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ABSTRACT

Recently, Graph Contrastive Learning (GCL) has achieved significantly superior
performance in self-supervised graph representation learning. However, the existing
GCL technique has inherent smooth characteristics because of its low-pass GNN
encoder and objective based on homophily assumption, which poses a challenge
when applied to heterophilic graphs. In supervised learning tasks, spectral GNNs
with polynomial approximation excel in both homophilic and heterophilic settings
by adaptively fitting graph filters of arbitrary shapes. Yet, their applications in
unsupervised learning are rarely explored. Based on the above analysis, a natural
question arises: Can we incorporate the excellent properties of spectral polynomial
filters into graph contrastive learning? In this paper, we address the question
by studying the necessity of introducing high-pass information for heterophily
from a spectral perspective. We propose POLYGCL, a GCL pipeline that utilizes
polynomial filters to achieve contrastive learning between the low-pass and high-
pass views. Specifically, POLYGCL utilizes polynomials with learnable filters
to generate different spectral views and an objective that incorporates high-pass
information through a linear combination. We theoretically prove that POLYGCL
outperforms previous GCL paradigms when applied to graphs with varying levels
of homophily. We conduct extensive experiments on both synthetic and real-
world datasets, which demonstrate the promising performance of POLYGCL on
homophilic and heterophilic graphs. Code is available at https://github.
com/ChenJY-Count/PolyGCL.

1 INTRODUCTION

Self-supervised representation learning, which aims to learn informative representations without
the demand of costly handcrafted labels, has achieved a wide range of applications in areas such as
computer vision, natural language processing, and multimodal (Chen et al., 2020; Grill et al., 2020;
Devlin et al., 2019; Radford et al., 2021; Gao et al., 2023). On non-Euclidean graph data, Graph
Contrastive Learning (GCL), has become a mainstream research direction in self-supervised scenarios,
namely learning representations by capturing consistency across different views and optimizing the
objective function based on mutual information maximization to distinguish positive and negative
examples (Veličković et al., 2019; Hassani & Khasahmadi, 2020; Peng et al., 2020; Zhu et al., 2020b).
Generally, most existing GCL methods rely on the homophily assumption, which means nodes
connected by edges tend to have similar node representations. These methods adopt a low-pass filter
(such as GCN) encoder and the objective which smooths the representations of neighboring nodes.
Therefore, the existing GCL methods have shown excellent performance on homophilic graphs.

However, heterophilic graphs are also prevalent in reality because of the principle of opposites
attracting, e.g. dating networks. To address heterophily, many efforts have been made in supervised
domain (Pei et al., 2020; Lim et al., 2021). Among them, spectral graph neural networks with
learnable polynomial filters adaptively learn appropriate graph filters from graph data in an end-
to-end manner (Chien et al., 2021; He et al., 2021; 2022; Guo & Wei, 2023), achieving desirable
performance on both homophilic and heterophilic graphs due to more powerful expressiveness. Yet,
the applications of spectral GNNs with polynomial filters in self-supervised scenarios are relatively
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Figure 1: Mean accuracy comparison in the supervised setting (red line) and with 3 self-supervised
methods while the encoders are directly substituted with monomial and Chebyshev polynomial filters.

limited, and the traditional paradigm of GCL fails to be applied to heterophilic graphs due to its
low-pass nature, leaving self-supervised learning in heterophilic settings an unsolved task. Based
on the above, a natural question is: How can we effectively introduce the properties of spectral
polynomial filters into GCL to ensure expressiveness in both homophilic and heterophilic settings?

To answer the above question, we first consider substituting the low-pass GCN encoder in classic GCL
methods with two classic polynomial filters, that are the monomial basis in GPR-GNN (Chien et al.,
2021) and the Chebyshev basis in ChebNetII (He et al., 2022). As shown in Figure 1, this simple
idea results in performance degradation in self-supervised settings with three different optimization
objectives (green, blue, and purple lines), which conflicts with the performance improvement in
supervised learning tasks (red line). A similar phenomenon occurs in He et al. (2022) when the
spectral polynomial filter is learned in the semi-supervised learning task, demonstrating the difficulty
of learning a proper filter without sufficient label information. To address the problem, in this
paper, we propose POLYGCL, a novel Graph Contrastive Learning framework via learnable spectral
polynomial filters to realize effective learning on graphs with different homophily levels. Specifically,
POLYGCL restricts the expressiveness of the polynomial filters from a spectral perspective to
construct the low-pass and high-pass views and introduces a simple linear combination strategy to
construct the optimization objective, which can be theoretically proved to benefit POLYGCL from
achieving lower loss in the spectral domain and boosting the performance of downstream tasks. Our
contributions can be summarized as follows:

• We propose POLYGCL, which introduces the superior properties of polynomial filters into Graph
Contrastive Learning. POLYGCL achieves effective learning on both homophilic and heterophilic
graphs without the complex data augmentation or pre-processing in traditional GCL paradigms.

• We theoretically prove the necessity of the high-pass information in heterophilic settings. We
also verify that the learning objective constructed by a simple linear combination strategy of the
low-pass and high-pass information enjoys theoretical guarantees on downstream tasks.

• Extensive experiments on real-world and synthetic datasets across different homophily levels are
conducted to verify the superior performance of POLYGCL without introducing extra complexity.
Additional ablation study further confirms our theoretical results.

2 RELATED WORK

Graph Contrastive Learning (GCL). As a mainstream research topic in self-supervised learning,
GCL can be divided into two categories: (1) Augmentation-based methods adopt different types of
data augmentations to generate different views, and the optimization of the loss function is based
on maximizing mutual information between them (Hassani & Khasahmadi, 2020; You et al., 2020;
Zhang et al., 2021; Zhu et al., 2020b; 2021b; Liu et al., 2023). We provide a detailed comparison of
the augmentation techniques and the space complexity of these methods in Table 7 of Appendix D.
(2) Augmentation-free methods aim to remove the complex data augmentation or negative sampling
strategy but consider inputting the same graph into different encoders to obtain different views and
push together the representations of the same node/class from different views (Peng et al., 2020;
Mo et al., 2022; Xiao et al., 2022). However, the works mentioned above utilize the low-pass GNN
encoders and optimization objectives that smooth neighbor representations inherently, resulting in
their unsatisfactory performance on heterophilic graphs.
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Spectral-based GNNs. From a spectral domain perspective, GCN as a first-order approximation
of ChebNet has been proven to be a typical low-pass filter and has been widely used in graph
representation learning tasks. Existing works often consider using polynomials to approximate
the filter function, which preserves strong fitting capabilities and avoids the O(N3) complexity of
Laplacian eigendecomposition. There are different polynomial choices while taking into account
various excellent properties of the basis, such as the monotonic basis of GPR-GNN (Chien et al.,
2021), the Chebyshev basis of ChebNet (Defferrard et al., 2016; He et al., 2022), and the non-negative
Bernstein basis in BernNet (He et al., 2021), etc. Although spectral polynomial filters have been
proven to be capable of fitting arbitrary filter functions that work for both homophilic and heterophilic
graphs, there is still a lack of self-supervised applications for them.

3 PRELIMINARY

Problem Formulation. Given an undirected graph G = (V,E), Let N = |V| and E = |E| be
the number of nodes and edges of the graph, and F denote the feature dimension. We denote
X ∈ RN×F ,A ∈ {0, 1}N×N as node features and adjacency matrix respectively. In self-supervised
node representation learning, the objective is to learn an encoder, E : RN×F × RN×N → RN×D,
such that E(X,A) = Z = {z1, z2, . . . , zN} represents high-level representations zi ∈ RD for each
node vi. The representations may then be used for downstream tasks, such as node classification (Zhu
et al., 2020b) and clustering (Bhattacharjee & Mitra, 2021; Yuan et al., 2024).

Homophily. Homophily describes the tendency of nodes in the graph to form edges with nodes
with the same label. Recently a series of evaluation metrics of graph homophily have been proposed
from different perspectives (Lim et al., 2021; Pei et al., 2020). We use the edge homophily degree
h =

|{(vi,vj):(vi,vj)∈E∧yi=yj}|
E (Zhu et al., 2020a) as the evaluation metric in this work, where the

value range is [0, 1]. If h approaches 1, the homophily degree of the graph is higher. Otherwise,
h approaching 0 indicates a higher degree of heterophily. In Table 6 of Appendix C.2, we list the
homophily degree h of some real-world graph datasets involved in this work.

Spectrum and Graph Filtering. Define Graph Laplacian as L = D−A and the normalized version
as L̃ = I−D−1/2AD−1/2, where D is a diagonal matrix with Dii =

∑N
i=1 Aij . Decompose the

normalized Laplacian as L̃ = UΛUT , note that Λ = diag{λ0, . . . , λN−1} is the so-called Laplacian
spectrum with eigenvalue 0 = λ0 ≤ λ1 ≤ . . . ≤ λN−1 ≤ 2, and U is a unitary matrix consisting
of eigenvectors. Further, the graph filtering operation on X is defined as Ug(Λ)UTX, where g(Λ)
denotes the graph filter function. Recent studies (Chien et al., 2021; He et al., 2021; 2022) suggest
using polynomials to approximate g(Λ) by K-order truncation can fit g(Λ) of any shape and avoid
O(N3) complexity of eigendecomposition.

4 PROPOSED METHOD: POLYGCL

In this section, we revisit the problem of graph filtering in a self-supervised manner. Existing GCL
methods mainly focus on the homophilic setting and generally fail when faced with heterophilic
graphs. Spectral graph neural networks, designed to handle graphs of varying homophily levels, are
primarily constrained to supervised learning tasks. Therefore, we are looking for an approach that
enjoys the desirable properties of spectral methods and handles heterophily as well in self-supervised
graph representation learning tasks.

The key idea of current spectral methods lies in adaptively learning polynomial filters via supervised
signals, e.g., labels. To transfer them into self-supervised scenarios, a natural idea emerges: directly
use the learnable graph filter as the encoder and switch the objective function with a self-supervised
one. In Figure 1, we implement this idea by swapping the GNN encoder module in three classic
self-supervised GCL methods (DGI (Veličković et al., 2019) with the binary cross-entropy loss,
GRACE (Zhu et al., 2020b) with the InfoNCE loss and CCA-SSG (Zhang et al., 2021) with the
CCA loss inspired from Canonical Correlation Analysis) with two polynomial filters (monomial and
Chebyshev basis) on homophilic graph Cora and heterophilic graph Chameleon. Unfortunately,
despite the exceptional performance of GPR-GNN (Chien et al., 2021) (monomial basis) and Cheb-
NetII (He et al., 2022) (Chebyshev basis) over GCN in supervised tasks, directly plugging them into
self-supervised settings as the encoder causes performance degradation compared with the simple
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low-pass GCN. This phenomenon could be attributed to the inconsistency between the powerful fitting
ability of polynomial filters and the lack of supervision signals in self-supervised learning scenarios,
which further inspires us to add constraints to the shape of polynomial filters, thereby facilitating
encoder learning in label-scarce scenarios. As the solution, we present POLYGCL, which learns
the polynomial filter based on the fixed low-pass and high-pass channels to construct corresponding
views of different spectral properties, thus facilitating the construction of the optimization objective
that captures important information in the spectral domain. The implementation of the encoder and
the optimization objective are given in Section 4.1 and Section 4.2, respectively.

4.1 ENCODER: INTRODUCE THE POLYNOMIAL FILTERS

While existing GCL methods focus on low-pass encoders for homophilic tasks, recent studies find
that high-frequency information is essential for heterophilic graphs (He et al., 2022; Lei et al., 2022).
To ease the learning process in the self-supervised setting, we decouple the low-pass and high-pass
channels of the polynomial filter and restrict it to fit only low-pass and high-pass filter functions.
Following He et al. (2022), we adopt Chebyshev polynomials with interpolation as base polynomials,
which can be formulated as

∑K
k=0 wkTk(L̂)X, where L̂ = 2L̃/λmax− I, and wk is reparameterized

as equation 1:

wk =
2

K + 1

∑K

j=0
γjTk(xj), (1)

where xj = cos
(

j+1/2
K+1 π

)
, j = 0, . . . ,K denote the Chebyshev nodes for TK+1, and the filter value

h(xj) at the Chebyshev node xj is reparameterized as a learnable parameter γj for xj ∈ [−1, 1] (Gil
et al., 2007; He et al., 2022). Suppose the filter function is non-negative following He et al. (2021),
we use the prefix sum to make the non-negative learnable parameter γj increment with j to model
the high-pass filter. Likewise, a low pass filter can be reparameterized with prefix difference so that
the filter value h(λ̂) decreases in λ̂ ∈ [−1, 1]. Formally, we have:

γH
i =

i∑
j=0

γj , γL
i = γ0 −

i∑
j=1

γj , i = 1, ...,K, (2)

where γH
0 = γL

0 = γ0. In this way, we have γH
i ≤ γH

i+1, γ
L
i ≥ γL

i+1 (which denotes the filter value
h(xj)) for i = 0, ...,K − 1, thus guarantee the high pass/low-pass property for h(λ̂). Based on the
above analysis, the low-pass and high-pass polynomial filter encoders can be expressed as equation 3.

