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ABSTRACT

The forecasting of Multivariate Time Series (MTS) has long been an important
but challenging task, and recent advancements in MTS forecasting methods try
to discover both temporal and channel-wise dependencies. However, we explore
the nature of MTS and observe two kinds of existed channel dependencies that
current methods have difficulty capturing completely. One is the evident channel
dependency, which can be captured by mixing the channel information directly, and
another is the latent channel dependency, which should be captured by finding the
intrinsic variable that caused the same changes within MTS. To address this issue,
we introduce the knowledge and episodic memory modules, which gain the specific
knowledge and hard pattern memories with a well-designed recall method, to cap-
ture the latent and evident channel dependency respectively. Further, based on the
proposed memory modules, we develop a pattern memory network, which recalls
both memories for capturing different channel dependencies completely, for MTS
forecasting. Extensive experiments on eight datasets all verify the effectiveness of
the proposed memory-based forecasting method.

1 INTRODUCTION

Multivariate time series (MTS) is playing an important role in a wide variety of domains, including
internet services (Dai et al., 2021) , industrial devices (Finn et al., 2016; Oh et al., 2015) , health
care (Choi et al., 2016b;a), , finance (Maeda et al., 2019; Gu et al., 2020) , and so on. Forecasting MTS
has consistently posed a formidable challenge due to the presence of intricate temporal dependencies
and diverse channel-wise dependencies. To model the temporal-dependency of MTS, many dynamic
methods based on recurrent neural networks (RNNs) have been developed (Malhotra et al., 2016;
Zhang et al., 2019; Bai et al., 2019; Tang et al., 2020; Yao et al., 2018). With the development
of Transformer (Vaswani et al., 2017) and due to its ability to capture long-range dependencies
(Wen et al., 2022; Dosovitskiy et al., 2021; Wu et al., 2021) , which is especially attractive for time
series forecasting, there is a recent trend to construct Transformer based MTS forecasting methods
and have achieved promising results (Li et al., 2019; Zhou et al., 2021; Wu et al., 2021; Zhou
et al., 2022) in learning expressive representations for MTS forecasting tasks. Moreover, recently,
the Linear model (Zeng et al., 2023) is proved to be more effective in capturing the long-range
temporal dependencies within MTS for forecasting. However, despite the advanced architectural
design, it is still difficult for both the Transformer based and Linear based methods to predict real
world time series due to the ignorance of the correlation between different channels (Zhang & Yan,
2023) (Wu et al., 2020) (Cao et al., 2020). To fill the gap, prior research has tried to used the GNN or
CNN modules to mix the inter-channel information(Wu et al., 2021) (Wu et al., 2020) for boosting
the prediction performance. The recently proposed crossformer (Zhang & Yan, 2023), equipped
with a Dimension-Segment-Wise (DSW) embedding and Two-Stage-Attention (TSA) layer, is able
to capture the channel dependency efficiently. Unfortunately, proposed methods are all designed
exclusively for improving the Transformer and RNN based models, which can not be served to more
effective Linear model. In addition, most of previous methods can only focus on the evident channel
dependency in our opinion, they usually fail to capture the various channel dependencies completely,
which arises from the presence of both evident dependencies between different channels and latent
dependencies rooted in intrinsic patterns. Since these traditional approaches struggle when it comes
to capturing the intrinsic sharing patterns illustrated in Figure 1. Recognizing the importance of these
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intrinsic patterns in explaining why different channels exhibit similar trends—indicating that changes
in different channels may be attributed to a common factor referred to as the intrinsic pattern. Thus,
we introduce a knowledge memory module to synthesize and summarize the shared intrinsic patterns
hidden behind the MTS to capture the latent channel dependency. In addition to the knowledge
memory module, we also propose an episodic memory module to capture the evident dependency.
This module is capable of storing distinctive patterns from different channels. By incorporating these
two memory modules, we can capture channel dependency from distinct perspectives, enhancing the
effectiveness of our approach.

Moving beyond the constraints of previous work, we combine the knowledge memory and episodic
memory module to develop a Student-like Pattern Memory Network (SPM-Net) as illustrated in Fig. 1.
Specifically, the knowledge module is adept at extracting normal temporal pattern representations
from the MTS, akin to a diligent student summarizing essential concepts from their coursework.
The episodic memory module is engineered to retain hard example temporal patterns, resembling a
student’s practice of reviewing difficult problem in preparation for an upcoming examination. When
the new MTS comes, it looks up the memory and give the top-k related patterns of different channels.
Given that the top-k patterns across different channels often exhibit overlaps, this enables us to discern
relationships between these channels by amalgamating the shared patterns, as exemplified in Figure
1 (further elaborated in Section 3). Thus, the channel dependency can be captured efficiently in this
way. The main contributions of our work are summarized as follows:

• For MTS forecasting, we propose a student-pattern memory module consisting of a knowl-
edge memory module and an episodic memory module, which is able to consider the channel
dependencies completely within the MTS via a top-k recall method.

• We develop SPM-Net, a memory based Linear model equipped with student-pattern memory
module, which can consider the channel dependency issue of MTS, thus enhancing the
representation ability of Linear model.

• Experiments on eight real-world datasets illustrate the efficiency of our model on MTS
forecasting task. Specifically, SPM-Net ranks top-1 among the eight models for comparison
on 52 out of the 64 settings and ranks top-2 on all settings.

2 RELATED WORK

2.1 MULTIVARIATE TIME SERIES FORECASTING

In recent decades, the field of MTS forecasting has evolved significantly. It has transitioned from
conventional statistical approaches such as ARIMA (Ariyo et al., 2014) and machine learning
techniques like GBRT (Friedman, 2001) towards more advanced deep learning-based solutions,
including Recurrent Neural Networks (Lai et al., 2018) and Temporal Convolutional Networks
(Bai et al., 2018), (Liu et al., 2021a). These traditional models usually have difficulty modeling
long-term dependency (Zhang & Yan, 2022). Recently, a number of Transformer-based models
have been proposed for MTS forecasting and show their great ability to capture the long-range
temporal dependency. For example, LogTrans (Li et al., 2019) incorporates causal convolutions into
self-attention layer to consider local temporal dependencies of MTS. Informer (Zhou et al., 2021)
develops a probsparse self-attention mechanism for long sequence forecasting. Autoformer (Wu
et al., 2021) proposes a decomposition architecture with Auto-Correlation mechanism to capture the
long-range temporal dependency for forecasting. Pyraformer (Liu et al., 2021b) is designed to learn
the multi-resolution representation of the time series by the pyramidal attention module to capture
long-range temporal dependency for MTS forecasting. FEDformer (Zhou et al., 2022) designs a
seasonal-trend decomposition with frequency-enhanced blocks to capture the long-range temporal
dependency. Although Transformer based models have proved to be useful for MTS forecasting, a
single Linear model is more effective (Zeng et al., 2023) in MTS forecasting tasks. Apart from the
historical-value methods mentioned before, there is a MLP based time-index model DeepTime(Woo
et al., 2023) achieving state of the art recently. Different from the historical-value methods, the
time-index model takes as input time-index features such as datetime features to predict the value of
the time series at that time step. Despite the input value is different, considering the state-of-the-art
performance and the same output value, we add DeepTime as a baseline in our comparison. Since
these models primarily focus on temporal dependencies, they usually ignore the various channel
dependencies.
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Figure 1: The framework of student-pattern memory net work.

