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ABSTRACT

Large language models (LLMs) are powerful instruction followers. However,
many open-ended generation tasks have a large solution space that needs to be
narrowed down to fit user needs. LLMs that are steerable towards such needs are
critical to safe LLM systems that behave consistently with user expectations and
goals. Despite continued improvement in LLM instruction-following, such gains
may not necessarily translate to steerability. This disconnect motivates a prin-
cipled framework for measuring steerability. Thus, we propose a goal-oriented,
quantitative definition of steerability. Our definition informs the design of an em-
pirical steerability probe, where we leverage text rewriting tasks to measure steer-
ability of LLMs. We demonstrate that recent LLMs are not steerable. We attribute
this lack of steerability to side-effects: correlations between requested goals and
non-requested LLM movement. Thus, despite advances in LLM instruction fol-
lowing, there remains significant room for improving LLM steerability.

1 INTRODUCTION

Large language models (LLMs) have empirically demonstrated powerful instruction-following abil-
ities in a variety of domains (Achiam et al., 2023; Dubey et al., 2024). However, many real-world
tasks such as text editing or creative writing are open-ended: the desired set of generations depends
on user expectations or needs. Users performing such tasks require flexible and controllable LLMs
that can be steered to match their diverse needs.

Although LLMs continue to improve at instruction following, better instruction following may not
imply better steerability. Instruction following datasets in current evaluations focus on coarse, im-
personal changes, often opting for instructions about simplifying/summarizing text (Shu et al., 2024)
or syntactical/linguistic constraints (Zhou et al., 2023). Moreover, even when prompted to produce
changes in tone (e.g., increased sadness, politeness), an LLM could still default to a congenial,
“American” tone due to dataset biases during pre-training or reinforcement learning from human
feedback (RLHF). Thus, current benchmarks could report good instruction following performance
even if an LLM is not steerable towards producing texts with variation in tone.

Steerability is critical for designing safe LLMs that align with a variety of human values and priori-
ties (Sorensen et al., 2024). This is because safety in one context does not imply safety in another:
blanket refusals for legal or medical advice can mitigate harms from misinformation, but could also
impede model usability. A context-aware view of LLM safety should prioritize LLMs that can eas-
ily navigate different desiderata. Tasks where steerable LLMs are key to safety may include clinical
note generation (Abacha et al., 2023) and model-assisted psychotherapy (Sharma et al., 2024).

In this work, we propose a definition of LLM steerability, casting user goals as vectors (Section 2).
As an example of an open-ended generation task, we focus on measuring steerability in single-turn
text-rewriting. Figure 1 (left) illustrates our proposed definition of steerability via a text simplifi-
cation request. The user’s request and LLM’s attempt to satisfy the request can be interpreted as
vectors in goal-space, with dimensions comprised of textual aspects (Figure 1, right). Deviations
between the two vectors in distance and direction map to steerability failures: incorrect distances
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Figure 1: Text rewriting (left) can be modeled as movement in a vector space of goals (right). We
propose two steerability metrics (sensitivity and directionality) that quantify distance and direction-
based closeness between user requests (green) and LLM movement (orange) in goal-space. Source
text from Meditation XVII, Devotions Upon Emergent Occasions, John Donne (1624).
may signify insufficient or exaggerated changes to text with respect to the user’s request, while
differences in direction may arise from changes in unanticipated aspects of text.

Using our steerability definition, we design an empirical steerability probe and apply it to multiple
LLM families (Section 3). Our probe demonstrates that larger models are not necessarily steerable.
We attribute this lack of steerability to side-effects: requesting one goal may yield shifts in goals not
mentioned in the prompt. Our analysis highlights steerability as an independently important axis of
LLM performance, and lays the groundwork for well-principled steerability evaluation.

2 DEFINING STEERABILITY

In this section, we define steerability, and disaggregate it into distance and direction-based compo-
nents (Section 2.1). Then, we design a steerability probe based on our definition (Section 2.2).

2.1 STEERABILITY METRICS

Since we focus on text rewriting, we first define a space of textual goals to standardize measurement
of textual change. Let G be a set of “goals” (e.g., happiness level, reading difficulty), where each
string maps to some point in goal-space Z ⊆ R|G|; i.e., a string’s goal-space mapping is a real-
valued vector. Thus, text changes can be modeled as vectors in goal-space. Concretely, let z∗ ∈ Z
be a user goal, and let z0 ∈ Z be the goal-space mapping of the source text, yielding user request
vector z∗ − z0. Let ẑ be the goal-space mapping of the LLM output, such that ẑ − z0 describes
an LLM’s movement in goal-space. Our steerabilty metrics compare user requests (z∗ − z0) to the
LLM’s goal-space movement (ẑ− z0). Thus, we propose the following definition:

Steerability(LLM,D) ≜ E
z0,z

∗∼D

[
(z∗ − z0)