ZL = fθ

(
K∑

k=0

wL
k Tk(L̂)X

)
, ZH = fθ

(
K∑

k=0

wH
k Tk(L̂)X

)
, (3)

where wL
k and wH

k are obtained via substituting γ in equation 1 with γL and γH in equation 2, fθ(·)
represents a shared MLP with parameter θ for fixed D dimensional output.

4.2 OPTIMIZATION OBJECTIVE IN POLYGCL

In POLYGCL, the optimization objective serves as the self-supervision signal for model training. As
shown in equation 3, the embedding output by the low-pass encoder ZL and the high-pass encoder
ZH can be considered as low-pass/high-pass spectral views respectively. Thus, an intuitive idea is
to obtain the final embedding via linear combination as Z = αZL + βZH , where α, β are linear
coefficients which can also be set as learnable parameters.

We follow Veličković et al. (2019) and Hassani & Khasahmadi (2020) to perform contrastive learning
between local patches (node embeddings) and global summaries (graph embeddings), aiming to
achieve mutual information maximization between the spectral views. Specifically, we randomly
shuffle X to get the negative low-pass/high-pass embeddings Z̃L and Z̃H , and the global summary
can be obtained by mean pooling as g = Mean(Z) = 1

N

∑N
i=1 Zi, where Zi denotes the embedding

vector for node vi. To score the agreement between node and graph representations, the discriminator
D is defined as D (Zi,g) = σ(ZiWg⊤) ∈ (0, 1), where W ∈ RD×D is the weight matrix and σ
serves as the sigmoid activation function. Based on the above components, we derive the overall
Binary Cross-Entropy (BCE) loss as equation 4:

LBCE = 1
4N

(∑N
i=1 logD(Zi

L,g) + log
(
1−D(Z̃i

L,g)
)
+ logD(Zi

H ,g) + log
(
1−D(Z̃i

H ,g)
))

. (4)
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Note that we maximize equation 4 for optimization. The whole training paradigm of POLYGCL is
presented in Algorithm 1 and Figure 2, coupled with the polynomial encoders shown in equation 3.

Algorithm 1: Training Algorithm for POLYGCL
Input: Node features X, input adjacency A, initialized encoders E,
initialized coefficients α, β, maximum iterations T , polynomial order K.

1 for epoch = 0, 1, . . . , T do
2 X̃← shuffle(X); % corruption
3 γL

0 = γH
0 = γ0 % initialize γL

0 , γ
H
0 with γ0 in E

4 for i = 1, . . . ,K do
5 γH

i =
∑i

j=0 ReLU(γj); % high-pass encoder
6 γL

i = γ0 −
∑i

j=1 ReLU(γj);% low-pass encoder

7 Obtain EL and EH via γL
i and γH

i respectively shown in equation 3
8 ZL ← EL(X,A),ZH ← EH(X,A); % positive embeddings
9 Z̃L ← EL(X̃,A), Z̃H ← EH(X̃,A); % negative embeddings

10 Z = αZL + βZH ; % linear combination
11 Compute loss via equation 4 and update parameters in EL and EH ;

Output: EL and EH with frozen parameters; learned coefficients α, β.
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Figure 2: Illustration for the overall pipeline in POLYGCL which takes node features X and adjacency
matrix A as input. "Poly" and "Init" are short for "polynomial" and "initialization" respectively.
There are two components in POLYGCL. The first one is the generation process of low-pass (blue)
and high-pass (red) spectral views via polynomial filters. By linear combination, POLYGCL can fit
filters of complex shapes shown in green lines. The second one is to perform contrastive learning
between the aggregated embedding (green) with the low-pass/high-pass outputs via equation 4.

4.3 REVISIT GCL FROM THE SPECTRAL VIEW

In this section, we suppose the downstream task in GCL is binary node classification and the input
dimension F = 1 to revisit the existing GCL methods from the spectral view. For each node vi, it
is attached with a one-hot class label. We denote Y ∈ RN×2 = (y0,y1) as the label matrix, where
yi is the indicator vector of class Ci, i = 0, 1. Let the difference of node labels be ∆y = y0 − y1.
Then we define GCL from the spectral view as two stages: (1) Z = Ug(Λ)UTX (2) σ(MLP(Z)),
where σ serves as the activation function. Note that only stage (2) involves label y. However, as
MLP can be considered as all-pass filtering, the graph filtering operation in GCL can be simplified
as Z = Ug(Λ)UTX. Ideal filtering results in a distinguishable node representation associated with
∆y to identify node labels. Let α = U⊤∆y and β = U⊤X, we introduce Assumption 1 about the
basic correlation between them.

Assumption 1. Assume that α and β are positively correlated in the spectral domain, that is,
E[α] = wβ, w > 0.

Note that cSBM (Chien et al., 2021) graph generation process is in accord with Assumption 1, and
further justification is discussed in Appendix C.1.2. We utilize the Spectral Regression Loss (SRL)
in EvenNet (Lei et al., 2022) as the evaluation metric of the spectral filter, which is formulated as
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L(G) =
∑N−1

i=0

(
αi√
N
− g(λi)βi√∑N−1

j=0 g(λj)2β2
j

)2

. A graph filter that achieves lower SRL is of higher

performance in the downstream task. Further, Corollary 1 formally demonstrates that there are
different filter monotonicity tendencies for homophilic and heterophilic graphs.
Corollary 1. In the task of binary node classification on k-regular graph G, for the homophilic graph
of h→ 1, choose the low-pass g(λ) ensures a lower SRL upper bound. Similarly, for the heterophilic
graph of h→ 0, the high-pass g(λ) corresponds to a lower SRL upper bound.

Given the fact that the low-pass information benefits graphs with high homophily degree and high-
pass frequency promotes the learning of graphs with heterophily, a natural idea is to linearly combine
the low-pass and high-pass filtering together. Theorem 1 provides a special case to illustrate this.
Theorem 1. For a binary node classification task on a k-regular graph G, suppose λN−1 = 2 and
we consider the linear bounded filter function, the low-pass filter glow = c − c

2λ ∈ [0, c] and the
high-pass filter as ghigh = c

2λ ∈ [0, c], then a linear combination of the low-pass and high-pass filter
gjoint = xglow + yghigh, x ≥ 0, y ≥ 0, x+ y = 1 achieves a lower expected SRL upper bound than
glow in heterophilic settings, that is, Ex[L̂joint] ≤ Eh[L̂low] for x ∼ U(0, 1), h ∼ U( 12 , 1), where L̂
denotes the upper bound for L.

Remark. Theorem 1 reveals that in heterophilic graphs, the linear combination strategy of low-pass
and high-pass information has a smaller expected SRL upper bound than utilizing the low-pass
information only, which provides a theoretical advantage to introduce the high-pass information for
modeling heterophilic graphs.

4.4 THEORETICAL ANALYSIS

In this section, we explain the effectiveness of POLYGCL from the view of Mutual Information (MI)
theory. We first present Proposition 1, which builds a connection with DGI (Veličković et al., 2019):
Proposition 1. The upper bound of LBCE has the same form as the DGI loss, which indicates LBCE
can be considered as the lower bound of LDGI.

Proposition 1 claims that maximizing LBCE for optimization is equal to maximizing the lower bound
of LDGI. Based on Proposition 1, we can derive Theorem 2.
Theorem 2. Given two deterministic encoder functions EL(·) and EH(·), which are the low-pass
polynomial filter and high-pass polynomial filter respectively. Let Z(k)

i = {zj}j∈n(Z(k),i) be the
neighborhood of the node i in the k-th graph that collectively maps to its high-level features,
hL
i = EL(Z

(k)
i ),hH

i = EH(Z
(k)
i ), where n is the neighborhood function that returns the set

of neighborhood indices of node i for graph Z(k). Let hagg
i = Linear(hL

i ,h
H
i ). Assume that

|Zi| = |Z| = |g| ≥ |hagg
i |. Then, hagg

i that optimising equation 4 also maximizes MI(Z
(k)
i ;hagg

i ).

Note that in Theorem 2, we denote hagg
i as our final embedding, which aggregates the K-hop

neighbor information (corresponding to polynomial filters of order K) through both the low-pass
encoder and high-pass encoder. Maximizing MI(Z

(k)
i ;hagg

i ) implies that the final embedding hagg
i ,

combining both the low-pass and high-pass information, preserves the maximum correlation with the
node’s original K-hop representations.

Remark. We can rewrite equation 4 as:LBCE = 2JS (P pos
L ∥ Pneg

L )+2JS (P pos
H ∥ Pneg

H )−4 log 2,
which proves that maximizing LBCE not only maximizes MI(Z

(k)
i ;hagg

i ), but also maximizes the
Jensen-Shannon divergence between the positive and negative distributions in both the low-pass and
high-pass views. Detailed discussion is deferred to Appendix A.5 due to space limitation.

Connection with downstream tasks. In POLYGCL, we have two self-supervised signals: the
low-pass information zL and the high-pass information zH . Based on the mutual information
maximization interpretation of equation 4, we essentially combine both low-pass and high-pass
information as the self-supervised signal. This involves maximizing the mutual information between
the representation h and the joint distribution (zL, zH). Furthermore, Corollary 2 demonstrates
that our method provides a tighter upper bound on the downstream Bayes error (Tsai et al., 2020;
Xiao et al., 2022) compared to using only low-pass or high-pass information. This suggests that
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Table 1: Mean node classification accuracy (%) with a 95% confidence interval on cSBM graphs.
Boldface letters indicate the best results and underlining letters denote the second best results.

Methods ϕ = −1 ϕ = −0.75 ϕ = −0.5 ϕ = −0.25 ϕ = 0 ϕ = 0.25 ϕ = 0.5 ϕ = 0.75 ϕ = 1

DGI 83.04 ± 0.92 93.24 ± 0.54 85.75 ± 0.49 68.41 ± 0.94 59.95 ± 0.78 68.70 ± 0.60 84.04 ± 0.61 91.53 ± 0.42 82.68 ± 0.72
MVGRL 68.80 ± 1.00 84.35 ± 0.78 78.81 ± 0.63 64.14 ± 1.05 59.09 ± 1.15 70.74 ± 0.73 89.91 ± 0.58 95.95 ± 0.37 89.13 ± 0.55

GGD 82.90 ± 0.83 92.76 ± 0.63 85.56 ± 0.58 66.63 ± 0.66 56.00 ± 0.51 67.06 ± 1.06 84.22 ± 0.61 91.75 ± 0.45 83.84 ± 0.76
GMI 54.47 ± 0.94 54.38 ± 0.71 50.70 ± 0.91 50.41 ± 0.64 51.79 ± 0.39 59.57 ± 0.93 82.28 ± 0.76 93.74 ± 0.46 96.01 ± 0.48
CCA-SSG 50.55 ± 0.75 52.71 ± 1.08 51.21 ± 0.98 50.88 ± 0.85 51.16 ± 0.67 56.33 ± 0.90 72.41 ± 1.20 90.83 ± 0.62 62.03 ± 0.91
BGRL 49.86 ± 0.77 49.47 ±0.74 49.95 ± 0.90 50.21 ± 0.87 54.58 ± 0.99 60.80 ± 0.56 70.79 ± 1.01 74.46 ± 0.79 68.69 ± 0.96
GBT 57.41 ± 1.43 64.99 ± 0.53 58.84 ± 0.80 51.80 ± 0.87 57.55 ± 0.69 72.62 ± 0.63 91.09 ± 0.37 97.80 ± 0.25 96.03 ± 0.38

