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Abstract

Large language models (LLMs) have shown impressive performance on complex reasoning by
leveraging chain-of-thought (CoT) prompting to generate intermediate reasoning chains as
the rationale to infer the answer. However, existing CoT studies have primarily focused on
the language modality. We propose Multimodal-CoT that incorporates language (text) and
vision (images) modalities into a two-stage framework that separates rationale generation and
answer inference. In this way, answer inference can leverage better generated rationales that
are based on multimodal information. Experimental results on ScienceQA and A-OKVQA
benchmark datasets show the effectiveness of our proposed approach. With Multimodal-
CoT, our model under 1 billion parameters achieves state-of-the-art performance on the
ScienceQA benchmark. Our analysis indicates that Multimodal-CoT offers the advantages
of mitigating hallucination and enhancing convergence speed. Code is publicly available at
https://github.com/amazon-science/mm-cot.

1 Introduction

Imagine reading a textbook with no figures or tables. Our ability to knowledge acquisition is greatly
strengthened by jointly modeling diverse data modalities, such as vision, language, and audio. Recently, large
language models (LLMs) (Brown et al., 2020; Thoppilan et al., 2022; Rae et al., 2021; Chowdhery et al.,
2022) have shown impressive performance in complex reasoning by generating intermediate reasoning steps
before inferring the answer. The intriguing technique is called chain-of-thought (CoT) reasoning (Wei et al.,
2022b; Kojima et al., 2022; Zhang et al., 2023d).

∗Work done at Amazon Web Services. Correspondence to: Zhuosheng Zhang and Aston Zhang.
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Output

Rationale: Will these magnets attract or repel? To find out, look at which poles are
closest to each other. The north pole of one magnet is closest to the south pole of the
other magnet. Poles that are different attract. So, these magnets will attract each other.
Answer: The answer is (A).

VisionLanguage
Input

Question: Will these magnets attract or repel each
other?
Context: Two magnets are placed as shown. Hint:
Magnets that attract pull together. Magnets that
repel push apart.
Options: (B) repel(A) attract

Figure 1: Example of the multimodal CoT task.

However, existing studies related to CoT reasoning
are largely isolated in the language modality (Wang
et al., 2022c; Zhou et al., 2022; Lu et al., 2022b; Fu
et al., 2022), with little consideration of multimodal
scenarios. To elicit CoT reasoning in multimodality,
we advocate a Multimodal-CoT paradigm. Given
the inputs in different modalities, Multimodal-CoT
decomposes multi-step problems into intermediate
reasoning steps (rationale) and then infers the an-
swer. Since vision and language are the most popular
modalities, we focus on those two modalities in this
work. An example is shown in Figure 1.

In general, Multimodal-CoT reasoning can be elicited through two primary paradigms: (i) prompting LLMs
and (ii) fine-tuning smaller models.1 We will delve into these paradigms and delineate their associated
challenges as follows.

The most immediate way to perform Multimodal-CoT is to transform the input of different modalities into a
unified modality and prompt LLMs to perform CoT (Zhang et al., 2023a; Lu et al., 2023; Liu et al., 2023;
Alayrac et al., 2022; Hao et al., 2022; Yasunaga et al., 2022). For example, it is possible to generate a caption
for an image by a captioning model and then concatenate the caption with the original language input to be
fed into LLMs (Lu et al., 2022a). The development of large multimodal models such as GPT-4V (OpenAI,
2023) and Gemini (Reid et al., 2024) has notably enhanced the quality of generated captions, resulting
in finer-grained and more detailed descriptions. However, the captioning process still incurs significant
information loss when transforming vision signals into textual descriptions. Consequently, using image
captions rather than vision features may suffer from a lack of mutual synergy in the representation space of
different modalities. In addition, LLMs either have paywalls or resource-consuming to deploy locally.

To facilitate the interaction between modalities, another potential solution is to fine-tune smaller language
models (LMs) by fusing multimodal features (Zhang et al., 2023c; Zhao et al., 2023). As this approach allows
the flexibility of adjusting model architectures to incorporate multimodal features, we study fine-tuning
models in this work instead of prompting LLMs. The key challenge is that language models under 100
billion parameters tend to generate hallucinated rationales that mislead the answer inference (Ho et al., 2022;
Magister et al., 2022; Ji et al., 2022; Zhang et al., 2023b).

To mitigate the challenge of hallucination, we propose Multimodal-CoT that incorporates language (text)
and vision (images) modalities into a two-stage framework that separates rationale generation and answer
inference.2 In this way, answer inference can leverage better generated rationales that are based on multimodal
information. Our experiments were conducted on the ScienceQA (Lu et al., 2022a) and A-OKVQA (Schwenk
et al., 2022) datasets, which are the latest multimodal reasoning benchmarks with annotated reasoning chains.

Our method achieves state-of-the-art performance on the ScienceQA benchmark upon the release. We find
that Multimodal-CoT is beneficial in mitigating hallucination and boosting convergence. Our contributions
are summarized as follows:

(i) To the best of our knowledge, this work is the first to study CoT reasoning in different modalities in
scientific peer-reviewed literature.

(ii) We propose a two-stage framework by fine-tuning language models to fuse vision and language representa-
tions to perform Multimodal-CoT. The model is able to generate informative rationales to facilitate inferring
final answers.

(iii) We elicit the analysis of why the naive way of employing CoT fails in the context and how incorporating
vision features alleviates the problem. The approach has been shown to be generally effective across tasks
and backbone models.

1We refer to small models as models with less than 1 billion parameters (hereinafter dubbed as 1B-models).
2This work focuses on the language and vision modalities.

2



Published in Transactions on Machine Learning Research (05/2024)

Table 1: Representative CoT techniques (FT: fine-tuning; KD: knowledge distillation). Segment 1: in-context
learning techniques; Segment 2: fine-tuning techniques. To the best of our knowledge, our work is the first
to study CoT reasoning in different modalities in scientific peer-reviewed literature. Besides, we focus on
1B-models, without relying on the outputs of LLMs.

Models Mutimodal Model / Engine Training CoT Role CoT Source

Zero-Shot-CoT (Kojima et al., 2022) ✗ GPT-3.5 (175B) ICL Reasoning Template
Few-Shot-CoT (Wei et al., 2022b) ✗ PaLM (540B) ICL Reasoning Hand-crafted
Self-Consistency-CoT (Wang et al., 2022b) ✗ Codex (175B) ICL Reasoning Hand-crafted
Least-to-Most Prompting (Zhou et al., 2022) ✗ Codex (175B) ICL Reasoning Hand-crafted
Retrieval-CoT (Zhang et al., 2023d) ✗ GPT-3.5 (175B) ICL Reasoning Auto-generated
PromptPG-CoT (Lu et al., 2022b) ✗ GPT-3.5 (175B) ICL Reasoning Hand-crafted
Auto-CoT (Zhang et al., 2023d) ✗ Codex (175B) ICL Reasoning Auto-generated
Complexity-CoT (Fu et al., 2022) ✗ GPT-3.5 (175B) ICL Reasoning Hand-crafted
Few-Shot-PoT (Chen et al., 2022) ✗ GPT-3.5 (175B) ICL Reasoning Hand-crafted

UnifiedQA (Lu et al., 2022a) ✗ T5 (770M) FT Explanation Crawled
Fine-Tuned T5 XXL (Magister et al., 2022) ✗ T5 (11B) KD Reasoning LLM-generated
Fine-Tune-CoT (Ho et al., 2022) ✗ GPT-3 (6.7B) KD Reasoning LLM-generated
Multimodal-CoT (our work) ✓ T5 (770M) FT Reasoning Crawled

2 Background

This section reviews studies eliciting CoT reasoning by prompting and fine-tuning language models.

