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Abstract

In this paper, we address the challenges associated with merging low-rank adap-
tations of large neural networks. With the rise of parameter-efficient adaptation
techniques, such as Low-Rank Adaptation (LoRA), model fine-tuning has become
more accessible. While fine-tuning models with LoRA is highly efficient, existing
merging methods often sacrifice this efficiency by merging fully-sized weight ma-
trices. We propose the Core Space merging framework, which enables the merging
of LoRA-adapted models within a common alignment basis, thereby preserving the
efficiency of low-rank adaptation while substantially improving accuracy across
tasks. We further provide a formal proof that projection into Core Space ensures no
loss of information and provide a complexity analysis showing the efficiency gains.
Extensive empirical results demonstrate that Core Space significantly improves
existing merging techniques and achieves state-of-the-art results on both vision and
language tasks while utilizing a fraction of the computational resources. Codebase
is available at https://github.com/apanariello4/core-space-merging.

1 Introduction

In recent years, the size of neural networks has grown substantially [2, 4, 9, 13, 51], increasing
the economic and computational costs associated with training from scratch and fine-tuning. As a
consequence, efficient low-rank adaptation techniques have emerged, which enable broader access
to these powerful models [15, 16, 21, 26, 56]. Techniques like Low-Rank Adaptation (LoRA) [16]
reparameterize model updates to significantly reduce the number of trainable parameters. This makes
it feasible for a broader range of users to fine-tune large architectures on their specific tasks.

At the same time, the advent of model hubs such as Hugging Face [17] has simplified the diffusion
of pre-trained and fine-tuned models, opening new opportunities for collaborative and multi-task
learning by allowing users to acquire and build upon existing models easily. In this context, model
merging, which aims to combine multiple specialized models into one capable of handling various
tasks, has been gaining interest [32, 37, 48, 27, 39]. However, most prior works focus on fully
fine-tuned models [6, 12, 18, 28, 34, 46, 50, 38]. While this is practical for smaller architectures, fully
fine-tuned versions of larger models are rare due to their high memory and compute costs. As model
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sizes grow, new strategies are needed to efficiently merge fine-tuned adaptations without incurring
the prohibitive overhead of merging full models.

In [42], the authors observe that directly applying existing merging techniques [18, 50, 55]
to updates derived by multiplying low-rank components leads to suboptimal results. To ad-
dress this, they introduce an alignment space that improves update compatibility. However,
merging in this alignment space requires abandoning the low-rank representation and perform-
ing a singular value decomposition (SVD) on the horizontally concatenated full space up-
dates. This suffers from two significant drawbacks: it eliminates the efficiency benefits of
low-rank adaptation, and becomes prohibitively expensive as the base model size increases.
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Figure 1: Merging in full space is fast but subopti-
mal (bottom center). Merging in KnOTS space or
using strong merging methods (e.g., TSV) improves
performance but increases cost by orders of magni-
tude (right). Core Space merging is effective and
efficient (top left). Results on Llama 3 8B.

To overcome such limitations, we propose
Core Space, a novel parameter-efficient sub-
space that supports arbitrary merging tech-
niques while retaining the benefits of low-rank
adaptation. Core Space provides a common
alignment basis for all task-specific low-rank
components without loss of information. No-
tably, its dimensionality depends solely on the
number of tasks and the LoRA rank, remain-
ing tractable regardless of the base model size.
Beyond its advantages in terms of efficiency,
merging in Core Space also consistently im-
proves the performance of existing merging
strategies. We evaluate three setups: (1)
first multiplying low-rank matrices and then
applying merging techniques, (2) merging
in the KnOTS space [42], and (3) merging
in our proposed Core Space. Across both vi-
sion and language domains, merging in Core
Space achieves the best results – demonstrated
on ViT-B/32, ViT-L/14, and Llama 3 8B back-
bones – highlighting that our approach not only
preserves parameter efficiency but also leads to
improved generalization and task performance
(see Fig. 1).

The main contributions of this paper are the following:

• We introduce Core Space Merging, a framework to merge LoRA-adapted models in a
shared low-rank basis, avoiding costly full space operations, while improving accuracy. Our
approach can be easily integrated with existing merging methods.

• We prove that projection into Core Space ensures no loss of information, and provide a
complexity analysis demonstrating the efficiency gain of merging in the proposed space.

• We present an extensive empirical evaluation showing state-of-the-art results achieved at a
fraction of the computational cost of competing methods by merging in Core Space for
vision and language tasks, including experiments on ViT-B/32, ViT-L/14, and Llama 3 8B.

2 Related Work

Parameter-efficient fine-tuning (PEFT). Pre-trained models serve as a starting point for training
experts specialized in various downstream tasks [10, 36]. As the size of frontier models grows, the cost
of fully fine-tuning such models increases accordingly. Therefore, several parameter-efficient fine-
tuning (PEFT), updating a small fraction of parameters, have been proposed, including adapters [15],
prefix tuning [25], and prompt tuning [24]. Nowadays, LoRA [16] and its variants [21, 26], which
rely on low-rank updates, have emerged as one of the most popular PEFT techniques.
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Model merging. The abundance of available expert models inspired the fundamental question
behind model merging [32]: how can we integrate knowledge from multiple expert models into a
single multi-task model? Task Arithmetic [18] proposed to construct task vectors (i.e., the parameter
difference between expert and base model) and aggregate them via scaled addition, creating a multi-
task expert. Since a significant performance gap between the single-task and the merged models
remains, many approaches were proposed to address this issue [1, 19, 29, 31, 43, 52, 54, 35]. TIES-
Merging [50] focuses on reducing sign conflicts between the parameters of expert models. Model
Breadcrumbs [8] removes outliers from the task vectors, while Consensus Merging [46] eliminates
catastrophic and selfish weights. Most recent methods, like TSV [12] and Iso-C [28], rely on singular
value decomposition (SVD) of weight update matrices to reduce task interference when merging
models. However, most methods are designed for merging fully fine-tuned models.

Merging LoRA-adapted models. Methods designed to merge fully fine-tuned models do not
necessarily transfer well to merging LoRA-adapted models [44]. The authors of [44] proposed and
improved a method to merge LoRAs. However, their approach relies on altering the fine-tuning
procedure. KnOTS [42] proposes to merge LoRA updates in the shared subspace, achieving a
significant improvement. However, KnOTS performs SVD on the concatenation of full-size matrices
instead of leveraging their decomposed update representations, making it costly, especially for large
weight matrices. Therefore, finding a method that effectively and efficiently merges LoRA-adapted
models remains an open challenge.

3 Preliminaries

LoRA fine-tuning. Low-Rank Adaptation (LoRA) [16] is a technique for efficient fine-tuning of
large pre-trained models. Instead of updating the full model weights W ∈ Rm×n, LoRA introduces
two learnable matrices A ∈ Rr×n and B ∈ Rm×r (where r � min(m,n)), and modifies the weight
update as W = W0 +∆W = W0 +BA, where W0 is the original weight matrix. This significantly
reduces the number of parameters that need to be updated during fine-tuning.

Model merging. Given a set of T parameters {W1, . . . ,WT }, for a common architecture trained on
T different tasks, a basic model merging approach calculates task vectors ∆Wi = Wi −W0, and
computes a weighted sum Wmerged = W0+α

∑T
i=1 ∆Wi. When dealing with LoRA-adapted models

we obtain a common W0 and a set of decomposed, low-rank updates {∆Wi = BiAi}Ti=1. However,
merging such weight matrices obtained from LoRA leads to suboptimal performance as shown in
[42], since LoRA-adapted models are less aligned w.r.t. to their fully fine-tuned counterparts.

4 The Core Space Merging Framework

In this section, we introduce Core Space Merging (see Fig. 2), a framework designed to identify
an effective and efficient subspace – referred to as the Core Space – in which model merging for
LoRA-adapted models can be performed while remaining in the low-rank regime. Core Space is
designed to be reversible – it ensures no loss of information when projecting into Core Space and
back to the original space – while being as compact as possible. Compactness allows for the use of
state-of-the-art merging methods relying on Singular Value Decomposition (SVD) of weight matrices,
which are highly costly to perform in the original space for large models.

4.1 Model Merging in Core Space

Let A(t) ∈ Rr×n and B(t) ∈ Rm×r denote the low-rank matrices for task t, derived from a shared
pre-trained base model W0. Each task update ∆W (t) = B(t)A(t) can be reconstructed from the SVD
of the matrices:

A(t) = U
(t)
A Σ

(t)
A V

(t)>
A , B(t) = U

(t)
B Σ

(t)
B V

(t)>
B ,

∆W (t) = U
(t)
B Σ

(t)
B V

(t)>
B U

(t)
A Σ

(t)
A V

(t)>
A ,

(1)

where the shapes of the matrices in the decomposition are: U (t)
A ∈ Rr×r, Σ(t)

A ∈ Rr×r, V (t)
A ∈ Rn×r,

U
(t)
B ∈ Rm×r, Σ(t)

B ∈ Rr×r, and V
(t)
B ∈ Rr×r.
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Figure 2: Full Space Merging (left) firstly reconstructs full space matrices ∆W (t) = B(t)A(t), and
then performs merging in the full space to obtain ∆W . KnOTS Merging concatenates the ∆W (t)

matrices, and performs a costly SVD on this high-dimensional matrix. Then, the V (t) matrices are
merged and used to obtain the final ∆W . The proposed Core Space Merging (right) performs SVD
on a concatenation of low-dimensional A(t) and B(t) matrices to obtain reference bases (V ref

A , U ref
B ).

Afterwards, it projects each update into the Core Space to obtain the core matrices {M (t)}Tt=1. It
then performs merging in the Core Space and reconstructs to obtain the final ∆W .

