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A B S T R A C T

We propose the multi-level network Lasso, which aims to overcome the key limitations of existing personalized
learning methods, such as ignoring sample homogeneity or heterogeneity, and over-parametrization. Multi-
level network Lasso learns both sample-common model and sample-specific model, that are succinct and
interpretable in the sense that model parameters are shared across neighboring samples based on only a
subset of relevant features. To apply personalized learning in multi-task scenarios, we further extend the
multi-level network Lasso for multi-task personalized learning by learning underlying task groups in the
feature subspace. Additionally, we investigate a family of the multi-level network Lasso based on the 𝓁𝑝 quasi-
norm (0 < 𝑝 < 1), that helps prevent over-penalization on large group outliers. An alternating algorithm
is developed to efficiently solve the proposed optimization problem. Experimental results on synthetic and
real-world datasets demonstrate the effectiveness of the proposed method.
1. Introduction

Personalized learning (PL) aims to learn sample-specific models for
individual samples (sample heterogeneity), in order to improve personal-
ized generalization ability. For example, personalized medicine exploits
patient heterogeneity to build patient-specific predictive models. PL is
different from conventional supervised learning, which usually assumes
that all samples share an identical model (sample homogeneity). One
common issue of PL is that the excessive number of parameters makes
it prone to overfitting. To alleviate this problem, several methods have
been proposed in the literature. The network Lasso type methods [1–3]
are proposed by borrowing strength from the neighborhoods of samples
in the similarity network (graph). In addition, projecting the models
into a shared subspace can further control model size [4]. PL can
also benefit from the additional covariates [5] and pre-trained anchor
models [6]. Despite of the success in various practical applications [7,
8], existing methods usually ignore the sample homogeneity and the
existence of noisy features, that may harm generalization performance.

In multi-task learning (MTL), multiple correlated tasks are learned
jointly by sharing knowledge across tasks, leading to the improved
predictive ability [9]. The major challenge in MTL is to adequately
capture task correlations. One common way is to assume that the
tasks are related by shared latent subspace, such as feature learning
approaches [10,11] and low-rank approaches [12,13]. However, this
assumption is restrictive in practice, as tasks may have their own
specific features in addition to the shared ones. To this end, the
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decomposition approaches are proposed, which decompose the param-
eters into task-common and task-specific parts via summation [14] or
multiplication [15,16]. Recently, task clustering approaches [17,18]
have been proposed to learn task group structure and model parame-
ters simultaneously. Extensive experimental results have shown these
MTL approaches’ superiority against baseline learners [9]. However,
they typically estimate a global model shared by all samples within
each task, preserving only sample homogeneity and ignoring sample
heterogeneity—a critical aspect that PL is designed to capture. Integrat-
ing PL into the MTL setting is necessary to fully exploit its capabilities
for handling diverse sample characteristics.

Recently, multi-task personalized learning (MTPL) has been pro-
posed by considering both sample homogeneity and heterogeneity in
multi-task scenarios. In [19], the first MTPL method is developed
based on the network Lasso and low-rank matrix decomposition. It has
achieved much success in a variety of real-world problems compared
with the MTL and PL approaches. However, two challenges need to
be addressed in the work. (1) Feature selection should be applied to
choose interpretable features. The dense model learned by the existing
method lacks interpretation and may suffer from performance degra-
dation due to the existence of noisy features in real-world scenarios,
especially with limited data. (2) The latent task group structure should
be considered to improve generalization. The existing method saves
task correlations by jointly building a common model for multiple tasks,
that is difficult to explicitly capture the relationship when tasks indeed
belong to different latent groups.
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Fig. 1. Illustration of the MMTPL framework. (a) Network Lasso for PL: It leverages graph information for clustering and learning to derive personalized models. (b) Multi-Level
Network Lasso for PL: We propose to decompose the personalized model for sample 𝑖 into a global model 𝜽0 and a local model 𝜽𝑖 to save homogeneity and heterogeneity,
respectively. These models are further decomposed by 𝜽0 = 𝜶◦𝜷0 and 𝜽𝑖 = 𝜶◦𝜷 𝑖, with {𝜷 𝑖}𝑛𝑖=1 exhibiting a sparse group structure. (c) Multi-Level Network Lasso for MTPL (MMTPL):

e extend the framework to multi-task settings, applying a row-sparse constraint on 𝐀 = [𝜶1 ,… ,𝜶𝑚] to capture task-common features and promoting task group structure among
𝜷 𝑡,0}𝑚𝑡=1. Predictions are computed as 𝑦𝑡,𝑖 = 𝐱𝑇𝑡,𝑖(𝜽𝑡,0 + 𝜽𝑡,𝑖).
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To cope with the above two challenges, we propose a novel method,
amely Multi-Level Network Lasso for Multi-Task Personalized
earning (MMTPL). Specifically, for challenge (1), we propose the
ulti-level network Lasso to select useful features and encourage sparse

roup structure among samples at the same time. It decomposes the
odel parameters 𝜽𝑖 into a product of a component that selects com-
on features of all samples within one task (i.e., 𝜶) and a component

hat captures sample-specific sparsity (i.e., 𝜷𝑖) and promotes the latter
omponents to group together according to a similarity graph. See

Fig. 1(b) for details. For challenge (2), we extend multi-level network
asso in multi-task scenarios by capturing task-common features and
urther learning underlying task groups in the feature subspace, such
hat the task-specific models belonging to the same group share param-
ters. See Fig. 1(c) for details. To prevent over-penalization on large
roup outliers, a family of multi-level network Lasso is investigated

based on the 𝓁𝑝 quasi-norm. To solve the optimization problem, we
develop an alternating algorithm. Empirical results on various synthetic
and real-world datasets demonstrate its effectiveness. We highlight the
contributions as follows:

• We propose the multi-level network Lasso that allows to group
samples based a selected subset of features and extend it in multi-
task scenarios by learning task groups in the feature subspace.

• We investigate a family of multi-level network Lasso based on the
𝓁𝑝 quasi-norm (0 < 𝑝 < 1), which avoids over-penalization on
outliers and generalizes the proposed method.

• We develop an alternating algorithm to solve the optimization
problem and show its effectiveness on both synthetic and real-
world datasets.

2. Related work

Personalized learning (PL) is proposed to learn sample-specific mod-
els by utilizing the heterogeneity of samples. Due to the possible
arge number of samples, the key challenge for PL is how to prevent
verfitting. To reduce the model size, the network Lasso [1] learns

personalized models that allow for simultaneously clustering and op-
timizing on graphs of samples, under the assumption that samples
in the same group share similar parameters. Localized Lasso [2], a
parse variant of the network Lasso, introduces additional sample-
ise exclusive regularizer to promote sparsity in the learned models.

DTFLR [20] improves upon network Lasso by introducing an adaptive
 f

2 
spanning-tree-based fusion penalty. FORMULA [4] controls the model
size by projecting personalized models into a low-dimensional subspace
ia matrix factorization. By means of additional inputs, [5] proposes
 novel distance-matching regularizer for PL based on the assumption
hat similar models share similar covariates. FALL [6] learns local
odels in a two-stage manner with the help of pre-computed anchor

models. Recently, instance-wise feature selection [21,22] has been pro-
posed to select a specific feature subset for each instance. Existing PL
methods generally ignore the sample homogeneity. Although UPFS [3]
considers both global and local models, it does so exclusively within an
unsupervised context. Furthermore, current PL methods face challenges
when adapting to multi-task settings because they primarily focus on
ample correlations and neglect the critical task correlations that are
ivotal in MTL scenarios.
Multi-task learning (MTL) assumes that the generalization perfor-

mance for multiple prediction tasks can be enhanced by exploiting
task correlation. By assuming that all tasks share a common subset of
features, the 𝓁𝑝,𝑞-norm (𝑝 > 1, 𝑞 ≥ 1) based regularizers [23,24] can
e imposed to extract shared features among all tasks. Another way to

explore task interdependence is to restrict the parameter matrix to be
low-rank. This can be achieved by applying matrix factorization [25]
or a trace norm based regularizer [12]. To further capture the speci-
icity of tasks, model decomposition approaches are proposed, which
ecompose the parameter matrix into task-common and task-specific
arts by summation [14] or multiplication [15]. Several recent studies

focus on capturing group structures among tasks [26,27]. VSTG [28]
performs variable selection and learns an overlapping group structure
among tasks. GBDSP [17] learns the task group structure based on the
block-diagonal task assignment matrix. CCMTL [29] integrates convex
clustering into MTL, which is designed to perform parameter learning
and task clustering simultaneously. HTEMTL [18] performs subspace
clustering on task parameters by exploiting the effect of hidden tasks.
EMTSL [30] combines subspace learning with discrete group structure
constraint to avoid negative transfer in MTL. These MTL methods, de-
spite their success, focus on sample homogeneity by learning a common

odel shared across all samples within a task, thus overlooking the
critical heterogeneity among individual samples.