GRACE 98.74 ± 0.28 97.55 ± 0.17 90.06 ± 0.50 68.74 ± 1.01 56.85 ± 1.12 66.70 ± 0.91 89.50 ± 0.60 97.41 ± 0.25 98.78 ± 0.28

GCA 76.56 ± 0.92 85.56 ± 0.40 78.96 ± 0.43 62.32 ± 0.89 58.01 ± 1.07 65.30 ± 1.15 77.16 ± 1.03 81.38 ± 0.59 75.54 ± 0.76
GraphCL 58.82 ± 1.06 57.89 ± 0.68 52.91 ± 0.70 50.18 ± 0.59 51.25 ± 0.76 55.11 ± 0.56 62.54 ± 1.13 65.57 ± 1.17 71.31 ± 1.01
GREET 50.82 ± 0.67 58.79 ± 0.52 59.91 ± 1.09 63.57 ± 0.76 65.99 ± 0.64 71.04 ± 0.67 80.17 ± 0.50 83.11 ± 0.53 75.93 ± 1.19

POLYGCL 98.84 ± 0.17 94.23 ± 0.31 90.82 ± 0.50 75.43 ± 0.68 66.51 ± 0.69 69.43 ± 0.65 88.22 ± 0.72 98.09 ± 0.29 99.29 ± 0.23

downstream tasks can benefit from the learned representations obtained through our objective function.
We attribute this advantage to our utilization of both low-pass and high-pass information as the self-
supervised signal. All the detailed proofs are presented in Appendix A.
Corollary 2. Suppose that downstream label y is a M-categorical random variable and the down-
stream Bayes error on learned representation h as P e

h = Eh [1−maxy∈y P (ŷ = y|v)], where ŷ is
the estimation for label from downstream classifier. Then, we have an inequality on the error upper
bound sup

(
P e
hagg

)
≤ min

(
sup
(
P e
hlow

)
, sup

(
P e
hhigh

))
, where sup

(
P e
h

)
denotes the error upper

bound for representation h. The error upper bound of the low-pass and high-pass representations,
hlow and hhigh, are denoted as sup

(
P e
hlow

)
and sup

(
P e
hhigh

)
respectively.

5 EXPERIMENTS

In this section, we conduct experiments about self-supervised node classification on both synthetic
datasets and real-world datasets to evaluate the performance of POLYGCL and gain further insights.

5.1 BASELINES AND SETTINGS

We compare our method with three types of GCL baselines as follows based on their optimization
objectives. (1) BCE-based GCL methods: DGI (Veličković et al., 2019), MVGRL (Hassani &
Khasahmadi, 2020), GMI (Peng et al., 2020) and GGD (Zheng et al., 2022). (2) InfoNCE-based
GCL methods: GraphCL (You et al., 2020), GRACE (Zhu et al., 2020b), GCA (Zhu et al., 2021b),
GREET (Liu et al., 2023). (3) Invariance-keeping GCL methods: BGRL (Thakoor et al., 2022),
GBT (Bielak et al., 2022), CCA-SSG (Zhang et al., 2021). Details about the model architectures and
hyperparameters are listed in Appendix F.

Evaluation Protocol. We follow the linear evaluation scheme as introduced in Veličković et al.
(2019), which can be treated as "two-stage" learning. For the first stage, node features and graph
structure without any label information are inputted, and each model is trained in a self-supervised
manner. Then at stage 2 (MLP stage), the representations output by the GNN encoder in stage 1 are
fixed and used to train, validate, and test via a simple linear classifier. As for the train/valid/test splits
on all datasets, we follow Chien et al. (2021) to randomly split the nodes into 60%, 20%, and 20%,
and all methods share the same 10 random splits, output embedding size D and hyper-parameters in
stage 2 for a fair comparison. See Appendix F.3 to learn more about the detailed settings.

5.2 EVALUATION ON SYNTHETIC DATASETS

Datasets. To better validate our theoretical results, we adopt the cSBM model to generate graphs
with arbitrary homophily degrees following Chien et al. (2021). Note that the homophily degree of
cSBM graphs is determined by the parameter ϕ ∈ [−1, 1], where the closer ϕ approaches 1, the more
homophilic the graph is and vice versa. Details about the cSBM dataset are included in Appendix C.1.

Results. The results are shown in Table 1. First, we observe that in self-supervised learning,
most models reach their performance peak when |ϕ| approaches 1, and the model performance is
generally poor when |ϕ| approaches 0, which aligns with the findings of supervised learning in
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Table 2: Mean node classification accuracy (%) on real-world graphs. Boldface letters indicate the
best results and underlining letters denote the second best results.

Methods Cora Citeseer Pubmed Cornell Texas Wisconsin Actor Chameleon Squirrel

DGI 85.88 ± 0.95 76.44 ± 0.80 82.13 ± 0.24 70.82 ± 7.21 81.48 ± 2.79 75.00 ± 2.00 32.09 ± 1.18 58.23 ± 0.70 38.80 ± 0.76
MVGRL 87.36 ± 0.64 78.70 ± 0.64 86.30 ± 0.23 67.70 ± 4.75 73.11 ± 4.75 74.25 ± 4.13 32.98 ± 0.53 57.75 ± 1.20 40.25 ± 1.14

GGD 87.21 ± 1.08 79.25 ± 0.72 85.38 ± 0.25 80.33 ± 1.80 82.62 ± 3.11 73.25 ± 2.25 32.27 ± 1.11 57.64 ± 1.16 40.87 ± 0.66

GMI 85.09 ± 1.13 76.38 ± 0.70 83.06 ± 0.24 62.79 ± 7.54 68.03 ± 4.10 62.13 ± 2.88 32.37 ± 1.01 62.47 ± 1.55 39.82 ± 0.93
CCA-SSG 87.39 ± 0.89 79.60 ± 0.71 84.96 ± 0.20 78.69 ± 3.44 87.87 ± 1.64 82.88 ± 1.50 34.86 ± 0.56 60.00 ± 1.20 41.50 ± 0.72

BGRL 84.45 ± 0.66 74.84 ± 1.04 83.06 ± 0.29 59.84 ± 2.95 69.84 ± 3.61 62.88 ± 4.13 32.48 ± 0.67 64.09 ± 1.27 47.02 ± 0.88
GBT 84.89 ± 1.13 76.59 ± 0.68 86.10 ± 0.23 59.18 ± 9.34 72.79 ± 6.56 62.38 ± 3.00 34.34 ± 0.67 68.77 ± 1.25 48.86 ± 0.80

GRACE 83.27 ± 0.74 73.79 ± 0.60 81.71 ± 0.16 60.66 ± 11.32 75.74 ± 2.95 72.13 ± 2.75 31.97 ± 1.15 59.52 ± 1.49 42.68 ± 0.90
GCA 84.09 ± 0.85 75.23 ± 0.75 82.01 ± 0.31 53.11 ± 9.34 81.97 ± 2.30 73.50 ± 3.00 31.13 ± 0.71 65.54 ± 1.07 47.13 ± 0.61
GraphCL 86.54 ± 0.54 78.99 ± 0.50 85.16 ± 0.21 61.48 ± 5.74 66.07 ± 6.07 60.63 ± 3.50 32.45 ± 1.22 58.49 ± 1.31 42.92 ± 0.62
GREET 85.16 ± 0.77 79.06 ± 0.44 85.64 ± 0.24 78.36 ± 3.77 78.03 ± 3.94 84.63 ± 3.88 38.26 ± 0.87 60.57 ± 1.03 39.76 ± 0.74

POLYGCL 87.57 ± 0.62 79.81 ± 0.85 87.15 ± 0.27 82.62 ± 3.11 88.03 ± 1.80 85.50 ± 1.88 41.15 ± 0.88 71.62 ± 0.96 56.49 ± 0.72

Table 3: Experimental results on 5 heterophilic graphs. Accuracy is reported for Roman-empire
and Amazon-ratings, and ROC AUC is reported for Minesweeper, Tolokers, and
Questions following Platonov et al. (2023). OOM denotes "out of memory".

Methods Roman-empire Amazon-ratings Minesweeper Tolokers Questions

DGI 58.57 ± 0.26 42.72 ± 0.42 68.36 ± 0.60 76.29 ± 0.66 74.44 ± 0.63
MVGRL 70.02 ± 0.25 42.18 ± 0.29 90.07 ± 0.36 80.86 ± 0.63 OOM
GGD 58.04 ± 0.40 43.15 ± 0.34 78.15 ± 0.48 76.43 ± 0.63 74.63 ± 0.66
GMI 32.33 ± 0.27 40.98 ± 0.30 72.38 ± 0.63 79.89 ± 0.62 OOM
CCA-SSG 42.82 ± 0.24 41.23 ± 0.25 72.42 ± 0.60 75.46 ± 0.75 74.64 ± 0.57
BGRL 39.34 ± 0.32 41.17 ± 0.25 72.82 ± 0.60 79.73 ± 0.61 72.27 ± 0.55
GBT 45.96 ± 0.34 43.58 ± 0.28 72.39 ± 0.56 75.74 ± 0.78 75.98 ± 0.88
GRACE 59.57 ± 0.39 43.79 ± 0.28 68.10 ± 0.70 76.31 ± 0.71 74.34 ± 0.71

GCA 59.77 ± 0.40 42.57 ± 0.17 68.11 ± 0.66 77.26 ± 0.61 75.09 ± 0.57
GraphCL 29.92 ± 0.30 37.81 ± 0.14 82.15 ± 0.46 76.88 ± 0.60 60.51 ± 1.45
GREET 72.68 ± 0.31 41.19 ± 0.25 82.71 ± 0.51 80.60 ± 0.56 OOM

POLYGCL 72.97 ± 0.25 44.29 ± 0.43 86.11 ± 0.43 83.73 ± 0.53 75.33 ± 0.67

Chien et al. (2021). Specifically, POLYGCL achieves 7 optimal or sub-optimal results in all the
9 settings, holding the best performance when meeting extreme homophily/heterophily (|ϕ| = 1)
or the structural information is useless (|ϕ| = 0). On other types of datasets, POLYGCL also has
comparable performances. We attribute this to the generalization ability of the low-pass/high-pass
linear combination strategy across different levels of homophily.

5.3 PERFORMANCE ON REAL-WORLD DATASETS

Datasets. We conduct the downstream node classification tasks to evaluate the quality of em-
beddings on 14 real-world benchmark datasets across different homophily degrees. Among them,
Cora, Citeseer, and Pubmed (Sen et al., 2008; Yang et al., 2016) are considered homophilic
graphs, while Chameleon, Squirrel from Wikipedia (Rozemberczki et al., 2021), the Actor co-
occurrence graph and Cornell, Texas, Wisconsin from WebKB (Pei et al., 2020) are denoted
as heterophilic graph datasets. We also conduct experiments on 5 larger heterophilic graphs with
different structural properties, which are Roman-empire, Amazon-ratings, Minesweeper,
Tolokers and Questions (Platonov et al., 2023).

Results. We present the performance on real-world datasets in Table 2 and Table 3. Generally,
POLYGCL outperforms all baselines in 12 out of 14 benchmarks and achieves the runner-up per-
formance on the other 2 datasets. Notably, POLYGCL slightly boosts the performance compared
to other baselines for homophilic graphs while exhibiting a clear performance gain on graphs of
heterophily, especially the 15.6% and 7.6% relative improvement on Squirrel and Actor, re-
spectively. POLYGCL’s superior performance indicates the exploitation of low-pass and high-pass
information can universally benefit representation learning, which is further consistent with our
theoretical results.

5.4 ABLATION STUDY

To analyze the effectiveness of introducing spectral polynomial graph filters and the high-pass
information, we develop a regularized variant of POLYGCL by setting the linear combination
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coefficients α, β as α + β = 1, α ≥ 0, β ≥ 0 to satisfy the condition in Theorem 1. In addition,
considering that the generation process of cSBM naturally meets Assumption 1, we repeat the
experiments in Section 5.2 with the regularized variant.

