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Abstract. Bayesian Optimization (BO) for the minimization of expen-
sive functions of continuous variables uses all the knowledge acquired
from previous samples (xi and f(xi) values) to build a surrogate model
based on Gaussian processes. The surrogate is then exploited to define
the next point to sample, through a careful balance of exploration and
exploitation. Initially intended for low-dimensional spaces, BO has re-
cently been modified and used also for very large-dimensional spaces (up
to about one thousand dimensions).
In this paper we consider a much simpler algorithm, called “Reactive
Affine Shaker” (RAS) [3]. The next sample is always generated with a
uniform probability distribution inside a parallelepiped (the “box”). At
each iteration, the form of the box is adapted during the search through
an affine transformation, based only on the point x position and on
the success or failure in improving the function. The function values are
therefore not used directly to modify the search area and to generate the
next sample. The entire dimensionality is kept (no active subspaces like
in [14]).
Despite its extreme simplicity and its use of only stochastic local search,
surprisingly the produced results are comparable to and not too far from
the state-of-the-art results of high-dimensional versions of BO, although
with some more function evaluations.
An ablation study and an analysis of probability distribution of direc-
tions (improving steps and prevailing box orientation) in very large-
dimensional spaces are conducted to understand more about the behavior
of RAS and to assess the relative importance of the algorithmic building
blocks for the final results.

1 Introduction

All linear optimization problems are alike; each difficult nonlinear problem is
difficult in its own way, more so in high dimensions. Each problem has different
structural characteristics, and every specific instance of a problem may present
widely different “fitness landscapes”. Furthermore, the local landscape of a single
instance can depend critically on the position of the current point x in the input
space and can therefore vary a lot during the search. The so-called “curse of
dimensionality” is well known. The complexity of finding an optimum - especially
with simple brute-force methods - tends to grow exponentially with the number
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of dimensions, apart from rare special problems (like Linear Programming) or
special instances of a problem.

Despite the negative theoretical worst-case results, a concrete hope of finding
improving solutions of practical interest derives from the fact that many rele-
vant real-world problems possess a high level of internal structure that can be
exploited (e.g., the Big Valley hypothesis [9] or variations thereof) and from the
fact that the appropriate match between problem (or instance) characteristics
and algorithm configuration and parameters can be learned automatically via
Machine Learning (ML). ML can be applied in an offline manner to adapt the
meta-parameters to a problem like in algorithm configuration or online, by re-
acting to events occurring during a single search process on a specific instance
(e.g., as advocated in Reactive Search Optimization - RSO [1])

The growing availability of massive amounts of memory, starting from the
eighties, opened new windows of opportunity for memory-based Intelligent Op-
timization techniques. The underlying assumption of a rich internal structure of
most relevant optimization tasks makes techniques capable of gradually learning
that structure potentially more powerful and effective than memory-less tech-
niques.

This paper builds upon a previously proposed Reactive Search Optimiza-
tion algorithm for global optimization of multivariate functions of continuous
variables called RAS [4] (Reactive Affine Shaker). RAS is an adaptive search
algorithm based only on point-wise function evaluations in a stochastic local
(perturbative) search.

The novel contributions of this paper are:

– A qualitative and quantitative study of the evolution of the search box of
RAS during the search, in particular for large-dimensional spaces

– An ablation study of RAS to assess the relative contribution of its simple
algorithmic building blocks

– An experimental comparison of RAS on some very large dimensional prob-
lems previously solved with state-of-the-art Bayesian Optimization tech-
niques

The remainder of this paper is organized as follows. In Section 2 we discuss
the state of the art on Bayesian optimization techniques; Section 3 summarizes
and motivates the proposed RAS heuristic. Experimental evaluations and com-
parisons are reported and discussed in Section 4. Appendix A discusses some
issues that arise in high-dimensional optimization and provides additional moti-
vation for some algorithmic choices in RAS.