Motivation. Under the hypothesis that all tasks share approximately the same common bases
(UB , VA) such that ∀t ∈ {1, . . . , T}, UB ≈ U

(t)
B and VA ≈ V

(t)
A , we have:

∆W =

T∑
t=1

∆W (t) =

T∑
t=1

B(t)A(t) ≈ UB

(
T∑

t=1

Σ
(t)
B V

(t)>
B U

(t)
A Σ

(t)
A

)
V >
A , (2)

where Σ
(t)
B V

(t)>
B U

(t)
A Σ

(t)
A ∈ Rr×r encodes the directional transformation applied by the low-rank

update of task t. This suggests that, under aligned bases, the sum of low-rank updates (i.e., Task
Arithmetic [18]) can be reduced to merging operations in a much smaller r × r space.

Projecting into the Core Space. In practice, task-specific bases are not aligned, making direct
merging of core matrices as in Eq. (2) infeasible. Therefore, we aim to find a shared basis that can
represent all tasks without loss of information and that enables merging to be performed in a reduced
space compared to the full space ∆W (t). Intuitively, such a shared basis should span the subspace
formed by the union of the individual task subspaces.

Definition 1 (Reference Bases). Given a collection of low-rank matrices {A(t), B(t)}Tt=1, we define
as reference bases the orthonormal matrices U ref

B ∈ Rm×Tr and V ref
A ∈ Rn×Tr, obtained by

performing SVD over the vertically stacked A(t) and horizontally stacked B(t) low-rank matrices
across tasks:

[B(1); · · · ;B(T )] = U ref
B ΣBV

>
B ;

A
(1)

...
A(T )

 = UAΣA

(
V ref
A

)>
. (3)

These bases span a shared latent subspace into which all task-specific updates are projected.

Although the reference bases (U ref
B , V ref

A ) span all task-specific directions, each task t is originally
expressed in its own local bases (U

(t)
B , V

(t)
A ). To express each update in the common coordinate

system for merging, we solve the following least-squares problems:

R
(t)
B = argmin

R∈RT ·r×r

∥∥∥U ref
B R− U

(t)
B

∥∥∥2
F
, Q

(t)
A = argmin

Q∈RT ·r×r

∥∥∥V ref
A Q− V

(t)
A

∥∥∥2
F
, (4)
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where V
(t)
A ∈ Rn×r and V ref

A ∈ Rn×T ·r (and similarly for U (t)
B and U ref

B ). These problems are
convex, and since U ref

B and V ref
A are orthonormal, setting the gradients to zero yields the global

minimizers (see Sec. A.1 for the full derivation):

R
(t)
B = U ref

B

>
U

(t)
B , Q

(t)
A = V ref

A

>
V

(t)
A . (5)

As we will show in Sec. 4.2, ‖U ref
B R

(t)
B − U

(t)
B ‖2F= 0, which allows us to substitute U

(t)
B with

U ref
B R

(t)
B , and similarly V

(t)
A with V ref

A Q
(t)
A , in Eq. (1), yielding:

∆W (t) = U ref
B R

(t)
B Σ

(t)
B V

(t)>
B U

(t)
A Σ

(t)
A Q

(t)
A

>︸ ︷︷ ︸
task-t update in reference coordinates

V ref
A

>
. (6)

By substituting the least-squares solutions from Eq. (5) and using the definitions of B(t) and A(t)

from Eq. (1), we can equivalently write:

∆W (t) = U ref
B

(
U ref
B

>
B(t)A(t)V ref

A

)
V ref
A

>
. (7)

This reformulation expresses each ∆W (t) in the reference basis, enabling all updates to be compared
or merged within a shared coordinate system.

Definition 2 (Core Matrix). We define the core matrix M (t) as:

M (t) =
(
U ref
B

>
B(t)

)(
A(t)V ref

A

)
∈ RTr×Tr. (8)

This formulation generalizes the middle expression in Eq. (2), where aligned task-specific bases were
implicitly assumed. In contrast, the core matrix M (t) is expressed in the reference bases (U ref

B , V ref
A )

and thus does not rely on any alignment assumption. It encodes the directional transformation applied
by the low-rank update of task t, providing a compact and lossless representation of each task update
in the shared reference space and enabling efficient merging in a reduced Tr × Tr space.

Reparametrized Model Merging in Core Space. Once task-specific updates ∆W (t) have been repa-
rameterized into their corresponding core matrices M (t) in the shared reference bases (U ref

B , V ref
A ),

Core Space Merging enables model merging to be performed entirely within a compact, aligned,
low-rank subspace. Specifically, the merged update is computed by applying a merging operator M
over the set of core matrices:

Mmerged = M({M (t)}Tt=1), (9)

where M may be any merging function, ranging from simple arithmetic averaging [18] to more
advanced, non-linear or geometry-aware techniques [50, 55]. The final update in the original model
space, as described also in Algorithm 1, is recovered by projecting Mmerged back through the reference
bases:

∆W = U ref
B MmergedV

ref
A

>
. (10)

Because Core Space is a lossless representation of the original updates for each individual task (see
Eq. (7)), merging in this space preserves all relevant task information. Furthermore, when M is
linear, such as Task Arithmetic, the merge operation in Core Space is exactly equivalent to applying
the same merge in the full model space:

M({∆W (t)}Tt=1) = M({U ref
B M (t)V ref

A

>}Tt=1) = U ref
B M({M (t)}Tt=1)V

ref
A

>
. (11)

Core Space merging offers key benefits over full space merging:

• Efficiency. Core matrices M (t) ∈ RTr×Tr are significantly smaller than their full-space
counterparts ∆W (t) ∈ Rm×n. This reduction enables high-cost merging algorithms to run
at a fraction of the time and memory footprint (see Sec. 4.3).

• Efficacy. As shown in Sec. 5.1, Core Space merging improves performance over full-space
merging when non-linear methods are used. In Sec. 5.2, we show that this improvement
stems from better alignment and more compact representation of task-specific directions.
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Algorithm 1 Core Matrix Alignment and Merging

Require: Low-rank updates {(A(t), B(t))}Tt=1, merging function M(·).
1: Stack A(t) vertically, B(t) horizontally
2: Compute V ref

A : stack(A(t)) = UAΣAV
ref>
A . reference bases

3: Compute U ref
B : stack(B(t)) = U ref

B ΣBV
>
B

4: for t = 1 to T do
5: Compute: M (t) = (U ref

B

>
B(t))(A(t)V ref

A ) . Eq. (8)
6: Merge aligned core matrices: Mmerged = M({M (t)}Tt=1)
7: return ∆W = U ref

B MmergedV
ref>
A . reconstructed merged model

4.2 No Information Loss in Core Space Representation

Replacing U
(t)
B and V

(t)
A with U ref

B R
(t)
B and V ref

A Q
(t)
A to obtain Eqs. (6) and (7), which define the

final form of the core matrix, requires that the solutions to the least-squares problems in Eq. (4) incur
zero alignment error. That is,∥∥∥U ref

B R
(t)
B − U

(t)
B

∥∥∥2
F
= 0,

∥∥∥V ref
A Q

(t)
A − V

(t)
A

∥∥∥2
F
= 0. (12)

In this section, we show that the reference bases U ref
B and V ref

A , obtained via the SVD of the stacked
matrices B(t) and A(t) (see Eq. (3)), minimize the total alignment error across all T tasks, achieving
an error of exactly zero. To illustrate this, we first analyze the alignment error for a single task t,
focusing on U ref

B . Analogous results hold symmetrically for V ref
A . For clarity, we assume in the

following derivations that T · r ≤ m and T · r ≤ n, so that the total LoRA rank does not exceed the
maximum possible rank of the target weight matrix. In Sec. A.4, we provide a more general analysis
that removes this assumption and demonstrate that the zero alignment error result continues to hold.

Lemma. Let U (t)
B ∈ Rm×r and U ref

B ∈ Rm×T ·r be matrices with orthonormal columns, and let
R

(t)
B = U ref

B

>
U

(t)
B ∈ RT ·r×r be the optimal solution minimizing the error of the least-square problem.

Then, the optimal alignment error is given by:

εU =
∥∥∥U ref

B R
(t)
B − U

(t)
B

∥∥∥2
F
= r −

∥∥∥∥U (t)
B

>
U ref
B

∥∥∥∥2
F

. (13)

The proof, provided in Sec. A.2, leverages the properties of Frobenius norm and the orthonormality of
U

(t)
B and U ref

B . To formally demonstrate that our chosen reference basis U ref
B minimizes the alignment

error across all T tasks (or equivalently maximize ||U (t)
B

>
U ref
B ||2F for each task t), we first formulate

the following constrained optimization problem for a single task, and then extend it to the multi-task
scenario:

max
U∈S

∥∥∥∥U (t)
B

>
U

∥∥∥∥2
F

= max
U∈S

tr

(
U>U

(t)
B U

(t)
B

>
U

)
,

where S =
{
U ∈ Rm×Tr

∣∣ U>U = IT ·r
} (14)

and tr(·) denotes the trace operator. The optimization domain is restricted to the Stiefel manifold S
(i.e., the set of matrices with orthonormal columns). The following lemma characterizes the solution
to the following optimization problem:

Lemma. A solution U∗ to the quadratic program in Eq. (14) is given by a basis whose columns
include the r eigenvectors corresponding to nonzero eigenvalues of B(t)B(t)> ∈ Rm×m or, equiv-
alently, by the r left singular vectors of the matrix B(t). Moreover, at the optimum, the objective
attains its maximum value r, resulting in zero alignment error in Eq. (13).