By integrating PL and MTL, multi-task personalized learning (MTPL)
eeks to jointly learn personalized models from multiple tasks. To the
est of our knowledge, the only existing MTPL method is proposed
n [19]. To reduce the model size and avoid overfitting, it encourages

sparse group structures of local models in the latent feature subspace
ound by low-rank matrix factorization. However, it is unable to learn
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a sparse and interpretable model, and thus noisy features might harm
its generalization ability. Moreover, it implicitly models task corre-
lation by sharing a common component with all tasks, which is too
restrictive in practice. In contrast, our proposed MMTPL utilizes the
multi-level network Lasso to capture both homogeneity and hetero-
geneity during parameter learning and feature selection. This approach
ot only enhances robustness to noise but also effectively reduces the
isk of overfitting in personalized learning. Moreover, it explicitly finds
he underlying task groups, enabling a more flexible capture of task
orrelations.

3. Preliminary

In this work, we use bold uppercase letters for matrices (e.g., 𝐀),
old lowercase letters for vectors (e.g., 𝐚), normal lowercase letters
or scalars (e.g., a). Given 𝑚 tasks, the 𝑡th task is associated with the
raining data (𝐗𝑡, 𝐲𝑡), 𝑡 = 1, 2,… , 𝑚, that lies in the 𝑑-dimensional
eature space. The 𝑖th row of the data matrix 𝐗𝑡 ∈ R𝑛𝑡×𝑑 is denoted
y 𝐱𝑡,𝑖 ∈ R𝑑 , corresponding to the 𝑖th sample in the 𝑡th task, and the
th entry of the target vector 𝐲𝑡 ∈ R𝑛𝑡 is denoted by 𝑦𝑡,𝑖 ∈ R, where 𝑛𝑡
s the number of samples in the 𝑡th task. There are a total of 𝑁 =

∑

𝑡 𝑛𝑡
amples. For an arbitrary matrix 𝐀, ‖𝐀‖1 and ‖𝐀‖2,1 denote its 𝓁1-
orm and 𝓁2,1-norm, respectively. Specifically, ‖𝐀‖1 =

∑

𝑖,𝑗 |𝑎𝑖𝑗 | and
𝐀‖2,1 =

∑

𝑖 ‖𝐚𝑖⋅‖2, where ‖𝐚𝑖⋅‖2 is the 𝓁2-norm of the 𝑖th row of 𝐀.
For PL, we employ the following model:

min
𝜣

𝑛
∑

𝑖=1

(

𝑦𝑖 − 𝐱𝑇𝑖 𝜽𝑖
)2 +𝛺(𝜣), (1)

where 𝜽𝑖 ∈ R𝑑 represents the regression coefficients for the 𝑖th sample,
nd 𝛺(𝜣) denotes the regularization term on 𝜣 = [𝜽1,𝜽2,… ,𝜽𝑛] ∈
𝑑×𝑛. Unlike conventional supervised learning, where 𝜽𝑖 = 𝜽𝑗 (∀𝑖, 𝑗),

learning personalized models for all samples is computationally expen-
sive, and it is difficult to learn models with limited data. To alleviate
this problem, the network Lasso [1] is proposed by borrowing strength
across samples:

𝛺(𝜣) = 𝜆1
𝑛
∑

𝑖,𝑗=1
𝑟𝑖𝑗

‖

‖

‖

𝜽𝑖 − 𝜽𝑗
‖

‖

‖ 2
, (2)

where 𝜆1 is the hyper-parameter, and 𝑟𝑖𝑗 measures the similarity be-
ween 𝐱𝑖 and 𝐱𝑗 , which is usually computed by the RBF kernel [2,3].

In (2), the 𝓁2-norm penalty, instead of the squared 𝓁2-norm penalty,
is imposed on the difference between 𝜽𝑖 and 𝜽𝑗 , encouraging the
difference to be exactly zero, rather than just close to zero. By imposing
the network Lasso, similar models tend to be grouped together and
hare the same parameters, which helps to reduce the model size.

4. Methodology

4.1. Multi-level network Lasso

Although it is important to build personalized model for each
sample, different samples more or less have something in common.
To capture such sample homogeneity, we propose to decompose the
personalized model in (1) into a sum of a global model 𝜽0 that is shared
cross samples, and a local model 𝜽𝑖 (𝑖 = 1, 2,… , 𝑛), which saves sample
pecificity, i.e.,

min
𝜣

𝑛
∑

𝑖=1

(

𝑦𝑖 − 𝐱𝑇𝑖 (𝜽0 + 𝜽𝑖)
)2 +𝛺(𝜣), (3)

where 𝜣 is redefined by 𝜣 = [𝜽0,𝜽1,… ,𝜽𝑛] ∈ R𝑑×(𝑛+1). Unlike (1), (3)
nables to models sample homogeneity and heterogeneity by 𝜽0 and
𝜽𝑖}𝑛𝑖=1, respectively.

In the network Lasso, sparsity is used only to make the parameters
similar, not for feature selection, which fails to eliminate noisy features.

o address this problem, the localized Lasso [2] is proposed by incor-
porating the network Lasso with the exclusive Lasso [31]. However,
 a

3 
it imposes sparsity induction only at the sample level and does not
apture the across-sample sparsity, i.e., different samples may share a

common sparse pattern in addition to their individual ones. To capture
both commonality and specificity of sparse pattern, inspired by the

ulti-level Lasso [15,32], we propose the multi-level network Lasso:

𝛺(𝜣) =𝜆1
𝑛
∑

𝑖,𝑗=1
𝑟𝑖𝑗

‖

‖

‖

𝜷 𝑖 − 𝜷𝑗
‖

‖

‖2
+ 𝜆2

𝑛
∑

𝑖=0

‖

‖

𝜷𝑖
‖

‖1+ 𝜆3 ‖𝜶‖1

s.t. 𝜽𝑖 = 𝜶◦𝜷𝑖, 𝑖 = 0, 1,… , 𝑛, (4)

where ◦ is the element-wise product operator, 𝜶 ∈ R𝑑 controls the
ample-common sparsity, while 𝜷𝑖 ∈ R𝑑 models sample-specific spar-
ity. In this way, to exclude a feature from a sample, the multiplicative
ecomposition only requires one of the components to be zero, which
rings more flexibility and interpretation, compared with the single-
evel counterparts, such as Lasso [33] and the exclusive Lasso [31].

By imposing multi-level network Lasso, the learned personalized model
in (3) captures both homogeneity and heterogeneity of samples in pa-
rameter learning and feature selection, and meanwhile groups similar
models together, encouraging the parameter sharing within each group.
This approach not only enhances robustness to noise but also reduces
the effective parameter size, thereby alleviating the risk of overfitting.

4.2. Extending to the multi-task setting

The multi-level network Lasso enables to promote sample sparse
group structure, but it is unable to directly model the correlation among
tasks. In this subsection, we extend it to handle the MTL problems by
detecting the underlying task groups in a similar way.