2.2 CHANNEL DEPENDENCY FOR MTS FORECASTING

A multitude of models have been introduced to address evident channel dependency, employing vari-
ous techniques such as preserving dimension information within latent embedding spaces and utilizing
Convolutional Neural Networks (CNN) (Lai et al., 2018) or Graph Neural Networks (GNN) (Wu
et al., 2019) to capture these dependencies. However, it’s worth noting that many CNN and GNN-
based models encounter challenges in effectively capturing long-range temporal dependencies. In
response to this issue, Crossformer(Zhang & Yan, 2023) has recently emerged as a solution designed
to overcome these limitations. Crossformer employs dimension-segment-wise embedding and a
two-stage attention layer to capture temporal and channel dependency respectively. Nevertheless,
certain challenges persist within the domain of MTS forecasting. For instance, some of the efficient
modules mentioned face limitations when applied to Linear models which have been empirically
proven to be more effective temporal models. Additionally, these modules may not fully capture
the diverse array of channel dependencies present in the data. Therefore, distinct from the methods
mentioned before, we propose a SPM-Net which can be considered as a general framework that can
be applied to various deep learning models, utilizing Student-like memory to enhance their ability to
capture channel dependency completely.

3 METHODOLOGY

3.1 PROBLEM DEFINITION

Defining the MTS as x = {x1,x2, ...,xT } , where T is the duration of x and the observation at time
t, xt ∈ RN , is a N dimensional vector where N denotes the number of channels, thus x ∈ RT×N .
The aim of multivariate time series forecasting is to predict the future value of xT+1:T+T ′,n, where
T ′ is the number of time steps in the future.

3.2 THE HARD AND KNOWLEDGE PATTERNS FOR CAPTURING CHANNEL DEPENDENCIES

Within MTS, each channel usually represents a specific univariate time series which has its own
temporal patterns, and at the same time different channels may also follow similar patterns, which
are denoted as channel dependencies. For instance, in the context of weather MTS, channels like
temperature and humidity often display correlated behavior, sharing analogous temporal trends. In
the traditional way, they usually capture the evident channel dependency by using GCN 1 and CNN
to mix the patterns between the two channels. However, to understand the relationship between
those two channels completely, we think some reasons should be summarized and one of them may
be the intrinsic variable, such as the rainfall in weather, which may not appear as one channel of
MTS directly. Given this, we consider that there exists a latent channel dependency within MTS
that is usually caused by the intrinsic variable, which has its own pattern that indicates the common
features hidden behind different channels. To capture both the evident and latent dependencies, we
introduce the hard and knowledge pattern information within MTS. Specifically, we call the selected
representative patterns of each channel within MTS the hard pattern, and we propose a hard pattern
selection strategy to choose them as shown in Fig 1. Different from the hard pattern, we name the
pattern belonging to the intrinsic variables as the knowledge pattern, which should be summarized
from the MTS as shown in Fig 1. We consider that mixing hard patterns of each channel is equal
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to traditional methods which can capture the evident channel dependency and mixing knowledge
patterns indicates finding the intrinsic variable which can capture the latent channel dependency.

To capture the channel dependency completely, the proposed SPM-Net uses a knowledge memory
module to summarize the knowledge patterns of intrinsic variable and uses an episodic memory to
select the hard patterns that appeared directly in the MTS. In order to mix the channel information
provided by these patterns, we propose a recall strategy as shown in the second formula of 1 which
realizes the message passing when different channels use the shared patterns to predict its own future
value. Because each channel should not only focus on its own pattern but also consider the impact of
other channels by using the shared patterns.

h′ = AhW ,h′ = Recall(h)W (1)

where the first formula means the traditional GCN method to capture the channel dependency; the
second formula is our method, which uses a Recall 4 7 method to mix the channel information instead
of the adjacent matrix A ∈ RN×N of channels(N denotes the number of channels); W ∈ RT×d

is a matrix of a linear transformation(T is the input length and d is the output length); h′ ∈ RT×d

represents the embedding mixed channel information.

3.3 STUDENT-PATTERN MEMORY NEURAL NETWORK

As we mentioned before, there are two ways to capture the channel dependency. One is mixing
the temporal patterns of each channel within MTS directly, another is finding an effective way to
summarize the temporal patterns of intrinsic variables between different channels. Given these
two methods, we propose a student-pattern memory network, which is equipped with a knowledge
memory module for summarizing the knowledge patterns hidden behind the MTS and an episodic
memory module for capturing the hard pattern that appears as one channel of the MTS, for considering
complete channel dependencies and achieving forecasting. In our SPM-Net, the final prediction
results are computed by a Linear map function using the results obtained by recalling as shown in
Fig 1.

h = Linear(x1:T,n),xT+1:T+T ′,n = Linear
(
Concat(h,Mk,M e)

)
(2)

where Linear means Linear map function, Mk,M e ∈ RT×N indicates the results computed by
formula 4 and 7; h ∈ RT×N means the embedding of the currently entered MTS. The Concat means
the concatenation between different tensors. The detail options of knowledge memory and episodic
memory will be introduced in next section.

3.4 KNOWLEDGE-PATTERN MEMORY

As shown in the Fig 1, there are N1 knowledge memory blocks in knowledge memory module
denoted as Mk =

{
Mk

i

}N1

i=1
, where i denotes the ith block and k means the knowledge memory.

Storage strategy: The knowledge memory in the network can provide intrinsic pattern information
for different channels to predict its own future value by summarizing some MTS samples. According
to the fact that a common student usually knows nothing about the task at first, the initialization
should be random and the memory should be learnable during training. To realize the communication
of different channels, each knowledge memory block is designed to store the univariate temporal
pattern named knowledge pattern, which can be recalled by any channel present in the currently
entered MTS. Considering what we mentioned before, we initialize the n-th block (pattern) of
knowledge memory with a learnable vector Mk

i sampled from a normal Gaussian distribution, which
is a T × 1-dimensional vector.

Recall strategy: To predict the future value of the currently entered MTS, the knowledge memory first
calculate the attention score between each channel and each knowledge pattern stored in knowledge
memory and then use an attention mechanism to aggregate these patterns into a specific knowledge-
pattern memory mk

i for predicting the future value, where the attention score can be calculated
as:

hq
j = Linear(hj), score

(
Mk

i ,h
q
j

)
= Cosine

(
Mk

i ,h
q
j

)
(3)

where score(·) means the attention score function defined by cosine similarity; hj denotes the jth
channel of MTS embedding h; hq

j represents a query vector of the jth channel of the currently
entered MTS, which is used for calculating the attention score for combining the knowledge patterns.
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Then, to get the specific knowledge-pattern memory for the currently entered MTS, we can further
aggregate these knowledge patterns with their attention weights, formulated as:

mk
j =

∑N1

i=1 λi,jM
k
i ,λi,j =

score(Mk
i ,hj)∑N1

i=1 score(Mk
i ,hj)

(4)

where mk
j ∈ RT×1 has gathered the knowledge patterns information from the knowledge memory

M for forecasting future MTS.