2.1 CoT Reasoning with LLMs

Recently, CoT has been widely used to elicit the multi-step reasoning abilities of LLMs (Wei et al., 2022b).
Concretely, CoT techniques encourage the LLM to generate intermediate reasoning chains for solving a
problem. Studies have shown that LLMs can perform CoT reasoning with two major paradigms of techniques:
Zero-Shot-CoT (Kojima et al., 2022) and Few-Shot-CoT (Wei et al., 2022b; Zhang et al., 2023d). For
Zero-Shot-CoT, Kojima et al. (2022) showed that LLMs are decent zero-shot reasoners by adding a prompt
like “Let’s think step by step” after the test question to invoke CoT reasoning. For Few-Shot-CoT, a
few step-by-step reasoning demonstrations are used as conditions for inference. Each demonstration has a
question and a reasoning chain that leads to the final answer. The demonstrations are commonly obtained by
hand-crafting or automatic generation. These two techniques, hand-crafting and automatic generation are
thus referred to as Manual-CoT (Wei et al., 2022b) and Auto-CoT (Zhang et al., 2023d).

With effective demonstrations, Few-Shot-CoT often achieves stronger performance than Zero-Shot-CoT and
has attracted more research interest. Therefore, most recent studies focused on how to improve Few-Shot-CoT.
Those studies are categorized into two major research lines: (i) optimizing the demonstrations; (ii) optimizing
the reasoning chains. Table 1 compares typical CoT techniques.

Optimizing Demonstrations The performance of Few-Shot-CoT relies on the quality of demonstrations.
As reported in Wei et al. (2022b), using demonstrations written by different annotators results in dramatic
accuracy disparity in reasoning tasks. Beyond hand-crafting the demonstrations, recent studies have
investigated ways to optimize the demonstration selection process. Notably, Rubin et al. (2022) retrieved
the semantically similar demonstrations with the test instance. However, this approach shows a degraded
performance when there are mistakes in the reasoning chains (Zhang et al., 2023d). To address the limitation,
Zhang et al. (2023d) found that the key is the diversity of demonstration questions and proposed Auto-CoT:
(i) partition questions of a given dataset into a few clusters; (ii) sample a representative question from
each cluster and generate its reasoning chain using Zero-Shot-CoT with simple heuristics. In addition,
reinforcement learning (RL) and complexity-based selection strategies were proposed to obtain effective
demonstrations. Fu et al. (2022) chose examples with complex reasoning chains (i.e., with more reasoning
steps) as the demonstrations. Lu et al. (2022b) trained an agent to find optimal in-context examples from
a candidate pool and maximize the prediction rewards on given training examples when interacting with
GPT-3.5.
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Optimizing Reasoning Chains A notable way to optimize reasoning chains is problem decomposition.
Zhou et al. (2022) proposed least-to-most prompting to decompose complex problems into sub-problems
and then solve these sub-problems sequentially. As a result, solving a given sub-problem is facilitated by
the answers to previously solved sub-problems. Similarly, Khot et al. (2022) used diverse decomposition
structures and designed different prompts to answer each sub-question. In addition to prompting the reasoning
chains as natural language texts, Chen et al. (2022) proposed program-of-thoughts (PoT), which modeled
the reasoning process as a program and prompted LLMs to derive the answer by executing the generated
programs. Another trend is to vote over multiple reasoning paths for a test question. Wang et al. (2022b)
introduced a self-consistency decoding strategy to sample multiple outputs of LLMs and then took a majority
over the final answers. Wang et al. (2022c) and Li et al. (2022c) introduced randomness in the input space to
produce more diverse outputs for voting.

2.2 Eliciting CoT Reasoning by Fine-Tuning Models

A recent interest is eliciting CoT reasoning by fine-tuning language models. Lu et al. (2022a) fine-tuned the
encoder-decoder T5 model on a large-scale dataset with CoT annotations. However, a dramatic performance
decline is observed when using CoT to infer the answer, i.e., generating the reasoning chain before the answer
(reasoning). Instead, CoT is only used as an explanation after the answer. Magister et al. (2022) and Ho
et al. (2022) employed knowledge distillation by fine-tuning a student model on the chain-of-thought outputs
generated by a larger teacher model. Wang et al. (2022a) proposed an iterative context-aware prompting
approach to dynamically synthesize prompts conditioned on the current step’s contexts.

There is a key challenge in training 1B-models to be CoT reasoners. As observed by Wei et al. (2022b), models
under 100 billion parameters tend to produce illogical CoT that leads to wrong answers. In other words, it
might be harder for 1B-models to generate effective CoT than directly generating the answer. It becomes
even more challenging in a multimodal setting where answering the question also requires understanding the
multimodal inputs. In the following part, we will explore the challenge of Multimodal-CoT and investigate
how to perform effective multi-step reasoning.

3 Challenge of Multimodal-CoT

Existing studies have suggested that the CoT reasoning ability may emerge in language models at a certain
scale, e.g., over 100 billion parameters (Wei et al., 2022a). However, it remains an unresolved challenge
to elicit such reasoning abilities in 1B-models, let alone in the multimodal scenario. This work focuses on
1B-models as they can be fine-tuned and deployed with consumer-grade GPUs (e.g., 32G memory). In
this section, we will investigate why 1B-models fail at CoT reasoning and study how to design an effective
approach to overcome the challenge.

3.1 Towards the Role of CoT

To begin with, we fine-tune a text-only baseline for CoT reasoning on the ScienceQA benchmark (Lu et al.,
2022a). We adopt FLAN-AlpacaBase as the backbone language model.3 Our task is modeled as a text
generation problem, where the model takes the textual information as the input and generates the output
sequence that consists of the rationale and the answer.

Table 2: Effects of CoT in the one-stage setting.
Method Format Accuracy

No-CoT QCM→A 81.63

Reasoning QCM→RA 69.32
Explanation QCM→AR 69.68

As an example shown in Figure 1, the model takes
the concatenation of tokens of the question text (Q),
the context text (C), and multiple options (M) as
the input. To study the effect of CoT, we compare
the performance with three variants: (i) No-CoT which
predicts the answer directly (QCM→A); (ii) Reasoning
where answer inference is conditioned to the rationale
(QCM→RA); (iii) Explanation where the rationale is used for explaining the answer inference (QCM→AR).

3https://github.com/declare-lab/flan-alpaca. It is a 200M T5 model (Raffel et al., 2020) fine-tuned on Stanford Alpaca
data (Taori et al., 2023). Implementation details are presented in Section 5.2.
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Generated Rationale: Will these magnets attract or repel? To
find out, look at which poles are closest to each other. The
south pole of one magnet is closest to the south pole of the
other magnet. Poles that are the same repel. So, these
magnets will repel each other.
Answer: The answer is (B).

Options: (B) repel(A) attract

Problem

Baseline

Question: Will these magnets attract or repel each other?
Context: Two magnets are placed as shown. Hint: Magnets that attract pull together.
Magnets that repel push apart.

Gold Rationale: Will these magnets attract or repel? To find out, look at which poles are closest to each other. The north pole of
one magnet is closest to the south pole of the other magnet. Poles that are different attract. So, these magnets will attract each other.
Answer: The answer is (A).

Generated Rationale: Will these magnets attract or repel? To
find out, look at which poles are closest to each other. The
north pole of one magnet is closest to the south pole of the
other magnet. Poles that are different attract. So, these
magnets will attract each other.
Answer: The answer is (A).

+ Vision Features

Vision

Figure 2: Example of the two-stage framework without vision features (baseline) and with vision features
(ours) for generating rationales and predicting answers. The upper part presents the problem details with a
gold rationale, and the lower part shows the outputs of the baseline and our method incorporated with vision
features. We observe that the baseline fails to predict the right answer due to the misleading by hallucinated
rationales. More examples are shown in Appendix A.1.

Surprisingly, as shown in Table 2, we observe a ↓12.31% accuracy decrease (81.63%→69.32%) if the model
predicts rationales before answers (QCM→RA). The results imply that the rationales might not necessarily
contribute to predicting the right answer. According to Lu et al. (2022a), the plausible reason might be that
the model exceeds the maximum token limits before obtaining the required answer or stops generating the
prediction early. However, we find that the maximum length of the generated outputs (RA) is always less
than 400 tokens, which is below the length limit of language models (i.e., 512 in T5 models). Therefore, it
deserves a more in-depth investigation into why the rationales harm answer inference.