A straightforward way is to directly incorporate (3) and (4) in the
MTL setting, that yields:

min
𝜣

𝑚
∑

𝑡=1

𝑛𝑡
∑

𝑖=1

(

𝑦𝑡,𝑖 − 𝐱𝑇𝑡,𝑖(𝜽𝑡,0 + 𝜽𝑡,𝑖)
)2

+𝛺(𝜣)

s.t. 𝜽𝑡,𝑖 = 𝜶𝑡◦𝜷𝑡,𝑖, 𝑡 = 1,… , 𝑚, 𝑖 = 0, 1,… , 𝑛𝑡, (5)

where 𝜣 is defined by 𝜣 = [𝜣1,𝜣2,… ,𝜣𝑚], with 𝜣𝑡 = [𝜽𝑡,0,𝜽𝑡,1,… ,
𝑡,𝑛𝑡 ], and 𝛺(𝜣) = ∑𝑚

𝑖=1 𝛺(𝜣𝑡), i.e.,

𝛺(𝜣) = 𝜆1
𝑚
∑

𝑡=1

( 𝑛𝑡
∑

𝑖,𝑗=1
𝑟𝑡𝑖𝑗

‖

‖

‖

𝜷𝑡,𝑖 − 𝜷𝑡,𝑗
‖

‖

‖2
+ 𝜆2

𝑛𝑡
∑

𝑖=0

‖

‖

𝜷𝑡,𝑖
‖

‖1 + 𝜆3 ‖‖𝜶𝑡
‖

‖1

)

. (6)

In MTL, modeling correlation among tasks is crucial to improve the
eneralization performance [9]. Based on the assumption that multiple

tasks are correlated via task-common features, the 𝓁2,1-norm penalty
‖𝐀‖2,1 is imposed on 𝐀 = [𝜶1,𝜶2,… ,𝜶𝑚] to promote feature-wise group
sparsity. Moreover, multiple tasks may exhibit group structure in the
feature subspace, where task models belonging to the same group are
related to each other. Similar with the sample grouping manner in (4),

e integrate ∑

𝑡,𝑠 ‖𝜷𝑡,0 − 𝜷𝑠,0‖2 into (6), by assuming that all tasks
ave the opportunity to become similar to each other. Therefore, the

regularizer 𝛺(𝜣) is reformulated into:

𝛺(𝜣) = 𝜆1
(

𝑚
∑

𝑡=1

𝑛𝑡
∑

𝑖,𝑗=1
𝑟𝑡𝑖𝑗

‖

‖

‖

𝜷𝑡,𝑖−𝜷𝑡,𝑗
‖

‖

‖2
+

𝑚
∑

𝑡,𝑠=1

‖

‖

𝜷𝑡,0−𝜷𝑠,0
‖

‖2

)

+ 𝜆2
𝑚
∑

𝑡=1

𝑛𝑡
∑

𝑖=0

‖

‖

𝜷𝑡,𝑖
‖

‖1+𝜆3 ‖𝐀‖2,1 . (7)

In (7), the global model 𝜽𝑡,0 = 𝜶𝑡◦𝜷𝑡,0 is used to represent the model
f the 𝑡th task, and ∑

𝑡,𝑠 ‖𝜷𝑡,0 − 𝜷𝑠,0‖2 encourages task models that are
lose at 𝓁2 distance to become similar. Thanks to the multiplicative
ecomposition 𝜽𝑡,0 = 𝜶𝑡◦𝜷𝑡,0, we have the chance to model negative
orrelation1 [26] by penalizing the difference between 𝜷𝑡,0 and 𝜷𝑠,0,

instead of 𝜽𝑡,0 and 𝜽𝑠,0.

1 Grouping on the basis of 𝓁2 distance can put two tasks with parameters 𝜽
nd −𝜽 in separate groups while there is clearly a correlation between them.
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Fig. 2. Comparison of 𝓁0, 𝓁1 and 𝓁𝑝 (𝑝 = 1∕2) by increasing the magnitude of the
difference between 𝜷 𝑖 and 𝜷𝑗 .

By combining (5) and (7), the objective of the proposed MMTPL
method can be defined in a compact form:

min
𝜣

‖

‖

‖

𝐲 − 𝐗̃𝜽‖‖
‖

2

2
+ 𝜆1

∑

𝑖,𝑗
𝑟𝑖𝑗

‖

‖

‖

𝜷𝑖 − 𝜷𝑗
‖

‖

‖ 2
+ 𝜆2 ‖𝐁‖1 + 𝜆3 ‖𝐀‖2,1

s.t. 𝜣 = (𝐀𝐌)◦𝐁, (8)

where 𝐗̃ ∈ R𝑁×𝑑(𝑁+𝑚) is a block diagonal matrix with the 𝑡th block be-
ing 𝐗̃𝑡 = [𝐗𝑡,Diag(𝐗𝑡)], Diag(𝐗𝑡) represents a diagonal matrix with the
𝑖th diagonal element being 𝐱𝑇𝑡,𝑖, 𝐲 = [𝐲1; 𝐲2; ... ; 𝐲𝑚] ∈ R𝑁 is the response
vector of all samples, and 𝜽 = vec(𝜣) represents the vectorization of 𝜣.
Besides, 𝐁 = [𝐁1,𝐁2,… ,𝐁𝑚] ∈ R𝑑×(𝑁+𝑚) with 𝐁𝑡 = [𝜷𝑡,0, 𝜷𝑡,1,… , 𝜷𝑡,𝑛𝑡 ],
and 𝐌 = [𝐞1𝟏𝑇𝑛1+1, 𝐞2𝟏

𝑇
𝑛2+1

,… , 𝐞𝑚𝟏𝑇𝑛𝑚+1] is an auxiliary matrix with 𝐞𝑡
denoting a unit vector with the non-zero element at the 𝑡th entry. In
the second term of (8), 𝜷𝑖 denotes the 𝑖th column of 𝐁, 𝑟𝑖𝑗 is the
ntry in the 𝑖th row and 𝑗th column of 𝐑 ∈ R(𝑁+𝑚)×(𝑁+𝑚), which is

a block matrix with 𝑚 × 𝑚 blocks 𝐑̃𝑡𝑠 =

[

1 𝟎𝑇𝑛𝑠
𝟎𝑛𝑡 𝐑𝑡𝑠

]

, 𝑡, 𝑠 = 1, 2,… , 𝑚,

and 𝐑𝑡𝑠 = 𝐑𝑡 ((𝐑𝑡)𝑖𝑗 = 𝑟𝑡𝑖𝑗) if 𝑡 = 𝑠 and 𝐑𝑡𝑠 = 𝟎 otherwise. The proposed
MMTPL method in (8) successfully builds personalized models in the
MTL setting, which considers both homogeneity and heterogeneity of
samples during parameter learning and feature selection, promotes
structured sparsity among samples, and exploits task correlations by
capturing latent task group structure in the feature subspace.

4.3. Prediction

Once the models 𝜽𝑡,0 and {𝜽𝑡,𝑖}
𝑛𝑡
𝑖=1 of the 𝑡th task are learned based

on (8), MMTPL makes the prediction of an unseen testing sample 𝐱̂𝑡,𝑖
by 𝑦̂𝑡,𝑖 = 𝐱̂𝑇𝑡,𝑖(𝜽𝑡,0 + 𝜽̂𝑡,𝑖), where the 𝑖th unknown personalized model 𝜽̂𝑡,𝑖
is obtained by solving the following Weber problem [34]:

𝜽̂𝑡,𝑖 = arg min
𝜽

∑

𝑗∈𝑘NN(𝐱̂𝑡,𝑖)
𝑟𝑖,𝑗‖𝜽 − 𝜽𝑡,𝑗‖2. (9)

Here 𝑘NN denotes the 𝑘 nearest neighbors of 𝐱̂𝑡,𝑖 in training data
from the 𝑡th task (𝑘 = 5 in our experiments), and 𝑟𝑖,𝑗 measures the
similarity between 𝐱̂𝑡,𝑖 and its neighbor 𝐱𝑡,𝑗 , which is calculated by the
RBF kernel [2,3]. The Weber problem can be solved by an iterative
algorithm [34]. Specifically, at the 𝑙th step of the iterative algorithm,
he model is moved closer to the optimal solution by setting 𝜽(𝑙+1) to
e the solution of a weighted least squares problem:

min
𝜽

∑

𝑗∈𝑘NN(𝐱̂𝑡,𝑗 )

𝑟𝑖,𝑗
‖𝜽(𝑙) − 𝜽𝑡,𝑗‖2

‖𝜽 − 𝜽𝑡,𝑗‖22. (10)

As the unique optimal solution to the above weighted least square
roblem, each successive is calculated by:

𝜽(𝑙+1) =
⎛

⎜

⎜

⎝

∑

𝑗∈𝑘NN(𝐱̂𝑡,𝑖)

𝑟𝑖,𝑗𝜽𝑡,𝑗
‖𝜽(𝑙) − 𝜽𝑡,𝑗‖2

⎞

⎟

⎟

⎠

/

⎛

⎜

⎜

⎝

∑

𝑗∈𝑘NN(𝐱̂𝑡,𝑖)

𝑟𝑖,𝑗
‖𝜽(𝑙) − 𝜽𝑡,𝑗‖2

⎞

⎟

⎟

⎠

. (11)
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4.4. Remarks on multi-level network Lasso

The use of the multi-level network Lasso is central to MMTPL,
hich captures both homogeneity and heterogeneity of samples as well

as promotes sparse group structure among personalized models. Such
group structure is essentially promoted by the 𝓁1-norm penalty on
the difference ‖𝜷 𝑖 − 𝜷𝑗‖2 between arbitrary pairwise models, which is

eighted by the similarity 𝑟𝑖𝑗 of a neighborhood graph. But the 𝓁1-norm
egularization typically results in over-penalization on large group
utliers, as shown in Fig. 2. In fact, we do not care about the magnitude
f the difference once the difference is non-zero, because in this case,

the models 𝜷𝑖 and 𝜷𝑗 actually belong to different groups. Thus, a more
natural penalty should be the 𝓁0-norm. However, using the 𝓁0-norm
penalty results in an intractable combinatorial optimization problem,
which is NP-hard.