We refer the reader to Sec. A.3 for a detailed proof. Briefly, the result follows by applying the method
of Lagrange multipliers to augment the optimization objective with the Stiefel manifold constraint
and then enforcing stationarity by setting the gradient of the Lagrangian to zero.
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Figure 3: Core Space merging is more efficient than the previous state-of-the-art KnOTS. The
cost is similar to full space merging, which results in much lower performance. We visualize the
number of operations performed to merge T rank r LoRA modules of final shape n× n.

Extension to multiple tasks. Achieving zero reconstruction error for a single model t does not
guarantee optimality for any other model t′ 6= t. Therefore, we aim to identify a reference basis U∗

that jointly optimizes Eq. (14) across all T models. We formulate this global problem as:

max
U∈ S

T∑
t=1

tr(U>U
(t)
B U

(t)
B

>
U) = max

U∈ S
tr(U>UBU

>
BU), (15)

where UB = [U
(1)
B , U

(2)
B , . . . , U

(T )
B ] denotes the horizontal concatenation of all U (t)

B matrices.
The equality in Eq. (15) follows directly from the linearity of the trace operator and the distributivity
of matrix multiplication concerning matrix addition: M>A1M +M>A2M = M>(A1 +A2)M .

By considerations analogous to the single task-case, a global solution U∗ is given by the top T · r left
singular vectors of the matrix B, obtained by vertically stacking each matrix B(t), i.e., U∗ = U ref

B .
This choice ensures zero alignment error simultaneously across all T tasks, consistent with the
procedure described in Sec. 4.1.

4.3 Computational Complexity Analysis

Table 1: O(·) time complexities. The cheap-
est method is highlighted in bold (T, r � n).

Space TA Iso-C TSV

Full n2Tr n3 n3T
KnOTS n3T 2 n3T 2 + n2Tr n3T 2 + T 3r2n
Core n2Tr n2Tr + T 3r3 n2Tr + T 4r3

We summarize the time complexities of TA, Iso-C,
and TSV merged in all three spaces (Full, KnOTS,
and our Core) in Tab. 1 and Fig. 3. Details on the
derivation of the complexities are in Appendix B. Our
approach exhibits a time complexity comparable to
that of Task Arithmetic in full space. Our method’s
additional terms are negligible unless the product T ·r
becomes significantly large. A key advantage of our
method lies in its scalability compared to KnOTS,
whose time complexity is super-cubic, driven by a factor that scales cubically with the weight matrix
size n. Finally, we emphasize the minimal additional overhead incurred when combining our method
with Iso-C or TSV in the core space; it introduces a cost substantially lower than its counterpart in
full space or KnOTS space.

5 Experimental Results

Experimental setup. We follow the experimental setup of KnOTS and use the LoRA checkpoints
provided by the authors [42]. For the vision experiments, we use two variants of CLIP [36] with
ViT-B/32 and ViT-L/14 [11] as vision encoders fine-tuned on a standard set of 8 tasks. We employ
Llama 3 8B [13] fine-tuned on 6 NLI tasks for the language experiments. All models are fine-tuned
with LoRA [16] with rank 16 applied on all matrices (keys, queries, values, and outputs) across all
attention layers. Following [42], we report normalized accuracy as a ratio of the accuracy of the
merged model on a given task to the accuracy of the model fine-tuned on this task. We also report
absolute accuracy for the joint-task setting (additional experimental details in Sec. D).
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Table 2: Normalized accuracies of merged models on NLI tasks for Llama 3 8B.

Method Space SNLI MNLI SICK QNLI RTE SCITAIL Avg (∆Acc) Time [s] Rel. Time
Abs. Accurcay 92.50 90.31 91.58 94.49 89.86 96.52 - - -

TA Full 93.57 95.28 87.96 68.71 100.0 96.73 90.38 (+0.00) 9 -

TIES
Full 95.17 96.19 84.18 74.18 100.0 96.78 91.08 (+0.00) 72 9
KnOTS 91.82 94.19 92.97 78.57 100.0 97.61 92.53 (+1.45) 3000 375
Core 92.07 93.51 93.63 83.72 99.19 97.66 93.30 (+2.22) 8 1

DARE-TIES
Full 94.76 96.8 78.39 72.08 98.39 96.20 89.44 (+0.00) 108 13
KnOTS 91.62 96.72 74.90 84.75 99.48 99.13 91.10 (+1.66) 3180 397
Core 92.10 93.58 93.70 83.68 99.19 97.66 93.32 (+3.88) 8 1

TSV
Full 95.38 95.12 88.83 76.80 101.61 97.56 92.55 (+0.00) 3360 280
KnOTS 92.53 95.83 82.77 77.01 100.0 97.08 90.87 (-1.68) 4800 400
Core 95.86 95.70 89.25 83.89 102.42 97.86 94.16 (+1.61) 12 1

Iso-C
Full 55.00 39.04 76.54 55.90 46.77 69.25 57.08 (+0.00) 540 67
KnOTS 85.28 52.86 89.43 54.90 75.00 77.73 72.53 (+15.45) 4860 607
Core 91.54 90.10 87.87 75.85 99.19 97.42 90.33 (+33.25) 8 1

Baseline merging spaces. We compare our proposed Core Space with two alternative merging
spaces. Full Space operates in space of full reconstructed weight matrices ∆W (t) = B(t)A(t) ∈
Rm×n. KnOTS Space [42] operates in the space of the right singular vectors of the concatenated
reconstructed weight matrices {∆W (t)}Tt=1 ∈ Rm×nT .

Baseline merging methods. We evaluate each merging space using the following merging meth-
ods. Task Arithmetic (TA) [18] performs a scaled summation of each task matrix Wmerged =

W0 + α
∑T

i=1 ∆Wi. As this is a linear operation, the results of merging in each space are the
same (see Eq. (11) for Core and [42] for KnOTS). TIES [50] trims low-magnitude parameters and
averages parameters with dominating sign, while DARE [55] preprocesses task vectors by randomly
dropping a fraction of parameters and rescaling the remaining ones. TSV [12] concatenates low-rank
approximations of task matrices and orthogonalizes them across tasks. CART [6] calculates centered
task vectors as a difference of fine-tuned weights from the average of all fine-tuned weights and
performs task arithmetic on the low-rank approximation of these centered task vectors. Iso-C [28]
flattens the spectrum of singular values for a model merged with task arithmetic. As the spectrum
flattening can be performed on weights merged with any merging technique, we combine Iso with
other merging techniques, denoting it with +Iso-C.

5.1 Results

LLMs merging. We present Llama 3 8B results in natural language inference in Tab. 2. In line
with our complexity analysis, merging in Core Space is much more efficient than merging in Full or
KnOTS space, bringing up to 600× merging speed-up. Moreover, merging in Core Space improves
the performance of all tested merging methods. In particular, it elevates TSV to 94.16% average
normalized accuracy, achieving state-of-the-art results.

Per-task evaluation in vision setting. We present per-task vision results for ViT-B/32 in Tab. 3. We
observe that 8 out of 9 merging methods achieve their highest average accuracy when performed in our
proposed Core Space. The best combination – TSV + Iso-C merged in Core Space – achieves state-
of-the-art average normalized accuracy of 76.3%. It significantly outperforms the previously reported
SoTA of TIES in KnOTS space, achieving 68.0% [42]. Similar conclusions hold for experiments on
ViT-L/14 presented in Sec. E.1.

Heterogeneous ranks. While handling LoRA modules with heterogeneous ranks might seem
non-trivial, our method supports it seamlessly without modification. Even with different ranks,
the modules can be concatenated across tasks to form an aggregate basis spanning the combined
subspaces, after which projection and alignment are applied to each local task core matrix. Since
SVD makes no assumptions about input ranks, it yields valid orthonormal bases in all cases, enabling
our framework to merge variable-rank LoRA modules naturally. We evaluate this setting by assigning
rank 16 to half the tasks and rank 64 to the rest; the results reported in Sec. E.2 show that our method
still outperforms other approaches.
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Table 3: Normalized accuracies of merged models on the vision tasks with ViT-B/32.

Method Space Cars DTD EuroSAT GTSRB MNIST RESISC SUN397 SVHN Avg (∆ Acc)
Abs. accuracies 74.00 58.30 99.00 92.70 99.30 88.40 64.50 96.20 -

TA Full 81.97 73.72 48.97 42.24 53.12 71.50 97.46 41.25 63.78 (+0.00)

TIES
Full 82.37 72.72 49.91 36.62 57.16 69.38 96.92 44.56 63.70 (+0.00)

KnOTS 83.75 74.45 50.36 47.31 67.01 71.79 96.51 50.64 67.73 (+4.03)

Core 84.74 76.46 52.19 50.41 67.36 71.21 96.45 50.18 68.63 (+4.93)

DARE-TIES
Full 82.14 73.72 49.35 37.78 56.63 70.14 97.35 42.12 63.65 (+0.00)

KnOTS 82.01 72.90 44.15 45.54 60.59 70.89 95.56 47.64 64.91 (+1.26)

Core 84.57 76.09 57.09 51.01 66.64 71.39 96.16 52.14 69.39 (+5.74)

TSV
Full 83.44 75.55 50.99 45.03 59.31 73.33 96.40 49.23 66.66 (+0.00)
KnOTS 81.86 74.91 51.25 41.64 53.93 71.64 97.95 40.36 64.19 (-2.47)

Core 83.86 75.09 52.64 45.39 58.53 72.95 97.63 45.21 66.41 (-0.25)

CART
Full 83.04 81.93 50.39 70.17 59.14 79.11 99.26 49.11 71.52 (+0.00)

KnOTS 83.94 75.18 52.23 54.48 64.78 74.48 95.88 55.73 69.59 (-1.93)