2 Bayesian Optimization for high-dimensional problems

In the context of the optimization of functions of continuous variables, we as-
sume that the dominant computational cost is the evaluation of the function f
at sample points. This holds in many practical applications, e.g., when the eval-
uation of f requires running a lengthy simulation, or even running an industrial
plant and measuring the output.
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Bayesian optimization [8] is a sequential design strategy for global optimiza-
tion of black-box functions that are expensive to evaluate. It builds a surrogate
model for the objective from the sampled points, quantifies the uncertainty by
using a Bayesian machine learning technique, (Gaussian process regression), and
then uses an acquisition function defined from this surrogate to decide where to
sample the next point(s). The acquisition function trades off exploration and
exploitation to reduce the number of expensive function evaluations.

Although based on Gaussian processes (without guarantees that concrete
functions are appropriately modeled by GP) and expensive, BO is considered
one of the most promising algorithms for optimization of functions of limited
dimensionality (usually not more than 10-20).

A series of breakthroughs have recently pushed the envelope of high-dimensional
Bayesian optimization for a wider adoption in science and engineering. For the
limited scope of this paper, we concentrate on two recent contributions [14, 7]
and we refer to the contained bibliography for a review of the state of the art.

The research in [7] argues that the implicit homogeneity of the global prob-
abilistic models in BO tends to overemphasize exploration in high-dimensional
problems. The fact that search spaces grow faster than sampling budgets implies
the presence of regions with large posterior uncertainty. For common myopic ac-
quisition functions, this results in an overemphasized exploration and a failure
to exploit promising areas. To remedy, they propose the TuRBO (Trust-region
BO) that considers a population of parallel and independent local models and
performs a global allocation of samples across these models via an implicit multi-
armed bandit approach (the local models that are more promising get progres-
sively more samples to evaluate). The trust-region (TR) idea [20] is that each
local model can be trusted only in a region, typically a ball with a given radius
around the current solution, a radius that is adapted during optimization. In
TuRBO the TR is a hyperrectangle centered at the best solution found so far
x∗. The initial base side length L is a portion of the range along each coordinate,
the total volume of the TR is kept fixed, while the length along each coordinate
is rescaled according to its corresponding lengthscale λi in the GP model. The
base side length L is then adapted during the run, by keeping it sufficiently
large so that the TR contains good solutions but small enough to ensure that
the local model is accurate within the TR. In detail, the TR is expanded after
many consecutive “successes” and shrunk after many consecutive “failures”, in a
similar spirit as in [13].

In the assumption of the existence of an active subspace, with a projection
matrix T so that the value of the function to optimize depends only on the
projected x value (F (x) = g(Tx)) REMBO (Random embedding BO) [19] and
HeSBO (Hashing-enhanced subspace BO) [12] try to capture this active subspace
by a randomly chosen linear subspace. SaasBO [6] uses sparse priors on the GP
length scales that is particularly effective if the active subspace is axis-aligned.
Alebo [11] uses a Mahalanobis kernel and linear constraints on the acquisition
function.
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The work in [14] starts from the observation that methods for high-dimensional
Bayesian optimization (HDBO) suffer from degrading performance in spaces of
growing dimension or risk failure if some assumptions are not met. They pro-
pose a new algorithm (BAxUS -Bayesian optimization with adaptively expand-
ing subspaces) that uses the idea of nested low-dimensional random subspaces
of growing dimensionality to adapt the space it optimizes over to the problem.

3 The RAS heuristic

We summarize and motivate in this section the RAS local search algorithm which
is the method considered in this work.

f Function to minimize
x Initial point
R Search region
∆ Current displacement

1. function RAS (f , x)
2. R ← small isotropic set around x
3. while (local termination condition is not met)
4. Pick ∆ ∈ Rd such that x+∆,x−∆ ∈ R
5. if f(x+∆) < f(x)
6. x ← x + ∆;
7. Extend R along ∆
8. Center R on x
9. else if f(x−∆) < f(x)
10. x ← x - ∆;
11. Extend R along ∆
12. Center R on x
13. else
14. Reduce R along ∆
15. return x;

Fig. 1. The RAS algorithm

The Reactive Affine Shaker Heuristic [4], RAS for short, is a self-tuning
local search algorithm based on [18]. No prior knowledge is required on the
function f and only evaluations at arbitrary values of the independent variables
are allowed. The RAS heuristic tries to rapidly move towards better objective
values by maintaining and updating a “search region” R around the current point
x.