Motivated by the superiority of dealing with sparsity inducing prob-
ems via the 𝓁𝑝 quasi-norm (0 < 𝑝 < 1) [35], we generalize the proposed
ulti-level network Lasso, resulting in a family framework of MMTPL𝑝:

min
𝜣

‖

‖

‖

𝐲 − 𝐗̃𝜽‖‖
‖

2

2
+ 𝜆1

{

∑

𝑖,𝑗

(

𝑟𝑖𝑗
‖

‖

‖

𝜷 𝑖 − 𝜷𝑗
‖

‖

‖ 2

)𝑝} 1
𝑝 + 𝜆2 ‖𝐁‖1 + 𝜆3 ‖𝐀‖2,1

s.t. 𝜣 = (𝐀𝐌)◦𝐁, 𝑝 ∈ (0, 1). (12)

Since the 𝓁𝑝 quasi-norm (0 < 𝑝 < 1) is closer to the 𝓁0-norm than
the 𝓁1-norm, as illustrated in Fig. 2, it helps prevent over-penalization
over large group outliers, and simultaneously yields a sparser solution
where relatively few group differences are non-zero (as it penalizes
more aggressively on small values). We compare the vanilla MMTPL
and MMTPL𝑝 on real-world data in experiment section.

5. Optimization

We consider the optimization of MMTPL𝑝 (0 < 𝑝 < 1) in (12), and
the vanilla MMTPL problem in (8) can be simply solved by setting 𝑝 = 1.
ince the optimization problem is not jointly convex, we develop an

alternating algorithm to solve it. The algorithm repeats the following
teps until convergence.

5.1. Updating 𝐀

With fixed 𝐁, the problem w.r.t. 𝐀 becomes:

min
𝐀

‖

‖

‖

𝐲 − 𝐗̃vec ((𝐀𝐌) ◦𝐁)‖‖
‖

2

2
+ 𝜆3 ‖𝐀‖2,1 . (13)

The above problem is non-smooth, and proximal gradient descent
method [36] can be applied to update 𝐀. The gradient of the smooth
art of the objective function in (13) w.r.t. vec(𝐀) is given by:

∇𝑓 (vec(𝐀)) =(

𝐌⊗𝐈𝑑
)(

−2𝐗̃𝑇(𝐲−𝐗̃vec(𝜣))◦vec(𝐁)
)

, (14)

where 𝐈𝑑 ∈ R𝑑×𝑑 is the identity matrix, and ⊗ is the Kronecker product.
Then the update rule w.r.t. 𝐀 is:
(

𝐀∗)
𝑖=prox𝜂 𝜆3‖⋅‖2

(

(𝐀)𝑖−𝜂 (∇𝑓 (𝐀))𝑖
)

, ∀𝑖 ∈ N𝑑 , (15)

where N𝑑 = {1, 2,… , 𝑑}, (𝐀)𝑖 denotes the 𝑖th row of 𝐀, ∇𝑓 (𝐀) is ob-
tained by reshaping ∇𝑓 (vec(𝐀)), 𝜂 is the learning rate, and prox𝛾‖⋅‖2 (𝐱)
(

1 − 𝛾
max{‖𝐱‖2 ,𝛾}

)

𝐱 is the proximal operator of the 𝓁2-norm.

5.2. Updating 𝐁

With fixed 𝐀, the problem w.r.t. 𝐁 becomes:

min
𝐁

‖

‖

‖

𝐲 − 𝐗̃vec ((𝐀𝐌) ◦𝐁)‖‖
‖

2

2
(16)

+ 𝜆1

{

∑

𝑖,𝑗

(

𝑟𝑖𝑗
‖

‖

‖

𝜷 𝑖 − 𝜷𝑗
‖

‖

‖ 2

)𝑝
}

1
𝑝
+ 𝜆2 ‖𝐁‖1 .

The formulation in 𝐁 is non-differentiable and non-convex when 0 <
𝑝 < 1. Here we solve an equivalent problem according to the following
proposition.
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Proposition 1. Let 𝑝 ∈ (0, 2) and 𝑞 = 𝑝
2−𝑝 . For any vectors 𝜷𝑖, 𝜷𝑗 ∈ R𝑑 ,

the optimization problem in (16) has an equivalent formulation w.r.t. 𝐁,
that is:
min
𝐁,𝐙

‖

‖

‖

𝐲 − 𝐗̃vec ((𝐀𝐌) ◦𝐁)‖‖
‖

2

2
(17)

+𝜆1

(

∑

𝑖,𝑗

𝑟2𝑖𝑗
‖

‖

‖

𝜷𝑖 − 𝜷𝑗
‖

‖

‖

2

2
2𝑧𝑖𝑗

+ 1
2
‖𝐙‖𝑞

)

+𝜆2 ‖𝐁‖1 ,

where (𝐙)𝑖𝑗 = 𝑧𝑖𝑗 ∈ R+ is the introduced auxiliary variable, and the
minimum of 𝐁 is uniquely attained when

𝑧𝑖𝑗 =
(

𝑟𝑖𝑗
‖

‖

‖

𝜷𝑖−𝜷𝑗
‖

‖

‖2

)2−𝑝
{

∑

𝑖,𝑗

(

𝑟𝑖𝑗
‖

‖

‖

𝜷𝑖−𝜷𝑗
‖

‖

‖ 2

)𝑝
}

𝑝−1
𝑝
. (18)

Proof. To verify Proposition 1, we need to prove the correctness of the
following Lemma first.

Lemma 1 (Variational Formulation). Let 𝑝 ∈ (0, 2) and 𝑞 = 𝑝
2−𝑝 . For any

ector 𝐱 ∈ R𝑑 , we have the following equivalent:

‖𝐱‖𝑝 = min
𝐳∈R𝑑

+

[

1
2

𝑑
∑

𝑖=1

𝑥2𝑖
𝑧𝑖

+ 1
2
‖𝐳‖𝑞

]

,

and the minimum is uniquely attained for 𝑧𝑖 = |𝑥𝑖|
2−𝑝

‖𝐱‖𝑝−1𝑝 , ∀𝑖 ∈
{1, 2,… , 𝑑}.

Proof. Let 𝜙 ∶ 𝐳 →
∑𝑑

𝑖=1 𝑥
2
𝑖 𝑧

−1
𝑖 +‖𝐳‖𝑞 be the continuously differentiable

function defined on (0,+∞). We have lim
‖𝐳‖𝑞→+∞ 𝜙(𝐳) = +∞ and

lim𝑧𝑖→0 𝜙(𝐳) = +∞ if 𝑥𝑖 ≠ 0 (for 𝑥𝑖 = 0, note that min𝐳∈R𝑑
+
𝜙(𝐳) =

min𝐳∈R𝑑
+ ,𝑧𝑖=0

𝜙(𝐳)). Thus, the infimum exists and it is attained. Taking
he derivative w.r.t. 𝑧𝑖 (for 𝑧𝑖 > 0) leads to the expression of the unique
inimum, and the expression is still correct for 𝑧𝑖 = 0.