⊤(ẑ− z0)

∥z∗ − z0∥22

]
. (1)

We assume ẑ is a deterministic function of z0 and z∗ (e.g., a prompt based on z∗ plus source text
corresponding to z0). Eq. 1 defines steerability as the magnitude of the vector projection of the
LLM’s goal-space movement (ẑ − z0)) onto the user request vector (z∗ − z0), normalized by the
magnitude of the request vector (∥z∗ − z0∥2). In other words, steerability quantifies the LLM’s
progress in goal-space as a proportion of the user’s request vector. Thus, a value of 1 is necessary
for steerability (i.e., the projection of ẑ − z0 onto z∗ − z0 is simply z∗ − z0). This definition also
suggests that a steerable LLM should output text that “aligns” with the user’s request in goal-space,
and transforms the source text by an appropriate amount. We can decompose our steerability metric
in terms of these two desiderata:

Sensitivity(LLM,D) ≜ E
z0,z

∗∼D

[
∥ẑ− z0∥2
∥z∗ − z0∥2

]
(2)

Directionality(LLM,D) ≜ E
z0,z

∗∼D

[
(z∗ − z0)

⊤(ẑ− z0)

∥z∗ − z0∥2∥ẑ− z0∥2

]
. (3)

Note that steerability (for a single example) is equal to the product of sensitivity and directionality.
Thus, for a model to be steerable by definition, it needs to be close to 1 for both metrics. Intuitively,
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if ∥z∗−z0∥2 < ∥ẑ−z0∥2, the LLM is may be “overshooting”: if the angle between ∥z∗−z0∥2 and
∥ẑ− z0∥2 is small, the LLM may be exaggerating desired changes to text. Note that ∥z∗ − z0∥2 >
∥ẑ− z0∥2 implies the opposite. A large angle between z∗− z0 and ẑ− z0 may signal “side-effects”
in requesting a goal, such that asking for changes in certain goals induces changes in unrelated goals.
We summarize our steerability metrics in Figure 1.

Note that we define steerability in terms of z0 (Eq. 1): steerability for source texts in a small subset
of goal-space does not imply general steerability for all source texts. An input-agnostic definition
of steerability (e.g., Ez∗ [∥z∗ − ẑ∥2]) could fail to capture steerability across goal-space. Our two-
metric view of steerability (Eq. 2 & 3) also allows us to disaggregate different steerability failures
with respect to LLM inputs.

2.2 IMPLEMENTING A STEERABILITY PROBE

We design a steerability probe following our framework. We begin with a seed set of source texts,
from which we define a set of goal dimensions and measurement methods. We then sample a diverse
dataset D of starting goals (z0) and ending goals (z∗). This probe is held fixed and applied across
LLMs to compare steerability across models.

Sampling diverse texts. We concatenate subsets of four English-language datasets to collect
a diverse seed set of source texts: CNN/Dailymail (N = 1220, See et al. (2017)), BookSum
(N = 2133, Kryściński et al. (2021)), Reddit TIFU (N = 2991, Kim et al. (2018)), and SCROLLS
(SummScreenFD only, N = 338, Shaham et al. (2022)). These datasets encompass expository
(CNN/Dailymail, SCROLLS), narrative (Reddit TIFU), and creative writing (BookSum), as well as
formal (CNN/Dailymail, SCROLLS, BookSum) and colloquial (Reddit TIFU, BookSum) English.

Defining dimensions of goal-space. We aim to sample a diverse set of texts in goal-space. To map
texts to goal-space, we choose a set of goal dimensions, and use existing models and metrics that map
strings to scalars. This yields a vector-based representation of an arbitrary text. Leveraging existing
models and metrics to compute goal-space mappings means that goal-space mappings are computed
identically for all LLMs, and do not require knowledge of the underlying LLM parameters.

As goal-dimensions, we select reading difficulty (Flesch-Kincaid grade level; Kincaid et al. (1975)),
text diversity (Median Lexical Text Diversity; Jarvis & Hashimoto (2021)), text length (word count),
six different tones corresponding to different emotions (via a sentiment classifier; Hartmann (2022)),
and politeness (via a weighted sum of politeness strategies; Danescu-Niculescu-Mizil et al. (2013)).
We also measure (but do not manipulate) six aspects of toxicity as measured by the Detoxify
model (Hanu & Unitary team, 2020). Scores for the six emotions, toxicity aspects, and politeness
were computed by sentence, then averaged. This yields 10 requestable goals and 6 toxicity-related
goals. We use these models and metrics to map all texts to goal-space.

To produce a diverse sample of texts, we normalize all goal dimension via linear scaling such that
the middle 95% of values observed in our seed set of texts maps to [0, 1]. We compute uniform
sampling weights for the 10 non-toxicity related goal dimensions via classifier-based density ratio
estimation (Bickel et al., 2007). Further dataset processing details are in Appendix A.1.

