban roads. As stated above, we were focused on compar-
ing the annotation process with regards to time, keystrokes, mouse

movement, clicks and annotation accuracy; the latter is repre-
sented by mean IoU. In order to have a fair comparison of these
values we had to make sure that the annotators were focusing on
the same 150 object tracks regardless of the tool used. This was
accomplished by displaying a visual anchor (ground truth down-
sized to 40% of actual size) over the objects of interest (see Figure
4). We expect this overlay to introduce a bias towards more accu-
rate annotations and higher IoU values. However as the overlay
was shown in both annotation tools, we do not expect this bias to
affect the relative differences in comparing the annotation accu-
racy of both tools.

Figure 4. Visual anchor in red, user annotation in yellow.

Since we focused on relative improvements between tools,
we made sure that the individual annotators worked on the same
test sequences in both tools (i.e. annotator A did sequence 1-4
and annotator B did sequence 5-12 in both tools). To track an-
notation times and clicks, we used a mouse tracking application
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called “Mousotron” [11], which enabled us to keep score of the
number of clicks, keystrokes, travelled mouse distance, and scroll
wheel invocations.

Results
In this section, we present our findings regarding tracker

evaluation as well as the results of our preliminary user study.

Tracker Evaluation
Our evaluations on night scenes from the VIPER dataset

suggest that current state-of-the-art trackers (e.g., ATOM [13],
SiamRPN [14]) are not necessarily more suitable for our appli-
cation than the classic Medianflow [15] approach. Table 2 shows
the results of this evaluation. ATOM [13] was the best perform-
ing tracker with a mean IoU of 72.6% and a reset rate of 7.3%.
However, Medianflow [15] performed nearly as well, with 71.7%
mean IoU and 7.2% reset rate while being much faster at 15.4ms
compared to 88.2ms.

Tracker Mean IoU Reset rate Mean Time
KCF [16] 54.8% 23.5% 17.1ms
SiamRPN [14] 59.4% 20.5% 364ms
CSRT [17] 70.8% 10.4% 59.5ms
Medianflow [15] 71.7% 7.2% 15.4ms
ATOM [13] 72.6% 7.3% 88.2ms

Table 2: Tracker Evaluation results, best performing values per
column shown in bold.

Preliminary User Study Evaluation
Our evaluation of the annotation time and accuracy suggests

that using CVLA for video annotation results in faster annotation
speeds as well as more accurate data. Table 3 contains a summary
of our evaluation. The total time needed to annotate the 3349 cho-
sen frames in two different tools divided between two annotators
was 18 hours and 41 minutes. 6 hours and 55 minutes were spent
in CVLA, and 11 hours and 46 minutes in Scalabel, thus resulting
in a speed increase of about 1.69. Additionally, using our tool, the
mean IoU increased by about 1.06. Mouse (click, scroll) and key-
board invocations could be significantly reduced (2.28), whereas
the distance the mouse moved over the screen was only decreased
by a factor of 1.04.

Time IoU
Invoca-

tions
Dist.

Scalabel [4] 11h 46m 78.74% 63965 1.27km
CVL [Ours] 6h 55m 83.46% 28001 1.22km

Improvement
factor 1.69 1.06 2.28 1.04

Table 3: Preliminary User Study results. CVLA performs better
in all measured categories.

Figures 5 and 6 show the measured values per video se-
quence and tool, while also indicating which values refer to which
annotator. It can be seen that there are no inherent differences be-
tween the two annotators, and that the improvements rather vary
depending on the underlying video data. In Figure 5 we show
the average annotation time per bounding box, where we count

each bounding box per frame separately (e.g. 3 objects of interest
each visible on 5 frames result in 15 bounding boxes). This graph
shows that CVLA had a shorter time per box on all but one video
of our test set with speedup factors ranging from 0.9 to 2.6 (video
7 and 12 respectively).

Mouse and Keyboard invocations can be seen in Figure 5
(bottom). We observed that invocations varied a bit less when us-
ing CVLA compared to Scalabel (relative standard deviation of
31% vs. 43%), while CVLA always needed far fewer invocations
(improvement factor between 1.3 and 3.9). This consistent im-
provement regarding mouse and keyboard invocations can most
likely be explained by the fact that we keep zoom and pan infor-
mation across frames, whereas Scalabel loses this information on
frame changes. It resets the zoom and shows the whole frame
resized to the dimensions of the view port.

Mean IoU per video is shown in Figure 6. Here we see more
consistent improvements, ranging from 1.02 to 1.10. The main
contribution of this consistent IoU increase can be attributed to
bounding boxes with relatively small areas (up to 400 pixels) as
shown in Figure 7, where the mean IoU is 72.16% in CVLA vs.
57.68% in Scalabel. There are two likely explanations for this
rather high increase for small bounding boxes: (i) unlimited zoom
in CVLA and (ii) fairly consistent visual appearance for smaller
objects which means that they are easier to track.
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Figure 5. Annotation time per bounding box per video and annotation tool

(top). Mouse and keyboard invocation count (summed up) per video and

annotation tool (bottom).
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Figure 6. Mean IoU value comparison per video and annotation tool.
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Figure 7. Mean IoU value comparison grouped by maximum pixel area.

Discussion and Future Work
We have proposed a semi-automatic video annotation tool

(CVLA) with a focus on nighttime traffic scenes. Our tool in-
cludes state-of-the-art tracking algorithms, which we selected
based on an analysis on the VIPER dataset. Furthermore, it fea-
tures a user interface that focuses on minimizing the number of
clicks and keystrokes needed to annotate video data. We have
conducted a preliminary user study based on two users, which
has shown promising results regarding the speed and accuracy in-
crease of CVLA – using tracking algorithms – compared to an
existing tool (Scalabel [4]) – using linear interpolation as its data
propagation mechanism. On average, the annotations created with
our tool have been 1.06 times more accurate in terms of mean
IoU value, while taking 1.69 times less time to create. The aver-
age number of mouse and keyboard invocations was reduced by
a factor of 2.28. To confirm these results with a more represen-
tative group of annotators, we plan to perform a larger user study
with at least 10 participants with varying levels of experience in
annotating videos.
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