According to Lemma 1 and the fact
{

∑

𝑖,𝑗

(

𝑟𝑖𝑗
‖

‖

‖

𝜷𝑖 − 𝜷𝑗
‖

‖

‖ 2

)𝑝
}

1
𝑝
=
‖

‖

‖

‖

(

𝑟𝑖𝑗
‖

‖

‖

𝜷𝑖 − 𝜷𝑗
‖

‖

‖ 2

)

(𝑖,𝑗)∈[[1,𝑁+𝑚]]×[[1,𝑁+𝑚]]

‖

‖

‖

‖𝑝
,

where [[1, 𝑁 + 𝑚]] = {1, 2,… , 𝑁 + 𝑚}, the tuple composed of differ-
nt 𝑟𝑖𝑗

‖

‖

‖

𝜷𝑖 − 𝜷𝑗
‖

‖

‖ 2
is denoted by

(

𝑟𝑖𝑗
‖

‖

‖

𝜷𝑖 − 𝜷𝑗
‖

‖

‖ 2

)

(𝑖,𝑗)∈[[1,𝑁+𝑚]]×[[1,𝑁+𝑚]]
∈

(𝑁+𝑚)2×1. We have the following equality:
{

∑

𝑖,𝑗

(

𝑟𝑖𝑗
‖

‖

‖

𝜷𝑖 − 𝜷𝑗
‖

‖

‖ 2

)𝑝
}

1
𝑝
= min

𝐙∈R(𝑁+𝑚)×(𝑁+𝑚)
+

[

∑

𝑖,𝑗

𝑟2𝑖𝑗
‖

‖

‖

𝜷𝑖 − 𝜷𝑗
‖

‖

‖

2

2
2𝑧𝑖𝑗

+ 1
2
‖𝐙‖𝑞

]

.

Then the optimization problem Eq. (16) has an equivalent w.r.t. 𝐁, that
is:

min
𝐁,𝐙

‖

‖

‖

𝐲 − 𝐗̃vec ((𝐀𝐌) ◦𝐁)‖‖
‖

2

2
+𝜆1

(

∑

𝑖,𝑗

𝑟2𝑖𝑗
‖

‖

‖

𝜷 𝑖 − 𝜷𝑗
‖

‖

‖

2

2
2𝑧𝑖𝑗

+ 1
2
‖𝐙‖𝑞

)

+𝜆2 ‖𝐁‖1 ,

and the minimum of 𝐁 is uniquely attained when

𝑧𝑖𝑗 =
(

𝑟𝑖𝑗
‖

‖

‖

𝜷𝑖 − 𝜷𝑗
‖

‖

‖2

)2−𝑝
{

∑

𝑖,𝑗

(

𝑟𝑖𝑗
‖

‖

‖

𝜷𝑖 − 𝜷𝑗
‖

‖

‖ 2

)𝑝
}

𝑝−1
𝑝
. □

Given the closed-form solution of 𝑧𝑖𝑗 , we reformulate the prob-
lem (17) into a matrix form as follows:

min
𝐁

‖

‖

‖

𝐲 − 𝐗̃vec ((𝐀𝐌) ◦𝐁)‖‖
‖

2

2
+ 2𝜆1 Tr

(

𝐁 (𝐃 −𝐖)𝐁𝑇 ) + 𝜆2 ‖𝐁‖1 , (19)

where 𝐖 is a symmetric matrix with 𝑤𝑖𝑗 = 𝑟2𝑖𝑗∕2𝑧𝑖𝑗 (𝑖, 𝑗 = 1,… , 𝑁 +𝑚),
𝐃 is a diagonal matrix with the 𝑖th diagonal element 𝑑𝑖𝑖 =

∑𝑁+𝑚
𝑗=1 𝑤𝑖𝑗

(𝑖 = 1,… , 𝑁 + 𝑚), and Tr (⋅) is the trace of a matrix. Then, proximal
gradient descent method is applied to update 𝐁. The gradient of the
smooth part of the objective in (19) w.r.t. vec(𝐁) is:

∇𝑓 (vec(𝐁)) = (

−2𝐗̃𝑇(𝐲−𝐗̃vec(𝜣)
))

◦
((

𝐌𝑇⊗𝐈
)

vec(𝐀)
)

𝑑 n

5 
Algorithm 1 MMTPL𝑝: Optimization procedure

Input: 𝐗̃, 𝐲, 𝜆1, 𝜆2, 𝜆3.
Output: 𝜣 = (𝐀𝐌)◦𝐁.
1: Initialize 𝐀, 𝐁.
2: Compute 𝐑 by RBF kernel using 𝐗̃.
3: repeat
4: Update 𝐀 via APG based on Eq. (15).
5: Update 𝑧𝑖𝑗 based on Eq. (18).
6: Update 𝐁 via APG based on Eq. (21).
7: until Convergence

+ 4𝜆1
((

𝐃−𝐖
)𝑇⊗𝐈𝑑

)

vec(𝐁). (20)

Then the update rule w.r.t. 𝐁 is defined as:

𝐁∗ = 𝜇 𝜆2 (𝐁 − 𝜇∇𝑓 (𝐁)) , (21)

where ∇𝑓 (𝐁) is obtained by reshaping ∇𝑓 (vec(𝐁)), 𝜇 is the learn-
ng rate, and 𝜏 (𝑥) = sign(𝑥)max(|𝑥| − 𝜏 , 0) is the element-wise soft

thresholding operator.

5.3. Analysis on time complexity

In practice, we apply accelerated proximal method (APG) [36]
to accelerate the optimization algorithm. In term of time complexity
nalysis, updating 𝐀 comprises two major steps, gradient calculation
nd soft thresholding operation, with time complexities of (𝑑 𝑁(𝑁 +

𝑚)) and (𝑑 𝑚), respectively. Similarly, on updating 𝐁, we perform
gradient descent and soft thresholding operations again, resulting in
time complexities of (𝑑(𝑁 + 𝑚)2) and (𝑑(𝑁 + 𝑚)), respectively.

herefore, the total time complexity of each iteration is (𝑑(𝑁 + 𝑚)2).
Although the time cost is somehow high, we find that the complexity
is linear w.r.t. the number of features, and the algorithm usually
converges within 50 iterations in real-world experiments. We provide
the pseudo code of the alternating optimization procedure in Algorithm
1. In practice, the similarity matrix 𝐑 is computed in the same way

ith [2,3], by using the RBF kernel. It consumes constant time and
thus is not considered in the time complexity analysis. For further
xploration and replication, our code is available at: https://www.

dropbox.com/scl/fi/nx0ry03m5l30xxs52fjmz/MMTPL_code.zip?rlkey=
jeydcjf44kc6d5mqz7ib5wsee&st=zyc2o683&dl=0.

6. Experiment

6.1. Experimental setting

Synthetic dataset. We set the number of tasks as 𝑚 = 6 and each task has
𝑛 = 150 labeled samples. The dimensionality of samples is set as 𝑑 = 10
for all tasks. The ground truth personalized model for each sample
is represented in a multiplicative way, i.e., 𝜽𝑡,𝑖 = 𝜶𝑡◦(𝜷𝑡,0 + 𝜷𝑡,𝑖), 𝑡 =
,… , 𝑚, 𝑖 = 1,… , 𝑛𝑡. Elements of 𝜶𝑡 ∈ R𝑑 are randomly sampled from
ormal distribution  (0, 1). To make the matrix 𝐀 = [𝜶1,𝜶2,… ,𝜶𝑚]
ow-wise sparse, we further set all rows of 𝐀 except the 3rd, 6th, and
th rows to be 0. Elements of 𝜷𝑡,0 ∈ R𝑑 are sampled from uniform
istribution  (0, 10). Moreover, 𝜷1,0, 𝜷2,0 and 𝜷3,0 share the identical
alues, and the same goes for 𝜷4,0, 𝜷5,0 and 𝜷6,0, which indicates that
here are two task groups. The local sparse model 𝜷𝑡,𝑖 ∈ R𝑑 is specially
efined, where every 50 samples in a task lie in the same cluster and
hus share the same sparse pattern, as illustrated in Fig. 3(a). The

similarity matrix 𝐑𝑡 ∈ R𝑛𝑡×𝑛𝑡 is designed as a block diagonal matrix
ith the main-diagonal blocks being all-one matrices. The data 𝐱𝑡,𝑖 ∈ R𝑑

s randomly sampled from normal distribution  (0, 25). Finally, the
arget is calculated by 𝑦𝑡,𝑖 = 𝐱𝑇𝑡,𝑖𝜽𝑡,𝑖+𝛿𝑡,𝑖, where 𝛿𝑡,𝑖 is zero-mean Gaussian
oise sampled from  (0, 1).