3.2 Misleading by Hallucinated Rationales

Table 3: Two-stage setting of (i) rationale generation
(RougeL) and (ii) answer inference (Accuracy).

Method (i) QCM→ R (ii) QCMR→ A

Two-Stage Framework 90.73 78.57

w/ Captions 90.88 79.37
w/ Vision Features 93.46 85.31

To dive into how the rationales affect the answer pre-
diction, we separate the CoT problem into two stages,
rationale generation and answer inference.4 We re-
port the RougeL score and accuracy for the rationale
generation and answer inference, respectively. Table
3 shows the results based on the two-stage framework.
Although the two-stage baseline model achieves a 90.73
RougeL score of the rationale generation, the answer
inference accuracy is only 78.57%. Compared with the QCM→A variant (81.63%) in Table 2, the result
shows that the generated rationale in the two-stage framework does not improve answer accuracy.

Then, we randomly sample 50 error cases and find that the model tends to generate hallucinated rationales
that mislead the answer inference. As an example shown in Figure 2, the model (left part) hallucinates that,
“The south pole of one magnet is closest to the south pole of the other magnet”, due to the lack of reference to
the vision content. We find that such mistakes occur at a ratio of 56% among the error cases (Figure 3(a)).

3.3 Multimodality Contributes to Effective Rationales

We speculate that such a phenomenon of hallucination is due to a lack of necessary vision contexts
for performing effective Multimodal-CoT. To inject vision information, a simple way is to transform
the image into a caption (Lu et al., 2022a) and then append the caption in the input of both stages.

4The details will be presented in Section 4.
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Others
(44%)

Resolved 
(60.7%)

Unresolved
(29.3%)

Hallucination
(56%)

(a) ratio of hallucination mistakes (b) correction rate w/ vision features  

Figure 3: The ratio of (a) hallucination mistakes and
(b) correction rate w/ vision features.

However, as shown in Table 3, using captions only
yields marginal performance gains (↑0.80%). Then, we
explore an advanced technique by incorporating vision
features into the language model. Concretely, we feed
the image to the ViT model (Dosovitskiy et al., 2021b)
to extract vision features. Then we fuse the vision
features with the encoded language representations be-
fore feeding the decoder (more details will be presented
in Section 4). Interestingly, with vision features, the
RougeL score of the rationale generation has boosted to
93.46% (QCM→R), which correspondingly contributes
to better answer accuracy of 85.31% (QCMR→A).

With those effective rationales, the phenomenon of hallucination is mitigated — 60.7% hallucination mistakes
in Section 3.2 have been corrected (Figure 3(b)), as an example shown in Figure 2 (right part).5 The
analysis so far compellingly shows that vision features are indeed beneficial for generating effective rationales
and contributing to accurate answer inference. As the two-stage method achieves better performance than
one-stage methods, we choose the two-stage method in our Multimodal-CoT framework.

4 Multimodal-CoT

In light of the discussions in Section 3, we propose Multimodal-CoT. The key motivation is the anticipation
that the answer inference can leverage better generated rationales that are based on multimodal information.
In this section, we will overview the procedure of the framework and elaborate on the technical design of the
model architecture.

Vision

Language
Rationale 

Generation

Will these magnets attract or
repel? To find out, look at
which poles are closest to
each other. The north pole of
one magnet is closest to the
south pole of the other magnet.
Poles that are different attract.
So, these magnets will attract
each other.

Rationale

Answer 
Inference

The answer
is (A).

Answer

Options: (B) repel(A) attract

Question: Will these magnets attract or repel
each other?
Context: Two magnets are placed as shown.
Hint: Magnets that attract pull together. Magnets
that repel push apart.

Figure 4: Overview of our Multimodal-CoT framework. Multimodal-CoT consists of two stages: (i) rationale
generation and (ii) answer inference. Both stages share the same model structure but differ in the input and
output. In the first stage, we feed the model with language and vision inputs to generate rationales. In the
second stage, we append the original language input with the rationale generated from the first stage. Then,
we feed the updated language input with the original vision input to the model to infer the answer.

4.1 Framework Overview

Multimodal-CoT consists of two operation stages: (i) rationale generation and (ii) answer inference. Both
stages share the same model structure but differ in the input X and output Y . The overall procedure is
illustrated in Figure 4. We will take vision-language as an example to show how Multimodal-CoT works.

In the rationale generation stage, we feed the model with X = {X1
language, Xvision} where X1

language represents
the language input in the first stage and Xvision represents the vision input, i.e., the image. For example,
X can be instantiated as a concatenation of question, context, and options of a multiple choice reasoning

5The left mistakes are mainly about map understanding, requiring extra commonsense signals (Section 6.7).
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problem (Lu et al., 2022a) as shown in Figure 4. The goal is to learn a rationale generation model R = F (X)
where R is the rationale.

In the answer inference stage, the rationale R is appended to the original language input X1
language to construct

the language input in the second stage, X2
language = X1

language ◦ R where ◦ denotes concatenation. Then, we
feed the updated input X ′ = {X2

language, Xvision} to the answer inference model to infer the final answer
A = F (X ′).

In both stages, we train two models with the same architecture independently. They take the annotated
elements (e.g., X → R, XR → A, respectively) from the training set for supervised learning. During inference,
given X, the rationales for the test sets are generated using the model trained in the first stage; they are
used in the second stage for answer inference.

4.2 Model Architecture

Given language input Xlanguage ∈ {X1
language, X2

language} and vision input Xvision, we compute the probability
of generating target text Y (either the rationale or the answer in Figure 4) of length N by

p(Y |Xlanguage, Xvision) =
N∏

i=1
pθ (Yi | Xlanguage, Xvision, Y<i) , (1)

where pθ (Yi | Xlanguage, Xvision, Y<i) is implemented with a Transformer-based network (Vaswani et al., 2017).
The network has three major procedures: encoding, interaction, and decoding. Specifically, we feed the
language text into a Transformer encoder to obtain a textual representation, which is interacted and fused
with the vision representation before being fed into the Transformer decoder.

Encoding The model F (X) takes both the language and vision inputs and obtains the text representation
Hlanguage and the image feature Hvision by the following functions:

Hlanguage = LanguageEncoder(Xlanguage), (2)
Hvision = Wh · VisionExtractor(Xvision), (3)

where LanguageEncoder(·) is implemented as a Transformer model. We use the hidden states of the last layer
in the Transformer encoder as the language representation Hlanguage ∈ Rn×d where n denotes the length of
the language input, and d is the hidden dimension. Meanwhile, VisionExtractor(·) is used to vectorize the
input image into vision features. Inspired by the recent success of Vision Transformers (Dosovitskiy et al.,
2021a), we fetch the patch-level features by frozen vision extraction models, such as ViT (Dosovitskiy et al.,
2021b). After obtaining the patch-level vision features, we apply a learnable projection matrix Wh to convert
the shape of VisionExtractor(Xvision) into that of Hlanguage; thus we have Hvision ∈ Rm×d where m is the
number of patches.

Note that our approach is general to both scenarios with or without image context. For the questions without
associated images, we use all-zero vectors as the “blank features” with the same shape as the normal image
features to tell the model to ignore them.

Interaction After obtaining language and vision representations, we use a single-head attention network to
correlate text tokens with image patches, where the query (Q), key (K) and value (V ) are Hlanguage, Hvision

and Hvision, respectively. The attention output Hattn
vision ∈ Rn×d is defined as: Hattn

vision = Softmax(QK⊤
√

dk
)V,

where dk is the same as the dimension of Hlanguage because a single head is used.