Core 80.83 83.94 54.99 73.28 66.25 80.95 98.69 48.57 73.44 (+1.92)

TIES +Iso-C
Full 78.86 74.45 60.01 39.02 66.65 70.30 98.39 48.59 67.03 (+0.00)

KnOTS 78.46 80.38 58.81 64.97 72.10 76.89 98.33 49.78 72.47 (+5.44)

Core 82.91 84.76 52.41 78.79 71.56 81.43 99.48 52.14 75.44 (+8.41)

DARE-TIES +Iso-C
Full 78.71 75.54 50.84 42.86 65.03 71.88 98.92 48.08 66.48 (+0.00)

KnOTS 82.93 74.18 49.31 46.73 66.64 71.82 96.72 50.57 67.36 (+0.88)

Core 83.27 83.12 54.55 79.04 71.83 82.08 99.36 52.37 75.70 (+9.22)

TSV +Iso-C
Full 79.38 80.38 57.99 65.64 64.22 79.74 98.59 46.49 71.55 (+0.00)

KnOTS 80.81 83.03 58.25 74.34 67.66 79.69 98.54 49.86 74.02 (+2.47)

Core 82.98 85.12 50.95 84.25 71.14 84.39 99.06 53.53 76.43 (+4.88)

CART +Iso-C
Full 80.33 82.11 57.31 77.38 71.17 81.57 98.72 51.91 75.06 (+0.00)

KnOTS 82.05 80.47 56.12 64.58 62.40 78.81 99.22 45.05 71.09 (-3.97)

Core 82.93 84.21 51.14 81.32 72.12 82.83 99.33 55.32 76.15 (+1.09)

Iso-C
Full 80.16 83.03 51.44 74.76 70.72 79.89 98.66 50.20 73.60 (+0.00)

KnOTS 80.33 79.29 57.50 67.60 65.63 79.54 99.26 46.62 71.97 (-1.63)

Core 83.35 84.30 50.13 81.97 71.07 83.46 99.17 53.90 75.92 (+2.32)

Table 4: Joint-task setting absolute accuracy of merged models on the vision tasks with ViT-B/32.

Space TA TIES DARE-TIES TSV CART TIES
+Iso-C

DARE-TIES
+Iso-C

TSV
+Iso-C

CART
+Iso-C Iso-C

Full 43.5 43.6 44.0 45.4 44.8 43.5 44.3 48.3 44.8 52.1
KnOTS 43.5 46.8 45.2 44.6 44.7 40.5 44.8 51.4 52.6 52.9
Core 43.5 47.4 47.6 44.5 49.6 54.1 54.0 55.7 55.6 55.9

Additional PEFT methods Our method can also be applied to other PEFT methods, such as
VeRA [21]. In VeRA, ∆W = ΛbBΛdA, where A ∈ Rr×n, B ∈ Rm×r, Λb ∈ R1×m, and
Λd ∈ Rr×1. Unlike LoRA, in VeRA the A and B matrices are randomly chosen, frozen, and shared
across the network, while only the two scaling vectors Λ are learned for each layer. To adapt VeRA
to our Core Space merging, we absorb the scaling vectors into the matrices, i.e., B̃ = ΛbB and
Ã = ΛdA, and then treat Ã and B̃ as the LoRA A and B matrices. To confirm that our method
also works with VeRA, we report additional experiments in Sec. E.3, which show that our method
outperforms other baselines also in this setting.

Joint-task evaluation in vision setting. We also evaluate vision models in the challenging joint-task
setting introduced in [42], in which the task ID is unknown during inference. Instead of performing a
multi-task evaluation, it evaluates the merged model on the union of all classes, requiring the model
to distinguish between classes from all tasks. We present the results in Tab. 4. Core Space facilitates
merging with almost all methods, achieving state-of-the-art results when combined with Iso-C.

5.2 Analysis

Truncation. We herein compare the utilization of full space and Core Space for models merged
with TA. Firstly, we calculate the SVD of the merged matrices: ∆Wmerged for full space and Mmerged
for Core Space. Then, we truncate a fraction of p least significant values, i.e., σi = 0 for i >
(1− p) ∗ dim(Σ), and observe a drop in the accuracy of the merged model after truncation. As shown
in Fig. 4, in full space we can truncate a fraction up to p = 0.8 values without performance loss, while
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in core space, truncation of any component results in a performance drop. It shows that the core space
is dense while the full space contains many unused or redundant components. We hypothesize that
the compactness of core space facilitates model merging as it extracts only the relevant components.

Core Space improves subspace alignment. In this Section, we evaluate the Subspace Alignment
Ratio (SAR) [28] between each pair of LoRA updates fine-tuned on different tasks. The SAR
measures how much of the subspace of one task is contained in another and correlates with post-
merge performance. We compute SAR in full and core space. Fig. 5 shows that core space yields
consistently higher alignment. We argue that this result is because the core space enforces a shared
basis across tasks, which filters out task-specific noise and promotes alignment. In Sec. C.1 we show
that higher SAR correlates with lower merging interference.

Table 5: Ablations on the choice of reference basis. Our basis
(3) achieves higher results than the single-task basis (1) and
the random orthonormal basis of the same dimensionality
(2). We proceed with V ref

A analogously to U ref
B . We report

the TIES-Core results on vision tasks with ViT-B/32.

Reference Basis U ref
B Shape Avg. Acc. Avg. εU

(1) U
(1)
B (first task) m× r 60.4 13.4

(2) Random orthonormal m× Tr 61.6 13.3
(3) Concatenation (Eq. (3)) m× Tr 68.6 0.0

Choice of the reference basis. To
evaluate the reference bases choice,
we assess the performance when
adopting different reference bases,
and compute the alignment error εU
defined in Eq. (13) (averaged over all
layers and tasks). We present the re-
sults in Tab. 5. In row (1), we evaluate
using the basis of the first task as a
reference basis. In row (2), we set the
reference basis to a random orthonor-
mal basis of the same dimensionality.
These two bases perform much less than our reference basis in row (3). Moreover, we confirm that
the optimal reference basis from row (3) achieves zero alignment error. Additionally, we verified
experimentally that even in the extreme case where T · r > min(m,n) (e.g., Tr = 2048 > 768 for
merging 8 ViT-B/32 LoRA models), the reconstruction error defined in Eq. (13) remains exactly zero,
consistent with the generalized theoretical result in Sec. A.4.

6 Conclusion

We propose Core Space, an efficient and effective method for merging LoRA modules. By projecting
task-specific LoRA updates into a common subspace, Core Space reduces alignment error, leading
to consistent accuracy improvements and SOTA results in both vision and language settings, while
remaining computationally efficient. Our evaluations across vision and language domains confirm its
scalability and strong performance in practical settings. We believe that Core Space can contribute to
more efficient and accessible model adaptation in multi-task settings, particularly for large models.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We clearly state our main contributions in both the abstract and the introduction,
specifically proposing the Core Space merging framework for LoRA-adapted models. These
claims are supported by both theoretical analysis and extensive empirical validation in the
main body of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.
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are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
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Space can handle varying LoRA ranks, we do not empirically explore this capability. We also
highlight the restriction to same-architecture merging and leave extensions to heterogeneous
backbones and alternative PEFT methods (e.g., VeRA) as future work.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We present full derivations and assumptions for our theoretical results, includ-
ing proofs of zero alignment error and properties of the Core Space in the main text and
supplementary material.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We detail the datasets, models (ViT-B/32, ViT-L/14, Llama 3 8B), LoRA rank
configuration, and baselines used. The experimental settings closely follow those established
in KnOTS, and we clarify this alignment.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We do not produce any new data. The checkpoints used are from Model
merging with SVD to tie the Knots. The code used to generate our results will be shared in
the supplementary materials and released upon acceptance, along with detailed instructions
for reproducing our experiments.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/

public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not

be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify all essential settings such as LoRA rank, number of tasks, model
types, and the exact layers modified. Supplementary material provides additional configura-
tion details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]
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Justification: Due to the computational cost of running multiple repetitions across dozens
of tasks and large models (e.g., Llama 3 8B), we do not include error bars or statistical
significance tests. Instead, we focus on reporting consistent trends across a wide range of
datasets and provide detailed per-task results. Given the stable performance across runs
and the deterministic nature of the merging process (given fixed seeds and checkpoints), we
believe the reported results reliably support our main claims.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We describe our experimental setup in supplementary materials, specifying the
exact GPU models used (NVIDIA L40S and RTX 4080), memory capacity, and the con-
sistency of hardware across timing benchmarks. Merging times and relative computational
costs are reported in Table 2, allowing for a fair comparison.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research complies with the NeurIPS Code of Ethics. We use only publicly
available datasets and models, and our contributions do not involve sensitive or private data.