Sampling user goal vectors. User goal vectors are 10-dimensional vectors in [0, 1]10, with each
dimension corresponding to our 10 requestable goals. To create goal vectors, we randomly choose
3 goal dimensions for each text and sample target goal values z∗i (ith component of z∗) as follows:

z∗i := z0,i +∆i; ∆i ∼ U([max{−z0,i,−0.7},−0.1] ∪ [0.1,min{0.7, 1− z0,i}]) (4)

where z0,i is the ith component of z0, i.e., we sample target goal to lie between 0.1 and 0.7 in
absolute distance to the original value (z0,i). We set ∆i = 0 in goal dimensions not chosen for
modificiation. The min and max clip z∗i to the range [0, 1]. We sample 40 goal vectors per text in a
sample of 50 source texts for a total of 2000 (text, goal) tuples.

To convert z∗ into natural language prompts, we use a template-based prompt that asks for “slightly
more (less)”, “more (less)”, or “much more (less)” of each goal dimension (examples in Ap-
pendix A.2). We also conduct a sensitivity analysis of prompting with a more granular prompt
(specifying changes on a 1-10 scale; Appendix B.2).
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Figure 2: Steerability (left), sensitivity (middle) and directionality (right) histograms for GPT (yel-
low), Mistral (green), and Llama (blue) model families. Vertical dashed lines indicates means for
each model. Pink dotted line indicates optimal values. Scos : cosine similarity.

Our empirical steerability probe allows us to test a variety of hypotheses on whether LLM charac-
teristics or design choices affect steerability. As a representative example, consider the impact of
model size on steerability. Some evaluations find that larger models are better instruction-followers
(e.g., Chatbot Arena ELO, MT-Bench score (Zheng et al., 2023)), suggesting that larger models
could be more responsive to user requests.1 Concurrent work in prompt engineering finds that larger
models are less sensitive to prompt paraphrases (Schnabel & Neville, 2024), implying the opposite.
Our probe provides a means to investigate whether larger models are more or less steerable.

3 ARE LARGER MODELS MORE STEERABLE?

Experimental setup. To evaluate whether larger models are more steerable, we compare smaller
versions of models with larger versions in three model families: GPT-3.5 vs. -4 turbo (unknown
changes; Achiam et al. (2023)), Mistral/Mixtral (non-mixture model vs. mixture-of-experts; Jiang
et al. (2023; 2024)), and Llama3 (8B vs. 70B; Dubey et al. (2024)). We assume that GPT-4 is larger
than GPT-3.5.2 The sampling temperature is set to 0. As a quality check, we manually examine a
subset of generated LLM outputs to ensure that the request was handled correctly (Appendix A.4).

3.1 BIGGER MODELS ARE NOT ALWAYS MORE STEERABLE

Our results indicate a negligible relationship between model size and steerability metrics, suggesting
that larger models are not always more steerable. Figure 2 shows histograms of steerability metrics
for GPT (3.5 vs. 4, in yellow), Llama 3 (8B vs. 70B, in blue), and Mistral (7B vs. 8x7B/mixture
of experts, in green).3 The high overlap between histograms across all models suggests that the
models evaluated exhibit similar levels of steerability, including models of different size/generation
within the same family. The standard deviation (SD) of all metrics is also large (e.g., for GPT-4,
SD(steerability) = 0.47, SD(sensitivity) = 0.92, SD(directionality) = 0.27). All models evaluated
have steerability lower than 1, which is attributable to low directionality: the mean directionality
for models evaluated ranges from 0.22 (Mixtral) to 0.33 (Llama3-70B). However, mean sensitivity
exceeds 1 for all models, suggesting that models potentially “overshoot” in goal-space.

Differences in steerability are also larger between families of LLMs than within LLM families.
GPT-3.5 and 4 have mean steerability values of 0.37 and 0.41 (difference: 0.04), respectively, while
Llama-8B and -70B obtain values of 0.55 and 0.58 (difference: 0.03), respectively. Yet the direc-
tional awareness gap between the Llama and GPT model families is 0.14, which is 3.5× to 4.7×
larger than the within-family directional awareness gap. Similar trends hold for sensitivity and di-
rectionality. Thus, factors other than model size may be responsible for the variation (albeit small)
in steerability across models in our steerability probe.

1See https://lmarena.ai/?leaderboard, under “Full Leaderboard.”
2We refer to GPT-4 turbo as “GPT-4.” While some sources have reported parameter counts of order ∼1010

to 1011 for GPT-3.5 and of order ∼1011 to 1014 for GPT-4, we were unable to independently corroborate these
figures from publicly-available, peer-reviewed sources.