Then, we apply the gated fusion mechanism (Zhang et al., 2020; Wu et al., 2021; Li et al., 2022a) to fuse
Hlanguage and Hvision. The fused output Hfuse ∈ Rn×d is obtained by:

λ = Sigmoid(WlHlanguage + WvHattn
vision), (4)

Hfuse = (1 − λ) · Hlanguage + λ · Hattn
vision, (5)

where Wl and Wv are learnable parameters.

7
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Decoding Finally, the fused output Hfuse is fed into the Transformer decoder to predict the target Y .

5 Experiments

This section will present the benchmark dataset, the implementation of our technique, and the baselines for
comparisons. Then, we will report our main results and findings.

5.1 Dataset

Our method is evaluated on the ScienceQA (Lu et al., 2022a) and A-OKVQA (Schwenk et al., 2022) benchmark
datasets. We choose those datasets because they are latest multimodal reasoning benchmarks with annotated
reasoning chains. ScienceQA is a large-scale multimoda science question dataset with annotated lectures
and explanations. It contains 21k multimodal multiple choice questions with rich domain diversity across
3 subjects, 26 topics, 127 categories, and 379 skills. There are 12k, 4k, and 4k questions in the training,
validation, and test splits, respectively. A-OKVQA is a knowledge-based visual question answering benchmark,
which has 25k questions requiring a broad base of commonsense and world knowledge to answer. It has
17k/1k/6k questions for train/val/test. As A-OKVQA provides multiple-choice and direct answer evaluation
settings, we use the multiple-choice setting to keep consistency with ScienceQA.

5.2 Implementation

The following part presents the experimental settings of Multimodal-CoT and the baseline methods.

Experimental Settings We adopt the T5 encoder-decoder architecture (Raffel et al., 2020) under Base
(200M) and large (700M) settings in our framework. We apply FLAN-Alpaca to initialize our model weights.6
We will show that Multimodal-CoT is generally effective with other backbone LMs, such as UnifiedQA
(Khashabi et al., 2020) and FLAN-T5 (Chung et al., 2022) (Section 6.3). The vision features are obtained by
the frozen ViT-large encoder (Dosovitskiy et al., 2021b). We fine-tune the models up to 20 epochs, with a
learning rate of 5e-5. The maximum input sequence length is 512. The batch size is 8. Our experiments are
run on 8 NVIDIA Tesla V100 32G GPUs. More details are presented in Appendix B.

Baseline Models We utilized three categories of methods as our baselines:

(i) Visual question answering (VQA) models, including MCAN (Yu et al., 2019), Top-Down (Anderson et al.,
2018), BAN (Kim et al., 2018), DFAF (Gao et al., 2019), ViLT (Kim et al., 2021), Patch-TRM (Lu et al.,
2021), and VisualBERT (Li et al., 2019). These VQA baselines take the question, context, and choices as
textual input, while utilizing the image as visual input. They employ a linear classifier to predict the score
distribution over the choice candidates.

(ii) LMs, including the text-to-text UnifiedQA model (Khashabi et al., 2020) and few-shot learning LLMs
(GPT-3.5, ChatGPT, GPT-4, and Chameleon (Lu et al., 2023)). UnifiedQA (Khashabi et al., 2020) is adopted
as it is the best fine-tuning model in Lu et al. (2022a). UnifiedQA takes the textual information as the input
and outputs the answer choice. The image is converted into a caption extracted by an image captioning
model following Lu et al. (2022a). UnifiedQA treats our task as a text generation problem. In Lu et al.
(2022a), it is trained to generate a target answer text, i.e., one of the candidate options. Then, the most
similar option is selected as the final prediction to evaluate the question answering accuracy. For GPT-3.5
models (Chen et al., 2020), we use the text-davinci-002 and text-davinci-003 engines due to their strong
performance. In addition, we also include the comparison with ChatGPT and GPT-4. The inference is based
on the few-shot prompting, where two in-context examples from the training set are concatenated before the
test instance. The few-shot demonstrations are the same as those in Lu et al. (2022a).

(iii) Fine-tuned large vision-language model. We select the recently released LLaMA-Adapter (Zhang et al.,
2023a), LLaVA (Liu et al., 2023), and InstructBLIP (Dai et al., 2023) as the competitive large vision-language

6https://github.com/declare-lab/flan-alpaca.
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Table 4: Main results (%). Size = backbone model size from the ScienceQA leaderboard (“-” means unavailable
or unknown). Question classes: NAT = natural science, SOC = social science, LAN = language science, TXT
= text context, IMG = image context, NO = no context, G1-6 = grades 1-6, G7-12 = grades 7-12. Segment
1: Human performance; Segment 2: VQA baselines; Segment 3: LM baselines, i.e., UnifiedQA and few-shot
learning LLMs; Segment 4: Fine-tuned large vision-language models; Segment 5: Our Multimodal-CoT
results. Prior published best results are marked with an underline. Our best average result is in bold face. †
denotes concurrent studies, either through citation or comparison with Multimodal-CoT.

Model Size NAT SOC LAN TXT IMG NO G1-6 G7-12 Avg

Human - 90.23 84.97 87.48 89.60 87.50 88.10 91.59 82.42 88.40

MCAN (Yu et al., 2019) 95M 56.08 46.23 58.09 59.43 51.17 55.40 51.65 59.72 54.54
Top-Down (Anderson et al., 2018) 70M 59.50 54.33 61.82 62.90 54.88 59.79 57.27 62.16 59.02
BAN (Kim et al., 2018) 112M 60.88 46.57 66.64 62.61 52.60 65.51 56.83 63.94 59.37
DFAF (Gao et al., 2019) 74M 64.03 48.82 63.55 65.88 54.49 64.11 57.12 67.17 60.72
ViLT (Kim et al., 2021) 113M 60.48 63.89 60.27 63.20 61.38 57.00 60.72 61.90 61.14
Patch-TRM (Lu et al., 2021) 90M 65.19 46.79 65.55 66.96 55.28 64.95 58.04 67.50 61.42
VisualBERT (Li et al., 2019) 111M 59.33 69.18 61.18 62.71 62.17 58.54 62.96 59.92 61.87

UnifiedQA (Lu et al., 2022a) 223M 71.00 76.04 78.91 66.42 66.53 81.81 77.06 68.82 74.11
GPT-3.5 (text-davinci-002) (Lu et al., 2022a) 173B 75.44 70.87 78.09 74.68 67.43 79.93 78.23 69.68 75.17
GPT-3.5 (text-davinci-003) 173B 77.71 68.73 80.18 75.12 67.92 81.81 80.58 69.08 76.47
ChatGPT (Lu et al., 2023) - 78.82 70.98 83.18 77.37 67.92 86.13 80.72 74.03 78.31
GPT-4 (Lu et al., 2023) - 85.48 72.44 90.27 82.65 71.49 92.89 86.66 79.04 83.99
Chameleon (ChatGPT) (Lu et al., 2023)† - 81.62 70.64 84.00 79.77 70.80 86.62 81.86 76.53 79.93
Chameleon (GPT-4) (Lu et al., 2023)† - 89.83 74.13 89.82 88.27 77.64 92.13 88.03 83.72 86.54

LLaMA-Adapter (Zhang et al., 2023a)† 6B 84.37 88.30 84.36 83.72 80.32 86.90 85.83 84.05 85.19
LLaVA (Liu et al., 2023)† 13B 90.36 95.95 88.00 89.49 88.00 90.66 90.93 90.90 90.92
InstructBLIP (Dai et al., 2023)† 11B - - - - 90.70 - - -

Mutimodal-CoTBase 223M 84.06 92.35 82.18 82.75 82.75 84.74 85.79 84.44 85.31
Mutimodal-CoTLarge 738M 91.03 93.70 86.64 90.13 88.25 89.48 91.12 89.26 90.45

baselines. For LLaMA-Adapter, the backbone model is the 7B LLaMA model fine-tuned with 52k self-instruct
demonstrations. To adapt to our tasks, the model is further fine-tuned on the ScienceQA dataset.