Guidelines:
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We address broader impacts in the conclusion, noting that Core Space can
contribute to more efficient and accessible model adaptation in multi-task settings.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our work does not involve the release of models or data that pose a high risk
for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We list all datasets used along with their licenses in the supplementary material.
We also ensure any third-party checkpoints (e.g., from KnOTS) are properly cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not release new datasets or models as part of this work.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

20

paperswithcode.com/datasets


15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our research does not involve human subjects or require IRB approval.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Large language models were not used in the methodology, experiments, or
theoretical analysis. Any LLM usage was limited to minor editing assistance and did not
affect the scientific content.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A No Information Loss in Core Space Representation

A.1 Least Squares Solutions

Let U (t)
A ∈ Rr×r, Σ(t)

A ∈ Rr×r, V (t)
A ∈ Rn×r, U (t)

B ∈ Rm×r, Σ(t)
B ∈ Rr×r, and V

(t)
B ∈ Rr×r be the

components of two low-rank matrices A(t) and B(t) represented in SVD form. Let U ref
B ∈ Rm×T ·r

and V ref
A ∈ Rn×T ·r be the shared reference bases, obtained by taking the left and the right singular

vectors from the SVD of the horizontally and vertically stacked low-rank matrices B(t) and A(t),
respectively (see Eq. 4 in the main paper). We assume T · r ≤ m and T · r ≤ n, where T is the
number of tasks and r is LoRA rank, as both are typically small relative to the feature dimension.
Then, the solutions to the least square problems:

R
(t)
B = argmin

R∈RT ·r×r

∥∥∥U ref
B R− U

(t)
B

∥∥∥2
F
, Q

(t)
A = argmin

Q∈RT ·r×r

∥∥∥V ref
A Q− V

(t)
A

∥∥∥2
F
, (16)

are given by:
R

(t)
B = U ref

B

>
U

(t)
B , Q

(t)
A = V ref

A

>
V

(t)
A . (17)

Proof. Since V
(t)
A and U

(t)
B come from the SVDs of A(t) and B(t), they are orthonormal:

V
(t)
A

>
V

(t)
A = Ir U

(t)
B

>
U

(t)
B = Ir,

where Ir is the r × r identity matrix. Similarly, the reference bases U ref
B and V ref

A also have
orthonormal columns:

V ref
A

>
V ref
A = IT ·r, U ref

B

>
U ref
B = IT ·r,

where IT ·r is the T · r × T · r and T · r × T · r identity matrix.

Consider the problems in Eq. (16). Each objective is convex and admits a unique global minimizer,
as U ref

B and V ref
A have full column rank due to their orthonormality. To solve the first problem, we

compute the gradient of the objective function with respect to R:

∂
∥∥∥U ref

B R− U
(t)
B

∥∥∥2
F

∂R
= 2U ref

B

>
(U ref

B R− U
(t)
B ).
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Setting the gradient to zero and solving the resulting equation gives:

U ref
B

>
U ref
B R

(t)
B = U ref

B

>
U

(t)
B ⇒ R

(t)
B = U ref

B

>
U

(t)
B ,

since U ref
B

>
U ref
B = IT ·r.

Similarly, for the second problem in Eq. (16):

Q
(t)
A = V ref

A

>
V

(t)
A

A.2 Alignment Error Quantification

Lemma. Let U (t)
B ∈ Rm×r and U ref

B ∈ Rm×T ·r be matrices with orthonormal columns where
T · r = rank([B(1), . . . , B(T )]) ≤ m, and let R(t)

B = U ref
B

>
U

(t)
B ∈ RT ·r×r be the optimal solution

minimizing the error of the least-square problem. Then, the optimal alignment error is given by:

εU =
∥∥∥U ref

B R
(t)
B − U

(t)
B

∥∥∥2
F
= r −

∥∥∥∥U (t)
B

>
U ref
B

∥∥∥∥2
F

. (18)

Proof. To derive the alignment error, we simplify the notation by temporarily omitting the dependency
on the model index t. Substituting the definition RB = U ref

B

>
UB from Eq. (17), we can write:

εU = ||U ref
B U ref

B

>
UB − UB ||2F= ||(U ref

B U ref
B

> − Im)UB ||2F

= tr

([
(U ref

B U ref
B

> − Im)UB

]> [
(U ref

B U ref
B

> − Im)UB

])
= tr

(
U>
B (U ref

B U ref
B

> − Im)2UB

)
= tr

(
U>
B (U ref

B U ref
B

>
U ref
B U ref

B

> − 2U ref
B U ref

B

>
+ Im)UB

)
= tr

(
U>
B (U ref

B U ref
B

> − 2U ref
B U ref

B

>
+ Im)UB

)
(by using U ref

B

>
U ref
B = I)

= tr
(
U>
B (Im − U ref

B U ref
B

>
)UB

)
=

= tr
(
UB

>UB

)
− tr

(
U>
BU ref

B U ref
B

>
UB

)
(by linearity of trace)

= r −
∥∥U>

BU ref
B

∥∥2
F
,

where tr(U>
BUB) = ‖UB‖2F= r, since UB has orthonormal columns, and tr(U>

BU ref
B U ref

B

>
UB) =

‖U>
BU ref

B ‖2F by the cyclic property of the trace and definition of the Frobenius norm.

A.3 Optimal Reference Bases

Lemma. A solution U∗ to the quadratic program:

max
U∈S

∥∥∥∥U (t)
B

>
U

∥∥∥∥2
F

= max
U∈S

tr

(
U>U

(t)
B U

(t)
B

>
U

)
, S =

{
U ∈ Rm×T ·r ∣∣ U>U = IT ·r

}
,

is given by any orthonormal basis whose columns include the top r eigenvectors corresponding to
nonzero eigenvalues of B(t)B(t)> ∈ Rm×m or, equivalently, by the top r left singular vectors of
B(t). At the optimum, the objective achieves the maximum value of r, yielding zero alignment error
in εU as defined in Eq. (18).

Proof. The proof proceeds in two steps. First, we show that any orthonormal basis U∗ containing
the top r eigenvectors of U (t)

B U
(t)>
B solves the optimization problem. Second, we establish that the

eigenvectors of U (t)
B U

(t)>
B are the same as those of B(t)B(t)>.
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Step 1: Solving the constrained optimization. By leveraging the method of Lagrange multipliers,
we write the augmented objective function:

L(U,Λ) = tr(U>U
(t)
B U

(t)>
B U)− tr

(
Λ(U>U − IT ·r)

)
, (19)

where Λ ∈ RT ·r×T ·r is a matrix of Lagrange multipliers. Taking gradients with respect to U and Λ,
we obtain:

∇UL(U,Λ) =
∂

∂U
tr(U>U

(t)
B U

(t)>
B U)− ∂

∂U
tr(Λ(U>U − IT ·r))

= 2U
(t)
B U

(t)>
B U − 2UΛ

(20)

∇ΛL(U,Λ) = − ∂

∂Λ
tr(Λ(U>U − IT ·r)) = U>U − IT ·r. (21)

Setting the gradients to zero gives the two necessary optimality conditions:

U
(t)
B U

(t)>
B U∗ = U∗Λ∗, (22)

U>
∗ U∗ = IT ·r. (23)

The second condition, Eq. (23), holds by construction: we explicitly choose U∗ ∈ Rm×T ·r to be
an orthonormal matrix. Specifically, we define U∗ = [v1, . . . , vr, p1, . . . , p(T−1)·r], where {vi}ri=1

are orthonormal eigenvectors of U (t)
B U

(t)>
B associated with its nonzero eigenvalues λ1, . . . , λr, and

{pj}(T−1)·r
j=1 are additional orthonormal vectors chosen to complete the basis.

Next, to verify the first condition reported in Eq. (22), we define the diagonal matrix Λ∗ =
diag(λ1, . . . , λr, 0, . . . , 0) ∈ RT ·r×T ·r, where the trailing zeros correspond to the eigenvalues
associated with the orthogonal complement. Since each vi is an eigenvector of U (t)

B U
(t)>
B with

eigenvalue λi, and each pj lies in the nullspace of that matrix, we have:

U
(t)
B U

(t)>
B vi = λivi for i = 1, . . . , r, and U

(t)
B U

(t)>
B pj = 0 for j = 1, . . . , (T − 1) · r.

Therefore:
U

(t)
B U

(t)>
B U∗ = [λ1v1, . . . , λrvr, 0, . . . , 0] = U∗Λ∗,

which confirms that the first-order condition in Eq. (22) is satisfied.

Next, we substitute this result into the original expression to obtain the optimal value:

L∗ = tr(U>
∗ U

(t)
B U

(t)>
B U∗) = tr(U>

∗ U∗Λ∗) = tr(Λ∗) =

r∑
i=1

λi = tr(U
(t)
B U

(t)>
B ) = r,

proving that the maximum value of the quadratic problem is r, and the corresponding alignment error
εU for U∗ is zero.

Step 2: Equivalence of eigenspaces. Now we show that, given the matrix B(t) ∈ Rn×r from
a LoRA-based adaptation, if v is an eigenvector of B(t)B(t)>, then v is also, by construction, an
eigenvector of U (t)

B U
(t)>
B , where B(t) = U

(t)
B Σ(t)V

(t)>
B :

v is an eigenvector of B(t)B(t)> =⇒ B(t)B(t)>v = λv

=⇒ U
(t)
B Σ2(t)U

(t)>
B v = λv

=⇒ (B(t)B(t)>)U
(t)
B Σ2(t)U

(t)>
B v = (B(t)B(t)>)λv

=⇒ U
(t)
B Σ2(t)U

(t)>
B v = λB(t)B(t)>v.

From the second and fourth rows, we obtain:

λB(t)B(t)>v = λv (24)
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If λ > 0, we obtain that v is an eigenvector of B(t)B(t)> and its corresponding eigenvalue is = 1. If
λ = 0, then we have:

v is an eigenvector of B(t)B(t)>, λ = 0 =⇒ B(t)B(t)>v = 0

=⇒ U
(t)
B Σ2(t)U

(t)>
B v = 0

=⇒ v>U
(t)
B Σ2(t)U

(t)>
B v = 0

Since the matrix B has rank r, it has exactly r strictly positive singular values, while all other singular
values beyond rank r are zero. Thus, the matrix Σ2(t) is positive definite. Hence, it must be:

v>U
(t)
B Σ2(t)U

(t)>
B v = 0 =⇒ U

(t)>
B v = 0 =⇒ U

(t)
B U

(t)>
B v = 0, (25)

which confirms that if λ = 0, then v is an eigenvector of U (t)
B U

(t)>
B with eigenvalue 0.