3We provide a version of Figure 2 disaggregated by model family in Appendix B.1.
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Figure 3: Adjusted cross-correlation (ρ) between requested movement (vertical axis) and observed
movement (horizontal axes) across goal dimensions, divided by non toxicity-related (left) and
toxicity-related (right) dimensions. Negative (positive) correlations in blue (red); darker shades
denote larger-magnitude correlations. “*” denotes statistical significance (α = 0.05 with Bonfer-
roni correction; n = 160).
Ultimately, our probe demonstrates that larger models are not necessarily more steerable. In partic-
ular, the small gaps in steerability metrics across different model generations within the same family
suggest updates to LLM development (e.g., model pre-training/fine-tuning and RLHF techniques)
may not map to improvements in steerability.

3.2 LLMS MOVE IN EXTRANEOUS DIRECTIONS IN GOAL-SPACE

Requesting goals comes with side-effects. We hypothesize that, since our prompts only specify a
subset of possible goals, the prompt is implicitly underspecified. Thus, we may observe extraneous
correlations between requested movement in goal-space and movement in other goals: a side-effect
of requesting a particular goal. Such behavior could potentially yield LLMs with high sensitivity,
yet poor directionality, as previously observed.

To investigate side-effects, we compute the adjusted Pearson cross-correlation between requested
goals and measured goals. Since the goal-space mapping of a source text potentially leaks infor-
mation about the target goal z∗ (e.g., a text in an extremal region of goal-space has less “range of
movement” than a less-extreme text), an unadjusted cross-correlation metric could overestimate the
effect of requested goals on goal-space movement. We correct for this by subtracting the cross-
correlation between goals observed under an uninformative prompt, which we further discuss in
Appendix A.3.

Figure 3 shows the adjusted Pearson cross-correlation (ρ) between requested vs. observed goal-
space movement for GPT-4. Off-diagonal elements significantly larger than zero are potential side-
effects. While some correlations are expected (e.g., increasing verbosity is associated with greater
reading difficulty, ρ = 0.45), others may not always be desirable. For example, increasing sadness
is associated with greater fear (ρ = 0.26), while greater politeness is associated with greater reading
difficulty (ρ = 0.35). Similar correlations persist in other models (Appendix B).

Note that seven of ten diagonal elements of the adjusted cross-correlation matrix are significantly
larger than zero. A larger-than zero adjusted correlation signifies that, compared to an uninformative
prompting strategy, requests to change a particular goal are more positively correlated with move-
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ment in the same goal. In other words, LLMs appear to successfully follow most instructions when
requested, consistent with empirical evidence of their strong instruction-following abilities.

Are side-effects features or bugs? Our results suggest that the non-steerability of LLMs is not
due to poor instruction-following or sensitivity to model inputs, but a previously-undocumented
phenomenon: side-effects. These changes could be appropriate: for example, inverse correlations
between politeness and disgust (ρ = −0.24, Figure 3) in the tone of a text are subjectively suitable.

Yet other side effects do not reflect semantically inherent relationships. Fear and sadness, while
negative in sentiment, are not equivalent. Similarly, politer text is not always harder to read. Such
correlations could be a function of the pre-training data: e.g., perhaps politness varies with formality
in the training data, both of which correlate with increased reading difficulty. However, a steerable
model should be able to independently manipulate each textual aspect even given such dataset bi-
ases. In safety-critical settings, understanding and controlling side-effects is critical to evaluating the
feasibility of LLM usage. Our findings motivate future study on the prevalence and (un)desirability
of side effects in LLM behavior, and strategies for controlling undesirable side effects.

4 RELATED WORK

Steerability in LLMs and generative models. Many interventions for LLM steerability directly
update model weights, such as activation steering (Turner et al., 2023; Rimsky et al., 2023; Ko-
nen et al., 2024), mono-semantic feature scaling (Templeton, 2024), or model-guided genera-
tion (Dathathri et al., 2020; Khalifa et al., 2021), which elicits pre-specified changes in text aspects
during generation. Others leverage prompting, e.g., instance-specific hints (Li et al., 2024b), global
control codes (Keskar et al., 2019) and persona-based prompting (Li et al., 2024a; Liu et al., 2024a),
which aim to align LLMs with pre-specified constraints or goals. While these methods aim to im-
prove steerability, in contrast, we focus on first developing a principled framework for quantifying
steerability. Sorensen et al. (2024) also propose a definition of “pluralistic steerable models,” which
is closest to our definition of steerability. We highlight that our steerability probe is one of the first
practical instances of a “trade-off steerable benchmark” as proposed in their position paper.