We first examine the model’s preference for low-pass/high-pass information by checking the value of
α ∈ [0, 1], which controls the proportion of low-pass representation ZL in the final representation
Z. In Figure 3, we observe that α shows an increasing trend as ϕ increases in the range of [−1, 1],
indicating that in heterophilic graphs (ϕ < 0), the low-pass information accounts for less of the
overall, whereas we draw the opposite conclusion in homophilic cases (ϕ > 0). In addition, we draw
the learned filters (normalized to [0, 1]) of the cSBM datasets with different ϕ in Figure 4. For ϕ < 0,
POLYGCL tends to learn increasing functions corresponding to high-pass filters, while low-pass
filtering dominates in homophilic settings. When ϕ = 0, which means no structural information
is useful, α approaches 0.5, and the learned filter function is almost an unchangeable line with the
all-pass property. The above discussions illustrate that POLYGCL can indeed learn filters of different
shapes on graphs across homophily by introducing high-pass information via polynomial filters.
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Figure 3: The learned α on the cSBM
datasets. The shaded region denotes a
95% confidence interval.
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Figure 4: The normalized learned filters of POLYGCL
with α+ β = 1, α ≥ 0, β ≥ 0 on cSBM datasets.

5.5 COMPLEXITY ANALYSIS

Table 4: Mean classification
accuracy on arXiv-year.

arXiv-year

DGI 40.60 ± 0.21
GGD 40.86 ± 0.22

MVGRL -
BGRL OOM
GBT 41.90 ± 0.26

CCA-SSG 40.76 ± 0.25
GRACE OOM

POLYGCL 43.07 ± 0.23

The time complexity of POLYGCL consists of two components: the
learning of polynomial filters and the loss computation. Suppose for
the graph with N nodes and E edges, the coefficients of the polyno-
mial encoders in POLYGCL can be precomputed in time linear to K,
therefore the propagation process in K-order polynomial filters can
be finished in O(KE) time. Meanwhile, the computation of LBCE

costs O(N) time. Thus the overall time complexity of POLYGCL
is O(KE +N), which is linear to K,E and N . Table 4 shows the
results on a large heterophilic graph arXiv-year (Lim et al., 2021)
with over 1 million edges, where OOM denotes "out of memory" and
"-" means failing to finish preprocessing in 24h. POLYGCL still holds
the SOTA performance with satisfactory efficiency.

6 CONCLUSION

This paper addresses the problem of dealing with heterophilic issues in self-supervised learning
settings. Inspired by the remarkable success of spectral graph neural networks with polynomial
approximation in handling heterophily, we seek to extend their desirable properties to the self-
supervised domain. We propose POLYGCL, a GCL framework that leverages contrastive learning
between the low-pass and high-pass views. Specifically, POLYGCL utilizes the polynomial filters
as encoders and incorporates a linear combined objective between low and high frequencies in
the spectral domain. Theoretical analysis provides solid evidence that POLYGCL consistently
outperforms previous low-pass designs by achieving lower loss. Extensive experiments demonstrate
the exceptional performance of POLYGCL across both homophilic and heterophilic settings.
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A ADDITIONAL PROOFS

A.1 PROOF OF COROLLARY 1

We first introduce Lemma 1 in Lei et al. (2022).
Lemma 1. (Lei et al., 2022) For a binary node classification task on a k-regular graph G, let h be
edge homophily and λi be the i-th smallest eigenvalue of L̃, then

1− h =

∑N−1
i=0 α2

iλi

2
∑

i λi
. (5)

The above equation can be extended to general graphs by replacing the normalized Laplacian L̃ with
the unnormalized L.

Based on Lemma 1 and Assumption 1, we present the proof of Corollary 1.

Proof of Corollary 1

Proof. Denote α = (α0, . . . , αN−1)
⊤,β = (β0, . . . , βN−1)

⊤. On graph G, note that L(G) =∑N−1
i=0

(
αi√
N
− g(λi)βi√∑N−1

j=0 g(λj)2β2
j

)2

. Based on Assumption 1, we suppose each entry of α and β

are positively correlated in the spectral domain, that is, αi = wβi for each i. Thus, for the low-pass
filter glow and the high-pass filter ghigh, the SRLs between the normalized α and g(λ)β are:

Llow(G) = 2− 1

Tlow

(
N−1∑
i=0

α2
i g(λi)low

)
(6)

Lhigh(G) = 2− 1

Thigh

(
N−1∑
i=0

α2
i g(λi)high

)
, (7)

where Ttype =
√
N
2 ·

√∑N−1
i=0 gtype(λi)2α2

i . Observing equation 6 and equation 7, we first give
the upper bound of Ttype as inequality 8:

Ttype =

√
N

2
·

√√√√N−1∑
i=0

gtype(λi)2α2
i ≤ c

√
N ·
√
N

2
=

cN

2
. (8)

Note that "≤" in inequality 8 comes from the bounded restriction g(λ) ∈ [0, c]. Therefore, there is an
upper bound of Llow(G) as shown in inequality 9:

Ltype(G) = 2− 1

Ttype

(
N−1∑
i=0

α2
i g(λi)type

)

≤ 2− 2

cN

(
N−1∑
i=0

α2
i g(λi)type

)
= 2− Lt. (9)

Consider minimizing the upper bound of Ltype, that is, just maximizing Lt. Below we will explain
that it is necessary to use corresponding low-pass/high-pass filtering functions for graphs with ho-
mophily/heterophily. Note that for Lt =

2
cN

(∑N−1
i=0 α2

i g(λi)type

)
, ignoring the constant coefficient,

it is essentially a convex combination of g(λi)type, where
∑N−1

i=0 α2
i = N (See Lemma 4 in Lei et al.

(2022)).

• Case h → 0. This case corresponds to the strong heterophily situation. According to
Lemma 1 and

∑N−1
i=0 λi = tr(L̃) = N , we have equation 10:

N−1∑
i=0

α2
iλi = 2N(1− h). (10)
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Also coupled with λN−1 ≤ 2, we have inequality 11:

N−1∑
i=0

α2
iλi ≤

N−1∑
i=0

α2
iλN−1

= λN−1

(
N−1∑
i=0

α2
i

)
≤ 2N. (11)

Therefore
∑N−1

i=0 α2
iλi has an upper bound 2N . When h→ 0, the value is close to the upper

bound. At this time, the corresponding situation is exactly that the larger λi is allocated
more α2

i , that is, λi and α2
i have the same monotonicity (both are non-decreasing).

The above proves that α2
i has a non-decreasing monotonicity in the case of heterophily.

In order to maximize Lt (the convex combination of g(λi)type), a larger g(λi)type value
should be assigned to larger α2

i , so it is reasonable for the filter function g to be a high-pass
filter g(λi)high.

• Case h → 1. The idea is similar to Case h → 0, but the process is opposite (note that∑N−1
i=0 α2

iλi → 0 at this time). It can be deduced that for homophily graphs, the filter
function g is expected to be a low-pass filter g(λi)low.

Based on the analysis of the above two cases, we complete the proof.

A.2 PROOF OF THEOREM 1

Proof. Below we consider proving that the linear combination of low-pass filtering and high-pass
filtering helps to achieve lower SRL.

First, consider the linear combination of low-pass and high-pass filter functions as equation 12:

g(λi)joint = xg(λi)low + yg(λi)high, (12)

where x > 0, y > 0, x + y = 1 are linear weighting coefficients. Then the corresponding SRL is
defined as equation 13:

Ljoint(G) = 2− 1

Tjoint

(
N−1∑
i=0

α2
i g(λi)joint

)

= 2− 1

Tjoint

(
N−1∑
i=0

α2
i (xg(λi)low + yg(λi)high)

)
. (13)

where Tjoint =
√
N
2 ·

√∑N−1
i=0 (xg(λi)low + yg(λi)high)

2
α2
i .

According to equation 9, the upper bound of SRL L(G) is L̂(G) = 2− Lt, so the expectation of the
upper bound of SRL is determined by E[Lt], ignoring the constant coefficients in Lt, and for the
random variable α2

i g(λi), we consider the expectation form of equation 14 for the linear combination
filter function gjoint (where the variable x obeys a uniform distribution, i.e., x ∼ U(0, 1)):

Ex[α
2g(λ)joint] = Ex[α

2 (xg(λ)low + yg(λ)high)]

= Ex

[
(2x− 1)E[α2g(λ)low] + c(1− x)

]
=

∫ 1

x=0

(2x− 1)E[α2g(λ)low] + c(1− x)dx

=
c

2
. (14)
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In addition, for the low-pass filter glow, consider its expected form as equation 15:

E[α2g(λ)low] = E[α2(c− c

2
λ)]

= c− c

2
E[α2λ]

= c− c

2
2(1− h)

= ch. (15)

Note that the second "=" to the third "=" in equation 15 applies the conclusion of Lemma 1 , namely
E[α2λ] = 2(1− h). For the heterophilic graph with h ∼ U( 12 , 1), that is, h is uniformly distributed
on [ 12 , 1], we have inequality 16 as follows:

Ex[α
2g(λ)joint] =

c

2

=

∫ 1

h= 1
2

cdh

≥
∫ 1

h= 1
2

chdh

= Eh[hc]

= Eh[α
2g(λ)low]. (16)

Since the expected upper bound of SRL E[L̂] = 2 − E[Lt] = 2 − 2
cE[α

2g(λ)], Therefore in
heterophilic settings where h ∼ U( 12 , 1), the linear combination of low-pass and high-pass filters
guarantees a lower expected SRL upper bound compared with utilizing the low-pass information
only, that is, Ex[L̂joint] ≤ Eh[L̂low], x ∼ U(0, 1), h ∼ U( 12 , 1), the proof is completed.

Additional results: Above we consider the expected SRL upper bound for the heterophilic graphs,
which calculates E[L̂] when x ∼ U(0, 1), h ∼ U( 12 , 1). Generally, we assume the homophily degree
h is uniformly distributed in [0, 1]. Similar to equation 15, the expectation form of high-pass filter
ghigh can be derived as equation 17.

E[α2g(λ)high] = E[α2 c

2
λ]

=
c

2
E[α2λ]

=
c

2
2(1− h)

= c(1− h). (17)

In order to minimize the expected upper bound of SRL L̂, we only need to maximize Eh[α
2g(λ)].

Based on equation 17, we can easily draw the following two conclusions:

1. For low-pass filtering, maxh Eh[α
2g(λ)low] = maxh hc, when h → 1, the expected

upper bound of SRL L̂ will be minimized, which exactly reveals that low-pass filtering
corresponds to homophilic graph; Likewise, for high-pass filtering maxh Eh[α

2g(λ)high] =

maxh(1 − h)c, when h → 0, the expected upper bound of SRL L̂ will be minimized,
verifying that high-pass filtering corresponds to the heterophilic graphs.

2. Considering that Ex[α
2g(λ)joint] =

c
2 , it is irrelevant to the homophily degree h of the

graph itself. In addition, we consider x ∼ U(0, 1) in the above derivation. However, in fact,
the weighting coefficient x in the linear combination can be set to be a learnable parameter
during model training. Both of them reflect that linearly combining low-pass and high-pass
filtering enjoys better generalization across different homophily levels with a theoretical
guarantee.
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A.3 PROOF OF PROPOSITION 1

In this section, before the proof of Proposition 1, we first present Lemma 2, which is used in
DGI (Veličković et al., 2019):

Lemma 2. (Veličković et al., 2019) Let {Z(k)}|Z|
k=1 be a set of node representations drawn from

an empirical probability distribution of graphs, p(Z), with finite number of elements, |Z|, such that
p(Z(k)) = p(Z(k′)) ∀k, k′. Let R(·) be a deterministic readout function on graphs and g(k) =
R(Z(k)) be the summary vector of the k-th graph, with marginal distribution p(g). The optimal
classifier between the joint distribution p(Z,g) and the product of marginals p(Z)p(g), assuming
class balance, has an error rate upper bounded by Err∗ = 1

2

∑|Z|
k=1 p(g

(k))2. This upper bound is
achieved if R is injective.

Then we claim that although our objective considers the high-pass and low-pass components simulta-
neously, the DGI loss still serves as an upper bound for our objective maximization.