Generalization to Multiple Tasks. This result generalizes directly to the multi-task setting, as
defined in the main paper, by applying it to the matrix B ∈ Rm×T ·r obtained by horizontally stacking
the LoRA updates B(t) from all tasks T . Then the optimal reference basis U∗ = U ref

B (as done in
our approach) is given by the left singular vectors of B, obtained via SVD. This matrix satisfies both
orthonormality and the optimality conditions derived above. Defining Λ∗ = diag(λ1, . . . , λT ·r),
where λi are the eigenvalues of BB>, guarantees perfect reconstruction and zero alignment error for
all tasks.

A.4 Generalization Beyond the T · r ≤ m,n Assumption

The derivations in Secs. A.1 to A.3 assumed that the total LoRA rank T · r is less than both m and n.
We now show that this assumption is not necessary, and that the reconstruction error remains zero
even when T · r > m or T · r > n.

Intrinsic rank. When T · r > m (for B) or T · r > n (for A), stacking the LoRA matrices still yields
reference bases with intrinsic dimensions:

dU = rank([B(1), . . . , B(T )]) ≤ m, dV = rank([A(1), . . . , A(T )]>) ≤ n,

since the number of linearly independent directions cannot exceed the number of rows or columns

We can therefore replace the reference bases U ref
B ∈ Rm×T ·r and V ref

A ∈ Rn×T ·r with truncated
orthonormal bases:

U ref
B ∈ Rm×dU , V ref

A ∈ Rn×dV ,

whose columns span the full LoRA update space.

Least-Squares Solution. Rewriting the least-squares problem (Eq. (16)) in terms of the truncated
U ref
B gives:

R
(t)
B = argmin

R∈RdU×r

‖U ref
B R− U

(t)
B ‖2F .

Following the same derivation as in Sec. A.1, the optimal solution is

R
(t)
B = (U ref

B )>U
(t)
B ,

with an analogous expression for Q(t)
A .

Alignment Error. Substituting this solution into the error expression of Sec. A.2 shows that the
optimal alignment error remains

εU = r − ‖(U (t)
B )>U ref

B ‖2F ,

which achieves zero when U ref
B spans the column space of all B(t). Hence, the theoretical guarantees

extend unchanged to the case T · r > m,n.
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B Computational Complexity Analysis

Iso-C Complexity. To assess the time complexity of our approach, we begin by analyzing that of
Iso-C [28], to establish a baseline for comparison. For each layer, the Iso-C procedure can be broken
down into the following steps:

• LoRA → full space: Compute ∆(t) = B(t)A(t) for t = 1, . . . , T , given the matrices B(t)

and A(t). The resulting complexity is O(T · r · n ·m).

• Summation: Applying task arithmetic in the full space, ∆TA =
∑T

t ∆(t), involves a cost of
O(T · n ·m).

• SVD computation: Computing the decomposition ∆TA = UΣV > for an m× n matrix has
a complexity of O(m2 · n+ n3) [40].

• Isotropization: The final step, ∆Iso-C = UΣavgV
>, is dominated by O(m2 · n).

Overall, the total cost of Iso-C is dominated by O(T · r ·n ·m+m2 ·n+n3). Assuming that m = n,
then the time complexity of Iso-C is approximately cubic: O(n3 + T · r · n2) with respect to the
number of features.

KnOTS Complexity. Secondly, we analyze the computational cost of the KnOTS method [42]:

• LoRA → full space: As in Iso-C, this step has complexity O(T · r · n ·m).

• Concatenation: Stacking all weight matrices ∆W =
[
∆W (1), . . . ,∆W (T )

]
as block

columns of a global matrix has a time complexity of O(T · n ·m).

• SVD computation: This is performed on a matrix of size m×(n·T ), resulting in a complexity
of O(n2 · T 2 ·m+m3), by making use of the transpose trick2.

• Merge: Assuming simple task arithmetic is performed in the V > space, T blocks of n
columns each are summed, yielding a complexity of O(T 2 · r · n) to compute V >

merge.

• Reconstruction: The final step ∆KNOTS = UΣV >
merge has a complexity of O(m · n · T · r+

T · r · n).

Overall, the total cost of KNOTS is dominated by O(m3+T ·n(2r ·m+m+n ·T ·m+T · r+ r)).
Assuming m = n, the time complexity simplifies to O(n3T 2). Compared to Iso-C, the time
complexity of KNOTS remains cubic with respect to the number of features. However, it includes an
additional T 2 factor that scales quadratically with the number of tasks being merged.

TSV Complexity. Then we analyze the cost of TSV [12]:

• LoRA → full space: As previously, this step has complexity O(T · r · n ·m).

• SVD Computation: In this step SVD is performed on T matrices of size m× n resulting in
a complexity of O(T · (m2 · n+ n3)).

• Concatenation: Stacking the first k components of left and right singular vectors for all
tasks results in O(T · k(n+m)).

• Global SVD Computation: The SVD performed on the stacked matrices n ×m requires
O(2 · (m2 · n+ n3)).

• Obtaining orthogonal matrices: This step requires O(2 ·m2 · n).
• Merge: The final merge has a complexity of O(m · n · T · r + T · r · n).

The overall cost of TSV is thus O(T ·r·m·n+T ·r·n+T ·m2·n+T ·n3+T ·k·m+T ·k·n+m2·n+n3).
Assuming that m = n and T, r, k � n, the computational cost is dominated by O(T · n3).

Core Space Complexity. Finally, we analyze the cost of our approach in Core Space.

2SVD(P>) = U
′
Σ

′
V

′>
→ P = (U

′
Σ

′
V

′>
)> = V

′
ΣU

′>
, thus, if r � n, this will reduce the number

of operations. We will apply the transpose trick throughout.
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• Stacking A(t) and B(t): Stacking two sequences of T matrices – one with each matrix
of shape r × n and the other with each matrix of shape m × r – results in a cost of
O(T · r(n+m)).

• SVD computation: The stacked global A matrix has shape (T · r)× n; hence, the cost of its
SVD is O(n2 · (T · r) + (T · r)3), by using the transpose trick. The stacked B matrix has
shape m× (T · r), with a cost of O(m2 · (T · r) + (T · r)3). The overall cost of this step is
O((m2 + n2) · (T · r) + 2 · (T · r)3).

• Low-rank loop: In the optimized version of the low-rank loop, we only compute the matrix
multiplication to obtain the aligned matrices. In this case the total cost is O(T · (Tmr2 +
Tr2n+T 2r3)) (using the optimal matrix multiplication order (U ref

B B)(AV ref
A )). Assuming

that T, r << n,m, the cost is dominated by O(T 2r2(m+ n)).
• Merge: Assuming simple task arithmetic is performed in the aligned core space, the cost is
O(T 3 · r2).

• Isotropization: Optionally, Iso-C can be applied in the core space; since the core space is
defined within a square matrix of dimension T · r × T · r, this step adds an additional time
complexity of O(T 3r3).

• Reconstruction: The final step requires O(m · T 2 · r2 +m · T · r · n).

To sum up, our approach involves:
O(Tr(n+m)︸ ︷︷ ︸

Stacking

+Tr(m2 + n2) + 2(Tr)3︸ ︷︷ ︸
SVD refs.

+

+ (T 2r2(m+ n))︸ ︷︷ ︸
Low-rank loop.

+Tr(T 2r + Trm+mn)︸ ︷︷ ︸
Merge & Rec.

) =

O(Tr(m+ n+ 2m2 + 2n2 +mn+ r2) + T 2r2(2m+ n+ T ) + T 3r3)

If we assume that m = n, the total time complexity simplifies to:
O(Tr(2n+ 5n2 + r2) + T 2r2(3n+ T ) + T 3r3), (26)

which, if we assume T, r � n, is dominated by:
O(Trn2) (27)

C Additional Analysis

C.1 High subspace alignment leads to lower interference

In this Section, we experimentally show that merging in Core Space reduces interference when
merging models. We follow [53, 28] and measure the interference as the L1 distance between the final
embeddings of task-specific models and the merged one. We compare the interference when merging
with TSV + Iso-C in Full Space versus Core Space. For each dataset, we collect the activations from
the final layer (i.e., the projection to a common vision-language space) of both the task-specific model
and the merged model. We present the average distance across all the samples in the test set. We
observe lower interference when merging in Core Space, highlighting its effectiveness. Note that Full
Space merging, which causes higher interference, also exhibits higher SAR in Sec. 5.2.

C.2 Rank of the merged update matrices

Consider T = 8 ViT-B/32 models fine-tuned with LoRA of rank r = 16. The merged update matrices
∆W resulting from different merging methods and spaces can have different effective ranks r∆W .
Table 6 reports the average rank of ∆W across all layers.

In most cases, the target rank of ∆W is equal to Tr = 128. The only exception is merging with TIES
in Full space, where for weight matrices W ∈ Rm×n the effective rank approaches the dimensionality
of the matrices d = min(m,n) = 768. This phenomenon arises because TIES performs trimming on
the reconstructed weight matrices ∆Wt = BA, which destroys the low-rank structure. In contrast,
both Core and KnOTS operate directly in a constrained Tr-dimensional space, ensuring that the
merged ∆W maintains the intended rank.
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Figure 6: Mean L1 distance between the final embeddings of task-specific models and the merged
one using TSV + Iso in Full and Core space. We used ViT-B/16 model.

Table 6: Average rank r∆W of merged update matrices ∆W obtained by merging 8 ViT-B/32 LoRA
models with r = 16 (so Tr = 128).