Update strategy: As we mentioned before, the specific knowledge-pattern memory is calculated
by knowledge patterns stored in the knowledge memory module. When we predict the future value,
we combine the specific knowledge-pattern memory mk

i with the hj . In this manner, each learnable
knowledge pattern within the knowledge memory takes into account the prediction results of each
channel in the MTS during gradient backpropagation. This approach effectively achieves the goal
of facilitating message passing between different channels. Further more, to keep memory items as
compact as possible, at the same time as dissimilar as possible, we use two constraints (Gong et al.,
2019) (Jiang et al., 2023), including a consistency loss L1 and a contrastive loss L2, denoted by

L1 =
∑N

j

∥∥∥hq
j −Mk,1

j

∥∥∥2
L2 =

∑N
j max

{∥∥∥hq
j −Mk,1

j

∥∥∥2 − ∥∥∥hq
j −Mk,2

j

∥∥∥2 + λ, 0

} (5)

where Mk,i
j ∈ RT×1 denotes the ith similar knowledge pattern; λ denotes the margin between the

first similar knowledge pattern and the second similar knowledge pattern; N indicates the number of
MTS channels. More details about knowledge memory update strategy is described in Appendix B.1

3.5 EPISODIC-PATTERN MEMORY

As shown in the Fig 1, there are N2 episodic memory blocks in episodic memory module denoted as
Me = {Me

i }N2
, where i denotes the ith block and e means the episodic memory.

Storage strategy: The design of episodic memory is inspired by previous works (Fortunato et al.,
2019; Guo et al., 2020), and the main idea is to employ a memory module to collect a subset of
representative data samples. In our model, we hope it can capture the evident channel dependency,
thus we collect a subset of univariate series embeddings instead of storing the entire MTS embeddings.
Different from knowledge memory, episodic memory tends to focus on storing more specific and
representative univariate series within MTS directly like the student being compelled to remember
the question previously struggled to understand. Specifically, the n-th block (pattern) of episodic
memory is a vector of univariate series embedding selected from the past MTS embedding hp named
hard pattern which has been seen during training:

M e
i = select(hp) (6)

where select(·) means the select function which is defined in update strategy; hp denotes the embed-
ding of past MTS. The episodic memory is empty at first because it has never seen any MTS.

Recall strategy: Similar to the recall method in the knowledge memory module, we first calculate the
attention score according to the query vector. It is worth noting that the query vector in the episodic
memory is one of the channels of currently entered MTS embedding hj , which is different from the
query vector in the knowledge memory computed by the Linear map. Because the episodic memory
directly stores the past channel embeddings, we can use the currently entered MTS embedding to be
a query vector achieving the purpose of directly finding the related channel. Then we select top-k
similar results for aggregating steps, which is a little different from the knowledge memory module.
It is because the knowledge memory hopes each channel to make a difference to each memory block
and the episodic memory module is designed to make each channel focus on part of other channels
which have similar patterns to itself. The aggregation of different hard patterns can capture the
evident channel dependency by mixing the pattern information from other channels. Considering that
the hard patterns serve as references for forecasting, they should have a weighted score denoted as γ
to regulate the attention of our model. This weighting ensures that the model does not overly rely on
specific patterns stored in memory, but rather emphasizes particular hard patterns that have occurred
to a certain extent, akin to the discerning focus of a diligent student. The detail of recalling episodic
memory is defined as follows:

me
j = γ

∑K
i=1 λi,jM

e
i ,λi,j =

score(Me
i ,hj)∑K

i=1 score(Me
i ,hj) (7)
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the specific hard pattern memory me
j ∈ RT×1 has gathered the relevant channel information through

recalling the episodic memory M e.

Update strategy: Inspired by the fact that it is important for a student to remember those hard
questions he/she often recalls, we design a hard pattern selection and frequency-based episodic
memory update strategy. First about hard pattern selection, when a batch of MTS is coming during
training, we compute the loss of each MTS in the batch and then we select the k MTS with the largest
loss as hard examples. Typically, each hard example is separated into n univariate series named
hard patterns which are stored in n episodic memory blocks {M e

i }n respectively, where n means
the number of channels in each MTS. This process defines the select function 6 mentioned before.
The second point is about the frequency-based episodic memory update strategy. Undoubtedly, the
most frequently accessed hard pattern holds the distinction of being the most representative pattern.
In order to record how many times M e

i was recalled during training, we use a frequency matrix
denoted as FMe

i
. Then, for updating M e

i , if the current episodic memory block has not been filled
yet, we will directly append the embedding of a new univariate series to the M e

i as a new hard
pattern. In a traditional way, we will update M e

i by replacing the least used pattern in the block if its
capability exceeds the limit N2. Since the newly incoming patterns have a lower access frequency
rate than previously incoming patterns, these new patterns are more likely to be replaced, and we
define this issue as memory consolidation. To address this problem, we introduce a circular candidate
queue within the episodic memory, specifically designed to store the hard patterns from the past N3

occurrences, denoted as Qe = {Qe
i}N3

, with the constraint N3 ≤ N2. Patterns stored in memory are
not replaced until this candidate queue overflows. Once the queue reaches its maximum capacity, a
hard pattern with a low access frequency across the entire memory is replaced. This design grants new
patterns more opportunities for access. It’s worth noting that the frequency matrix FMe

i
is reset to a

zero matrix following each update of the episodic memory. The detailed memory updating process
algorithm can be found in Appendix B.1.

3.6 THE COMBINATION OF TWO KINDS OF PATTERNS FOR MTS FORECASTING

After getting the embedding of the currently entered MTS h with the Linear map, we use the
embedding h to look up the top-k-related hard patterns and knowledge patterns through computing
the attention score. Then we can use the attention score to realize the recall strategy which can get
the specific knowledge-pattern memory and specific hard pattern memory about the currently entered
MTS. Because the specific knowledge-pattern memory capture the evident channel dependency and
the specific hard pattern memory capture the latent channel dependency, we just need to fuse the two
specific pattern memory in order to gain the complete channel dependency of the currently entered
MTS. Finally, we use the mixed pattern memory and the embedding h to predict future value as
shown in Fig 1. Therefore, the final task loss function can be formulated as :

Loss =
∑N

j=1

∣∣Xj −X ′
j

∣∣2 + α1L1 + α2L2 (8)

where the first part of Loss denotes the MSE loss; L1, L2 is computed by 5; N indicates the number of
MTS channels; Xj ,X

′
j means the prediction and the ground truth of jth channel respectively;α1, α2

indicates the balance parameter of two constraints.

4 EXPERIMENTS
4.1 BASELINES AND EXPERIMENTAL SETTINGS

We evaluate the effectiveness of our model on eight datasets for MTS forecasting, including ETTh1,
ETTh2, ETTm1, ETTm2, Illness, Weather, Electricity and Exhcange-rate (Zeng et al., 2023). The
results are either quoted from the original papers or reproduced with the code provided by the authors.
The way of data preprocessing is the same as (Zeng et al., 2023). We deploy two widely used metrics,
Mean Absolute Error (MAE) and Mean Square Error (MSE) (Zhou et al., 2021) to measure the
performance of MTS forecasting models. Six popular state-of-the-art historical-value methods are
compared here, including: Crossformer (Zhang & Yan, 2023); Linear (Zeng et al., 2023); Fedformer
(Zhou et al., 2022); Autoformer (Wu et al., 2021); Informer (Zhou et al., 2021) and LogTrans (Li
et al., 2019). It is worth noting that DeepTime (Woo et al., 2023) the latest time-index model also
achieves state-of-the-art on MTS forecasting tasks. To prove the MTS forecasting capability of
our proposed historical-value model, we compare our model with those total seven methods. The
summary statistics of these datasets, baselines and other implementation details are described in
Appendix A.
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4.2 MAIN RESULTS

Table 8 presents the overall prediction performance in which the best results are highlighted in
boldface and second best results are underlined. Evaluation results demonstrate that our proposed
method outperforms other state-of-the-art approaches in most settings and ranks top-2 in all settings.
The detail analysis of error bar can be found in Appendix B.6.