Proof of Proposition 1

Proof. Formally, we rewrite our BCE loss as follows:

LBCE =
1

4N

(
N∑
i=1

logD
(
Zi

L,g
)
+ log

(
1−D

(
Z̃i

L,g
))

+ logD
(
Zi

H ,g
)
+ log

(
1−D

(
Z̃i

H ,g
)))

=
1

4N

(
N∑
i=1

logD
(
Zi

L,g
)
·D
(
Zi

H ,g
)
+ log

(
1−D

(
Z̃i

L,g
))
·
(
1−D

(
Z̃i

H ,g
)))

≤ 1

2N

(
N∑
i=1

log D̂
(
Zi

L,Z
i
H ,g

)
+ log

(
1− D̂

(
Z̃i

L, Z̃
i
H ,g

)))
= LDGI,

where D̂
(
Zi

L,Z
i
H ,g

)
=
√
D
(
Zi

L,g
)
·D
(
Zi

H ,g
)
∈ (0, 1), and the above inequality can be de-

duced from the basic inequality.

Considering that the final embeddings Z = αZL + βZH ,, as a linear combination of ZL and ZH , we
know that Z can represent ZL and ZH (α = 1, β = 0 or α = 0, β = 1, respectively), then rewrite
D̂
(
Zi

L,Z
i
H ,g

)
as D̂ (Z,g), where g = R (Z).

Thus we obtain that the upper bound for LBCE has the form of:

1

2N

(
N∑
i=1

log D̂
(
Z,g

)
+ log

(
1− D̂

(
Z,g

)))
,

which is the same as the objective in DGI. As we want to maximize LBCE for optimization, it is quite
effective to maximize the DGI lower bound; thus, our objective also follows Lemma 2.

A.4 PROOF OF THEOREM 2

We first introduce Corollary 1 and Theorem 3 in Veličković et al. (2019):
Corollary 1. (Veličković et al., 2019) From now on, assume that the readout function used, R, is
injective. Assume the number of allowable states in the space of g, |g|, is greater than or equal to |Z|.
Then, for g⋆, the optimal summary under the classification error of an optimal classifier between the
joint and the product of marginals, it holds that |g⋆| = |Z|.
Theorem 3. (Veličković et al., 2019) Define g∗ as the optimal summary vector under the classifica-
tion error of an optimal classifier between p(Z,g) and p(Z)p(g). g∗ = argmaxg MI(Z;g), where
MI stands for mutual information.

Based on Theorem 3, in DGI, they claim that for finite input sets and appropriate deterministic
functions, minimizing the classification error in the discriminator D(·) can be used to maximize the
MI between the input and output of R(·). Further, based on Corollary 1, we obtain Theorem 2.
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Proof of Theorem 2

Proof. Given our assumption of |Zi| = |g|, there exists an inverse Zi = R−1(g), and therefore
hL
i = EL

θ (R
−1(g)),hH

i = EH
θ (R−1(g)), i.e. there exists deterministic functions (EL

θ ◦R−1) mapping
g to hL

i and (EH
θ ◦ R−1) mapping g to hH

i .

Considering that hagg
i = Linear(hL

i ,h
H
i ), based on the fact that the linear combina-

tion is an invertible function, it is easy to derive that there exists a deterministic function
Linear

(
EL
θ ◦ R−1,EH

θ ◦ R−1
)

mapping g to hagg
i .

The optimal classifier between the joint distribution p(hagg
i ,g) and the product of marginals

p(hagg
i )p(g) then, by Lemma 2, has an error rate upper bound of Err∗ = 1

2

∑|Z|
k=1 p(h

agg
i )2. There-

fore, as stated in Corollary 1, for the optimal hagg
i , |hagg

i | = |Zi|. This result, following the same
arguments as in Theorem 3, maximizes the mutual information between the neighborhood and
high-level features, MI(Z

(k)
i ;hagg

i ).

A.5 CONNECTING EQUATION 4 WITH JS DIVERGENCE

In this section, we further prove that maximize LBCE not only maximize MI(Z
(k)
i ;hagg

i ) shown in
Theorem 2, but also maximize the Jensen-Shannon divergence between the positive and negative
distributions in both low pass and high pass views. The following proof is inspired by the theoretical
proof in Goodfellow et al. (2014) and Zheng et al. (2022).

Proof. Note that for the summary vector, we have:

g = E(Z) = αE(ZL) + βE(ZH) = αz̄L + βz̄H ,

which implies that g is fixed when considering the deterministic encoders in terms of the expectations
of certain distributions, namely PL and PH . Therefore, we can disregard g to streamline the
subsequent derivation.

During training, we maximize to optimize the following objective in equation 18:

LBCE = EzL∼Ppos
L

log (D (zL)) + EzL∼Pneg
L

log (1−D (zL))

+ EzH∼Ppos
H

log (D (zH)) + EzH∼Pneg
H

log (1−D (zH)) ,

=

∫
zL

P pos
L (zL) log (D (zL)) dzL +

∫
zL

Pneg
L (zL) log (1−D (zL)) dzL

+

∫
zH

P pos
H (zH) log (D (zH)) dzH +

∫
zH

Pneg
H (zH) log (1−D (zH)) dzH ,

(18)

where P pos
L and P pos

H are the distributions of positive embeddings for the low-pass and high-pass
encoder respectively, Pneg

L and Pneg
H are the distributions of negative embeddings. As our objective

here is to maximize LBCE, and Ppos(z) > 0;Pneg(z) > 0, we can obtain the optimal solution for
D (z) is Ppos(z)

Ppos(z)+Pneg(z)
. This is because for any (a, b) ∈ R2\{0, 0}, the maximum of the function

y = a log(x) + b log(1− x) is achieved at a
a+b (Goodfellow et al., 2014). By replacing D (z) with

Ppos(z)
Ppos(z)+Pneg(z)

in equation 18, we obtain equation 19:

LBCE = EzL∼Ppos
L

log

(
P pos
L (zL)

P pos
L (zL) + Pneg

L (zL)

)
+ EzL∼Pneg

L
log

(
Pneg
L (zL)

P pos
L (zL) + Pneg

L (zL)

)
+ EzH∼Ppos

H
log

(
P pos
H (zH)

P pos
H (zH) + Pneg

H (zH)

)
+ EzH∼Pneg

H
log

(
Pneg
H (zH)

P pos
H (zH) + Pneg

H (zH)

)
.

(19)
From equation 19, we can see it looks similar to the Jensen-Shannon divergence between two
distributions P1 and P2, defined as equation 20:

JS(P1 ∥ P2) =
1

2
Eh∼P1

log(
P1

P1+P2

2
) +

1

2
Eh∼P2

log(
P2

P1+P2

2
). (20)
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Thus, we can plug in equation 20 into equation 19 to obtain equation 21:

LBCE = EzL∼Ppos
L

log

 Ppos
L (zL)

Ppos
L (zL)+Pneg

L (zL)

2

+ EzL∼Pneg
L

log

 Pneg
L (zL)

Ppos
L (zL)+Pneg

L (zL)

2

− 2 log 2

+ EzH∼Ppos
H

log

 Ppos
H (zH)

Ppos
H (zH)+Pneg

H (zH)

2

+ EzH∼Pneg
H

log

 Pneg
H (zH)

Ppos
H (zH)+Pneg

H (zH)

2

− 2 log 2,

= 2JS (P pos
L ∥ Pneg

L ) + 2JS (P pos
H ∥ Pneg

H )− 4 log 2,
(21)

where we can see maximizing LBCE is the same as maximizing JS (P pos
L ∥ Pneg

L ) and
JS (P pos

H ∥ Pneg
H ) at the same time. Thus, by optimizing LBCE, Ppos and Pneg tend to be pulled

apart and separated in terms of the low-pass view PL and high-pass view PH .

A.6 PROOF OF COROLLARY 2

In this section, we first present the connection between the proposed objective and the mutual
information maximization, then show that the learned representations by our objective provably enjoy
a good downstream performance.

We denote the random variable of the input graph as G and the downstream label as y. For clarity,
we omit subscript i in what follows. In POLYGCL, we have two self-supervised signals: the
low-pass information inferred by zL and the high-pass information zH . We can formulate zL, zH
from the local structural perspective, which is captured by the representations of the neighbors
zL = {zLi |vi ∈ N(v)}, zH = {zHi |vi ∈ N(v)} of node v. Then we interpret our objective in
equation 4 from the information maximization perspective (Tsai et al., 2020) shown in Theorem 4:

Theorem 4. Optimizing local and global terms in equation 4 is equivalent to maximizing the
mutual information between the representation h and the joint distribution of low-pass and high-pass
representations, denoted as (zL, zH). Let I(·; ·) be the mutual information. Formally, we have:

maxLBCE ⇒ max
h

I(h; zH , zL). (22)

Proof. As z = Linear(zL, zH), according to Theorem 2 and the data processing inequality (Thomas
& Joy, 2006), we have:

I(h; zH , zL) ≥ I(h; Linear(zH , zL)) = I(h; z).

Thus maximize LBCE is equivalent to maximize the lower bound of I(h; zH , zL), which proves
maxLBCE ⇒ maxh I(h; zH , zL).

To prove Corollary 2, we first introduce Lemma 3 and Theorem 5.

Lemma 3. For a representation h that is obtained with a deterministic encoder fθ of input graph G
with enough capacity, we have the data processing Markov chain: (zL, zH)↔ y↔ G→ h.

Proof. Since h = fθ(G) is a deterministic function of input graph G, we have the following condi-
tional independence: (zL, zH) ⊥ h|G and y ⊥ h|G (Federici et al., 2019), which leads to the data
processing Markov chain (zL, zH)↔ y↔ G→ h. Thus, the proof is completed.

Based on Lemma 3, Theorem 5 reveals why the downstream tasks can benefit from the representations
learned by our objective function.

Theorem 5. Let hagg = argmaxh I(h; zL, zH),hlow = argmaxh I(h; zL), and hhigh =
argmaxh I(h; zH). Formally, we have the following inequalities about the task-relevant infor-
mation:

I(G;y) = max
h

I(h;y) ≥ I(hagg;y) ≥ max(I(hlow;y), I(hhigh;y)). (23)
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Proof. We have the data processing inequality (Thomas & Joy, 2006) as inequality 24:

I(zL, zH ;G) ≥ I(zL, zH ;h), I(zL, zH ;G;y) ≥ I(zL, zH ;h;y), I(G,y) ≥ I(h,y). (24)

Since hagg = argmaxh I(zL, zH ;h), we have: I(zL, zH ;hagg) = I(zL, zH ;G) and
I(zL, zH ;hagg;y) = I(zL, zH ;G;y). In addition, as hagg is deterministic given zL, zH , we also
have, 0 ≤ I(hagg;y|zL, zH) ≤ H(hagg|zL, zH) = 0, where H(·) denotes the entropy. Given the
above, we have equation 25:

I(hagg;y) = I(hagg;y; zL, zH) + I(hagg;y|zL, zH)

= I(G;y; zL, zH) + I(hagg;y|zL, zH)

= I(G;y; zL, zH) + 0

= I(G;y)− I(G;y|zL, zH)

= max
h

I(h;y)− I(G;y|zL, zH) = I(hsup;y)− I(G;y|zL, zH). (25)

Thus, the mutual information gap between self-supervised representation hagg and supervised
representation hsup is I(G;y|zL, zH) ≥ 0. Based on the property of mutual information, we
further have inequality 26:

I(G;y|zL) = I(G;y; zH |zL) + I(G;y|zL, zH) ≥ I(G;y|zL, zH). (26)

Similarly, we have I(G;y|zH) ≥ I(G;y|zL, zH). Coupled with equation 25 and equation 26, we
have I(hagg;y) ≥ I(hlow;y) and I(hagg;y) ≥ I(hhigh;y), which completes the proof.

Based on Theorem 5, we further prove Corollary 2.

Proof of Corollary 2

Proof. Suppose the Bayes error 0 ≤ P e
h ≤ 1 − 1

|M | , which means classification on the learned
embedding is better than random guessing. We utilize inequalities 27 borrowed from Thomas & Joy
(2006) and Tsai et al. (2020):

P e
hagg
≤ − log(1− P e

hagg
) ≤ H(y|hagg), H(y|hsup) ≤ log 2 + P e

hsup
logM. (27)

For H(y|hagg) and H(y|hsup), we have equation 28:

H(y|hagg) = H(y)− I(hagg;y)

= H(y)− I(hsup;y) + I(G;y|zL, zH)

= H(y|hsup) + I(G;y|zL, zH), (28)

where we use equation 25 in the second equality. Combining inequality 27 and equation 28, we have
the error upper bound for hagg as sup(P e

hagg
) in inequality 29:

P e
hagg
≤ log 2 + P e

hsup
· logM + I(G;y|zL, zH) ≜ sup

(
P e
hagg

)
. (29)

Further using I(G;y | zL, zH) ≤ I(G;y|zL) and I(G;y|zL, zH) ≤ I(G;y|zH) shown in equa-
tion 26, we have sup

(
P e
hagg

)
≤ min

(
sup
(
P e
hlow

)
, sup

(
P e
hhigh

))
, which completes the proof.