We acknowledge that discourse on controllable generative models predates LLMs: the steerability
of latent factors (Jahanian et al., 2020; Spingarn-Eliezer et al., 2021) and disentangled representa-
tion learning (Higgins et al., 2018; Locatello et al., 2019) are well-studied in generative adversarial
networks, and more recently in large text+image models (Liu et al., 2022; Gavrikov et al., 2024)
and graph generators (i.e., molecule editing; Liu et al. (2024c); Du et al. (2022)). Latent factors
are similar to our notion of goals, and framing disentangled representations Higgins et al. (2018) as
independently manipulable subspaces (i.e., goals) is reminiscent of our notion of side-effects. Our
framework is potentially applicable to assessing the steerability of generative models beyond LLMs.

Multi goal/objective-aware text generation. Past works concerning LLM alignment to-
wards multiple potentially-competing objectives or goals have proposed model-aggregation ap-
proaches (Rame et al., 2024; Jang et al., 2023) and RLHF variants with multi-goal rewards (Dong
et al., 2023; Wang et al., 2024). The multi-goal objective function used by Wang et al. (2024) is
closest to our definition of steerability, which also uses a vector-based model of user preferences
based on attribute dimensions. However, rather than anchoring to the text generation process, we
design a general probe for measuring and comparing out-of-the-box steerability in existing LLMs.

Understanding and probing LLM in-context behavior. Behavioral probes for LLMs include
mechanistic interpretability approaches (Bricken et al., 2023; Templeton, 2024), which leverage
sparse coding to extract interpretable dimensions of LLM behavior from model parameters. Other
works explore trade-offs in LLM behavior, such as helpfulness vs. harmfulness (Liu et al., 2024b),
or alignment with political biases in the United States (Liu et al., 2024a). Steerability can be seen as
a case of pluralistic alignment in-context, for which we contribute an empirical probe.
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5 CONCLUSION

Our empirical results suggest that current LLMs are not steerable. Although the results highlight
ample room for improvement in steerability, our findings do not contradict that LLMs are power-
ful instruction-followers. Rather, our work highlights steerability as an independently important
criterion for LLM evaluation. We highlight possible directions for future work. Our steerability
probe can be applied to evaluate how other design choices in LLM development, such as aspects of
LLM pre-training, RLHF, or changes in decoding parameters (such as the sampling temperature),
affect steerability. Assessing existing steerability interventions via our probe could also contextu-
alize progress in controllable LLMs. On the theoretical side, analyzing steerability could surface
measurable prerequisites for steerability and how they intersect with existing approaches to pre-
training/fine-tuning and alignment (i.e., RLHF). Ultimately, our work lays a systematic foundation
for quantitative steerability evaluation.
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A EXPERIMENTAL IMPLEMENTATION DETAILS

A.1 DATA PRE-PROCESSING

For all datasets, NLTK is used for all word/sentence counting capabilities. All source texts with over
2048 words are dropped. We further describe data extraction steps for each constitutent dataset in
our analysis:

• CNN/Dailymail: We take the validation split of version 3.0.0 and use the article col-
umn as the source text. We use the first 1220 examples in the dataset.

• BookSum: We take the validation split and use the chapter column as the source text
and randomly sample 300 book chapters. To avoid duplicate source texts, we use only
sources with a corresponding summary from Sparknotes (out of multiple possible summary
providers). We chunk each text into a maximum of 30-sentence blocks, creating multiple
source texts per book chapter.

• Reddit TIFU: We take the train split and sample 3000 posts (before dropping for length),
using the documents column as the source text. We add periods to paragraph endings
(word characters followed directly by newlines) to break up sentences without changing
the semantics.

• SCROLLS (SummScreenFD): We take the summ screen fd subset of SCROLLS,
which features summaries of TV episodes based on scripts, using the output column
as the source text.

The above process results in four subsets of each dataset, which are concatenated to create our initial
seed set of texts.
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A.2 PROMPT ENGINEERING

Direct templated-based prompt design. Recall that, as per our framing, prompts are textual sam-
ples from a distribution conditional on ∆(i). As a starting point, we construct simple template-based
prompts to instruct the LLM to rewrite text to modify three goals, which we call the “direct prompt-
ing strategy.” The text follows the template:

Please rewrite the following, but make it [GOAL 1],
[GOAL 2], and [GOAL 3]. Provide only the rewritten
text and do not explain your response.

The suffix following the goals (i.e., “provide only the rewritten text...”) is appended to minimize
explanatory prefixes in the LLM response (e.g., “Sure! Here’s a rewritten version of your text:”),
which may introduce noise in the goal evaluation.