Table 1: Multivariate long-term forecasting errors in terms of MSE and MAE, the lower the better.
Multivariate results with predicted length as {24, 36, 48, 60} on the ILI dataset, the others as {96,
192, 336, 720}. Best results are highlighted in bold, and second best results are underlined.

Methods Ours Linear DeepTime Crossformer Fedformer Autoformer Informer LogTrans

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

96 0.370 0.392 0.375 0.397 0.372 0.398 0.420 0.440 0.376 0.419 0.449 0.459 0.865 0.713 0.878 0.740
192 0.406 0.416 0.418 0.429 0.408 0.420 0.532 0.514 0.420 0.448 0.500 0.482 1.008 0.792 1.037 0.824
336 0.438 0.446 0.479 0.476 0.443 0.449 0.440 0.461 0.459 0.465 0.521 0.496 1.107 0.809 1.238 0.932
720 0.470 0.489 0.624 0.592 0.485 0.497 0.519 0.524 0.506 0.507 0.514 0.512 1.181 0.865 1.135 0.852

ETTh2

96 0.286 0.351 0.288 0.352 0.290 0.353 1.140 0.772 0.346 0.388 0.358 0.397 3.755 1.525 2.116 1.197
192 0.372 0.410 0.377 0.413 0.390 0.420 1.784 1.021 0.429 0.439 0.456 0.452 5.602 1.931 4.315 1.635
336 0.429 0.454 0.452 0.461 0.489 0.486 2.640 1.400 0.496 0.487 0.482 0.486 4.721 1.835 1.124 1.604
720 0.632 0.560 0.698 0.595 0.682 0.592 3.111 1.501 0.463 0.474 0.515 0.511 3.647 1.625 3.188 1.540

ETTm1

96 0.299 0.343 0.308 0.352 0.307 0.351 0.320 0.373 0.379 0.419 0.505 0.475 0.672 0.571 0.600 0.546
192 0.337 0.368 0.340 0.369 0.338 0.369 0.403 0.440 0.426 0.441 0.553 0.496 0.795 0.669 0.837 0.700
336 0.372 0.389 0.376 0.393 0.366 0.391 0.551 0.525 0.445 0.459 0.621 0.537 1.212 0.871 1.124 0.832
720 0.424 0.420 0.440 0.435 0.426 0.422 0.720 0.649 0.543 0.490 0.671 0.561 1.166 0.823 1.153 0.820

ETTm2

96 0.165 0.257 0.168 0.262 0.166 0.257 0.250 0.347 0.203 0.287 0.255 0.339 0.365 0.453 0.768 0.642
192 0.225 0.302 0.232 0.308 0.225 0.302 0.421 0.485 0.269 0.328 0.281 0.340 0.533 0.563 0.989 0.757
336 0.290 0.350 0.320 0.373 0.277 0.336 1.276 0.805 0.325 0.366 0.339 0.372 1.363 0.887 1.334 0.872
720 0.383 0.407 0.413 0.435 0.383 0.409 3.783 1.354 0.421 0.415 0.433 0.432 3.379 1.338 3.048 1.328

Weather

96 0.153 0.208 0.176 0.236 0.166 0.221 0.162 0.232 0.217 0.296 0.266 0.336 0.300 0.384 0.458 0.490
192 0.197 0.252 0.218 0.276 0.207 0.261 0.207 0.277 0.276 0.336 0.307 0.367 0.598 0.544 0.658 0.589
336 0.247 0.294 0.262 0.312 0.251 0.298 0.265 0.320 0.339 0.380 0.359 0.395 0.578 0.523 0.797 0.652
720 0.318 0.346 0.326 0.365 0.301 0.338 0.388 0.391 0.403 0.428 0.419 0.428 1.059 0.741 0.869 0.675

Electricity

96 0.134 0.230 0.140 0.237 0.137 0.238 0.213 0.300 0.193 0.308 0.201 0.317 0.274 0.368 0.258 0.357
192 0.150 0.247 0.153 0.250 0.152 0.252 0.290 0.351 0.201 0.315 0.222 0.334 0.296 0.386 0.266 0.368
336 0.166 0.264 0.169 0.268 0.166 0.268 0.348 0.389 0.214 0.329 0.231 0.338 0.300 0.394 0.280 0.380
720 0.201 0.297 0.203 0.301 0.201 0.302 0.404 0.423 0.246 0.355 0.254 0.361 0.373 0.439 0.283 0.376

Exchange

96 0.081 0.205 0.082 0.207 0.081 0.205 0.256 0.367 0.148 0.278 0.197 0.323 0.847 0.752 0.968 0.812
192 0.159 0.295 0.167 0.304 0.151 0.284 0.469 0.508 0.271 0.380 0.300 0.369 1.204 0.895 1.040 0.851
336 0.299 0.416 0.328 0.432 0.314 0.412 0.901 0.741 0.460 0.500 0.509 0.524 1.672 1.036 1.659 1.081
720 0.786 0.675 0.964 0.750 0.856 0.663 1.398 0.965 1.195 0.841 1.447 0.941 2.478 1.310 1.941 1.127

Iliness

24 1.890 0.960 1.947 0.985 2.425 1.086 3.110 1.179 3.228 1.260 3.483 1.287 5.764 1.677 4.480 1.444
36 2.086 1.007 2.182 1.036 2.231 1.008 3.429 1.222 2.679 1.080 3.103 1.148 4.755 1.467 4.799 1.467
48 1.840 0.976 2.256 1.060 2.230 1.016 3.451 1.203 2.622 1.078 2.669 1.085 4.763 1.469 4.800 1.468
60 2.091 0.992 2.390 1.104 2.143 0.985 3.678 1.255 2.857 1.157 2.770 1.125 5.264 1.564 5.278 1.560

4.3 ABLATION STUDY

Effect of Student-like Memory: In our model, we have two key modules: the knowledge memory
module and the episodic memory module. We conducted an ablation study on the ETTh1, ETTm2,
and Weather datasets, as presented in Table 2. Here, ”w/o” indicates the absence of a particular
module, and ”w/o both” refers to the Linear model without any memory modules, serving as the
baseline. In the table, ”ours” denotes the SPM-Net without any ablations. We analyze the results
shown in Table 2. 1) It’s evident that both the knowledge memory module and the episodic memory
module contribute significantly to our model’s performance, as indicated in rows 2 and 3 of Table 2.
This demonstrates that both modules effectively capture channel dependencies, thereby enhancing
the representation capacity of the Linear model. 2) Comparing the results on the ETTh1 and Weather
datasets, it can be seen that the knowledge memory module exhibits greater universality than the
episodic memory module, and this alignment with our design intention is expected. Specifically, the
knowledge memory module is designed to capture correlations across all channels by summarizing
intrinsic temporal patterns, while the episodic memory focuses on remembering channels that are
challenging to predict. Consequently, the knowledge module can be more effective in datasets with a
larger number of channels (e.g., the Weather dataset with 21 channels compared to the 7 channels on
the ETTh1 and ETTm2 datasets). 3) Comparing row 1 (baseline) with rows 2 and 3, it’s evident that
the combined use of both memory modules improves model performance. This reaffirms that the two
memory modules can indeed capture channel dependency from distinct perspectives: evident channel
dependency and latent channel dependency.