5.3 Main Results

Table 4 shows the main results in the ScienceQA benchmark. We observe that Mutimodal-CoTLarge achieves
substantial performance gains over the prior best model in publications (86.54%→90.45%). The efficacy of
Multimodal-CoT is further supported by the results obtained from the A-OKVQA benchmark in Table 5.

Table 5: Results on A-OKVQA. Baseline results are
from (Chen et al., 2023) and Schwenk et al. (2022).

Model Accuracy

BERT 32.93
GPT-3 (Curie) 35.07

IPVR (OPT-66B) 48.6
ViLBERT 49.1

Language-only Baseline 47.86
Multimodal-CoTBase 50.57

It is worth noting that Chameleon, LLaMA-Adapter,
LLaVA, and InstructBLIP are concurrent works re-
leased several months after our work. In the subsequent
Section 6.2, we will show that our method is orthog-
onal to those multimodal models (e.g., InstructBLIP)
and can be potentially used with them together to im-
prove generality further, i.e., scaled to scenarios where
human-annotated rationales are unavailable, thereby
establishing the effectiveness across diverse tasks.

Ablation study results in Table 6 show that both the
integration of vision features and the two-stage framework design contribute to the overall performance.

Furthermore, we find that Multimodal-CoT demonstrates the ability to mitigate hallucination (Section 3.3)
and improve convergence (Section 6.1).
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Table 6: Ablation results of Multimodal-CoT.
Model Base Large
Multimodal-CoT 85.31 90.45

w/o Two-Stage Framework 82.62 84.56
w/o Vision Features 78.57 83.97

6 Analysis

The following analysis will first show that Multimodal-CoT helps enhance convergence speed and has the
feasibility of adaptation to scenarios without human-annotated rationales. Then, we investigate the general
effectiveness of Multimodal-CoT with different backbone models and vision features. We will also conduct an
error analysis to explore the limitations to inspire future studies. We use models under the base size for
analysis unless otherwise stated.

6.1 Multimodality Boosts Convergence
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Figure 5: Accuracy curve of the No-CoT baseline and
Multimodal-CoT variants.

Figure 5 shows the validation accuracy curve of
the baseline and Multimodal-CoT across different
training epochs. “One-stage” is based on the
QCM→A input-output format as it achieves the
best performance in Table 2 and “Two-stage” is
our two-stage framework. We find that the two-
stage methods achieve relatively higher accuracy
at the beginning than the one-stage baselines
that generate the answer directly without CoT.
However, without the vision features, the two-
stage baseline could not yield better results as the
training goes on due to low-quality rationales (as
observed in Section 3). In contrast, using vision
features helps generate more effective rationales
that contribute to better answer accuracy in our
two-stage multimodal variant.

6.2 When Multimodal-CoT Meets Large Models

A recent flame is to leverage large language models or large vision-language models to generate reasoning
chains for multimodal question answering problems (Zhang et al., 2023a; Lu et al., 2023; Liu et al., 2023;
Alayrac et al., 2022; Hao et al., 2022; Yasunaga et al., 2022). We are interested in whether we can use
large models to generate the rationales for Multimodal-CoT; thus breaking the need for datasets with
human-annotated rationales. During the first-stage training of Multimodal-CoT, our target rationales are
based on human annotation in the benchmark datasets. Now, we replace the target rationales with those
generated ones. As ScienceQA contains questions with images and without images, we leverage InstructBLIP
and ChatGPT to generate the rationales for questions with paired images and questions without paired
images, respectively.7 Then, we combine both of the generated pseudo-rationales as the target rationales for
training (Multimodal-CoT w/ Generation) instead of relying on the human annotation of reasoning chains
(Multimodal-CoT w/ Annotation).

Table 7 shows the comparison results. We see that using the generated rationales achieves comparable
performance to using human-annotated rationales for training. In addition, the performance is also much
better than directly prompting those baseline models to obtain the answer (in the QCM→A inference format).

7Examples are provided in Appendix C.1.
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Table 7: Result comparison with large models. We also present the results of InstructBLIP and ChatGPT
baselines for reference. The inference format for the two baselines is QCM→A.

Model IMG TXT AVG
InstructBLIP 60.50 - -
ChatGPT 56.52 67.16 65.95
Multimodal-CoT w/ Annotation 88.25 90.13 90.45
Multimodal-CoT w/ Generation 83.54 85.73 87.76

We see that Multimodal-CoT can work effectively with large models. The findings above compellingly
show the feasibility of adaptation to scenarios without human-annotated rationales, thereby establishing the
effectiveness of our approach across diverse tasks.

6.3 Effectiveness Across Backbones

To test the generality of the benefits of our approach to other backbone models, we alter the underlying LMs
to other variants in different types. As shown in Table 8, our approach is generally effective for the widely
used backbone models.

Table 8: Using different backbone LMs.
Method Accuracy
Prior Best (Lu et al., 2022a) 75.17
MM-CoT on UnifiedQA 82.55
MM-CoT on FLAN-T5 83.19
MM-CoT on FLAN-Alpaca 85.31

Table 9: Using different vision features.
Feature Feature Shape Accuracy
ViT (145, 1024) 85.31
CLIP (49, 2048) 84.27
DETR (100, 256) 83.16
ResNet (512, 2048) 82.86

6.4 Using Different Vision Features

Different vision features may affect the model performance. We compare three widely-used types of vision
features, ViT (Dosovitskiy et al., 2021b), CLIP (Radford et al., 2021), DETR (Carion et al., 2020), and
ResNet (He et al., 2016). ViT, CLIP, and DETR are patch-like features. For the ResNet features, we repeat
the pooled features of ResNet-50 to the same length with the text sequence to imitate the patch-like features,
where each patch is the same as the pooled image features. More details of the vision features are presented
in Appendix B.1.

Table 9 shows the comparative results of vision features. We observe that ViT achieves relatively better
performance. Therefore, we use ViT by default in Multimodal-CoT.

6.5 Alignment Strategies for Multimodal Interaction

We are interested in whether using different alignment strategies for multimodal interaction may contribute to
different behaviors of multimodal-CoT. To this end, we tried another alignment strategy, i.e., image-grounded
text encoder, in BLIP Li et al. (2022b). This alignment approach injects visual information by inserting
one additional cross-attention layer between the self-attention layer and the feed-forward network for each
transformer block of the text encoder. Our current strategy in the paper is similar to the unimodal encoder
as in BLIP, which is used for comparison. In Table 10, we see that using other alignment strategies also
contributes to better performance than direct answering.
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Table 10: Result comparison with different alignment strategies for multimodal interaction.
Model Accuracy
Direct Answering 82.62
Unimodal encoder 85.31
Image-grounded text encoder 84.60

6.6 Generalization to Other Multimodal Reasoning Benchmarks

We are interested in evaluating the generalization capability of Multimodal-CoT to datasets outside its
training domain. For this purpose, we utilize the widely-recognized multimodal reasoning benchmark, MMMU
(Yue et al., 2024), and conduct an evaluation of Multimodal-CoT on MMMU without further training.

Table 11: Generalization performance on MMMU.
Model Size Accuracy
Kosmos-2 (Peng et al., 2024) 1.6B 24.4
Fuyu (Bavishi et al., 2024) 8B 27.9
OpenFlamingo-2 (Awadalla et al., 2023) 9B 28.7
MiniGPT4-Vicuna (Zhu et al., 2023) 13B 26.8
Multimodal-CoT 738M 28.7
GPT-4V(ision) (OpenAI, 2023) - 56.8
Gemini Ultra (Reid et al., 2024) - 59.4

As shown in Table 11, it is evident that Multimodal-CoT demonstrates effective generalization to MMMU,
achieving better performance than various larger models around 8B.

6.7 Error Analysis

To gain deeper insights into the behavior of Multimodal-CoT and facilitate future research, we manually
analyzed randomly selected examples generated by our approach. The categorization results are illustrated in
Figure 6. We examined 50 samples that yielded incorrect answers and categorized them accordingly. The
examples from each category can be found in Appendix D.