The use of memory in RAS is limited: the entire previous history of the
search (the trajectory of the generated sample points and the outcome of the
evaluations) is summarized through the dynamic search region, intended to zoom
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in on the promising areas where to find points better than the current record
point.

RAS adapts the search region R depending on the occurrence or lack of
success during the last step. If a step in a certain direction is improving, then
R is expanded along that direction; it is reduced otherwise. Once a promising
direction is found, the probability that subsequent steps will follow the same
direction is increased, and the search will proceed more and more aggressively in
that direction until bad results reduce its prevalence. The algorithm is outlined
in Fig. 1.

RAS starts with an isotropic search region centered around the initial point
(line 2). Next, new sample points are generated (line 4). If the sample point
x + ∆ yields a lower objective value (line 5 and following), then the current
position is updated and R is expanded along the direction of ∆. To increase the
probability of finding a better point, if x+∆ does not lead to an improvement,
also x−∆ is tried (line 9 and following). If both points fail at improving f , then
the search region is reduced along the direction of ∆ (line 14) and the current
position is kept. The above steps are repeated until a local termination condition
is verified. Common termination criteria are the number of iterations, the size of
the search region, or a large number of iterations without further improvement.

3.1 Implementation of the anisotropic search box

The main rationale for the introduction of a non-isotropic search box lies in
the increasing difficulty of finding improving directions, even for very smooth
and regular functions, when displacements are chosen along uniformly random
directions. These difficulties arise from the fact that in many dimensions most
random directions tend to be orthogonal to the desired one (e.g., the function’s
gradient) and lead to worse values of the objective function. See Appendix A for
an experimental discussion.

The search region R is implemented as a box defined by d independent base
vectors (b1 . . . bd), where d is the number of dimensions of the search domain.
The search region ∆ is determined as a random linear combination of the base
vector with independent coefficients uniformly distributed in [−1, 1]:

∆ =

d∑
i=1

ribi, ri ∈ [−1, 1].

Shape modifications are implemented as affine transformations of these vectors
by contracting (if the step fails) or dilating (if the step succeeds) their compo-
nents along the direction of ∆ as shown in Fig. 2. Analytically, we want to add
to every base vector bj a contribution in the direction of ∆ proportional to the
base vector’s size:

(ρ− 1)
∆ · bj
∥∆∥2

∆,

where ρ controls the amount of contraction (0 < ρ < 1, making the contribution
opposite wrt to the projection of bj along ∆) or dilation (ρ > 1, making the
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Fig. 2. Evolution of the search box R under transformation (1): from the current shape
(center), the base vectors bi are dilated in the direction of ∆ if the step succeeds (left),
or contracted (right) if the step fails.

contribution positive along the projection). This can be rewritten as the following
linear transformation:

∀j bj ← Abj , where A = I + (ρ− 1)
∆∆T

∥∆∥2
. (1)

The RAS heuristic depends therefore on three parameters,

0 < ρcon < 1, ρdil > 1, 0 < η < 1

with the following meaning, assuming a search hyperinterval [mini,maxi], i =
1, . . . , d:

– the initial search box vectors bi, i = 1, . . . , d, are aligned along the domain
axes, with length ∥bi∥ = η · (maxi −mini);

– the affine transformation factor in (1) is ρ = ρdil for dilations (upon improv-
ing step) and ρ = ρcon for contractions (upon double-shot failure).