Effect of Memory update strategy: In our approach, we employ three key update strategies: hard
pattern selection, pattern-based update, and frequency-based update. To assess the benefits of these
structured memory update strategies, we conducted three ablation studies on the ETTh1, ETTm2,
and Weather datasets. Here are the details of these experiments: 1)In the first experiment, the
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Table 2: Ablation study on three datasets and the best results are highlighted in bold.

Dataset ETTh1 ETTm2 Weather

predict length 96 192 336 720 96 192 336 720 96 192 336 720

ours MSE 0.369 0.408 0.439 0.470 0.166 0.224 0.285 0.385 0.153 0.198 0.247 0.321
MAE 0.391 0.417 0.448 0.492 0.259 0.305 0.349 0.408 0.209 0.253 0.296 0.350

w/o knowledge MSE 0.371 0.410 0.445 0.474 0.168 0.229 0.299 0.395 0.174 0.215 0.260 0.323
MAE 0.393 0.422 0.452 0.493 0.261 0.309 0.362 0.424 0.234 0.273 0.312 0.362

w/o episodic MSE 0.372 0.411 0.442 0.499 0.168 0.230 0.307 0.385 0.155 0.199 0.250 0.322
MAE 0.393 0.423 0.449 0.514 0.261 0.310 0.368 0.418 0.210 0.257 0.298 0.351

w/o both MSE 0.381 0.422 0.477 0.512 0.173 0.231 0.321 0.415 0.175 0.217 0.262 0.325
MAE 0.405 0.431 0.476 0.520 0.269 0.312 0.382 0.438 0.235 0.276 0.313 0.366

w/o pattern-based MSE 0.377 0.420 0.451 0.489 0.173 0.235 0.313 0.418 0.175 0.216 0.260 0.323
MAE 0.401 0.430 0.458 0.499 0.267 0.322 0.374 0.431 0.237 0.270 0.309 0.365

w/o frequency-based
and knowledge

MSE 0.373 0.410 0.451 0.481 0.171 0.230 0.314 0.396 0.175 0.215 0.261 0.324
MAE 0.394 0.425 0.455 0.490 0.267 0.311 0.368 0.427 0.236 0.273 0.311 0.362

w/o hard pattern
and knowledge

MSE 0.371 0.411 0.451 0.481 0.171 0.232 0.300 0.396 0.175 0.215 0.261 0.324
MAE 0.394 0.424 0.461 0.499 0.267 0.312 0.365 0.426 0.236 0.275 0.311 0.362

Figure 2: The visualization of input series(left), correlation matrix of knowledge memory(right) and
episodic memory(middle) on ETTm1 dataset.

memory module stores a global MTS embedding vector h ∈ RT×n. This approach deviates from the
pattern-based memory module proposed in this paper. The primary aim of this experiment is to assess
the pattern-based memory module’s capability to capture channel dependency. This study is labeled
as ”w/o pattern-based.” 2).w/o Frequency-Based Episodic Memory Update: The second study focuses
on the episodic memory update strategy and removes the frequency-based strategy in favor of a
first-in, first-out (FIFO) queue-based memory update method. The goal is to assess the significance of
the frequency-based update strategy, and this experiment is labeled as ”w/o Frequency-based.” 3).w/o
Hard Pattern Selection: In the third study, we replace the hard pattern selection strategy with random
choices. This investigation aims to highlight the importance of the hard pattern selection approach
which is referred to as ”w/o hard-pattern.” The results of these experiments are presented in Table
2 and serve to confirm the effectiveness of the proposed memory update strategy. It’s worth noting
that the first study validates that our pattern-based memory module effectively captures channel
dependency.

4.4 VISUALIZATION OF STUDENT-LIKE MEMORY

To further validate our SPM-Net’s ability to capture channel dependencies, we conducted memory
attention score visualization experiments on ETTm1 as shown in Fig 2. In this experiment, the
number of channel is 7, the memory size of episodic memory is 35 and the memory size of knowledge
memory is 64. These visualizations illustrate that similar channels recall related patterns to help them
predict, which results in the similar prediction of different channels. This evidence confirms that our
Student-like memory module is proficient at identifying shared patterns among different channels,
thus effectively capturing various channel dependencies.

4.5 ADDITIONAL MODEL ANALYSIS

To demonstrate that our Student-like memory module can offer a more general and effective approach
for capturing channel dependency, we conducted several additional experiments on different datasets.
The results are presented in Figure 3, affirming that our Student-like memory module serves as a
novel method for capturing channel dependency in MTS forecasting. Additional results for more
datasets can be found in Appendix B.3 and B.4.

4.6 EFFECT OF HYPER-PARAMETERS

We evaluate the effect of three hyper-parameters: hard pattern memory weight γ, block number of
knowledge memory and block number of episodic memory on the ETTh1 dataset.
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Figure 3: Additional model analysis on ETTm2 and ETTh2 dataset. (a)(b) Comparing our model with
traditional methods used for capturing the channel dependency on ETTm2(left) and ETTh2(right).
(c)(d) The generalization of our model with Transformer on ETTm2(left) and ETTh2(right).
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Figure 4: (a)-(b):The effect of gamma weight score and (a) and the size of knowledge memory (b) on
ETTh1 dataset; (c) The effect of the size of episodic memory on ETTh2 dataset.

Effect of hard example weight: In Figure 4a, we varied the value of γ from 0 to 1 and assessed
the Mean Squared Error (MSE) across different prediction lengths on the ETTh1 dataset. As Fig 4a
shows, the prediction result is the best when γ is set as an appropriate value. When this value is too
large, it means too much attention is paid to hard patterns that have appeared before. When this value
is too small, it means that some extreme special cases that have appeared before are ignored.

Effect of memory size on knowledge memory: In Fig 4b, we set the memory size N1 from 32
to 512 and evaluate MSE with different prediction lengths on ETTh1 dataset. To emphasize the
impact of the memory size of the knowledge memory module, we conducted experiments without
the episodic memory module. It becomes apparent that the knowledge memory size N1 follows a
non-linear relationship with performance. An excessively large memory size can be detrimental
because the knowledge memory must learn to summarize patterns independently. In such cases, it
might struggle to effectively capture useful patterns. Conversely, when the memory size is too small,
it may not have the capacity to capture the essential patterns efficiently. Finding an optimal memory
size is essential for striking the right balance between knowledge retention and model efficiency.

Effect of memory size on episodic memory: In Fig 4c, the memory size N2 is set from 0 to 28 and
evaluate MSE with different prediction lengths on ETTh2 dataset. In order to highlight the effect of
the memory size of the episodic memory module, we remove the knowledge memory module. The
results in Figure 4c demonstrate that as the memory size increases, the performance tends to improve.
However, there is a point at which the performance gains start to diminish due to diminishing returns.
This phenomenon underscores the effectiveness of the episodic memory module we designed. This
module stores specific embeddings for challenging channels, and when the memory size is sufficiently
large, it can record all these useful channel embeddings. It’s important to note that as the memory size
increases, the size of our candidate queue N3 also needs to increase to prevent memory solidification,
as mentioned earlier. Please see Appendix B.2 for experimental details of the candidate queue.

