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Abstract

Medical segmentation masks are often scarce. To get visual and quantitative information,
we propose constructing trajectories from anomaly data to normal data using conditional
flow matching on an autoencoder, augmented with an auxiliary classification head in the
latent space. We demonstrate the effectiveness of our method through weakly supervised
midline shift estimation.
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1. Introduction

We plan to focus on weakly supervised midline shift quantification using only classification
annotations. To extract more meaningful information from a black-box classifier, we propose
constructing trajectories through conditional flow matching (Lipman et al., 2023; Liu et al.,
2023; Albergo and Vanden-Eijnden, 2023; Tong et al., 2023). In this approach, we select
abnormal images as the source distribution and normal images as the target distribution,
thereby establishing a coupling from the source to the target distribution. We worked on the
latent space of an autoencoder and demonstrate that, our method can not only be served
as a visualization tool, but also provide meaningful quantitative information.

2. Method

Our method is illustrated in Fig. 1. The flow matching method relies on interpolating
samples from both the source and target domains as training data. If we directly use
images with midline shifts as the source distribution and images without midline shifts
as the target distribution, the model may learn to interpolate between the two images,
which is not our goal. We want to reverse the disease process with minimal metamorphosis
(Niethammer et al., 2011). Therefore, we propose training a flow matching network in the
latent spaces of an autoencoder that is pre-trained on images with and without midline
shifts. To further quantify our results, we apply diffeomorphic registration to measure the
displacement between the original and transformed images, which serves as an estimate of
the midline shift distance of the original image.
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Figure 1: Architecture of our proposed network.

3. Experiments

For the image autoencoder, we utilized VQGAN (Esser et al., 2021) with an auxiliary linear
classification head operating in the latent space. All images were resized to 256× 256 with
the latent space having dimensions of 16 (height) × 16 (width) × 256 (channel size). We
implemented OT-CFM (Tong et al., 2023) and employed a UNet architecture with attention
mechanisms in the bottleneck layer to model the trajectory of reversed disease progression.
The batch size was set to 70. For image registration, we utilized airlab (Sandkühler et al.,
2018). All the experiements were conducted with single Nvidia V100 GPU. The training
and testing datasets were from the Chang Gung Research Database (CGRD) (Tsai et al.,
2017). For the training data, we used 1177 slices with midline shifts and 2221 normal slices
from 907 Brain CT images. During the training of the flow matching network, the slices
are further rigid registered to ensure minimal rotation are involved in the reversed disease
progression path. For testing data, we used 294 normal slices, 287 slices with midline shift
distances ranging from 2mm and 5mm, and 160 slices with midline shift distances greater
than 5mm.

4. Results

The visualization of our generated reversed disease progression is shown in Fig. 2. Although
we did not jointly train our autoencoder and flow matching model, we were surprised to find
that the generated paths appear very realistic. However, when we trained flow matching
model with non-registered images, we encountered some unsuccessful generated images,
as displayed in Fig. 3. The mean absolute errors (MAE) between the ground truths
and measured displacements are presented in Table 1. While the results may not be as
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Figure 2: Reversed disease progression generated by our proposed architecture.

precise as those obtained through fully supervised segmentation methods (Qin et al., 2021),
we empirically observed that our model tends to underestimate cases with large midline
shifts. We believe the phenomenon may be attributed to the training data size not being
large enough for effective generalization of the flow matching/diffusion models (Kadkhodaie
et al.) and can be improved by incorporating more data with larger midline shift distances.

Figure 3:
Samples if training
on non-registered
cases.

MLS (mm) # of MAE (mm) Mean of STD of
slices disp. (mm) disp. (mm)

[0, 2) 294 1.19 1.54 1.98
[2, 5) 287 2.59 3.96 3.08
> 5 160 4.23 5.94 2.64
All 741 2.38 3.42 1.98

Table 1: Mean absolute errors (MAE) between ground truth midline shift
distances and measured displacements.

5. Conclusion

When training a neural network with only classification labels, it can be challenging to incor-
porate more meaningful information. In this study, we propose a novel approach to address
this issue by reinterpreting the network’s predictions. Specifically, we construct reversed
disease paths within the latent space of the classifier. Our empirical results demonstrate
that these generated paths are realistic. Additionally, we measure the displacements be-
tween the original and generated images to estimate midline shift distances. Our findings
indicate a strong correlation between these displacements and the actual midline shift dis-
tances. In the future, we plan to explore methods to improve our results, such as increasing
the batch size, expanding the training dataset, and making other careful adjustments.
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