B GENERALIZATION OF THEOREM 1

As for the generalized version of Theorem 1, we first introduce the generalized version of Lemma 1
borrowed from Lei et al. (2022).
Lemma 4. (Lei et al., 2022) Given the unnormalized graph Laplacian L = ULΛLU

⊤
L and its

eigenvalues {λ′
i}, denote the number of edges on the graph is m, and label difference as ∆y =

y0 − y1 ∈ RN×1. For the unnormalized spectrum of label difference on L, denoted as α′ =
U⊤
L ∆y = (α′

0, α
′
1, . . . , α

′
N−1)

⊤, we have:

N−1∑
i=0

λ′
i = 2m, 1− h =

∑N−1
i=0 (α′

i)
2λ′

i

2
∑N−1

j=0 λ′
j

. (30)
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Based on Lemma 4, following the proof sketch of Theorem 1, it can be easily proved that Theorem 1
still holds for the unnormalized graph Laplacian L as a generalized version, shown in Theorem 6.
Theorem 6. (generalized version of Theorem 1 on unnormalized Laplacian L ) For a binary node
classification task on graph G with n nodes and m edges, we consider the linear bounded filter
function and the unnormalized Laplacian L with λ′ ≥ 0, for the low-pass filter glow = c− nc

4mλ′ and
the high-pass filter as ghigh = nc

4mλ′, then a linear combination of the low-pass and high-pass filter
gjoint = xglow + yghigh, x ≥ 0, y ≥ 0, x+ y = 1 achieves a lower expected SRL upper bound than
glow in heterophilic settings, that is, Ex[L̂joint] ≤ Eh[L̂low] for x ∼ U(0, 1), h ∼ U( 12 , 1), where L̂
denotes the upper bound for L.

Proof of Theorem 6

Proof. According to equation 9, the upper bound of SRL L(G) is L̂(G) = 2− Lt, so the expectation
of the upper bound of SRL is determined by E[Lt], ignoring the constant coefficients in Lt, and for the
random variable α2

i g(λ
′
i), we consider the expectation form of equation 31 for the linear combination

filter function gjoint (where the variable x obeys a uniform distribution, i.e., x ∼ U(0, 1)):

Ex[α
2g(λ′)joint] = Ex[α

2 (xg(λ′)low + yg(λ′)high)]

= Ex

[
(2x− 1)E[α2g(λ′)low] + c(1− x)

]
=

∫ 1

x=0

(2x− 1)E[α2g(λ′)low] + c(1− x)dx

=
c

2
. (31)

In addition, for the low-pass filter glow, consider its expected form as equation 32:

E[α2g(λ′)low] = E[α2(c− nc

4m
λ′)]

= c− nc

4m
E[α2λ′]

= c− nc

4m

4m

n
(1− h)

= ch. (32)

Note that the second "=" to the third "=" in equation 32 applies the conclusion of Lemma 4, namely
E[α2λ′] = 4m

n (1−h). For the heterophilic graph with h ∼ U( 12 , 1), that is, h is uniformly distributed
on [ 12 , 1], we have inequality 33 as follows:

Ex[α
2g(λ′)joint] =

c

2

=

∫ 1

h= 1
2

cdh

≥
∫ 1

h= 1
2

chdh

= Eh[hc]

= Eh[α
2g(λ′)low] (33)

Since the expected upper bound of SRL E[L̂] = 2 − E[Lt] = 2 − 2
cE[α

2g(λ′)], Therefore in
heterophilic settings where h ∼ U( 12 , 1), the linear combination of low-pass and high-pass filters
guarantees a lower expected SRL upper bound compared with utilizing the low-pass information
only, that is, Ex[L̂joint] ≤ Eh[L̂low], x ∼ U(0, 1), h ∼ U( 12 , 1), the proof is completed.

Note that the slight difference between Theorem 1 and Theorem 6 lies in the constant coefficients of
the low-pass/high-pass linear functions, which are c

2 and nc
4m respectively. In addition, Theorem 6

gets rid of the k-regular restriction in Theorem 1 by introducing the unnormalized graph Laplacian L.

As for the binary classification task in Theorem 1, there is a series of works based on spectral analysis
of heterophily that adopt the two-class setting(Lei et al., 2022; Chen et al., 2022; Ma et al., 2022;
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Luan et al., 2023). Besides, the theoretical analysis in Chen et al. (2022) states that the analysis of
multi-class cases can be simplified via the "One vs Others" reduction, that is, for C class classification
task, denoting y′

0 = y0 and y′
1 =

∑C−1
l=1 yl, thus we can transform the multi-class cases into binary

classification.

Based on the above discussion, Theorem 1 makes reasonable simplifications and has the potential to be
extended to a general form of graph Laplacian or multi-class classification cases, which demonstrate
the necessity of introducing high-pass information in heterophilic settings.

C DETAILS OF EXPERIMENTS

C.1 SYNTHETIC DATASETS

C.1.1 GENERATION PROCESS OF CSBM

In order to generate a graph with varying degrees of homophily, we follow Chien et al. (2021) to
generate cSBM datasets. Denote a cSBM graph G as G ∼ cSBM(n, f, λ, µ), where n is the number
of nodes, f is the dimension of features, and λ and µ are hyperparameters controlling the proportion
of contributions from the graph structure and node features respectively. We partition nodes into two
classes of equal size (n/2) and assign each node an f -dimensional feature vector which is randomly
sampled from a class-specific Gaussian distribution as:

xi =

√
µ

n
yiu+

Zi√
f
, (34)

where yi ∈ {−1,+1} denotes the label of node vi, u ∼ N(0, I/f) and Z is a random noise term.

Assume the average degree of the generated graph is d, and the adjacency matrix A of the generated
cSBM graph is defined as:

P [Aij = 1] =

{
d+λ

√
d

n if vivj > 0
d−λ

√
d

n otherwise.
(35)

To control the homophily degree h of the generated graphs, the parameter Φ is introduced in the form
of ϕ = 2

π arctan
(

λ
√
ξ

µ

)
, where ξ is a control factor defined as ξ = n

f . The degree of homophily
in the graph is determined by the parameter ϕ ∈ [−1, 1], where a larger |ϕ| value indicates that the
graph provides stronger topological information. On the other hand, when ϕ = 0, only node features
are informative for prediction. It is noteworthy that the closer ϕ approaches 1, the more homophilic
the graph is, and conversely, if ϕ < 0, the graph tends to exhibit heterophily.

To generate informative cSBM graphs, we need to satisfy the condition λ2 + µ2

ξ = 1+ ϵ where ϵ > 0

(Deshpande et al., 2018). In practice, we choose n = 5000, f = 2000, d = 5, ϵ = 3.25 for all graphs.
The choices of λ and µ and the resulting homophily ratio h and number of edges |E| are listed in
Table 5.

Table 5: Statistics of cSBM datasets.

ϕ -1 -0.75 -0.50 -0.25 0 0.25 0.50 0.75 1

λ -2.06 -1.90 -1.46 -0.79 0.00 0.79 1.46 1.90 2.06
µ 2.00 1.25 2.30 3.01 3.26 3.01 2.30 1.25 2.00

|E| 25,058 25,134 25,390 25,140 24,872 25,024 24,866 25,382 25,038
h 0.036 0.072 0.171 0.322 0.503 0.677 0.825 0.925 0.960

C.1.2 JUSTIFICATION FOR ASSUMPTION 1

Justification. The widely used graph generative model, contextual stochastic block model (cSBM)
naturally adheres to Assumption 1 while generating graphs with different homophily levels. Specif-
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ically, cSBM generates node features and edges independently via equation 34 and equation 35
respectively. As shown in equation 34, it is exactly a linear correlation between node label yi and
feature xi, which also can be extended to the spectral domain by left multiplying UT . While taking
expectations at the same time, we demonstrate that the generation mechanism of cSBM is consistent
with Assumption 1 and further reflect the rationality of Assumption 1.

C.2 REAL-WORLD DATASETS

We introduce the details of the real-world datasets as follows. and the statistics of them are shown in
Table 6.

• Cora, Citeseer and Pubmed (Sen et al., 2008) are three citation networks that are
considered classic homophilic graphs. In these graphs, nodes represent papers and edges
represent citation relationships between two papers. The features consist of bag-of-word
representations of the papers, while the labels indicate the research topic of each paper.

• Cornell, Texas and Wisconsin (Pei et al., 2020) are three heterophilic networks
originating from the WebKB1 project, where nodes are web pages of the computer science
departments of different universities and edges are hyperlinks between them. The features of
each page are represented as bag-of-words, and the labels indicate the types of web pages.

• Chameleon and Squirrel (Pei et al., 2020) are two heterophilic networks based on
Wikipedia. The nodes denote web pages in Wikipedia and edges denote links between them.
The features consist of informative nouns in the Wikipedia pages, and labels indicate the
average traffic of the web pages.

• Actor (Pei et al., 2020) is an actor co-occurrence network where nodes denote actors and
edges indicate two actors have co-occurrence in the same movie. The features indicate the
keywords in the Wikipedia pages, and the labels are the words of corresponding actors. It is
a typical heterophilic graph.

• Roman-empire, Amazon-ratings, Minesweeper, Tolokers and Questions
(Platonov et al., 2023) are 5 large heterophilic graphs with different structural properties and
from different fields. They are proposed to ease the problem of existing heterophilic graphs,
e.g., there are a large number of duplicate nodes in Chameleon and Squirrel, leading
to training and test data leakage.

• arXiv-year (Lim et al., 2021) is the ogbn-arXiv (Hu et al., 2020) network with different
labels, that is, set the class labels to be the year that the paper is posted instead of the paper
subject area and balance the class ratios approximately. It is considered as a typical large
heterophilic graph.

D BASELINES

We summarize the baseline methods based on their optimization objectives as follows.

• Binary Cross-Entropy (BCE) loss. Inspired by Deep Infomax (Hjelm et al., 2019) in
computer vision, DGI (Veličković et al., 2019) contrasts the node embeddings with the global
summary with a JSD estimator and BCE loss. To extend the idea of DGI, MVGRL (Hassani
& Khasahmadi, 2020) introduces multi-view contrastiveness with diffusion augmentation,
and GMI (Peng et al., 2020) focuses on a local scope with the first-order neighborhood.
Further, GGD (Zheng et al., 2022) simplifies the discriminator in DGI and proposes the
group discrimination objective based on BCE loss to achieve effective and efficient learning.

• InfoNCE loss. GRACE (Zhu et al., 2020b) performs contrastive learning on two augmented
views including the feature masking and edge dropout with an InfoNCE objective. GCA (Zhu
et al., 2021b) improves the performance of GRACE by introducing adaptive augmentation
techniques to capture the important features and structural information. GraphCL (You et al.,
2020) considers the combination of multiple augmentations to diversify the augmented views.
GREET (Liu et al., 2023) proposes an edge heterophily discriminating mechanism based

1http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb/
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Table 6: Statistics of real-world datasets.

Dataset Num. of nodes Num. of edges Features Classes Homophily

Cora 2,708 5,278 1,433 7 0.810
Citeseer 3,327 4,552 3,703 6 0.736
Pubmed 19,717 44,324 500 3 0.802
Cornell 183 298 1,703 5 0.305
Texas 183 325 1,703 5 0.108
Wisconsin 251 515 1,703 5 0.196
Chameleon 2,277 36,101 2,277 5 0.235
Squirrel 5,201 217,073 2,089 5 0.224
Actor 7,600 30,019 932 5 0.219
Roman-empire 22,622 65,854 300 18 0.047
Amazon-ratings 24,492 186,100 300 5 0.380
Minesweeper 10,000 78,804 7 2 0.683
Tolokers 11,758 1,038,000 10 2 0.595
Questions 48,921 307,080 301 2 0.840
arXiv-year 169,343 1,166,243 128 5 0.222

on the InfoNCE objective to achieve effective Graph Contrastive Learning on heterophilic
graphs.