80%

14%

6%

Commonsense

Logical

Others

Figure 6: Categorization analysis.

The most prevalent error type is commonsense mistakes,
accounting for 80% of the errors. These mistakes occur
when the model is faced with questions that require com-
monsense knowledge, such as interpreting maps, counting
objects in images, or utilizing the alphabet. The second
error type is logical mistakes, constituting 14% of the
errors, which involve contradictions in the reasoning pro-
cess. Additionally, we have observed cases where incorrect
answers are provided despite the CoT being either empty
or correct, amounting to 6% of the errors. The CoT in
these cases may not necessarily influence the final answer.

The analysis reveals potential avenues for future research. Enhancements can be made to Multimodal-CoT by:
(i) integrating more informative visual features and strengthening the interaction between language and vision
to enable comprehension of maps and numerical counting; (ii) incorporating commonsense knowledge; and
(iii) implementing a filtering mechanism, such as using only relevant CoTs to infer answers and disregarding
irrelevant ones.
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7 Conclusion

This paper formally studies the problem of multimodal CoT. We propose Multimodal-CoT that incorporates
language and vision modalities into a two-stage framework that separates rationale generation and answer
inference, so answer inference can leverage better generated rationales from multimodal information. With
Multimodal-CoT, our model under 1 billion parameters achieves state-of-the-art performance on the ScienceQA
benchmark. Analysis shows that Multimodal-CoT has the merits of mitigating hallucination and enhancing
convergence speed. Our error analysis identifies the potential to leverage more effective vision features, inject
commonsense knowledge, and apply filtering mechanisms to improve CoT reasoning in future studies.
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A Extended Analysis for the Challenge of Multimodal-CoT

A.1 Additional Examples of Misleading through Hallucinated Rationales

Based on our case studies (Section 3.2), we have observed a tendency for the baseline model to generate
hallucinated rationales. Here, we present additional examples to illustrate this phenomenon, as depicted in
Figure 7.

Options: (B) Solution A(A) Solution B

Problem

Baseline

Question: Which solution has a higher concentration of yellow particles?
Context: The diagram below is a model of two solutions. Each yellow ball represents one particle of solute.

Gold Rationale: In Solution A and Solution B, the yellow particles represent the solute. To figure out which
solution has a higher concentration of yellow particles, look at both the number of yellow particles and the volume
of the solvent in each container. Use the concentration formula to find the number of yellow particles per milliliter.
Solution B has more yellow particles per milliliter. So, Solution B has a higher concentration of yellow particles.

+ Vision Features

Answer: The answer is (A).

Rationale: In Solution A and Solution B, the yellow particles represent
the solute. To figure out which solution has a higher concentration of
yellow particles, look at both the number of yellow particles and the
volume of the solvent in each container. Use the concentration formula
to find the number of yellow particles per milliliter. Solution A has more
yellow particles per milliliter. So, Solution A has a higher concentration
of yellow particles.
Answer: The answer is (B).

Rationale: In Solution A and Solution B, the yellow particles represent
the solute. To figure out which solution has a higher concentration of
yellow particles, look at both the number of yellow particles and the
volume of the solvent in each container. Use the concentration formula
to find the number of yellow particles per milliliter. Solution B has more
yellow particles per milliliter. So, Solution B has a higher concentration
of yellow particles.
Answer: The answer is (A).

Vision

Problem

Baseline

Question: Think about the magnetic force between the magnets in each pair. Which of the
following statements is true?
Context: The images below show two pairs of magnets. The magnets in different pairs do
not affect each other. All the magnets shown are made of the same material.

Gold Rationale: The magnets in Pair 1 attract. The magnets in Pair 2 repel. But whether the magnets attract or repel affects only the direction of
the magnetic force. It does not affect the magnitude of the magnetic force. Both magnet sizes and distance affect the magnitude of the magnetic
force. The sizes of the magnets in Pair 1 are the same as in Pair 2. The distance between the magnets is also the same. So, the magnitude of the
magnetic force is the same in both pairs.
Answer: The answer is (C).

Rationale: Distance affects the magnitude of the magnetic force.
When there is a greater distance between magnets, the magnitude of
the magnetic force between them is smaller. There is a greater
distance between the magnets in Pair 2 than in Pair 1. So, the
magnitude of the magnetic force is smaller in Pair 2 than in Pair 1.
Answer: The answer is (B).

Rationale: The magnets in Pair 1 attract. The magnets in Pair 2 repel.
But whether the magnets attract or repel affects only the direction of
the magnetic force. It does not affect the magnitude of the magnetic
force. Both magnet sizes and distance affect the magnitude of the
magnetic force. The sizes of the magnets in Pair 1 are the same as in
Pair 2. The distance between the magnets is also the same. So, the
magnitude of the magnetic force is the same in both pairs.
Answer: The answer is (C).

Vision

+ Vision Features

Options:

(B) The magnitude of the magnetic force is smaller in Pair 1.

(A) The magnitude of the magnetic force is smaller in Pair 2.

(C) The magnitude of the magnetic force is the same in both pairs.

(C) neither; their concentrations are the same

Figure 7: Examples of the two-stage framework without vision features (baseline) and with vision features
(ours) for generating rationales and predicting answers. The upper part presents the problem details, and the
lower part shows the outputs of the baseline and our method.

A.2 Two-Stage Training Performance with Different Sizes of LMs

In Section 3, we observed that the inclusion of vision features has a positive impact on the generation of more
effective rationales, consequently resulting in improved answer accuracy. In addition to incorporating vision
features, another approach to addressing the issue of incorrect rationales is to scale the size of the language
model (LM). Figure 8 showcases the answer accuracy achieved by our two-stage training framework, both with
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and without the integration of vision features. Notably, when employing a larger LM, the baseline accuracy
(without vision features) experiences a significant enhancement. This finding suggests that scaling the LM
size could potentially alleviate the problem of incorrect rationales. However, it is crucial to acknowledge that
the performance still falls considerably short of utilizing vision features. This outcome further validates the
effectiveness of our Multimodal-CoT methodology across varying LM sizes.
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Figure 8: Answer accuracy with different sizes of LMs.

A.3 Discussion of the Possible Paradigms to Achieve Multimodal-CoT

As discussed in Section 1, there are two primary approaches to facilitate Multimodal-CoT reasoning: (i)
prompting LLMs and (ii) fine-tuning small models. The common approach in the first approach is to unify
the input from different modalities and prompt LLMs to perform reasoning (Zhang et al., 2023a; Lu et al.,
2023; Liu et al., 2023; Alayrac et al., 2022; Hao et al., 2022; Yasunaga et al., 2022). For instance, one way to
achieve this is by extracting the caption of an image using a captioning model and then concatenating the
caption with the original language input to feed LLMs. By doing so, visual information is conveyed to LLMs
as text, effectively bridging the gap between modalities. This approach can be represented as the input-output
format <image → caption, question + caption → answer>. We refer to this approach as Caption-based
Reasoning (Figure 9a). It is worth noting that the effectiveness of this approach depends on the quality of
the image caption, which may be susceptible to errors introduced during the transfer from image captioning
to answer inference.

In contrast, an intriguing aspect of CoT is the ability to decompose complex problems into a series of simpler
problems and solve them step by step. This transformation leads to a modification of the standard format
<question → answer> into <question → rationale → answer>. Rationales, being more likely to reflect the
reasoning processes leading to the answer, play a crucial role in this paradigm. Consequently, we refer to
approaches following this paradigm as CoT-based Reasoning. The nomenclature has been widely adopted
in the literature (Huang & Chang, 2022; Zhang et al., 2023d; Lu et al., 2022c).