4 Experimental Results

The following parameter values are used in all experiments unless otherwise
noted:

η =
1

5
= 0.2, ρdil = 5, ρcon =

1

ρdil
= 0.2.

Let’s note that the dilation and contraction parameters are far from 1. In
a high-dimensionality setting, the affected direction ∆ is, with high probabil-
ity, almost perpendicular to all base vectors bi, therefore the effect of milder
parameters (i.e., close to 1) would be very limited.
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Fig. 3. Evolution of the search box under transformation (1), 2D Rosenbrock function;
on the right, a detailed view of the AB rectangle with the direction change.

4.1 Behavior of the search box

In Fig. 3 we show a sample RAS run on the 2D Rosenbrock function [16], an
unimodal function with a narrow, curved valley and with a selectable dimen-
sionality. The global minimum is in (1, 1), and the search proceeds from right to
left. The right-hand side plot shows the trajectory superimposed on the evolving
search boxes. In the initial phase, the search proceeds downhill (we see the path
crossing many function isolines); the search box is wide and slightly elongated in
the search direction. Once the valley is reached around point x = (2.00, 4.00), the
trajectory proceeds with a narrower search box aligned with the valley direction.

The analysis of the 2D Rosenbrock function search is expanded in the left
column of Fig. 4, where the evolution of the search is shown vs. the number of
function evaluations. The top chart represents the best value found so far; the
band delimited by the A and B markers corresponds to the portion of trajectory
visible in the AB rectangle. The second chart from the top shows the size of the
box, represented as a colored band spanning the size in the different directions;
a wider band represents a more elongated search box. In the third chart, the
evolution of the ratio between the minimum and maximum search box sizes is
shown. Finally, the bottom chart displays the angle between the longest vector
bi in the search box (i.e., the dominating search direction) and the direction
from the current search position to the global optimum. The angle is given in
radians, from 0 (search box perfectly aiming at the optimal point) to π/2 ≈ 1.57
(box aimed at orthogonal direction).

For the 2D Rosenbrock search, in the interval AB, we can see an initial fast
improvement of the best value (the downhill phase). Once the valley is reached
(very close to point A), the search box starts evolving in two ways: it becomes
smaller (second row), because the shape of the valley causes many steps to fail,
and more “square” (the ratio in the third plot approaches 1.0). At some point,
close to 100 evaluations, the search box starts elongating (ratio in third plot
decreasing), and it points in the correct direction (fourth plot: oriented towards
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Fig. 4. Evolution of the search box under affine transformation wrt number of function
evaluations for two test benchmarks, see the text for details.

the global minimum). The dominant vector in the search box grows, encouraging
steps in the right direction.

The right column of Fig. 4 shows the evolution of the search on a 100-
dimensional paraboloid f(x) = ∥x∥2 on domain x ∈ [−1.5, 1.5]100. Given the
larger number of dimensions, more evaluations are required to achieve similar
results. As the optimum point is approached, failures due to overshooting cause
the box to shrink consistently (second row), while because of the regular shape,
the box tends to stay quite elongated in a good direction (the third plot shows
consistently small ratios between the shortest and the largest box vector). Al-
though the bottom plot shows the dominant direction not to be aligned with the
local optimum (and hence the gradient), this is expected due to the high dimen-
sionality of the search space and doesn’t prevent the generation of improving
moves.

4.2 Comparison with state-of-the-art heuristics

We compare the performance of RAS with a selection of heuristics covered in
Section 2 (TuRBO, SaasBO, Alebo, and HeSBO), the popular CMA-ES [10] and
random search [2] on the following six high-dimensionality benchmark problems
with continuous variables on hyper-rectangular domains.
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Mopta08 [6] — a 124-parameter vehicle design problem where the objective is
the minimization of the vehicle’s mass; the original problem is subject to several
constraints transformed into soft penalties.
SVM [6] — a Support Vector Machine training problem with 388 parameters.
Branin2 [19] — the classical 2D test function with 3 global minimizers, embed-
ded in a 500D space.
Lasso-Hard, Lasso-High [17] — two synthetic hard problems with 1000 and 300
parameters respectively from the LassoBench benchmark suite.
Hartmann6 [19] — the classical 6D multimodal test function, embedded in a
500D space and rotated.