• Invariance-keeping loss. BGRL (Thakoor et al., 2022) adopts a bootstrapping scheme
inspired by BYOL (Grill et al., 2020), which only contrasts node embeddings between
the output of the online network and the corresponding target network, thus achieving
negative-sample free. GBT (Bielak et al., 2022) utilizes a cross-correlation-based loss
based on the redundancy-reduction principle to build contrastiveness between embedding
dimensions. CCA-SSG (Zhang et al., 2021) further considers optimizing a feature-level
objective inspired by classical Canonical Correlation Analysis to capture the invariance
between augmented views effectively.

Besides, we can also summarize the existing GCL methods from the augmentation techniques and
the space complexity in Table 7.

Table 7: Technical comparison of the representative GCL methods regarding data augmentation
and space complexity, where N,E, and D denote the number of nodes, edges, and the size of the
output embeddings, respectively. Diffusion denotes graph diffusion via Personalized PageRank or
heat kernel. Multiple denotes multiple augmentation methods, including edge removing, edge adding,
node dropping, and subgraph induced by random walks. "/" indicates that no such augmentation
exists. (Here we consider the node shuffling strategy as the corruption technique but not for data
augmentation.)

Method Topology Aug. Feature Aug. Space.
DGI (Veličković et al., 2019) / / O(N)

MVGRL (Hassani & Khasahmadi, 2020) Diffusion / O(N)
GMI (Peng et al., 2020) / / O(N + |E|)

GGD (Zheng et al., 2022) / / O(N)
GRACE (Zhu et al., 2020b) Edge Removing Feature Masking O(N2)

GCA (Zhu et al., 2021b) Edge Removing Feature Masking O(N2)
GraphCL (You et al., 2020) Multiple Feature Dropout O(N2)
GREET (Liu et al., 2023) Edge Removing Feature Masking O(N2)

BGRL (Thakoor et al., 2022) Edge Removing Feature Masking O(N)
GBT (Bielak et al., 2022) Edge Removing Feature Masking O(N)

CCA-SSG (Zhang et al., 2021) Edge Removing Feature Masking O(D2)
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E SUPPLEMENT RELATED WORK

There is a series of works on Graph Contrastive Learning with heterophily. HLCL (Yang & Mirza-
soleiman, 2023) employs a fixed set of polynomials (i.e., Ãk and L̃k represent the low-pass/high-pass
filters respectively) to generate spectral views for further contrast, while similar ideas are also used in
graph clustering (Xie et al., 2023) and supervised settings (Bo et al., 2021). Furthermore, FiGURe (Ek-
bote et al., 2023), which focuses on self-supervised learning tasks on heterophilic graphs and involves
filter augmentations, performs contrastive learning in different spectral views generated by filter
banks. Motivated by the spectral contrastive loss proposed by HaoChen et al. (2021), SP-GCL (Wang
et al., 2022) conducts contrastive learning based on the transformed graphs constructed by the output
embeddings instead of the original graphs, thus achieving effective learning on graphs of different
homophily levels. Additionally, Local-GCL (Zhang et al., 2022) devises a kernelized contrastive loss
with linear complexity for GCL, which also shows effectiveness in heterophilic graphs.

There are also GCL methods using spectral augmentations. Ghose et al. (2023) proposes a set
of well-motivated graph transformation operations derived via graph spectral analysis, which are
spectral graph cropping and graph frequency components reordering. SpCo (Liu et al., 2022) studies
the necessity of high-frequency information in GCL and learns the optimal augmentation from the
spectral view.

Compared with the above, POLYGCL does not require specially designed or complex preprocessing
steps for spectrum augmentations but achieves the contrast between low-pass and high-pass infor-
mation by directly optimizing the corresponding decoupled filters. In this way, POLYGCL has the
ability to learn filters of any shape in self-supervised learning, which ensures its expressiveness to
address GCL with heterophily. Besides, these works related to the graph spectrum mainly focused on
the analysis of eigenvalues while POLYGCL cares more about the learning of filter functions to adapt
to homophilic/heterophilic settings.

In summary, to the best of our knowledge, POLYGCL is the first to achieve efficient learning of
low-pass and high-pass filters via polynomial approximation in a self-supervised setting.

F IMPLEMENTATION DETAILS

F.1 EXPERIMENTAL DEVICE

We conduct all the experiments on a machine with an NVIDIA A100 80GB PCIe, Intel Xeon CPU
(2.20 GHz) with 40 cores, and 512 GB of RAM.

F.2 MODEL ARCHITECTURES

We refer to the official code to implement all the baseline models with the help of PyTorch Geomet-
ric(Fey & Lenssen, 2019), DGL (Wang et al., 2019) and PyGCL (Zhu et al., 2021a) libraries. The
URL and commit number are presented in Table 8.

Table 8: Codes & commit numbers.

URL Commit

DGI https://github.com/PetarV-/DGI 61baf67
MVGRL https://github.com/kavehhassani/mvgrl 628ed2b

GMI https://github.com/zpeng27/GMI 3491e8c
GGD https://github.com/zyzisastudyreallyhardguy/graph-group-discrimination 7cf72db

GRACE https://github.com/CRIPAC-DIG/GRACE 51b4496
GCA https://github.com/CRIPAC-DIG/GCA cd6a9f0

GraphCL https://github.com/Shen-Lab/GraphCL a0c8c97
GREET https://github.com/yixinliu233/GREET 8bcc940
BGRL https://github.com/nerdslab/bgrl 60f9f19
GBT https://github.com/pbielak/graph-barlow-twins ec62580

CCA-SSG https://github.com/hengruizhang98/CCA-SSG cea6e73
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Table 9: Details of the hyper-parameters tuned by grid search on cSBM datasets.

ϕ lr wd lr1 wd1 lr alpha activation initial low value initial high value range

−1 1e-2 0.0 5e-3 1e-6 1e-2 ReLU 2 0 4
−0.75 1e-2 0.0 1e-3 0.0 1e-2 ReLU 2 0 4
−0.5 1e-2 0.0 1e-3 0.0 1e-2 ReLU 2 0 4
−0.25 1e-2 0.0 1e-3 0.0 1e-2 ReLU 2 0 4
0 1e-2 0.0 1e-4 0.0 5e-3 PReLU 4 0 3
0.25 1e-2 1e-4 5e-3 0.0 5e-3 ReLU 4 0 3
0.5 1e-2 0.0 1e-3 0.0 1e-2 ReLU 2 0 2
0.75 1e-2 0.0 1e-3 0.0 1e-2 ReLU 2 0 2
1 1e-2 0.0 1e-3 0.0 1e-2 ReLU 2 0 2

Table 10: Details of the hyper-parameters tuned by grid search on real-world datasets.

Dataset lr wd lr1 wd1 epochs patience dprate dropout activation batch norm

Cora 5e-4 1e-3 2e-3 0.0 500 20 0.3 0.3 ReLU False
Citeseer 1e-4 0.0 5e-4 0.0 1,000 20 0.2 0.3 ReLU False
Pubmed 1e-4 0.0 1e-3 1e-3 1,000 20 0.6 0.0 PReLU True
Cornell 1e-4 0.0 1e-3 0.0 500 20 0.8 0.5 ReLU False
Texas 5e-3 0.0 1e-3 0.0 500 20 0.4 0.5 ReLU False
Wisconsin 1e-4 0.0 1e-3 0.0 500 20 0.1 0.7 PReLU True
Chameleon 1e-3 0.0 1e-3 0.0 1,000 50 0.3 0.2 PReLU True
Squirrel 1e-3 0.0 1e-3 0.0 500 20 0.2 0.0 PReLU True
Actor 1e-2 0.0 1e-3 0.0 500 20 0.2 0.3 ReLU False
Roman-empire 1e-4 0.0 1e-3 0.0 500 20 0.8 0.5 ReLU False
Amazon-ratings 5e-3 0.0 1e-3 0.0 500 20 0.3 0.4 ReLU False
Minesweeper 1e-4 0.0 1e-3 0.0 500 20 0.4 0.1 ReLU False
Tolokers 1e-2 0.0 1e-3 0.0 500 20 0.6 0.4 PReLU True
Questions 1e-3 0.0 1e-3 0.0 500 20 0.1 0.2 ReLU False

Table 11: Details of the hyper-parameters tuned by grid search on arXiv-year.

Dataset lr wd lr1 wd1 epochs patience dprate dropout activation batch norm

arXiv-year 1e-3 0 1e-3 0.0 1,000 20 0.5 0.5 ReLU False

F.3 HYPERPARAMETER SETTINGS.

Note that for the downstream node classification tasks based on the learned embeddings, we set the
embedding size for all models as the same and fix the learning rate l2 = 0.01 and weight decay
w2 = 0.0 at the second MLP stage for fair comparison.

Experiments on the synthetic datasets. On the cSBM datasets, we test the performance of
the regularized variant of POLYGCL to satisfy the condition in Theorem 1 with the constraint
α+ β = 1, α ≥ 0, β ≥ 0. In our experiments, we utilize the sigmoid activation function to satisfy
the above constraint. In addition, for fixed parameters, we set the order of polynomials K = 10, the
output embedding size D = 512, and the early stopping patience in the training process as 20. The
other hyperparameters are listed in Table 9, where parameters "initial low value", "initial high value",
and "range" are utilized for the initialization of the low-pass/high-pass filters.

Experiments on the real-world datasets. On 14 real-world datasets, we choose the order of
polynomials K = 10 and the output embedding size D = 512. Table 10 shows the other parameters
tuned by grid search, and it is noted that for Minesweeper, Tolokers, and Questions, we
adopt ROC AUC as the evaluation metric following Platonov et al. (2023). Furthermore, in Table 11,
we conduct the self-supervised node classification task on arXiv-year with 5 fixed 50/25/25
train/val/test splits as introduced in Lim et al. (2021). We choose D = 256 for POLYGCL and other
baselines in arXiv-year to address the OOM issue that arises with most baselines when D is set
to 512.
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G ADDITIONAL EXPERIMENTAL RESULTS

G.1 ADDITIONAL BASELINES: GCL WITH HETEROPHILY

We include two new baselines, namely SP-GCL (Wang et al., 2022) and HLCL (Yang & Mirza-
soleiman, 2023) for further comparison, which are GCLs that address heterophily. We conduct
experiments on both synthetic and real-world datasets. The results are summarized in Table 12,
Table 13, and Table 14. Specifically, shown in Table 12, although claimed to tackle heterophily,
these two methods still suffer from performance drop in extreme heterophilic cSBM settings when ϕ
approaches −1. In contrast, POLYGCL consistently holds superior performance over the two new
baselines on both synthetic and real-world datasets.

Table 12: Mean node classification accuracy (%) with a 95% confidence interval on cSBM graphs
compared with additional baselines.

Methods ϕ = −1 ϕ = −0.75 ϕ = −0.5 ϕ = −0.25 ϕ = 0 ϕ = 0.25 ϕ = 0.5 ϕ = 0.75 ϕ = 1

SP-GCL 65.82 ±1.03 73.19 ±0.88 68.37 ±0.89 63.72 ±0.68 59.36 ±0.98 73.01 ±0.51 85.52 ±0.67 94.13 ±0.38 88.22 ±0.49

HLCL 66.03 ±0.83 67.66 ±0.59 70.62 ±0.63 60.80 ±0.53 58.92 ±0.87 65.80 ±0.40 79.25 ±0.79 97.12 ±0.82 93.07 ±0.80

POLYGCL 98.84 ±0.17 94.23 ±0.31 90.82 ±0.50 75.43 ±0.68 66.51 ±0.69 69.43 ±0.65 88.22 ±0.72 98.09 ±0.29 99.29 ±0.23

Table 13: Mean node classification accuracy (%) on real-world graphs compared with additional
baselines.

Methods Cora Citeseer Pubmed Cornell Texas Wisconsin Actor Chameleon Squirrel

SP-GCL 82.99 ±1.18 75.54 ±1.06 85.74 ±0.21 69.41 ±1.49 69.76 ±1.23 69.34 ±0.77 35.92 ±0.67 69.23 ±1.23 53.05 ±1.05

HLCL 85.53 ±1.03 76.79 ±0.60 85.13 ±0.18 64.00 ±8.98 78.38 ±5.08 79.50 ±4.50 40.56 ±0.70 63.86 ±1.34 44.49 ±0.68

POLYGCL 87.57 ±0.62 79.81 ± 0.85 87.15 ± 0.27 82.62 ± 3.11 88.03 ±1.80 85.50 ±1.88 41.15 ± 0.88 71.62 ± 0.96 56.49 ± 0.72

Table 14: Experimental results on 6 heterophilic graphs compared with additional baselines.