Merging Space TA TSV TIES
Full 128.00 128.00 766.25
KnOTS 128.00 128.00 128.00
Core 128.00 128.00 128.00

D Additional Experiment Details

Licenses of Used Datasets and Models

In our research, we employed publicly available datasets and models, each governed by specific
licenses. Below, we outline the sources and associated licenses for each:

• KnOTS LoRA Checkpoints [42]: The KnOTS repository, which provides LoRA-adapted
model checkpoints and training scripts, is licensed under the MIT License. This permissive
license allows for reuse and modification with proper attribution.

• Cars196 [22]: The Cars196 dataset is available for non-commercial research purposes.
Specific licensing details are not explicitly provided.

• Describable Textures Dataset (DTD) [7]: The DTD is made available to the computer vi-
sion community for research purposes. The dataset is licensed under the Creative Commons
Attribution 4.0 License (CC BY 4.0).

• EuroSAT [14]: The EuroSAT dataset is licensed under the MIT License.
• German Traffic Sign Recognition Benchmark (GTSRB) [41]: The GTSRB dataset is

licensed under the Creative Commons Zero (CC0) Public Domain Dedication.
• MNIST [23]: The MNIST dataset is publicly available for research purposes. Specific

licensing details are not explicitly provided; users are advised to consult the dataset’s source
for more information.

• NWPU-RESISC45 [5]: The NWPU-RESISC45 dataset is licensed under the Creative
Commons Attribution 4.0 License (CC BY 4.0).
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• SUN397 [49]: The SUN397 dataset is available for research purposes only. Specific
licensing details are not explicitly provided; users are advised to consult the dataset’s source
for more information.

• Street View House Numbers (SVHN) [33]: The SVHN dataset is available for non-
commercial use only.

• Stanford Natural Language Inference (SNLI) [3]: The SNLI dataset is licensed under the
Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).

• Multi-Genre Natural Language Inference (MNLI) [47]: The MNLI dataset is released
under the Open American National Corpus (OANC) license, which permits free use, modifi-
cation, and sharing under permissive terms.

• Sentences Involving Compositional Knowledge (SICK) [30]: The SICK dataset is dis-
tributed under a Creative Commons Attribution-NonCommercial-ShareAlike license.

• Question Natural Language Inference (QNLI) [45]: The QNLI dataset is part of the
GLUE benchmark. Specific licensing details are not explicitly provided; users are advised
to consult the dataset’s source for more information.

• Recognizing Textual Entailment (RTE) [45]: The RTE dataset is part of the GLUE
benchmark. Specific licensing details are not explicitly provided; users are advised to
consult the dataset’s source for more information.

• SciTail [20]: The SciTail dataset is licensed under the Apache License 2.0.

D.1 Experimental Environment

The language experiments with Llama 3 8B were performed with a single 48G NVIDIA L40S. In
contrast, the more affordable vision experiments were executed using a single 16G NVIDIA RTX
4080. To keep things fair, the reported times for the language experiments all refer to experiments
performed on the same machine.

Our implementation builds directly on the KnOTS codebase [42] and uses the exact LoRA checkpoints
they released. For full details on the original training and adaptation procedures, please refer to [42].

D.2 Hyperparameter Search

To find optimal hyperparameters for each model, we adopt the widely used validation holdout
strategy [42, 28, 12, 50]. Specifically, we perform a linear search for hyperparameters on the validation
set, starting from a defined minimum value and incrementally increasing it until performance declines,
indicating the optimal range. The identified optimal hyperparameters are then applied to the test set.
We use the following search settings:

• Scaling factor α starts at 0.1, increasing in increments of 0.1. This is used for every
approach.

• The top-K parameter for TIES and DARE-TIES begins at 10 and increases in increments of
10.

• The pruning factor p for DARE-TIES starts at 0.1 and increases in increments of 0.1.

• For CART, the pruning rank is searched over the set {0.04, 0.08, 0.16, 0.32}, following
the methodology of the original paper. Additionally, CART includes an extra scaling
factor λ in its merging formulation. Specifically, the merged weights are computed as
Wmerged = W0 +α(θavg + λ

∑T
t=1 τ̄t), where θavg denotes the average of the updates and τ̄t

represents the centered task vector for task t. For further details, we refer the reader to [6].

In Tab. 7, we report the parameters used for the various merging methods in Core Space across
all backbones. Note that we search for the optimal parameters for all methods across all spaces to
maintain fairness. For the natural-language inference experiments, we omit CART as its hyperparam-
eter tuning proved prohibitively expensive and exclude +Iso-C variants, as they consistently degraded
performance.
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Table 7: Optimal hyperparameters for Core-Space merging on each backbone and merging strategy,
including +Iso-C variants.

Backbone Merging Method α Top-K Pruning p CART rank λ

ViT-B/32

TIES-Core 0.6 10 - - -
TIES-Core+Iso-C 2.0 30 - - -
DARE-TIES-Core 0.6 10 0.1 - -
DARE-TIES-Core+Iso-C 2.0 30 0.1 - -
TSV-Core 0.2 - - - -
TSV-Core+Iso-C 0.9 - - - -
CART-Core 0.4 - - 0.32 5.8
CART-Core+Iso-C 0.7 - - 0.04 2.6
Iso-C-Core 0.9 - - - -

ViT-L/14

TIES-Core 0.4 10 - - -
TIES-Core+Iso-C 2.4 20 - - -
DARE-TIES-Core 0.4 10 0.1 - -
DARE-TIES-Core+Iso-C 2.4 20 0.2 - -
TSV-Core 0.2 - - - -
TSV-Core+Iso-C 0.9 - - - -
CART-Core 0.1 - - 0.04 6.5
CART-Core+Iso-C 1.0 - - 0.08 2.0
Iso-C-Core 0.9 - - - -

Llama 3 8B

TIES-Core 1.1 80 - - -
DARE-TIES-Core 1.1 80 0.1 - -
TSV-Core 0.5 - - - -
Iso-C-Core 2.8 - - - -

D.3 Code Availability and Pseudocode

Our Core Space merging implementation is released at https://github.com/apanariello4/
core-space-merging.

Listing 1 gives PyTorch-style pseudocode illustrating how to apply any merging strategy within the
Core Space framework.

E Additional Results

E.1 Per-task evaluation in vision setting for ViT-L/14

We provide in Tab. 8 per-task results vision model merging using the ViT-L/14 backbone. Similarly
to what we observed for other backbones, in this case, performing the merging in Core Space yields
consistent improvements across all methods, resulting in new state-of-the-art results.

E.2 Experiments with Heterogeneous Ranks

In the main paper, we discussed that Core Space merging naturally extends to the heterogeneous rank
setting (Tab. 9). Here we provide additional details.

When tasks are fine-tuned with different LoRA ranks, we horizontally and vertically stack the B(t)

and A(t) matrices across tasks as usual. The resulting aggregate matrices have rank equal to the
dimension of the union of all task subspaces. Performing SVD on these aggregates yields orthonormal
reference bases U ref

B and V ref
A that span the combined subspaces, regardless of how individual task

ranks vary.

Projection into these reference bases followed by task-specific alignment (see Sec. A.1) guarantees
that reconstruction is lossless. This explains why the results in Tab. 9 show that heterogeneous ranks
incur no additional degradation in performance under our framework, whereas baselines that lack
such alignment struggle with mismatched subspace dimensions.
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Listing 1 Basic PyTorch pseudocode for model merging in Core Space.

1 from torch.linalg import svd
2

3 A_list, B_list = ..., ...
4

5 r, n = A_list[0].shape
6 m, _ = B_list[0].shape
7

8 A_stack = torch.cat(A_list, dim=0) # (T*r, n)
9 B_stack = torch.cat(B_list, dim=1) # (m, T*r)

10

11 # Calculate reference bases
12 Vh_A_ref = svd(A_stack, full_matrices=False)[2] # (T*r, n)
13 U_B_ref = svd(B_stack, full_matrices=False)[0] # (m, T*r)
14

15 M_list = []
16 for A, B in zip(A_list, B_list):
17 M_aligned = (U_B_ref.T @ B) @ (A @ Vh_A_ref.T)
18 M_list.append(M_aligned)
19

20 if merge_strategy == 'TA':
21 M_merged = torch.stack(M_list).sum(dim=0)
22 elif merge_strategy == 'ties':
23 M_merged = ties_merging(M_list)
24 elif merge_strategy == '...':
25 M_merged = ...
26

27 # Reconstruct delta W
28 delta_W = U_B_ref @ M_merged @ Vh_A_ref

E.3 Extension to VeRA

We also evaluated the applicability of Core Space merging beyond LoRA, specifically on VeRA [21]
(Tab. 10). In VeRA, the decomposition ∆W = ΛbBΛdA differs structurally from LoRA since A and
B are fixed random matrices, and only the scaling vectors Λb,Λd are trainable.

To apply our method, we absorb the scaling vectors into the low-rank matrices:

B̃ = ΛbB, Ã = ΛdA,

and then treat (Ã, B̃) as if they were standard LoRA components. Since the subsequent steps (stacking,
SVD, projection, and alignment) are agnostic to how A and B were obtained, the derivations in
Sec. A apply without modification.

The empirical results in Tab. 10 confirm this reasoning: Core Space merging consistently outperforms
other approaches even in the VeRA setting, validating that the framework is general to low-rank
adaptation methods beyond LoRA.
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Table 8: Accuracies of merged models normalized against fine-tuned models on the vision datasets
with ViT-L/14.