5 CONCLUSIONS
In this paper, we introduce a novel approach called SPM-Net for capturing channel dependency in
multivariate time series forecasting tasks. SPM-Net comprises two crucial components: a knowledge
memory module and an episodic memory module, both of which efficiently capture diverse channel
dependencies. SPM-Net excels at extracting expressive representations from MTS, resulting in
superior performance compared to other models in MTS forecasting tasks. Empirical results from
various MTS forecasting tasks provide strong evidence of the effectiveness of our proposed model.
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Buttimore, Charles Deck, Joel Z Leibo, and Charles Blundell. Generalization of reinforcement
learners with working and episodic memory. Advances in neural information processing systems,
32, 2019.

Jerome H Friedman. Greedy function approximation: a gradient boosting machine. Annals of
statistics, pp. 1189–1232, 2001.

Dong Gong, Lingqiao Liu, Vuong Le, Budhaditya Saha, Moussa Reda Mansour, Svetha Venkatesh,
and Anton van den Hengel. Memorizing normality to detect anomaly: Memory-augmented deep
autoencoder for unsupervised anomaly detection. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 1705–1714, 2019.

Yuechun Gu, Da Yan, Sibo Yan, and Zhe Jiang. Price forecast with high-frequency finance data: An
autoregressive recurrent neural network model with technical indicators. pp. 2485–2492, 2020.

Yunhui Guo, Mingrui Liu, Tianbao Yang, and Tajana Rosing. Improved schemes for episodic memory-
based lifelong learning. Advances in Neural Information Processing Systems, 33:1023–1035, 2020.

Renhe Jiang, Zhaonan Wang, Jiawei Yong, Puneet Jeph, Quanjun Chen, Yasumasa Kobayashi, Xuan
Song, Shintaro Fukushima, and Toyotaro Suzumura. Spatio-temporal meta-graph learning for
traffic forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37,
pp. 8078–8086, 2023.

Taesung Kim, Jinhee Kim, Yunwon Tae, Cheonbok Park, Jang-Ho Choi, and Jaegul Choo. Reversible
instance normalization for accurate time-series forecasting against distribution shift. in CVPR,
2021.

10



Under review as a conference paper at ICLR 2024

Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long-and short-term
temporal patterns with deep neural networks. pp. 95–104, 2018.

Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang, and Xifeng
Yan. Enhancing the locality and breaking the memory bottleneck of transformer on time series
forecasting. Advances in neural information processing systems, 32, 2019.

Minhao Liu, Ailing Zeng, Zhijian Xu, Qiuxia Lai, and Qiang Xu. Time series is a special sequence:
Forecasting with sample convolution and interaction. arXiv preprint arXiv:2106.09305, 1(9),
2021a.

Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin, Alex X Liu, and Schahram Dust-
dar. Pyraformer: Low-complexity pyramidal attention for long-range time series modeling and
forecasting. In ICLR, 2021b.

Iwao Maeda, Hiroyasu Matsushima, Hiroki Sakaji, Kiyoshi Izumi, David deGraw, Atsuo Kato, and
Michiharu Kitano. Effectiveness of uncertainty consideration in neural-network-based financial
forecasting. in AAAI, pp. 673–678, 2019.

Pankaj Malhotra, Anusha Ramakrishnan, Gaurangi Anand, Lovekesh Vig, Puneet Agarwal, and
Gautam Shroff. Lstm-based encoder-decoder for multi-sensor anomaly detection. in ICML, 2016.

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth
64 words: Long-term forecasting with transformers. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https://openreview.net/forum?id=
Jbdc0vTOcol.

Junhyuk Oh, Xiaoxiao Guo, Honglak Lee, Richard L Lewis, and Satinder Singh. Action-conditional
video prediction using deep networks in atari games. in NeurIPS, 28, 2015.

Xianfeng Tang, Huaxiu Yao, Yiwei Sun, Charu Aggarwal, Prasenjit Mitra, and Suhang Wang. Joint
modeling of local and global temporal dynamics for multivariate time series forecasting with
missing values. in AAAI, 34(04):5956–5963, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. in NeurIPS, 30, 2017.

Qingsong Wen, Tian Zhou, Chaoli Zhang, Weiqi Chen, Ziqing Ma, Junchi Yan, and Liang Sun.
Transformers in time series: A survey. in arXiv preprint arXiv:2202.07125, 2022.

Gerald Woo, Chenghao Liu, Doyen Sahoo, Akshat Kumar, and Steven Hoi. Learning deep time-index
models for time series forecasting. 2023.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transformers
with auto-correlation for long-term series forecasting. Advances in Neural Information Processing
Systems, 34:22419–22430, 2021.

Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang. Graph wavenet for deep
spatial-temporal graph modeling. in AAAI, 2019.

Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, Xiaojun Chang, and Chengqi Zhang. Connecting
the dots: Multivariate time series forecasting with graph neural networks. In Proceedings of the
26th ACM SIGKDD international conference on knowledge discovery & data mining, pp. 753–763,
2020.

Huaxiu Yao, Fei Wu, Jintao Ke, Xianfeng Tang, Yitian Jia, Siyu Lu, Pinghua Gong, Jieping Ye, and
Zhenhui Li. Deep multi-view spatial-temporal network for taxi demand prediction. in AAAI, 32(1),
2018.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? In Proceedings of the AAAI conference on artificial intelligence, volume 37, pp.
11121–11128, 2023.

11

https://openreview.net/forum?id=Jbdc0vTOcol
https://openreview.net/forum?id=Jbdc0vTOcol


Under review as a conference paper at ICLR 2024

Chuxu Zhang, Dongjin Song, Yuncong Chen, Xinyang Feng, Cristian Lumezanu, Wei Cheng,
Jingchao Ni, Bo Zong, Haifeng Chen, and Nitesh V Chawla. A deep neural network for unsuper-
vised anomaly detection and diagnosis in multivariate time series data. in AAAI, 33(01):1409–1416,
2019.

Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency
for multivariate time series forecasting. In The Eleventh International Conference on Learning
Representations, 2022.

Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency
for multivariate time series forecasting. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=vSVLM2j9eie.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. in AAAI, 2021.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency
enhanced decomposed transformer for long-term series forecasting. In ICML, 2022.

12

https://openreview.net/forum?id=vSVLM2j9eie


Under review as a conference paper at ICLR 2024

A DETAILS OF EXPERIMENTS

A.1 DATASETS STATISTICS

The detail of the datasets: (1) ETT dataset includes the time series of oil de-stationary factors and
power load collected by electricity transformers from July 2016 to July 2018. ETTm1 and ETTm2
are recorded every 15 minutes, and ETTh1 and ETTh2 are recorded every 60 minutes. (2)Exchange
dataset includes the the panel data of daily exchange rates from 8 countries from 1990 to 2016. (3)
ILI dataset collects the ratio of influenza-like illness patients versus the total patients in one week,
which is recorded weekly by Centers for Disease Control and Prevention of the United States from
2002 and 2021. (4) Weather dataset includes meteorological time series with 21 weather indicators
collecteds from the Weather Station of the Max Planck Biogeochemistry Institute in 2020 every 10
minute. (5) Electricity dataset includes the electricity consumption of 321 customers recorded hourly
from 2012 to 2014.