All functions are implemented in the publicly available BAxUS test suite1 [14],
and all tests have been performed on the noiseless versions.

The results are shown in Fig. 5. The top and third rows contain results
from [14], while the second and bottom rows show the RAS results on the corre-
sponding benchmark (names on top of each column) on comparable horizontal
and vertical scales. For every function, all 30 RAS runs are shown as lightly
colored lines, while the average is superimposed as a black dotted line.

RAS outperforms the Alebo, HeSBO, and SaasBO heuristics in all bench-
marks with the exclusion of Branin2, where the identification of the 2D active
subspace aligned with the domain axes kicks in very soon, while RAS keeps
elongating and reducing the search box in irrelevant directions, and with the
further exclusion of Hartmann6 for SaasBO. CMA-ES is outperformed in all
cases except the Lasso-High benchmark.

On the other hand, the more sophisticated BAxUS and TuRBO heuristics
generally behave better than RSA, with a significant advantage in the SVM,
Branin2, and Lasso benchmarks. In the SVM and Lasso-High case, we note that
RAS is still significantly decreasing at the end of the allotted number of evalu-
ations, and further examination shows that 1.5 . . . 2× evaluations are needed to
achieve comparable results; in the three bottom benchmarks, RSA is further pe-
nalized by a few runs stuck in a slowly improving path (Lasso benchmarks) or in
the attraction basin of a local minimum (Hartmann6, the dashed line represent
the local minima).

Since RAS is a local optimization heuristic, the average line in the Hartmann6
plot only considers the trajectories in the global minimum attraction basin,
corresponding to those that, at the 1000 evaluations mark, are below the dashed
line. However, should the excluded trajectories be considered, the result would
still outperform all heuristics except BAxUS and SaasBO.

4.3 Ablation study

To motivate the main algorithmic choices in the design of RAS, we performed a
series of ablation studies in which specific aspects of the algorithm were silenced
in order to assess their impact on test results.

1 https://baxus.papenmeier.io/
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Fig. 5. Test results on high-dimensionality functions. First and third row: TuRBO,
SaasBO, Alebo, HeSBO, CMA-ES, random search (reprinted from [14] with permis-
sion). Second and fourth row: results on the same functions from 30 runs of RAS,
plotted on comparable scales.
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Fig. 6. Effect of the search box affine transformation (left) compared with similarly-
sized isotropic transformations (right).

Isotropic search region To assess the impact of the affine transformation (1)
on search efficiency, we performed a series of tests in which the affine transfor-
mation (1) has been replaced with a uniform (“isotropic”) resizing by the same
factor: bi ← ρbi. Fig. 6 shows the results of a series of comparisons on the 300D
Lasso-High function for different values of the search parameters η (initial width
of the search box wrt domain size) and contraction factor ρ (the corresponding
dilation factor is its reciprocal). Every boxplot collects the results of 30 tests.
The results on the left-hand side of Fig. 6 have been obtained with the unmod-
ified RAS algorithm; the corresponding tests on the right-hand side of the same
plot result from the isotropic version.
The effect of the affine transformation is very significant: with a high number of
dimensions, the chance of finding an improving direction tends to reduce, and
the anisotropic nature of transformation (1) becomes the fundamental factor to
guide the search without wasting function evaluations.