To fill in [GOAL #], we define “positive adjectival” and “negative adjectival” phrases for each goal
as described in Table 1. The positive adjectival phrase is used for ∆(i) > 0, while the negative phrase
is used for ∆(i) < 0. We further apply “modifiers” to each phrase depending on the magnitude of
∆(i) as follows:

• If |∆(i)| ≤ 0.2: add “slightly” (e.g., more/less→ slightly more/less)

• If 0.2 < |∆(i)| ≤ 0.5: keep as is

• If |∆(i)| ≥ 0.5: add “much” (e.g., more/less→ much more/less)

Goal Pos. Adj. Phrase Neg. Adj. Phrase
Reading level harder to read easier to read

Politeness more polite less polite
Anger angrier less angry

Disgust sound more disgusted sound less disgusted
Fear more fearful-sounding less fearful-sounding
Joy happier less happy

Sadness sadder less sad
Surprise sound more surprised sound less surprised

Text diversity use more diverse language use less diverse language
Text length more verbose more concise

Table 1: Initial “positive” and “negative adjectival” phrases for template-based prompting. Positive
(negative) means that the prompt should request an increase (decrease) in the aspect of interest.

Lastly, we shuffle the ordering of the goals to mitigate recency and primacy biases in the prompt
design. As an example, we show one randomly-generated template-based prompt:

Please rewrite the following, but make it sound more
surprised, much sadder, and much more rude. Respond
with only the rewritten text and do not explain your
response.

The ∆(i) values for the above prompt were surprise: 0.250, sadness: 0.645, politeness: -
0.532, all other aspects: 0. As a final quality check, we visually inspect a sample of the LLM outputs
for each model to ensure that the generations make meaningful attempts to follow the instructions
(i.e., the LLM attempts to rewrite the text and does not refuse to do so).

A.3 ADJUSTED PEARSON CROSS-CORRELATION

Here, we motivate and describe our adjusted cross-correlation metric. Let z∗i be the ith component
of some target goal z∗, and ẑj be the jth component of the vector of observed movement in goal-
space. To investigate the impact of side-effects, or cases where requesting one goal leads to changes
in another goal, we could consider measuring the cross-correlation between requested goals and
observed goal-space movement, or ρ(z∗i , ẑj).

11



Presented as a workshop paper at NeurIPS SafeGenAI 2024

A
ng

er

D
is

gu
st

Te
xt

 d
iv

er
si

ty

Fe
ar

Jo
y

Po
lit

en
es

s

Re
ad

in
g 

di
ffi

cu
lty

Sa
dn

es
s

Su
rp

ri
se

Ve
rb

os
ity

Id
en

tit
y 

at
ta

ck

In
su

lt

O
bs

ce
ni

ty

Se
ve

re
 to

xi
ci

ty

Th
re

at

To
xi

ci
ty

Observed movement

Anger

Disgust

Text diversity

Fear

Joy

Politeness

Reading difficulty

Sadness

Surprise

Verbosity

Re
qu

es
te

d 
m

ov
em

en
t

0.31* -0.23*-0.16*-0.20* 0.18* 0.10 0.01 -0.03 -0.08 -0.07 0.16* 0.32* 0.43* 0.41* 0.18* 0.41*

-0.19* 0.26* 0.04 0.17* -0.15 -0.09 0.14 -0.08 -0.08 0.01 -0.03 -0.06 -0.21*-0.17* -0.08 -0.15*

-0.32* 0.31* 0.39* 0.23* -0.31* 0.08 -0.10 -0.17* -0.09 0.12 -0.14 -0.31*-0.33*-0.32* -0.13 -0.34*

-0.07 0.16* 0.13 0.14 -0.14 0.05 -0.02 -0.16* -0.06 0.15* -0.10 -0.19*-0.21*-0.16* 0.05 -0.19*

0.23* -0.23*-0.30* 0.02 0.19* 0.00 0.21* 0.21* 0.11 -0.23* 0.08 0.17* 0.17* 0.22* -0.09 0.14

0.15 -0.27*-0.15* -0.11 0.24* 0.28* -0.02 0.19* 0.18* -0.23* -0.02 0.20* 0.23* 0.22* -0.02 0.19*

0.02 -0.02 -0.06 0.26* -0.12 -0.02 0.31* -0.06 0.09 0.24* -0.13 -0.13 -0.14 -0.14 -0.07 -0.15

-0.07 -0.02 0.10 -0.19* 0.16* 0.00 -0.09 0.19* -0.07 -0.20* -0.08 -0.09 0.00 -0.07 -0.08 0.02

0.00 -0.24*-0.15* -0.04 0.16* -0.08 0.10 0.05 0.38* -0.18* 0.06 0.13 0.07 0.02 -0.06 0.09

-0.13 0.17* 0.10 0.09 -0.22* -0.08 -0.09 -0.09 -0.02 0.59* 0.13 -0.03 -0.13 -0.04 0.18* -0.17*

Regular goals                                                            Toxicity

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

C
orrelation coefficient

GPT-4 + Underspec.,  Goal Cross-Correlation Matrix (Pearson's r)

Figure 4: Naive cross-correlation matrix between requested goals and observed goal-space move-
ment (ρ(z∗i , ẑj)) before adjustment, vague/uninformative prompting strategy. “*” denotes statistical
significance at α = 0.05, with a Bonferroni correction for multiple hypotheses (n = 160).