Methods Roman-empire Amazon-ratings Minesweeper Tolokers Questions arXiv-year

SP-GCL 63.17±0.22 43.11±0.32 81.76 ±0.61 80.73 ±0.62 75.08 ±0.49 42.56 ±0.12

HLCL 67.75 ±0.19 43.92 ±0.26 79.34 ±0.59 78.99±0.67 74.92 ±0.65 OOM
POLYGCL 72.97 ± 0.25 44.29 ± 0.43 86.11 ± 0.43 83.73 ± 0.53 75.33 ± 0.67 43.07 ± 0.23

G.2 ABLATION STUDY: LINEAR COEFFICIENTS

We include experiments where α and β are set to zero separately as the ablation study of linear
coefficients. Specifically, α = 0, β = 0 means only the high-pass/low-pass filter is reserved
respectively. The results are given in Table 15.

We observe that the results of POLYGCL (α = 0) remain comparable in heterophilic datasets, while
POLYGCL (β = 0) shows better adaptability to homophilic settings. The results reveal that the
high-pass information is indispensable for graphs with large heterophily, and so is the low-pass
information for homophilic graphs. The results of this ablation study are further consistent with the
low-pass/high-pass preference for homophilic/heterophilic settings in Figure 3 in Section 5.4. Note
that POLYGCL achieves better performance when optimized over both the parameters α, β in most
datasets.

G.3 SUBSTITUTING EQUATION 4 WITH THE NT-XENT LOSS

We consider directly substituting our optimization loss in equation 4 with the NT-Xent loss used in
GraphCL (You et al., 2020). Besides, the augmentation strategies and other settings are aligned with
GraphCL. The results are listed in Table 16.

We observe that the results of POLYGCL (NT-Xent) are slightly lower than POLYGCL. This phe-
nomenon can be attributed to the introduction of structural augmentations (e.g., edge-dropping or
subgraph-sampling) that destroy the spectral properties of the original graph, which is not conducive
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Table 15: Mean node classification accuracy (%) on real-world graphs compared with two variants of
POLYGCL.

Methods Cora Citeseer Pubmed Cornell Texas Wisconsin Actor Chameleon Squirrel

POLYGCL 87.57 ±0.62 79.81 ± 0.85 87.15 ± 0.27 82.62 ± 3.11 88.03 ±1.80 85.50 ±1.88 41.15 ± 0.88 71.62 ± 0.96 56.49 ± 0.72
POLYGCL (α = 0) 70.67 ±0.48 64.22 ±0.93 76.41 ±0.35 80.16 ±2.62 86.52 ±1.97 82.07 ±2.75 38.28 ±0.39 68.21 ±1.40 52.10 ±0.80

POLYGCL (β = 0) 87.65 ± 0.67 78.76 ±0.75 86.64 ±0.17 76.23 ±5.41 82.56 ±2.13 68.88 ±2.50 37.36 ±0.46 65.08 ±1.27 48.52 ±0.71

Table 16: Mean node classification accuracy (%) on real-world graphs as for different losses.

Methods Cora Citeseer Pubmed Cornell Texas Wisconsin Actor Chameleon Squirrel

POLYGCL 87.57 ±0.62 79.81 ± 0.85 87.15 ± 0.27 82.62 ± 3.11 88.03 ±1.80 85.50 ±1.88 41.15 ± 0.88 71.62 ± 0.96 56.49 ± 0.72
POLYGCL (NT-Xent) 84.40 ±0.93 76.83 ±0.94 82.63 ±0.30 81.48 ±2.46 84.43 ±2.95 81.75 ±3.50 38.95 ±0.81 69.17 ±0.94 53.30 ±1.30

to the learning of spectral filters in POLYGCL. However, POLYGCL (NT-Xent) still holds competi-
tiveness with other baselines across different homophilic and heterophilic datasets in Table 2, which
reflects the universality and effectiveness of the POLYGCL framework.

G.4 DISCUSSIONS ON THE REPARAMETERIZATION IN EQUATION 2

We utilize the reparameterization techniques in equation 2 to ensure the low-pass and high-pass
properties of the learned filters during the learning process, which correspond to the filter functions
with incremental and decremental values, respectively.

To verify its effectiveness, we list the comparison between the results of POLYGCL and POLYGCL
(wo-RP) in Table 17, where POLYGCL (wo-RP) denotes POLYGCL without ReParameterization. By
decoupling the low-pass and high-pass information via simple reparameterization, POLYGCL benefits
from a more stable model training process and improves the performance on homophilic/heterophilic
datasets.

Table 17: Mean node classification accuracy (%) on real-world graphs: Reparameterization Analysis.

Methods Cora Citeseer Pubmed Cornell Texas Wisconsin Actor Chameleon Squirrel

POLYGCL 87.57 ±0.62 79.81 ±0.85 87.15 ±0.27 82.62 ±3.11 88.03 ±1.80 85.50 ±1.88 41.15 ±0.88 71.62 ±0.96 56.49 ±0.72

POLYGCL (wo-RP) 85.09 ±0.78 76.74 ±0.80 84.39 ±0.29 78.26 ±3.02 84.11 ±2.29 79.50 ±3.50 38.14 ±0.96 65.98 ±0.95 50.06 ±1.01

In addition, the reparameterization technique based on non-negativity and prefix sum/difference can
be easily extended to other polynomial bases, which further verifies the robustness of this technique.
In detail, as for the Bernstein polynomial (He et al., 2021), which can also learn arbitrary filters, we
directly utilize this reparameterization on the coefficients θk which proves to be equivalent to the
filter value h(λ). Besides, as for the Monomial polynomial in GPR-GNN (Chien et al., 2021), we
can also consider non-negative coefficients to ensure the low-pass/high-pass property, for instance,∑K

i=0 γi(2I−L̃)i and
∑K

i=0 γiL̃
i for low-pass/high-pass filters respectively, where the non-negativity

of γi is all we need.

G.5 DISCUSSIONS ON OTHER POLYNOMIAL BASES

The analysis in Section G.4 reflects the generality and flexibility of our proposed reparameterization
technique, and we consider utilizing the simple reparameterization to conduct experiments on
Bernstein and Monomial bases. The results are listed as POLYGCL (Bern) and POLYGCL (Mono) in
Table 18. We conclude that the results of POLYGCL (Bern) and POLYGCL (Mono) are comparable
with POLYGCL on certain datasets, which reflects the generality of our framework. In practice, we
employ Chebyshev polynomials in POLYGCL due to comprehensive considerations of efficiency
and effectiveness. This choice is supported by Table 19, which presents the average running time per
epoch (ms) of POLYGCL using different bases.

G.6 OTHER CORRUPTION METHODS

In our implementation of generating negative embeddings in POLYGCL, we simply shuffle the node
features randomly. Further, we conduct experiments on real-world datasets to explore the impact

28



Published as a conference paper at ICLR 2024

Table 18: Mean node classification accuracy (%) on real-world graphs as for different bases.

Methods Cora Citeseer Pubmed Cornell Texas Wisconsin Actor Chameleon Squirrel

POLYGCL 87.57 ±0.62 79.81 ± 0.85 87.15 ± 0.27 82.62 ±3.11 88.03 ±1.80 85.50 ±1.88 41.15 ±0.88 71.62 ± 0.96 56.49 ± 0.72
POLYGCL (Bern) 85.51 ±0.69 77.48 ±0.70 83.90 ±0.24 83.13 ±3.01 80.23 ±2.14 82.40 ±2.75 38.08 ±0.88 69.35 ±1.12 51.76 ±0.94

POLYGCL (Mono) 84.94 ±1.01 78.52 ±0.78 85.49 ±0.33 79.87 ±2.18 83.27 ±3.05 81.42 ±2.50 39.19 ±1.01 66.41 ±1.20 49.45 ±0.79

Table 19: Average running time per epoch (ms) as for different bases.

Methods Cora Citeseer Pubmed Cornell Texas Wisconsin Actor Chameleon Squirrel

POLYGCL 82.32 136.21 242.92 55.23 45.91 49.77 166.17 221.73 824.76
POLYGCL (Bern) 208.53 322.73 815.07 97.61 90.83 104.38 383.9 589.41 2284.05
POLYGCL (Mono) 105.44 167.95 180.48 46.71 38.63 45.04 130.62 245.82 596.69

of other data augmentation methods in POLYGCL. We denote edge-dropping as “ED”, feature-
masking as “FM”, and subgraph-sampling as “SS” for short. Note that we follow the settings in
CCA-SSG (Zhang et al., 2021) and GRACE (Zhu et al., 2020b) to perform edge-dropping and feature-
masking at the same time, which is denoted as “ED&FM”, and we perform the subgraph-sampling
(SS) perturbation following GraphCL (You et al., 2020).

Table 20: Mean node classification accuracy (%) on real-world graphs as for different corruption
methods.

Methods Cora Citeseer Pubmed Cornell Texas Wisconsin Actor Chameleon Squirrel

POLYGCL 87.57 ±0.62 79.81 ± 0.85 87.15 ± 0.27 82.62 ±3.11 88.03 ±1.80 85.50 ±1.88 41.15 ± 0.88 71.62 ± 0.96 56.49 ± 0.72
POLYGCL (ED&FM) 86.85 ±0.77 78.23 ±0.54 85.85 ±0.26 84.11 ±2.97 85.80 ±1.85 81.26 ±2.25 38.44 ±0.90 70.30 ±1.04 53.88 ±1.22

POLYGCL (SS) 84.74 ±0.84 75.30 ±0.79 82.61 ±0.28 80.33 ±1.80 82.62 ±3.11 76.25 ±2.25 33.10 ±1.26 65.84 ±1.42 46.04 ±0.81

In Table 20, we observe that the ED&FM perturbation slightly deteriorates the performance of
POLYGCL but still seems comparable. However, the SS perturbation causes significant damage to
the effectiveness of POLYGCL. We attribute this phenomenon to excessive perturbations in the graph
topology and the loss of important spectrum information while conducting the subgraph-sampling
operation.

G.7 THE IMPORTANCE OF DECOUPLING MECHANISM

To demonstrate the effectiveness of the decoupling mechanism in POLYGCL, we report the mean
accuracy results of the cSBM datasets in Table 21 as a comparison between POLYGCL and POLYGCL
(Cheb). Note that in POLYGCL (Cheb), we directly apply GCL to the Chebyshev polynomial filters
without decoupling the low-pass and high-pass information. POLYGCL generally outperforms
POLYGCL (Cheb) on different homophily levels, especially in extreme homophilic/heterophilic
settings (|ϕ| → 1).

Further, we visualize the normalized learned filters of POLYGCL (Cheb) on the cSBM datasets in
Figure 5. Compared with Figure 4, POLYGCL (Cheb) learns complex filters with a high degree of
oscillation across homophily, while the filter curve learned by POLYGCL is smoother. From the
spectral perspective, this observation supports our preference for the training paradigm in POLYGCL
over learning spectral filters directly via GCL.
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Table 21: Mean node classification accuracy (%) with a 95% confidence interval on cSBM graphs:
Decoupling Analysis.

Methods ϕ = −1 ϕ = −0.75 ϕ = −0.5 ϕ = −0.25 ϕ = 0 ϕ = 0.25 ϕ = 0.5 ϕ = 0.75 ϕ = 1

POLYGCL 98.84 ±0.17 94.23 ±0.31 90.82 ±0.50 75.43 ±0.68 66.51 ±0.69 69.43 ±0.65 88.22 ±0.72 98.09 ±0.29 99.29 ±0.23

POLYGCL (Cheb) 79.28 ±0.46 85.35 ±0.82 81.04 ±0.57 77.27 ±0.90 65.90 ±0.53 70.34 ±0.98 84.63 ±0.81 92.97 ±0.33 89.72 ±0.58
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Figure 5: The normalized learned filters of POLYGCL (Cheb) on cSBM datasets.
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