Table 3: Summary of statistics of datasets

Datasets Samples channel number Sample Rate
ETTh1 17420 7 60 min

ETTh2 17420 7 60 min

ETTm1 69680 7 15 min

ETTm2 69680 7 15 min

Exchange 7588 8 1 day

Illness 966 7 1 week

Weather 52695 21 10 min

Electricity 26304 321 60 min

A.2 EVALUATION METRICS

We use two evaluation metrics which is usually used in time series forecasting tasks to measure the
performance of predictive models. Let X:,i ∈ RN×1 be the ground truth data of all channels at time
step i, X ′

:,i ∈ RN×1 be the predicted values, and Ω be indices of observed samples. The metrics are
defined as follows.

Mean Absolute Error (MAE)

MAE =
1

|Ω|
∑
i∈Ω

∣∣X:,i −X ′
:,i

∣∣ (9)

Mean Square Error (MSE)

MSE =
1

|Ω|
∑
i∈Ω

∣∣X:,i −X ′
:,i

∣∣2 (10)

A.3 BASELINE METHODS

The details of the baselines are as follows:

Crossformer: Crossformer is reproduced using the original paper’s configuration in the official code.

DeepTime: DeepTime is reproduced using the original paper’s configuration in the official code.

The results of other baselines are quoted from the paper of Linear model (Zeng et al., 2023).
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Figure 5: The details of episodic memory update strategy.

A.4 IMPLEMENTATION DETAILS

SPM-Net: All the experiments are implemented with PyTorch and conducted on a single NVIDIA
3090 24GB GPU. Each model is trained by ADAM optimizer using MSE loss. For a fair comparison,
the input length for the SPM-Net is consistent with Linear model (Zeng et al., 2023). For the illness
dataset the input length is set to 104 and the input length of rest of datasets are set to 336.

B ADDITIONAL MODEL ANALYSIS

B.1 UPDATE STRATEGY ANALYSIS

B.1.1 EPISODIC MEMORY

In our approach, we make an initial assumption that a new hard pattern should be incorporated into
the memory after each iteration. At the outset, the episodic memory is empty. As the memory fills
up, we implement a sorting mechanism based on access frequency. Notably, only the first pattern in
the candidate queue participates in this sorting process, as illustrated in Figure 5. When a new hard
pattern arrives, it replaces the pattern occupying the first place in the candidate queue. Subsequently,
the pattern in the first place exchanges positions with the pattern at the end of the candidate queue.
This strategy effectively addresses the memory solidification issue that we previously discussed.

B.1.2 KNOWLEDGE MEMORY

Knowledge

 Memory

The jth channel of MTS 

embedding
Prediction Result

Knowledge

Pattern 1

Knowledge

Pattern  2

Knowledge

Pattern 3

Knowledge

Patterns 

Recall

Look UP

Knowledge

Pattern 4

jh

Query
q

jh
Knowledge memory 

The jth channel of MTS 

embedding
jh

k

jm
jy

forward

backward

Update by gradient

Figure 6: The details of knowledge memory update strategy.

The specific update process of the knowledge memory is elaborated in Figure 6. Since each knowledge
pattern contributes to predicting the jth channel of the MTS yj , every pattern undergoes updates
during the backward process and accumulates information from the jth channel of the MTS. Because
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Figure 7: The effect of candidate queue size. (a) The result on the ETTh1 dataset. (b) The result on
the ETTm2 dataset.

Table 4: Comparison with traditional methods on three datasets and the best results are highlighted in
bold.

Dataset ETTh1 Electricity Weather

predict length 96 192 336 720 96 192 336 720 96 192 336 720

ours MSE 0.369 0.408 0.439 0.470 0.134 0.150 0.166 0.201 0.153 0.198 0.247 0.318
MAE 0.391 0.417 0.448 0.492 0.230 0.247 0.264 0.297 0.209 0.253 0.296 0.346

Linear+CNN MSE 0.447 0.542 0.877 0.912 0.364 0.443 0.400 0.341 0.158 0.207 0.250 0.305
MAE 0.457 0.512 0.747 0.773 0.439 0.503 0.470 0.430 0.227 0.271 0.304 0.348

Linear+GCN MSE 0.407 0.413 0.452 0.487 0.139 0.153 0.181 0.202 0.163 0.207 0.251 0.322
MAE 0.423 0.422 0.455 0.495 0.238 0.253 0.287 0.300 0.238 0.275 0.313 0.364

all knowledge patterns are shared when utilized to forecast the outcomes of each channel, each
pattern aggregates information from every channel, enabling it to capture latent channel dependencies
effectively.

B.2 THE EFFECT OF THE SIZE OF CANDIDATE QUEUE

When the candidate queue size accounts for 30% of episodic memory, the results as shown in the Fig
7 are the best on ETTh1 and ETTm2 dataset, which indicates that the design of candidate queue has a
certain helpful effect to our model.

B.3 COMPARISON WITH GCN AND CNN

To assess the efficiency of our model in capturing channel dependency, we introduced two straightfor-
ward baselines: a Linear model enhanced with CNN for channel dependency capture and a Linear
model equipped with Adaptive GCN for channel dependency capture. Since MTS often lacks a graph
structure to support GCN, we substituted the GCN module with Adaptive GCN, a method proven to
be more efficient for MTS forecasting in RNN-based models (Bai et al., 2020) (Jiang et al., 2023).
Using CNN for MTS embedding is a common approach to mixing channel information, as seen in
previous works (Wu et al., 2021) (Zhou et al., 2022). Therefore, we adopted the same technique for
the Linear+CNN model. The results presented in Table 4 confirm that our model is the superior and
most effective approach for capturing channel dependency.

B.4 THE GENERALIZATION OF SPM-NET

To prove our student-pattern memory Network can be a general framework, we design a new
experiment, which combines our model with a Transformer model of which the decoder is replace
with a Linear model. It is obvious that our student-like memory module can be used in Transformer
model efficiently too as shown in the Table 5.
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Table 5: The generalization experiment on three datasets and the best results are highlighted in bold.

Dataset ETTh1 Electricity Weather

predict length 96 192 336 720 96 192 336 720 96 192 336 720

Transformer+ours MSE 0.964 1.253 0.854 0.883 0.265 0.272 0.274 0.290 0.180 0.225 0.299 0.364
MAE 0.810 0.920 0.704 0.757 0.363 0.371 0.373 0.385 0.271 0.305 0.367 0.403

Transformer MSE 1.301 1.989 1.253 1.237 0.269 0.273 0.277 0.306 0.185 0.237 0.303 0.379
MAE 0.931 1.176 0.919 0.861 0.365 0.373 0.376 0.397 0.272 0.319 0.369 0.418
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Figure 8: Prediction cases from the multivariate ETTm2 dataset of SPM-Net.
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Figure 9: Prediction cases from the multivariate ETTm2 dataset of Linear model.
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Figure 10: Prediction cases from the multivariate ETTm1 dataset of SPM-Net.
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Figure 11: Prediction cases from the multivariate ETTm1 dataset of Linear model.

B.5 PREDICTION VISUALIZATION

As shown in Figure 8 9 10 11, we plot the forecasting results from the test set of multivariate datasets
ETTm1 and ETTm2 for comparison. Our model gives more accurate prediction than Linear model.
Further more, SPM-Net can predict the change trends in time series better and smoother and closer to
ground truth due to capturing the channel dependency.
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Table 6: Error bar analysis on three datasets and the best results are highlighted in bold.