https://www.dropbox.com/scl/fi/nx0ry03m5l30xxs52fjmz/MMTPL_code.zip?rlkey=jeydcjf44kc6d5mqz7ib5wsee&st=zyc2o683&dl=0
https://www.dropbox.com/scl/fi/nx0ry03m5l30xxs52fjmz/MMTPL_code.zip?rlkey=jeydcjf44kc6d5mqz7ib5wsee&st=zyc2o683&dl=0
https://www.dropbox.com/scl/fi/nx0ry03m5l30xxs52fjmz/MMTPL_code.zip?rlkey=jeydcjf44kc6d5mqz7ib5wsee&st=zyc2o683&dl=0
https://www.dropbox.com/scl/fi/nx0ry03m5l30xxs52fjmz/MMTPL_code.zip?rlkey=jeydcjf44kc6d5mqz7ib5wsee&st=zyc2o683&dl=0
https://www.dropbox.com/scl/fi/nx0ry03m5l30xxs52fjmz/MMTPL_code.zip?rlkey=jeydcjf44kc6d5mqz7ib5wsee&st=zyc2o683&dl=0
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Fig. 3. Illustration of group sparse structure recovered by MMTPL on the synthetic dataset. (a): designed sparse model 𝜷∗
𝑡,𝑖; (b): learned sparse model 𝜷 𝑡,𝑖.
Fig. 4. Comparison of MMTPL and MMTPL𝜶=𝟏 on modeling task group structure. For clarity, we show 𝜷 𝑡,0 + 𝜷 𝑡,𝑖 with non-zero features, i.e., the 3rd, 6th, 9th features.
Table 1
The statistics of used six real-world datasets.

Datasets #Samples #Features #Tasks

SARCOS 48 933 21 7
Parkinsons 5875 16 42
Computer 20 13 190
Housing 985 6 5
WQ 1060 14 16
RF1 9125 64 8

Real-world datasets. We select SARCOS,2 Parkinsons,3 Computer,4
Housing,5 WQ6 and RF16 for performance evaluation. The first three
are benchmark multi-task datasets, that have been widely used in
previous MTL works [9,15]. The last two are multi-target regression
datasets, and we treat each target as a learning task. The SARCOS
dataset relates to an inverse dynamics problem. The Parkinsons dataset
is to predict the disease symptom scores of Parkinson. The Computer
dataset aims to predict students’ purchase intention on computers.
The housing dataset refers to house price forecasts in the Greater
Sacramento area for May 2008. The WQ dataset refers to the problem
of inferring chemical parameters of water quality. The RF1 dataset
concerns the prediction of river network flows for 48h in the future.
Their statistics are summarized in Table 1.

Comparing methods. We compare MMTPL with three types of learning
methods, i.e., PL, MTL and MTPL. For PL, FORMULA, the Network
Lasso and the Localized Lasso are selected. FORMULA [4] treats the pre-
diction of each sample as a task and utilizes a multi-task type approach
to solve the PL problems. The Network Lasso [1] estimates personalized
models by clustering and optimizing the parameters in graph, and
the Localized Lasso [2] is a sparse variant of the Network Lasso. For
MTL, we compare MMTPL with MMTFL, VSTG, GBDSP, HTEMTL and
AutoTR. The MMTFL [15] method decomposes model parameters into
a multiplication of two components: the across-task feature indicator
and task-specific part, in a similar way with multi-level Lasso [32]. The
VSTG [28], GBDSP [17] and HTEMTL [18] method are proposed based

2 http://www.gaussianprocess.org/gpml/data.
3 https://archive.ics.uci.edu/ml/datasets.php.
4 https://github.com/probml/pmtk3/tree/master/data.
5 http://support.spatialkey.com/spatialkey-sample-csv-data.
6 http://mulan.sourceforge.net/datasets-mtr.html.
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on the assumption that tasks may have a latent group structure. The
AutoTR [37] automatically captures complex correlations among tasks,
assuming each task model can represent every other task. For MTPL, the
only existing method proposed by [19] is used. In addition, Lasso [33]
is selected as a baseline for sparse learning.

Parameter setting. For grid search, the number of latent bases in FOR-
MULA, MTPL, VSTG and GBDSP is selected from {3, 5, 7, 9, 11}. The
number of transfer groups in GBDSP is selected from {3, 5, 7, 9, 11}. The
value 𝑘 of 𝑘-support norm in VSTG is selected from {1, 2, 3}. As for other
hyper-parameters, the search grid is set to be {2−10, 2−8,… , 28, 210}.
The maximum number of iterations is 1000, and the algorithm will
terminate once the relative change of the objective is below 10−3.

Evaluation. In experiments, we randomly select 70%, 20% and 10%
of total samples as the training set, the validation set and the testing
set, respectively. We repeat this process ten times, and report the mean
value with standard deviation in terms of three metrics, root mean
squared error (RMSE), mean absolute error (MAE) and normalized
mean squared error (NMSE).

6.2. Experiments on synthetic data

Illustration of group sparse structure. The recovery of group sparse struc-
ture on the synthetic dataset is illustrated in Fig. 3, where 𝜷∗

𝑡,𝑖 denotes
the designed sparse model at sample level, and 𝜷𝑡,𝑖 is the sparse model
learned by MMTPL with the setting 𝜆1 = 2−4, 𝜆2 = 2−2 and 𝜆3 = 26. As
shown is Fig. 3, MMTPL successfully recovers the sparse group structure
among the sparse models 𝜷𝑡,𝑖 (∀𝑡, 𝑖). This demonstrates the effectiveness
of multi-level network Lasso used in MMTPL, that enables to jointly
perform sample grouping and feature selection.

Case study on modeling negative correlation. The MMTPL has the ability
to capture negative correlation among task models due to the mul-
tiplicative decomposition 𝜽𝑡,𝑖 = 𝜶𝑡◦𝜷𝑡,𝑖. We compare the proposed
MMTPL method with a special variant MMTPL𝜶=𝟏 (𝜽𝑡,𝑖 = 𝟏◦𝜷𝑡,𝑖),
which fixes 𝜶𝑡 to be all-one vector during the learning process. Fig. 4
illustrates 𝜷𝑡,0 + 𝜷𝑡,𝑖 learned by MMTPL and MMTPL𝜶=𝟏, in the same
parameter setting with Fig. 3. As we can see in Fig. 4, MMTPL success-
fully detects the two underlying task groups as we designed. In contrast,
MMTPL𝜶=𝟏 fails to find the correct task groups, due to the constraint
𝜶= 𝟏, which makes it impossible to group two negatively correlated
tasks together. The ability on capturing negative correlations makes
MMTPL flexible enough to efficiently save task correlations.

http://www.gaussianprocess.org/gpml/data
https://archive.ics.uci.edu/ml/datasets.php
https://github.com/probml/pmtk3/tree/master/data
http://support.spatialkey.com/spatialkey-sample-csv-data
http://mulan.sourceforge.net/datasets-mtr.html


J. W
ang et al.

Table 2
Experimental results on six real-world datasets. The best results of each dataset are highlighted in boldface.

Dataset Metric LASSO FORMULA Network Lasso Localized Lasso MMTFL VSTG GBDSP HTEMTL AutoTR MTPL MMTPL

Computer

RMSE 1.7292(0.0032) 2.2385(0.0033) 2.3389(0.0082) 1.7951(0.0054) 1.6211(0.0015) 1.5895(0.0052) 1.6335(0.0034) 1.6151(0.0060) 1.6919(0.0052) 1.6265(0.0066) 1.5179(0.0038)

NMSE 2.2177(0.0863) 3.4466(0.6021) 4.5117(0.2946) 2.2729(0.1055) 2.0084(0.1714) 2.0477(0.0847) 2.0288(0.1209) 1.9169(0.0683) 2.2181(0.1118) 1.9568(0.1352) 1.7951(0.0686)

MAE 1.5386(0.0027) 1.9506(0.0038) 2.1011(0.0073) 1.6000(0.0034) 1.4471(0.0019) 1.4161(0.0037) 1.4697(0.0051) 1.4503(0.0050) 1.5100(0.0040) 1.4472(0.0046) 1.3569(0.0029)

Parkinsons

RMSE 2.0841(0.0168) 2.2495(0.2307) 1.9935(0.0423) 1.9191(0.0057) 1.9154(0.0039) 1.9053(0.0104) 1.9149(0.0205) 1.8929(0.0060) 1.9253(0.0143) 1.8960(0.0092) 1.8671(0.0061)

NMSE 1.4448(0.1141) 1.4404(0.0625) 1.1471(0.1261) 0.9872(0.0093) 1.0100(0.0147) 0.9765(0.0151) 1.0301(0.0281) 1.0009(0.0254) 1.0660(0.0418) 0.9605(0.0162) 0.9712(0.0118)