However, without adjustment, there exists a “feasibility bias” in goal-space: the space of reachable
target goals z∗ is not invariant to z0, or the goal-space mapping of the source text.

Why is an adjustment required? Consider, for the sake of example, a simplified goal-space
[0, 1]2, and a source text with goal-space mapping z0 = [0.01, 0.01]. Note that this text lies near
a “corner” of goal-space. Yet we know that z∗ must lie in [0, 1]2. Suppose that z∗ = [0.5, 0.01],
and make the simplifying assumption that a random rewrite is equivalent to randomly adding some
noise to z∗. Then a randomly-selected ẑ is more likely to increase the first dimension of z0 than the
second dimension, which is desirable as per z∗.

Thus, the presence of z0 in extremal regions of goal-space could potentially inflate the cross-
correlation artificially. Hence, there is an implicit dependence between z0 and z∗, while we are
interested in capturing the dependence between z∗ and ẑ. When we measure ρ(z∗i , ẑj) naively, we
risk capturing these two entangled effects.

Computing adjusted cross-correlation using uninformative prompts. The mechanism of cor-
relation inflation is due to the dependence between z0 and z∗. Thus, if we can measure the strength
of this correlation, we could subtract it from naive measurements of ρ(z∗i , ẑj) to obtain an adjusted
cross-correlation. To do so, we run a parallel steerability probe in which we replace our direct
template-based prompt with a vague, uninformative prompt (e.g., “Please rewrite this text with a
few improvements.”), leaving all other aspects of the steerability probe identical (i.e., same source
texts and user request vectors). The rewriting task with the uninformative prompt is intended to
capture the inherent dependence between z0 and z∗.

Formally, let ρvague(z∗i , ẑj) be the observed cross-correlation between the sampled z∗i and observed
goal-space movement ẑj . Then, the adjusted cross-correlation ρ̃(z∗i , ẑj) is defined as

ρ̃(z∗i , ẑj) ≜ ρ(z∗i , ẑj)− ρvague(z
∗
i , ẑj). (5)

Empirically, under an uninformative prompting strategy, we verify that cross-correlations may be
artificially inflated (Figure 4), further justifying the adjustment.
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Note that a potential alternative to adjusted cross-correlation is to filter out z0 that lie in extremal
regions of goal-space before computing cross-correlation. However, due to the curse of dimension-
ality, a large proportion of texts would be filtered out under such a strategy: if we filter out points
with any dimension less than ε in d-dimensional space, we would only be able to keep (1 − ε)d

points. For our steerability probe (n = 2000, d = 10), if ε = 0.1, only ≈ 34.9% (n ≈ 697) texts
would be non-extremal in a perfectly uniform sample.

Calculating statistical significance for differences in ρ. To determine statistical significance for
ρ(·), in general, Fisher’s z-transformation is used as a variance-stabilizing transformation to ensure
that the distribution of ρ(·) is asymptotically normal, with constant variance across values of ρ. In
particular, for bivariate normal z∗i , ẑj , ρ is asymptotically distributed as N ( 12 ln(

1+ρ
1−ρ ),

1
N−3 ), where

N is the sample size used for computing ρ. Thus, ρ̃ has asymptotic variance 2
N−3 , and a standard

normal CDF can be used to compute p-values for the resultant correlation coefficients.

A.4 CHECKING GROUNDEDNESS

As another quality check on the generated outputs, we conduct a fuzzy grounded-ness check to
ensure that the generated outputs stay reasonably on-topic with respect to the source text (i.e.,
given “make the text angrier,” the LLM does not simply produce unrelated angry sentences). A
natural starting point is automated machine translation evaluation metrics such as the METEOR
score (Banerjee & Lavie, 2005), since it accounts for both precision (parts of the generated text
should overlap with the source text) and recall (parts of the source text should match the generated
text). We base our metric on METEOR since it allows for fuzzy matching (full credit for using
synonyms) and accounts for alignment between texts.

METEOR-based groundedness evaluation. For our purposes, we compute METEOR with only
noun tokens (including proper nouns and pronouns), and weigh precision equally to recall. The
restriction to nouns implicitly encodes our assumption that an ordered list of nouns is a sufficient
statistic for the general topic and sequence of events in a text, while allowing for rewrites of the text
to significantly change the underlying prose (e.g., choice of adverbs and adjectives used).