Our work aligns with the paradigms of CoT-based Reasoning in the context of multimodal scenarios,
specifically employing the <question + image → rationale → answer> framework (Figure 9b). This approach
confers advantages on two fronts. Firstly, the Multimodal-CoT framework leverages feature-level interactions
between vision and language inputs, enabling the model to gain a deeper understanding of the input
information and facilitating more effective inference of answers by incorporating well-founded rationales.
Our analysis has demonstrated that Multimodal-CoT offers notable benefits by mitigating hallucination
and enhancing convergence, resulting in superior performance on our benchmark datasets. Secondly, the
lightweight nature of Multimodal-CoT renders it compatible with resource constraints and circumvents any
potential paywalls.
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(a) Caption-based Reasoning (b) CoT-based Reasoning

Figure 9: Paradigms to achieve Multimodal-CoT.

B Experimental Details

B.1 Details of Vision Features

In Section 6.2, we compared four types of vision features, ViT (Dosovitskiy et al., 2021b), CLIP (Radford
et al., 2021), DETR (Carion et al., 2020), and ResNet (He et al., 2016). The specific models are: (i) ViT:
vit_large_patch32_384,8 (ii) CLIP: RN101;9 (iii) DETR: detr_resnet101_dc5 ;10 (iv) ResNet: we use the
averaged pooled features of a pre-trained ResNet50 CNN.

Table 12 presents the dimension of the vision features (after the function VisionExtractor(·) in Eq. 3). For
ResNet-50, we repeat the pooled features of ResNet-50 to the same length as the text sequence to imitate the
patch-like features, where each patch is the same as the pooled image features.

Table 12: Feature shape of vision features
Method Feature Shape

ViT (145, 1024)
CLIP (49, 2048)
DETR (100, 256)
ResNet (512, 2048)

B.2 Datasets

Our method is evaluated on the ScienceQA (Lu et al., 2022a) and A-OKVQA (Schwenk et al., 2022) benchmark
datasets.

• ScienceQA is a large-scale multimodal science question dataset with annotated lectures and explanations.
It contains 21k multimodal multiple choice questions with rich domain diversity across 3 subjects, 26 topics,
127 categories, and 379 skills. The dataset is split into training, validation, and test splits with 12k, 4k, and
4k questions, respectively.

• A-OKVQA is a knowledge-based visual question answering benchmark, which has 25k questions requiring a
broad base of commonsense and world knowledge to answer. Each question is annotated with rationales that

8https://github.com/rwightman/pytorch-image-models.
9https://github.com/jianjieluo/OpenAI-CLIP-Feature.

10https://github.com/facebookresearch/detr.
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explain why a particular answer was correct according to necessary facts or knowledge. It has 17k/1k/6k
questions for train/val/test.

For ScienceQA, our model is evaluated on the test set. For A-OKVQA, our model is evaluated on the
validation set as the test set is hidden.

B.3 Implementation Details of Multimodal-CoT

As the Multimodal-CoT task requires generating the reasoning chains and leveraging the vision features,
we adopt the T5 encoder-decoder architecture (Raffel et al., 2020) under Base (200M) and large (700M)
settings in our framework. We apply FLAN-Alpaca to initialize our model weights.11 We will show that
Multimodal-CoT is generally effective with other backbone LMs, such as UnifiedQA (Khashabi et al., 2020)
and FLAN-T5 (Chung et al., 2022) (Section 6.1). The vision features are obtained by the frozen ViT-large
encoder (Dosovitskiy et al., 2021b). Since using image captions can slightly improve model performance, as
shown in Section 3.3, we append the image captions to the context following Lu et al. (2022a). The captions
are generated by InstructBLIP (Dai et al., 2023). We fine-tune the models up to 20 epochs, with a learning
rate selected in {5e-5, 8e-5}. The maximum input sequence lengths for rationale generation and answer
inference are 512 and 64, respectively. The batch size is 8. Our experiments are run on 8 NVIDIA Tesla
V100 32G GPUs.

C Further Analysis

C.1 Examples of Rationale Generation with Large Models

A recent flame is to leverage large language models or large vision-language models to generate reasoning
chains for multimodal question answering problems (Zhang et al., 2023a; Lu et al., 2023; Liu et al., 2023;
Alayrac et al., 2022; Hao et al., 2022; Yasunaga et al., 2022). We are interested in whether we can use
large models to generate the rationales for Multimodal-CoT; thus breaking the need for datasets with
human-annotated rationales. During the first-stage training of Multimodal-CoT, our target rationales are
based on human annotation in the benchmark datasets. Now, we replace the target rationales with those
generated by an LLM or a vision-language model. Concretely, we feed the questions with images (IMG)
and the question without images (TXT) to InstructBLIP (Dai et al., 2023) (Figure 10a) and ChatGPT
(Figure 10b) for zero-shot inference, respectively. Then, we use the generated pseudo-rationales as the target
rationales for training instead of relying on the human annotation of reasoning chains.

Output

The green area represents the state of New Hampshire, which is located in the
northeastern region of the United States. There are several other states visible on the
map, including Maine, Vermont, Massachusetts, Rhode Island, Connecticut, New York,
New Jersey, Pennsylvania, Maryland, Delaware, Virginia, North Carolina, South
Carolina, Georgia, Florida, and Alabama. Additionally, there are several smaller states
scattered throughout the map, such as West Virginia, Kentucky, and Tennessee.

VisionLanguage
Input

Question: What is the name of the colony shown?
Context: N/A

Options:
(B) New Hampshire(A) Maryland

Answer: The answer is (B).
Please explain the rationale to choose the correct answer.
Solution:

(D) Vermont(C) Rhode Island

Output

The best estimate for the length of a hiking trail is (C) 4
kilometers. Hiking trails are typically longer than a few
meters or centimeters, and 4 millimeters is too small to be
a reasonable estimate. Therefore, 4 kilometers is the
most appropriate option.

Input

Question: How long is a hiking trail?
Context: Select the best estimate.

Options:
(B) 4 millimeters(A) 4 meters

Answer: The answer is (C).
Please explain the rationale to choose the correct answer.
Solution:

(D) 4 centimeters(C) 4 kilometers

(a) Rationale generated by InstructBLIP (b) Rationale generated by ChatGPT

Figure 10: Rationale generation examples.

11https://github.com/declare-lab/flan-alpaca.
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C.2 Detailed Results of Multimodal-CoT on Different Backbone Models

To test the generality of the benefits of our approach to other backbone models, we alter the underlying LMs
to other variants of different types. As detailed results shown in Table 13, our approach is generally effective
for the widely used backbone models.

Table 13: Detailed results of Multimodal-CoT on different backbone models.
Model NAT SOC LAN TXT IMG NO G1-6 G7-12 Avg

MM-CoT on UnifiedQA 80.60 89.43 81.00 80.50 80.61 81.74 82.38 82.86 82.55
MM-CoT on FLAN-T5 81.39 90.89 80.64 80.79 80.47 82.58 83.48 82.66 83.19
MM-CoT on FLAN-Alpaca 84.06 92.35 82.18 82.75 82.75 84.74 85.79 84.44 85.31

D Examples of Case Studies

To gain deeper insights into the behavior of Multimodal-CoT and facilitate future research, we manually
analyzed randomly selected examples generated by our approach. The categorization results are illustrated in
Figure 11. We examined 50 samples that yielded incorrect answers and categorized them accordingly.

80%

14%

6%

Commonsense

Logical

Others

Figure 11: Categorization analysis.

The most prevalent error type is commonsense mistakes, accounting for 80% of the errors. These mistakes
occur when the model is faced with questions that require commonsense knowledge, such as interpreting
maps (Figure 12a), counting objects in images (Figure 12b), or utilizing the alphabet (Figure 12c).

The second error type is logical mistakes, constituting 14% of the errors, which involve comparison mistakes
(Figure 13a) and contradictions in the reasoning process (Figure 13b).

Additionally, we have observed cases where incorrect answers are provided despite the CoT being either
empty or correct, amounting to 6% of the errors. The CoT in these cases may not necessarily influence the
final answer (Figure 14).