Single-shot Another important component of the RAS search algorithm is
the “double-shot” strategy: whenever a step in direction ∆ fails, the opposite
direction −∆ is tested. The rationale of this strategy is that a reasonably smooth
function is locally approximable with a linear function, for which the double shot
always works. However, it is expected that in high dimensionality functions, this
advantage is reduced: because most randomly-generated search directions tend
to be almost normal to the gradient, linear approximations only work in very
small neighborhoods, and a second function evaluation before recalibrating the
search box might be a waste of time.
In Fig. 7, we compare the full RAS algorithm (left-hand side of the plots) with
a version where lines 9–12 of Fig. 1 are removed (right-hand sides) for various
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Fig. 7. Effect of the double-shot strategy (top right) compared with a single-shot step
(top left) on a high-dimensionality function. For reference, the bottom chart reports
the same effect on the low-dimensionality Rosenbrock 2D function.

parameter values and two different settings: the 300-dimensional Lasso-High
function (top) and the 2D Rosenbrock function (bottom). While the advantage
of the double-shot strategy is clear in the 2D experiment, its impact in many
dimensions is quite interesting: although the results slightly worsen in some cases,
its adoption seems to increase the algorithm’s robustness concerning parameter
changes; see in particular the results for η = .2, ρ ∈ {.1, .2}, where both the
3rd quartile and the inter-quartile range are greatly reduced in the double-shot
case. These results call for further analysis on a wider parameter range and more
diverse test functions.

5 Conclusion

The main conclusions of this study are:
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– RAS is surprisingly effective on the benchmark of very high dimensional
problems. Despite its extreme simplicity, its use of only success-failure in-
formation during the run (no consideration of the detailed function values
f(xi) to build surrogate models), its stochastic local search nature (while
BO is intended for global optimization)

– The results on the benchmark are comparable to those of the best BO algo-
rithms (some more function evaluations are necessary but the difference is
within a factor of two in most cases)

– RAS is superior w.r.t. many alternative techniques including popular Genetic
Algorithms like CMA-ES [10] although based on a very simple scheme (affine
transformations of a search box and uniform probability for generating the
next point)

– The ablation study confirms the extreme relevance of the affine transforma-
tion. Instead of subspaces, a search box that is elongated and compressed
with an affine transformation along successful or failure directions seems
sufficient to reach interesting performance levels.

– Most of the problems in the considered benchmark do not seem to require
global search methods (with the exception of Hartmann)

This preliminary investigation opens interesting questions about whether and
when complex surrogate models are critical for high-dimensional black-box func-
tion optimization. We plan to extend this research through the integration of BO
models on the box produced by RAS and to understand which (learnable) char-
acteristics of the functions are appropriate for the selection/configuration/tuning
of different methods in the Intelligent Optimization paradigm.

At the same time, as already explored in low dimensions for the basic RAS
scheme (like for the Repeated RAS of [5]), we plan to investigate parallel search
streams to deal with multi-modal functions with more local optima, with a pos-
sible multi-armed bandit allocation strategy of with a Bayesian modeling of the
potential of different starting points for initializing the local search. A modifi-
cation of RAS to deal with global optimization called M − RAS via multiple
parallel runs and bandit-like allocation has been presented in [5]. M − RAS is
an extension of RAS in which promising starting points for local search trails
are suggested online by using Bayesian Locally Weighted Regression.

The extension to combinatorial and mixed spaces (like the Bounce algorithm
of [15]) is also on the stack.
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A Supplemental material — Finding improving directions
in high dimensions

The main rationale behind the proposal of RAS for high-dimensional functions
lies in the increasing difficulty of finding improving directions even for very
smooth and regular functions, if such directions are uniformly sampled. This
difficulty rises from two main factors, discussed in the following subsections.

A.1 Random directions tend to be mutually orthogonal

Following [3], the average angle θ̄d in radians between two random directions in
d ≥ 2 dimensions is

θ̄d =
Jd−2

Id−2
,

where the numerator and denominator are recursively defined as

Id =


π
2 if d = 0

1 if d = 1
(d−1)Id−2

d if d > 1,
Jd =


π2

8 if d = 0

1 if d = 1
(d−1)Jd−2

d + 1
d2 if d > 1.

The first row of Table 1 reports the values of θ̄ computed for an increasing
number of dimensions.