Methods Ours Linear DeepTime

Metric MSE MAE MSE MAE MSE MAE

ETTh1

96 0.370±0.001 0.393±0.001 0.374±0.002 0.396±0.001 0.372±0.001 0.398±0.001
192 0.405±0.002 0.419±0.002 0.420±0.001 0.429±0.001 0.406±0.002 0.420±0.001
336 0.439±0.001 0.447±0.001 0.481±0.003 0.478±0.002 0.441±0.002 0.447±0.002
720 0.471±0.001 0.490±0.001 0.511±0.001 0.520±0.001 0.485±0.003 0.499±0.002

Weather

96 0.154±0.001 0.208±0.001 0.176±0.001 0.238±0.002 0.166±0.001 0.223±0.001
192 0.198±0.001 0.253±0.002 0.217±0.001 0.277±0.001 0.208±0.001 0.260±0.001
336 0.248±0.001 0.295±0.002 0.268±0.007 0.321±0.008 0.251±0.002 0.297±0.002
720 0.319±0.002 0.353±0.005 0.329±0.005 0.369±0.007 0.301±0.001 0.337±0.001

Electricity

96 0.135±0.001 0.232±0.002 0.141±0.001 0.239±0.001 0.137±0.001 0.238±0.001
192 0.150±0.001 0.247±0.001 0.154±0.001 0.251±0.001 0.152±0.001 0.252±0.001
336 0.166±0.001 0.265±0.001 0.169±0.001 0.267±0.001 0.166±0.001 0.268±0.001
720 0.201±0.001 0.297±0.001 0.203±0.001 0.301±0.001 0.201±0.001 0.303±0.001

B.6 MAIN RESULTS WITH STANDARD DEVIATIONS

To get more robust experimental results, we conduct main experiment three times with different
random seeds on different datasets. For easier and fair comparison, the results reported in the main
text are run with the fixed random seed 2021, which is the same as previous work. Table 6 shows the
standard deviations.

B.7 ADDITIONAL BASELINES

We add PatchTST, TimesNet and DLinear as new baselines as shown below. Considering our method,
TimesNet and Dlinear do not use the ’revin normalization’(Kim et al., 2021), we use the result without
the ’revin normalization’ in PatchTST for fair comparison. Because ’revin normalization’ is a key
trick for any model to improve the performance. Prediction length is set to 24, 36, 48, 60 for Iliness
and 96, 192, 336, 720 for others. The best results are highlighted in bold and the second best results
are underlined. It can be clearly seen that our model can still surpass these models in most cases.

B.8 ANALYSIS OF CHANNEL INDEPENDENCE

We combine our method with PatchTST and conduct tests on various datasets, we observe significant
improvements as shown in Table. We add our memory module to the Linear decoder in PatchTST
and maintain consistent experimental settings with it. The results of ’PatchTST without revin
normalization’ is replicated from their original paper(Nie et al., 2023) and the input length is set
to 336. Therefore, we believe that the assumption of channel independence may not be entirely
reasonable.
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Table 7: Multivariate long-term forecasting errors in terms of MSE and MAE, the lower the better.
Multivariate results with predicted length as {24, 36, 48, 60} on the ILI dataset, the others as {96,
192, 336, 720}. Best results are highlighted in bold.

Methods Ours PatchTST TimesNet DLinear
Metric MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

96 0.370 0.392 0.388 0.412 0.384 0.402 0.375 0.399
192 0.406 0.416 0.430 0.438 0.436 0.429 0.405 0.416
336 0.438 0.446 0.454 0.458 0.491 0.469 0.439 0.443
720 0.470 0.489 0.494 0.497 0.521 0.500 0.472 0.490

ETTh2

96 0.286 0.351 0.313 0.374 0.340 0.374 0.289 0.353
192 0.372 0.410 0.402 0.432 0.402 0.414 0.383 0.418
336 0.429 0.454 0.448 0.465 0.452 0.452 0.448 0.465
720 0.632 0.560 0.688 0.588 0.462 0.468 0.605 0.551

ETTm1

96 0.299 0.343 0.308 0.358 0.338 0.375 0.299 0.343
192 0.337 0.368 0.356 0.390 0.374 0.387 0.335 0.365
336 0.372 0.389 0.389 0.411 0.410 0.411 0.369 0.386
720 0.424 0.420 0.430 0.439 0.478 0.450 0.425 0.421

ETTm2

96 0.165 0.257 0.167 0.257 0.187 0.267 0.167 0.260
192 0.225 0.302 0.226 0.303 0.249 0.309 0.224 0.303
336 0.290 0.350 0.301 0.348 0.321 0.351 0.281 0.342
720 0.383 0.407 0.392 0.407 0.408 0.403 0.397 0.421

Weather

96 0.153 0.208 0.156 0.210 0.172 0.220 0.176 0.237
192 0.197 0.252 0.199 0.250 0.219 0.261 0.220 0.277
336 0.247 0.294 0.248 0.294 0.280 0.306 0.265 0.319
720 0.318 0.346 0.313 0.342 0.365 0.359 0.323 0.362

Electricity

96 0.134 0.230 0.131 0.226 0.168 0.272 0.140 0.237
192 0.150 0.247 0.150 0.244 0.184 0.289 0.153 0.249
336 0.166 0.264 0.168 0.267 0.198 0.300 0.169 0.267
720 0.201 0.297 0.201 0.298 0.220 0.320 0.203 0.301

Exchange

96 0.081 0.205 0.113 0.251 0.107 0.234 0.081 0.203
192 0.159 0.295 0.410 0.498 0.226 0.344 0.157 0.293
336 0.299 0.416 0.482 0.547 0.367 0.448 0.305 0.414
720 0.786 0.675 0.987 0.756 0.964 0.764 0.643 0.601

Iliness

24 1.890 0.960 3.489 1.345 2.317 0.934 2.215 1.081
36 2.086 1.007 4.629 1.550 1.972 0.920 1.963 0.963
48 1.840 0.976 3.746 1.383 2.238 0.940 2.130 1.024
60 2.091 0.992 5.174 1.622 2.027 0.928 2.368 1.096

1st count 37 9 6 20

Table 8: Multivariate long-term forecasting errors in terms of MSE and MAE, the lower the better.
Multivariate results with predicted length as {24, 36, 48, 60} on the ILI dataset, the others as {96,
192, 336, 720}. Best results are highlighted in bold.

Methods PatchTST+Ours PatchTST
Metric MSE MAE MSE MAE

ETTh1

96 0.384 0.408 0.388 0.412
192 0.424 0.431 0.430 0.438
336 0.445 0.448 0.454 0.458
720 0.489 0.496 0.494 0.497

ETTh2

96 0.301 0.357 0.313 0.374
192 0.392 0.426 0.402 0.432
336 0.386 0.430 0.448 0.465
720 0.607 0.545 0.688 0.588

ETTm1

96 0.303 0.355 0.308 0.358
192 0.343 0.383 0.356 0.390
336 0.378 0.405 0.389 0.411
720 0.433 0.435 0.430 0.439

ETTm2

96 0.167 0.256 0.167 0.257
192 0.226 0.299 0.226 0.303
336 0.285 0.341 0.301 0.348
720 0.382 0.405 0.392 0.407

Exchange

96 0.101 0.240 0.113 0.251
192 0.276 0.387 0.410 0.498
336 0.443 0.501 0.482 0.547
720 0.966 0.734 0.987 0.756

Iliness

24 2.876 1.223 3.489 1.345
36 2.879 1.209 4.629 1.550
48 2.985 1.238 3.746 1.383
60 3.094 1.256 5.174 1.622
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