Method Space Cars DTD EuroSAT GTSRB MNIST RESISC SUN397 SVHN Avg (∆ Acc)
Abs. Accuracy 99.70 70.00 98.50 97.20 99.50 95.70 79.60 97.7 -

TA Full 80.01 79.50 65.59 59.98 82.20 79.55 86.71 64.74 74.79 (+0.00)

TIES
Full 79.65 78.28 64.43 61.10 83.82 79.42 87.45 69.94 75.51 (+0.00)

KnOTS 82.47 80.26 64.65 68.85 88.48 82.37 88.18 76.63 78.99 (+3.48)
Core 81.94 80.03 65.78 68.94 87.44 81.85 88.48 73.75 78.53 (+3.02)

DARE-TIES
Full 79.70 78.82 64.99 60.63 83.92 79.32 87.07 69.84 75.53 (+0.00)

KnOTS 80.41 79.65 64.84 62.95 85.33 79.73 87.55 71.00 76.43 (+0.90)

Core 82.97 80.03 65.66 68.34 87.75 82.48 88.80 75.88 78.99 (+3.46)

TSV
Full 82.38 80.11 66.12 68.18 85.46 83.02 87.89 70.76 77.99 (+0.00)

KnOTS 80.17 79.95 66.94 60.24 83.76 79.35 86.85 65.59 75.36 (-2.63)

Core 82.10 79.80 67.05 66.92 87.50 82.32 87.71 71.89 78.16 (+0.17)

CART
Full 91.88 88.53 75.51 80.88 68.99 92.77 88.17 64.81 81.44 (+0.00)

KnOTS 79.65 79.73 64.39 58.28 80.42 78.52 86.52 63.24 73.84 (-7.60)

Core 86.02 86.33 72.39 82.82 91.03 85.93 88.46 72.67 83.21 (+1.77)

TIES +Iso-C
Full 84.11 83.07 74.94 76.66 92.88 87.88 88.58 74.61 82.84 (+0.00)

KnOTS 86.44 88.23 78.74 78.94 94.27 87.94 88.62 72.24 84.43 (+1.59)

Core 91.13 90.58 79.53 87.67 86.47 90.46 90.05 72.28 86.02 (+3.18)

DARE-TIES +Iso-C
Full 83.25 81.78 73.03 77.25 86.81 86.78 88.24 74.44 81.45 (+0.00)

KnOTS 87.32 87.78 74.12 81.50 94.21 89.48 88.88 70.87 84.27 (+2.82)

Core 90.84 91.12 79.15 88.14 90.19 90.73 89.92 72.05 86.52 (+5.07)

TSV +Iso-C
Full 86.44 89.07 82.49 84.68 90.76 90.03 87.99 67.98 84.93 (+0.00)

KnOTS 88.47 90.58 77.69 83.91 87.48 90.00 88.76 67.49 84.30 (-0.63)

Core 91.54 91.34 80.24 86.79 87.39 91.51 89.59 71.30 86.21 (+1.28)

CART +Iso-C
Full 88.78 90.43 78.59 87.04 91.96 90.96 89.32 75.18 86.53 (+0.00)

KnOTS 88.72 89.60 80.77 79.84 87.18 89.50 88.38 68.07 84.01 (-2.52)

Core 92.08 92.48 81.22 88.96 89.80 91.97 89.81 73.56 87.49 (+0.96)

Iso-C
Full 86.83 86.94 80.65 77.99 92.09 87.88 88.50 68.69 83.70 (+0.00)

KnOTS 88.27 89.75 78.36 85.41 91.65 90.93 88.85 70.97 85.52 (+1.82)

Core 91.23 90.28 80.28 85.29 89.71 90.96 89.58 70.66 86.00 (+2.30)

Table 9: Normalized accuracies of merged models on the vision tasks with ViT-B/32 with LoRA
mixed ranks 16 (Cars, EuroSAT, MNIST, SVHN) and 64 (DTD, GTSRB, RESISC, SUN397).

Method Space Cars DTD EuroSAT GTSRB MNIST RESISC SUN397 SVHN Avg (∆ Acc)
Abs. accuracy 74.00 68.03 99.00 98.00 99.30 93.85 70.85 96.20 -

TA - 81.97 65.83 47.06 51.66 57.18 72.91 89.75 48.37 64.34 (+0.00)

TIES
Full 80.94 64.74 42.01 53.91 55.41 72.16 89.76 49.09 63.50 (+0.00)

KnOTS 82.70 67.08 49.01 55.00 57.39 73.74 90.14 45.97 65.13 (+1.63)

Core 79.74 67.71 41.38 71.86 69.59 75.02 91.43 67.97 70.59 (+7.09)

DARE-TIES
Full 80.81 65.60 41.11 54.89 56.14 72.45 89.74 49.70 63.81 (+0.00)

KnOTS 82.98 67.08 45.57 56.34 62.34 75.65 90.06 53.53 66.69 (+2.88)

Core 80.98 68.80 44.26 68.07 64.43 74.45 91.44 62.99 69.43 (+5.62)

TSV
Full 80.98 67.94 50.95 59.10 64.65 75.82 90.76 53.37 67.95 (+0.00)
KnOTS 82.51 65.91 43.66 48.98 60.52 71.47 89.22 51.29 64.20 (-3.75)

Core 80.46 69.51 51.44 58.33 61.03 76.70 89.37 52.43 67.41 (-0.54)

TIES +Iso-C
Full 78.94 69.90 54.02 53.13 66.83 75.11 90.64 46.63 66.90 (+0.00)

KnOTS 81.42 68.49 60.19 45.09 56.70 70.83 90.43 40.11 64.16 (-2.74)

Core 79.32 75.84 58.66 64.09 80.14 76.76 90.52 55.13 72.56 (+5.66)

DARE-TIES +Iso-C
Full 80.33 70.76 60.98 51.48 61.58 74.16 90.41 47.26 67.12 (+0.00)

KnOTS 82.11 67.71 58.92 41.44 57.92 69.69 90.37 38.79 63.37 (-3.75)

Core 78.75 75.37 58.47 64.98 80.83 77.00 90.49 55.53 72.68 (+5.56)

TSV +Iso-C
Full 76.46 73.65 61.02 56.41 69.02 74.04 90.01 49.12 68.72 (+0.00)

KnOTS 78.88 72.79 66.59 54.61 78.83 72.21 89.03 50.28 70.40 (+1.68)

Core 79.30 78.26 63.94 58.11 77.28 74.40 89.85 50.97 71.51 (+2.79)

Iso-C
Full 78.48 75.61 63.37 63.05 77.14 77.10 90.22 51.50 72.06 (+0.00)

KnOTS 78.92 76.31 56.19 63.50 75.11 77.08 90.53 52.44 71.26 (-0.80)

Core 81.17 79.20 59.71 70.86 81.90 78.93 90.81 56.60 74.90 (+2.84)

32



Table 10: Normalized accuracies of merged models on the vision tasks with ViT-B/32 with VeRA
rank 16.

Method Space Cars DTD EuroSAT GTSRB MNIST RESISC SUN397 SVHN Avg (∆ Acc)
Abs. Accuracy 62.79 57.07 96.55 90.85 98.60 88.50 62.79 93.10 -

TA - 95.78 77.73 47.26 39.77 49.10 70.61 100.74 37.29 64.78 (+0.00)

TIES
Full 95.53 77.73 44.76 39.07 48.25 69.92 100.58 35.62 63.93 (+0.00)

KnOTS 96.64 77.91 50.13 39.61 50.46 70.52 100.85 35.93 65.26 (+1.33)

Core 97.06 77.73 44.30 41.98 50.35 71.63 100.44 38.95 65.31 (+1.39)

DARE-TIES
Full 94.44 77.73 47.26 42.09 49.82 69.37 100.05 38.28 64.88 (+0.00)

KnOTS 96.52 77.54 52.13 40.88 50.46 70.25 100.06 37.24 65.63 (+0.75)
Core 97.09 77.82 44.27 42.02 50.41 71.75 100.48 38.97 65.35 (+0.47)

TSV
Full 93.35 77.54 45.11 37.44 53.50 69.40 99.70 33.85 63.74 (+0.00)

KnOTS 92.73 78.19 54.85 38.77 56.20 69.10 98.82 34.02 65.33 (+1.59)

Core 93.75 76.51 60.15 37.94 54.32 68.38 98.77 34.63 65.56 (+1.82)

TIES +Iso-C
Full 94.79 77.26 46.84 36.11 48.78 68.19 100.81 34.03 63.35 (+0.00)

KnOTS 94.81 77.26 47.33 35.49 48.67 68.10 100.67 33.74 63.26 (-0.09)

Core 95.43 77.63 50.79 37.14 50.61 69.06 100.62 33.77 64.38 (+1,03)

DARE-TIES +Iso-C
Full 93.82 76.98 46.34 36.80 49.47 68.26 100.44 34.69 63.35 (+0.00)

KnOTS 94.88 77.17 47.37 35.52 48.64 68.13 100.66 33.75 63.27 (-0.08)

Core 94.14 77.26 53.01 37.45 52.90 68.13 100.09 31.80 64.35 (+1.00)

TSV +Iso-C
Full 93.37 76.70 48.29 35.92 51.47 68.11 100.30 34.35 63.56 (+0.00)

KnOTS 92.58 75.30 52.51 36.47 58.16 67.36 99.83 35.43 64.71 (+1.15)

Core 93.57 76.89 63.33 39.27 57.53 68.63 99.18 34.07 66.56 (+3.00)

Iso-C
Full 93.50 77.26 52.05 37.42 49.49 68.06 100.62 34.22 64.08 (+0.00)

KnOTS 94.59 77.35 47.76 35.52 48.73 68.27 100.52 33.68 63.30 (-0.78)

Core 91.77 75.77 63.60 38.53 58.53 67.81 97.67 36.50 66.27 (+2.19)
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