For d = 2 the average angle is 45◦, but for higher and higher dimensionalities
the average tends to 90◦. In the simplifying hypothesis that the function’s gradi-
ent is unknown and that we generate a move in a random direction, this means
that in high dimensions there is a progressively smaller probability of moving
along the gradient.

Table 1. Average angle between random vectors in d dimensions (top row) and ex-
pected number of double-shot successes for a random displacement depending on the
search box radius r(B′) relative to the average curvature of the function’s isosurface.

Dimension d
1 2 3 5 10 50 100 500 1000

Avg angle θ̄d (degrees) 0.00 45.00 57.30 66.85 74.64 83.46 85.40 87.95 88.55
rB′/rB = 1.000 1.00 0.78 0.62 0.42 0.16 0.00 0.00 0.00 0.00
rB′/rB = 0.500 1.00 0.89 0.81 0.69 0.50 0.08 0.01 0.00 0.00
rB′/rB = 0.100 1.00 0.98 0.96 0.94 0.89 0.73 0.62 0.26 0.11
rB′/rB = 0.050 1.00 0.99 0.98 0.97 0.95 0.86 0.81 0.58 0.43
rB′/rB = 0.010 1.00 1.00 1.00 0.99 0.99 0.97 0.96 0.91 0.87
rB′/rB = 0.005 1.00 1.00 1.00 1.00 0.99 0.99 0.98 0.95 0.94
rB′/rB = 0.001 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99
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Fig. 8. Estimation of the probability of success for the double-shot strategy with sim-
plifying hypotheses (locally smooth function with isolines locally approximable with a
spherical surface B, round search box B′). The grey area defines a successful displace-
ment (considering the double shot strategy); the ratio between the grey area and the
area of B′ gives the success probability of the double-shot strategy.
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A.2 Improving moves tend to be scarce

The effectivenes of the double-shot strategy in the limit for small search boxes
was proved in [3]. However, given a desired success probability, as the number
of search-space dimensions grows the required search box size might become
impractically small. Consider the situation described in Fig. 8. Let x̂ ∈ Rd be
the current point during a local search for the minimum of function f : D → R
on domain D ⊆ Rd.

We define the isosurface of function f at point x̂ to be the locus of all points
x in its domain with the same function value:

isof (x̂) = f−1(f(x̂)) = {x : f(x) = f(x̂)}.

The isosurface has dimension d− 1 and is embedded in Rd. It locally divides the
domain into two sides, the “good” one where f(x) < f(x̂) (left side of the isoline
in Fig. 8) and the “bad” one where f(x) > f(x̂). If f is locally convex and smooth
enough, we can approximate the curvature radius of the iso-surface at point x̂
by considering the radius of the largest sphere B tangent to the iso-surface in x̂
and lying on the same side of it2.

Suppose now that the local move consists of generating a random displace-
ment ∆ in a ball B′ centered on x̂. The move succeeds if x̂ + ∆ falls inside
B (as a local approximation of the “interior” of the isosurface) or, due to the
double-shot strategy, in the symmetrically opposite direction. The probability of
success is therefore given by the ratio between the area of the greyed-out portion
of B′ in Fig. 8 and the full area of B′, and it depends on the ratio between the
radius of B′ and the radius of B. We can consider rB as a normalization factor
for this discussion.

Table 1 shows the experimental success probability of the double-shot strat-
egy at different dimensions d and for different ratios between the search area
radius rB′ and the isosurface’s curvature radius rB . In particular, we can see
that for high dimensionalities the success probability of the double-shot strategy
is negligible and only becomes significant for small search box radii, forcing a
heuristic based on an isotropic search box to adopt small displacements that
slow the progress down.

The RAS heuristic tries to compensate this problem by introducing an anisotropic
search region that elongates in an orthogonal direction with respect to the iso-
surface.

2 For d > 2, we actually have different curvature radii on different directions; let us
consider the smallest one.