MAE 1.7151(0.0095) 1.8702(0.2333) 1.5886(0.0077) 1.5670(0.0044) 1.6277(0.0027) 1.5940(0.0069) 1.5740(0.0033) 1.5825(0.0040) 1.5916(0.0055) 1.5577(0.0036) 1.5495(0.0066)

Housing

RMSE 0.1700(0.0013) 0.1630(0.0011) 0.1583(0.0011) 0.1577(0.0013) 0.1677(0.0014) 0.1684(0.0014) 0.1766(0.0011) 0.1702(0.0013) 0.1726(0.0013) 0.1597(0.0011) 0.1561(0.0011)

NMSE 0.7110(0.0484) 0.6873(0.0540) 0.6010(0.0317) 0.5966(0.0330) 0.6674(0.0272) 0.6977(0.0442) 0.7641(0.0425) 0.6988(0.0371) 0.7224(0.0331) 0.6253(0.0330) 0.5824(0.0181)

MAE 0.1361(0.0006) 0.1271(0.0005) 0.1246(0.0005) 0.1228(0.0005) 0.1358(0.0007) 0.1365(0.0007) 0.1383(0.0006) 0.1361(0.0006) 0.1449(0.0014) 0.1291(0.0005) 0.1250(0.0007)

WQ

RMSE 0.8561(0.0053) 0.8551(0.0022) 0.8178(0.0019) 0.8201(0.0017) 0.8329(0.0015) 0.8215(0.0015) 0.8213(0.0015) 0.8210(0.0015) 0.8232(0.0015) 0.8134(0.0016) 0.8118(0.0017)

NMSE 0.8848(0.0032) 0.9322(0.0051) 0.8305(0.0002) 0.8364(0.0002) 0.8619(0.0001) 0.8406(0.0002) 0.8399(0.0002) 0.8395(0.0002) 0.8443(0.0002) 0.8204(0.0002) 0.8186(0.0002)

MAE 0.5466(0.0026) 0.5171(0.0001) 0.4842(0.0001) 0.4854(0.0001) 0.5186(0.0001) 0.5101(0.0001) 0.5101(0.0001) 0.5097(0.0001) 0.5043(0.0001) 0.4805(0.0001) 0.4792(0.0001)

SARCOS

RMSE 2.8154(0.0139) 3.5347(0.0257) 3.1932(0.0160) 4.0727(0.0266) 2.7925(0.0115) 2.7027(0.0126) 2.6982(0.0117) 2.9609(0.0096) 2.7020(0.0105) 1.9940(0.0250) 2.0772(0.0030)

NMSE 0.1269(0.0002) 0.2855(0.0008) 0.1002(0.0000) 0.1734(0.0001) 0.1290(0.0002) 0.1202(0.0001) 0.1206(0.0001) 0.1320(0.0001) 0.1243(0.0005) 0.0629(0.0001) 0.0701(0.0001)

MAE 2.0675(0.0067) 2.5906(0.0119) 2.1028(0.0072) 2.7519(0.0155) 2.0347(0.0075) 1.9556(0.0062) 1.9581(0.0064) 2.1275(0.0053) 1.9580(0.0056) 1.4035(0.0031) 1.4571(0.0024)

RF1

RMSE 7.0194(0.2333) 5.7904(0.7353) 5.5321(0.2195) 5.8621(0.2280) 7.0376(0.2332) 6.6570(0.1913) 6.6813(0.1732) 6.7618(0.1872) 6.7933(0.2092) 4.1147(0.1423) 3.9003(0.1085)

NMSE 0.1671(0.0019) 0.1833(0.0154) 0.0409(0.0000) 0.0481(0.0000) 0.1686(0.0028) 0.1330(0.0006) 0.1266(0.0003) 0.1310(0.0003) 0.1328(0.0002) 0.0366(0.0001) 0.0461(0.0001)

MAE 4.4970(0.0303) 3.1150(0.0219) 2.3334(0.0191) 2.3558(0.0170) 4.4297(0.0332) 4.1871(0.0229) 4.1904(0.0264) 4.2690(0.0239) 4.3257(0.0258) 2.0222(0.0180) 2.1893(0.0117)
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Table 3
Statistical test on comparing methods in RMSE. Here, ∙∕◦∕ ∗ indicates whether MMTPL is statistically superior/inferior/similar to the comparing method (pairwise 𝑡-test at 5% significance level).
Method Dataset win/tie/loss counts

Computer WQ Parkinsons Housing RF1 SARCOS for MMTPL

MMTPL
1.5179 0.8118 1.8671 0.1561 3.9003 2.0772

/(0.0038) (0.0017) (0.0061) (0.0011) (0.1085) (0.003)

MTPL
1.6265∙ 0.8134∗ 1.896∗ 0.1597∗ 4.1147∗ 1.994∗

1/5/0(0.0066) (0.0016) (0.0092) (0.0011) (0.1423) (0.025)

MMTFL
1.6211∙ 0.8329∗ 1.9154∗ 0.1677∗ 7.0376∙ 2.7925∙

3/3/0(0.0015) (0.0015) (0.0039) (0.0014) (0.2332) (0.0115)

GBDSP
1.6335∙ 0.8213∗ 1.9149∗ 0.1766∗ 6.6813∙ 2.6982∙

3/3/0(0.0034) (0.0015) (0.0205) (0.0011) (0.1732) (0.0117)

VSTG
1.5895∙ 0.8215∗ 1.9053∗ 0.1684∗ 6.6570∙ 2.7027∙

3/3/0(0.0052) (0.0015) (0.0104) (0.0014) (0.1913) (0.0126)

HTEMTL
1.6151∙ 0.8210∗ 1.8929∗ 0.1702∗ 6.7618∙ 2.9609∙

3/3/0(0.0060) (0.0015) (0.0060) (0.0013) (0.1872) (0.0096)

AutoTR
1.6919∙ 0.8232∗ 1.9253∗ 0.1726∗ 6.7933∙ 2.7020∙

3/3/0(0.0052) (0.0015) (0.0143) (0.0013) (0.2092) (0.0150)

FORMULA
2.2385∙ 0.8551∙ 2.2495∙ 0.1630∗ 5.7904∙ 3.5347∙

5/1/0(0.0033) (0.0022) (0.2307) (0.0011) (0.7353) (0.0257)

Network Lasso
2.3389∙ 0.8178∗ 1.9935∙ 0.1583∗ 5.5321∙ 3.1932∙

4/2/0(0.0082) (0.0019) (0.0423) (0.0011) (0.2195) (0.0160)

Localized Lasso
1.7951∙ 0.8201∗ 1.9191∗ 0.1577∗ 5.8621∙ 4.0727∙

3/3/0(0.0054) (0.0017) (0.0057) (0.0013) (0.2280) (0.0266)

Pattern Recognition 161 (2025) 111213 
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Table 4
Comparison of MMTPL and MMTPL𝑝 (𝑝 = 1∕2) on SARCOS and RF1 by varying the number of training samples.

SARCOS 100 200 300 500 800 1200 1800

MMTPL
3.0837 2.5927 2.4362 2.2288 2.0393 1.9208 1.7985
(0.0712) (0.0036) (0.0041) (0.0082) (0.0087) (0.0103) (0.0075)

MMTPL1∕2

3.0559 2.5918 2.4237 2.2225 2.0468 1.9220 1.8078
(0.0928) (0.0037) (0.0046) (0.0073) (0.0060) (0.0103) (0.0086)

RF1 100 200 300 500 800 1200 1800

MMTPL
8.8365 7.4002 7.2874 6.4148 5.5916 4.6986 3.9003
(0.8825) (0.6157) (0.2378) (0.2345) (0.2371) (0.4031) (0.1085)

MMTPL1∕2

8.6090 7.3738 7.2702 6.3822 5.6427 4.7125 3.9019
(0.3508) (0.5964) (0.2475) (0.2616) (0.2510) (0.3962) (0.1069)
b
g
i

a
t

c
n
s
w
m
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s
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Fig. 5. Analysis on the effect of model decomposition in MMTPL on three datasets.
MTPLglobal and MMTPLlocal are two variants of MMTPL, only considering the global
odel and the local model, respectively.