The analysis reveals potential avenues for future research. Enhancements can be made to Multimodal-CoT by:
(i) integrating more informative visual features and strengthening the interaction between language and vision
to enable comprehension of maps and numerical counting; (ii) incorporating commonsense knowledge; and
(iii) implementing a filtering mechanism, such as using only relevant CoTs to infer answers and disregarding
irrelevant ones.
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Rationale: The city is San Francisco, California. Salt Lake City, Las Vegas, and Phoenix are marked with gray circles on the map below.
Answer: The answer is (B).

Options: (A) Las Vegas

Problem

Prediction

Question: Which of these cities is marked on the map?
Context: N/A

Rationale : The city is Las Vegas, Nevada. Salt Lake City, Phoenix, and San Francisco are marked with gray circles on
the map below.
Answer: The answer is (A).

Vision

(B) San Francisco 

(a) Mistakes about maps.

Rationale: (extract) It shows you how the solution changed during the process of diffusion. Before the solute particles reached equilibrium, there were
5 solute particles on the left side of the membrane and 4 solute particles on the right side of the membrane. When the solute particles reached
equilibrium, there were 5 solute particles on each side of the membrane. There was 1 more solute particle on the right side of the membrane than
before. So, for the solute particles to reach equilibrium, more solute particles must have moved across the membrane to the right than to the right.
Answer: The answer is (B).

Options: (A) to the left than to the right

Problem

Prediction

Question: Complete the text to describe the diagram. Solute particles moved in both directions across the permeable
membrane. But more solute particles moved across the membrane (). When there was an equal concentration on both sides,
the particles reached equilibrium.
Context: The diagram below shows a solution with one solute. Each solute particle is represented by a green ball. The
solution fills a closed container that is divided in half by a membrane. The membrane, represented by a dotted line, is
permeable to the solute particles. The diagram shows how the solution can change over time during the process of diffusion.

Rationale : (extract) It shows you how the solution changed during the process of diffusion. Before the solute particles
reached equilibrium, there were 3 solute particles on the left side of the membrane and 5 solute particles on the right side
of the membrane. When the solute particles reached equilibrium, there were 4 solute particles on each side of the
membrane. There was 1 more solute particle on the left side of the membrane than before. So, for the solute particles to
reach equilibrium, more solute particles must have moved across the membrane to the left than to the right.
Answer: The answer is (A).

Vision

(b) Mistakes about counting numbers in the image.

(C) Phoenix (D) Salt Lake City

(B) to the right than to the left

Rationale: Put the words in alphabetical order. Since hardship is between the guide words helping - hunter, it would be found on that page.
Answer: The answer is (B).

Options: (A) hospital

Problem

Prediction

Question: Which word would you find on a dictionary page with the following guide words? helping - hunter
Context: The diagram below shows a solution with one solute. Each solute particle is represented by a green ball. The
solution fills a closed container that is divided in half by a membrane. The membrane, represented by a dotted line, is
permeable to the solute particles. The diagram shows how the solution can change over time during the process of diffusion.

Rationale : Put the words in alphabetical order. Since hospital is between the guide words helping - hunter, it would be found on that page.
Answer: The answer is (A).

(B) hardship

Vision

N/A

(c) Mistakes about utilizing alphabet.

Figure 12: Examples of commonsense mistakes.
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Options: (A) a car that moved 445miles in 10hours

Problem

Prediction

Question: Compare the motion of two cars. Which car was moving at a lower speed?
Context: N/A

Rationale : Look at the distance each car moved and the time it took to move that distance. One car moved 170 miles in 10 hours. The other car
moved 445 miles in 10 hours. Notice that each car spent the same amount of time moving. The car that moved 170 miles moved a shorter distance
in that time. So, that car must have moved at a lower speed.
Answer: The answer is (B).

(B) a car that moved 170miles in 10hours

Vision

N/A

Options: (A) a black coat 

Problem

Prediction

Question: Based on this information, what is Sage's phenotype for the coat color trait?
Context: In a group of horses, some individuals have a black coat and others have a reddish-brown coat. In this group, the
gene for the coat color trait has two alleles. The allele for a reddish-brown coat (l) is recessive to the allele for a black coat (L).
Sage is a horse from this group. Sage has the homozygous genotype ll for the coat color gene.

Rationale : Sage's genotype for the coat color gene is ll. Sage's genotype of ll has only l alleles. The l allele is for a reddish-brown coat. So, Sage's
phenotype for the coat color trait must be a reddish-brown coat. To check this answer, consider whether Sage's alleles are dominant or recessive.
The allele for a reddish-brown coat (l) is recessive to the allele for a black coat (L). This means L is a dominant allele, and l is a recessive allele.
Sage's genotype of ll has only recessive alleles. An organism with only recessive alleles for a gene will have the recessive allele's version of the trait.
So, Sage's phenotype for the coat color trait must be a reddish-brown coat.
Answer: The answer is (B).

(B) a reddish-brown coat

Vision

N/A

(a) Logical mistake where the model fails at comparisons.

(b) Logical mistake where the there is a contradiction in the rationale.

Rationale: Sage's genotype for the coat color gene is ll. Sage's genotype of ll has only l alleles. The l allele is for a reddish-brown coat. So, Sage's
phenotype for the coat color trait must be a reddish-brown coat. To check this answer, consider whether Sage's alleles are dominant or recessive.
The allele for a reddish-brown coat (l) is recessive to the allele for a black coat (L). This means L is a dominant allele, and l is a recessive allele.
Sage's genotype of ll has only recessive alleles. An organism with only recessive alleles for a gene will have the recessive allele's version of the trait.
So, Sage's phenotype for the coat color trait must be a black coat.
Answer: The answer is (A).

Rationale: Look at the distance each car moved and the time it took to move that distance. One car moved 445 miles in 10 hours. The other car
moved 170 miles in 10 hours. Notice that each car spent the same amount of time moving. The car that moved 445 miles moved a shorter distance
in that time. So, that car must have moved at a lower speed.
Answer: The answer is (A).

Figure 13: Examples of logical mistakes.

Options: (A) black stripes on its skin

Problem

Prediction

Rationale : The way an organism looks or acts is called a trait. Scientists use fossils to learn more about the traits of ancient organisms. Fossils can
preserve the remains of body parts and activities. A fossil of a body part, such as a tail or a wing, can tell you what an organism looked like. A fossil of
an organism's activities, such as a burrow or a footprint, can tell you about the organism's behavior. Here are three examples of fossils and the traits
that you can observe from them: This is a fossil of an animal. This fossil tells you that the animal had a spiral-shaped shell. This is a fossil of a plant.
This fossil tells you that the plant had small leaves arranged in a branched pattern. This is a fossil of an animal's footprint. This fossil tells you that the
animal could walk on land. An organism's fossil may not show all of the organism's traits. This is because most body parts are destroyed during fossil
formation. When an organism's body turns into a fossil, only a few body parts are usually preserved.
Answer: The answer is (C).

(B) large fins on its body

Vision

(C) a long, thin body

Question: Which trait did Palaeopython have? Select the trait you can observe on the fossil.
Context: This picture shows a fossil of an ancient animal called Palaeopython. Palaeopython lived in trees and could
grow more than six feet long.

Rationale : The way an organism looks or acts is called a trait. Scientists use fossils to learn more about the traits of ancient organisms. Fossils can
preserve the remains of body parts and activities. A fossil of a body part, such as a tail or a wing, can tell you what an organism looked like. A fossil of
an organism's activities, such as a burrow or a footprint, can tell you about the organism's behavior. Here are three examples of fossils and the traits
that you can observe from them: This is a fossil of an animal. This fossil tells you that the animal had a spiral-shaped shell. This is a fossil of a plant.
This fossil tells you that the plant had small leaves arranged in a branched pattern. This is a fossil of an animal's footprint. This fossil tells you that the
animal could walk on land. An organism's fossil may not show all of the organism's traits. This is because most body parts are destroyed during fossil
formation. When an organism's body turns into a fossil, only a few body parts are usually preserved.
Answer: The answer is (B).

Figure 14: Examples of answers are incorrect while the CoT is correct.
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