6.3. Experiments on real-world data

Evaluation of comparing methods. Experimental results are reported in
Table 2. We can see that MMTPL performs the best in 11 out of 18
ases. Such performance advantage can be attributed to two aspects.
irst, MMTPL sufficiently exploits the correlation among samples by
onsidering both sample homogeneity and heterogeneity, and encour-
ging sparse group structure among samples. Second, MMTPL enables
o save task relatedness by capturing task group structure in the feature
ubspace. MTL methods outperform PL methods on three multi-task
atasets, i.e., SARCOS, Parkinsons and Computer. For PL methods in
ulti-tasking scenarios, MMTPL outperforms MTPL in most cases. The
L methods, in both single-task and multi-task scenarios, performs sig-
ificantly better than other methods on the Housing and RF1 datasets.
t is probably due to the high heterogeneity of samples in the Housing
nd RF1 datasets. We also provide the statistical test results in Table 3.

Analysis on the effect of model decomposition. In MMTPL, the person-
alized model is decomposed into a sum of a global model 𝜽𝑡,0 and
 local model 𝜽𝑡,𝑖. To evaluate the effect of model decomposition, an
xperiment is conducted to compare MMTPL with two special variants:
MTPLglobal and MMTPLlocal, considering only the global part 𝜽𝑡,0

nd the local part 𝜽𝑡,𝑖, respectively. We illustrate the result on the
omputer, Parkinsons and WQ datasets in Fig. 5. The results for the

other three datasets are similar. From Fig. 5, we can see that MMTPL
utperforms MMTPLlocal and MMTPLglobal on all three datasets. The
uperior performance of MMTPL in all cases indicates the importance
f saving both heterogeneity and homogeneity of samples by model
ecomposition.

Comparison of MMTPL and MMTPL𝑝. To avoid severe penalization on
he large group outlier, we propose MMTPL𝑝 based on the 𝓁𝑝 quasi-
orm (0 < 𝑝 < 1) in Section 4.4. To evaluate its effectiveness,

we conduct experiments on the SARCOS and RF1 datasets. The two
datasets are chosen because there are a sufficient number of samples
or each task in both datasets. We fix the number of testing samples
o 200 and vary the number of training samples from 100 to 1800.

Experimental results are reported in terms of RMSE, and similar results
can be observed in other metrics. As shown in Table 4, MMTPL𝑝 (𝑝 =
1∕2) performs better than vanilla MMTPL in the case of fewer training
samples, probably because the 𝓁𝑝 quasi-norm is a more appropriate

approximation to the ideal 𝓁0-norm, compared with the 𝓁1-norm used

9 
in MMTPL. In this sense, MMTPL𝑝 will lead to a more aggressive model
grouping (as it will more aggressively penalize small model difference
‖𝜷𝑖−𝜷𝑗‖2), such that the number of learned parameters is significantly
controlled, and thus the generalization ability is guaranteed with less
data. However, as the number of samples exceeds 800, MMTPL achieves
etter performance than MMTPL𝑝. That is because excessive model
rouping may weaken the generalization ability, once the sample size
s enough.

Group sparse structure on real-world datasets. To visualize the grouping
structures of real-world datasets learned by MMTPL, we conduct an
experiment on three datasets and illustrate the sparse structure of the
learned local model matrix 𝜣𝑡 = [𝜽𝑡,1,𝜽𝑡,2,… ,𝜽𝑡,𝑛𝑡 ] of a specific task
(𝑡 = 1) in Fig. 6. The grouping structure is learned by fixing 𝜆1 = 26
nd 𝜆3 = 20 (𝜆2 = 22 for RF1, 𝜆2 = 20 for Sarcos and Parkinsons), and
hen performing 𝑘-means (𝑘 = 15) clustering on the columns of 𝜣𝑡. As

shown in Fig. 6, a clear grouping structure and row-wise sparse pattern
an be observed, which demonstrates the effectiveness of multi-level
etwork Lasso in terms of sample-level model clustering and feature
election. Such ability not only improves the generalization of MMTPL
hen real-world data exhibits clustering structures in personalized
odels, but also enhances interpretability by capturing key features

rucial in real setting. For example, in the Parkinsons case, MMTPL
ignificantly weights feature 13–15, which include Harmonic-to-Noise
atio (HNR), Recurrence Period Density Entropy (RPDE), and De-

rended Fluctuation Analysis (DFA). These features have been validated
n prior research [38,39], demonstrating their significant contributions

to predicting scores on the Unified Parkinson’s Disease Rating Scale
(UPDRS).

Sensitivity analysis. The sensitivity analysis on 𝜆1, 𝜆2 and 𝜆3 is con-
ducted on the SARCOS and Computer datasets. Specifically, 𝜆1 controls
the group sharing among individual models, 𝜆2 controls the sparsity
within each task and 𝜆3 controls the row-wise sparsity among tasks.
Values of 𝜆1, 𝜆2 and 𝜆3 are selected from {2−10, 2−8,… , 28, 210}. Ex-
periments are conducted to evaluate the pairwise correlation between
parameters. The experiment on 𝜆2 and 𝜆3 is conducted by fixing 𝜆1 = 1,
and similar setting is applied for the remains. Fig. 7 shows the results
n SARCOS and Computer in RMSE. We can see that the performance

is more sensitive to the value change of 𝜆2 compared to 𝜆1 and 𝜆3. We
recommend using smaller values for 𝜆1 and 𝜆2 (< 22) and a larger value
for 𝜆3 (> 24) in practice.

Running time analysis. According to the time complexity analysis in
Section 5.3, the theoretical time complexity of MMTPL is quadratic
w.r.t the number of samples 𝑁 . To investigate its practical runtime
and potential scalability issues, we plot the execution times for varying
numbers of training samples on the SARCOS and RF1 datasets, averag-
ing the results over five runs. The results, as shown in Fig. 8, indicate
that the runtime of MMTPL increases significantly with the number
of training samples, yet it performs better than the strong competitor,
MTPL. Scalability remains a limitation of the current MMTPL; future
work will explore more efficient algorithms to improve computational

efficiency.
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Fig. 6. Illustration of group sparse structure learned by MMTPL on three datasets with 𝜆1 = 26 and 𝜆3 = 20 (𝜆2 = 22 for RF1, 𝜆2 = 20 for Sarcos and Parkinsons). We show the
learned local model 𝜽𝑡,𝑖 in 𝑡th task (𝑡 = 1) after 𝑘-means (𝑘 = 15) clustering.
Fig. 7. Sensitivity analysis of 𝜆1, 𝜆2 and 𝜆3. The 1st row shows the results on SARCOS, while the 2nd row shows the results on Computer. The values of 𝜆1, 𝜆2 and 𝜆3 are shown
in the logarithmic scale.
Fig. 8. Comparison of methods in running time on the SARCOS and RF1 datasets.

Fig. 9. Convergence analysis of Algorithm 1 on two real-world datasets. The algorithm
converges at the 65th and 44th iteration on SARCOS and Computer, respectively.

Convergence analysis. To evaluate the convergence ability of Algorithm
1, we conduct experiment on two real-world datasets, Computer and
SARCOS. In this experiment, we set the parameters of MMTPL as
𝜆1 = 𝜆2 = 𝜆3 = 1. We terminate Algorithm 1 once the relative
change of its objective is below 10−3. Fig. 9 shows the convergence
10 
curves of the objective function value by MMTPL. Fig. 9 shows that the
objective function value converges after a few number of iterations,
demonstrating the efficiency of the proposed algorithm.

7. Conclusion and future work

We propose the multi-level network Lasso used in personalized
learning, and further extend it to the MTL scenarios. The proposed
multi-level network Lasso has the ability to learn interpretable per-
sonalized models by capturing both homogeneity and heterogeneity of
samples in feature selection and parameter learning. Moreover, it is
extended to handle MTL problems by detecting the latent task group
structure in the feature subspace, leading to the MMTPL method. We
also investigate a family of multi-level network Lasso based on the
𝓁𝑝 quasi-norm, which helps prevent over-penalization on large group
outliers. We develop an alternating algorithm to optimize the objective
function of MMTPL. Experiments on synthetic and real-world datasets
demonstrate its superiority.

One limitation of our multi-level network Lasso is that sample
similarity 𝑟𝑖𝑗 is computed using an RBF kernel with manually tuned
parameters, reducing efficiency. Additionally, as noted in , scalabil-
ity issues emerge with increasing dataset size. Future work will ex-
plore using end-to-end deep models like the Siamese Network [40] for
more automated similarity calculations and developing more efficient
algorithms to address scalability challenges.
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