Denote our modified meteor score as M : S × S → [0, 1]. Intuitively, the distribution of METEOR
scores between source text and their rewritten versions should differ significantly from the distri-
bution of METEOR scores between source text and randomly-selected generated text (excluding
rewritten versions). Thus, for each source text, we can compute the relative likelihood that each
text was a rewritten version of the source text, rather than a randomly-selected example, using any
probabilistic binary classification approach:

Groundedness(s, ŝ) =
P̂ (M(̂s, s) | C = 1)

P̂ (M(̂s, s) | C = 0)
=

P̂ (C = 1 | M(̂s, s))

P̂ (C = 0 | M(̂s, s))
· α (6)

where C = 1 is the class of rewritten versions of s, and C = 0 is the class of all other generated
texts, and α = P (C = 0)/P (C = 1) is a normalization constant. Note that a groundedness value
greater than one indicates that the generated text was more likely to have come from the distribution
of rewritten text than the distribution of all other text, and vice versa.

All generated text that are more likely to be generated by the distribution of randomly-selected text
than the distribution of rewritten text (as determined by statistical distance in METEOR score space)
are manually reviewed.

Limitations. Note that this is not a hallucination detector. Rather, high values of groundedness
mean that the generated outputs are likely to be on-topic, while low values mean that the generated
outputs are potentially off-topic. Thus, our metric allows for hallucination. Second, this formulation
assumes that we are using the LLM for a text rewriting task, such that there exists an expectation of
groundedness/textual similarity pre- and post- LLM call.

Implementation details. We use Spacy’s EN CORE WEB SM pipeline as a part-of-speech tagger,
entity recognizer, and tokenizer. We use NLTK’s implementation of the METEOR score.

13



Presented as a workshop paper at NeurIPS SafeGenAI 2024

Model # of prompting failures (n = 2000)

GPT-3.5 1
GPT-4-turbo 0
Llama3-8B 4

Llama3-70B 0
Mistral-7B 0

Mixtral-8x7B 34

Table 2: Number of prompting/groundedness failures for each model (e.g., refusals, truncated com-
pletions).
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Figure 5: Sensitivity (left) and directionality (right) for GPT-3.5 (lighter) vs. GPT-4 turbo (darker).

Statistics on prompting/groundedness failures. We report the number of prompt-
ing/groundedness failures for each model evaluated in Table 2.

B ADDITIONAL EMPIRICAL RESULTS

B.1 STEERABILITY METRICS BY MODEL FAMILY

For clarity, we replot Figure 2, separated by model family:

• GPT family: Figure 5
• Mistral family: Figure 6
• Llama family: Figure 7

B.2 ARE THE SELECTED PROMPTS TOO VAGUE?

As a secondary analysis of prompting, we evaluate our steerability metrics with respect to a more
granular prompting strategy, in which models are instructed to change texts on a ten point scale
(rather than “much/slightly/[no modifier]” + “more/less”). An example prompt (adapted from Ap-
pendix A.2) is

Please rewrite the following. Assume that each
aspect of the text lies on a 10 point scale, where
1 represents the lowest possible level of that aspect,
while 10 represents the highest possible level.
Adjust the given aspects as follows:

- Increase the level of surprise of the text by 4
levels.
- Increase the level of sadness by 6 levels.
- Decrease the level of politeness by 5 levels.

Respond with only the rewritten text and do not
explain your response.
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Figure 6: Sensitivity (left) and directionality (right) for Mistral (lighter) vs. Mixtral (darker).
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Figure 7: Sensitivity (left) and directionality (right) for Llama3-8B (lighter) vs. Llama3-70B
(darker).

In summary, the more granular prompt has essentially no effect on directionality, but slightly de-
creases sensitivity for the Llama and GPT model families. Ultimately, the finding that LLMs tend
to overshoot in goal-space still holds true.

For convenience, we provide links to the result figures here:

• GPT-4: Figure 8
• Llama3-70B: Figure 9
• Mixtral: Figure 10

B.3 CROSS-CORRELATION BETWEEN GOALS FOR ALL MODELS

Here, we show side-effect plots (cross-correlation) for the other models in our evaluation, verifying
that trends are similar. For convenience, we provide links here:

• GPT-3.5: Figure 11
• GPT-4: See body, Figure 3
• Llama3-8B: Figure 12
• Llama3-70B: Figure 13
• Mistral: Figure 14
• Mixtral: Figure 15
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Figure 8: Sensitivity (left) and directionality (right) for GPT-4 turbo, comparing the template-based
direct prompt (golden; Appendix A.2) and a more granular prompt based on a 1-10 scale (yellow-
green).
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Figure 9: Sensitivity (left) and directionality (right) for Llama3-70B, comparing the template-based
direct prompt (blue; Appendix A.2) and a more granular prompt based on a 1-10 scale (purple).
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Figure 10: Sensitivity (left) and directionality (right) for Mixtral-8x7B, comparing the template-
based direct prompt (green; Appendix A.2) and a more granular prompt based on a 1-10 scale
(turquoise).
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Figure 11: Adjusted cross-correlation matrix between requested goals and observed goal-space
movement, GPT-3.5. “*” denotes statistical significance at α = 0.05, with a Bonferroni correc-
tion for multiple hypotheses (n = 160).

A
ng

er

D
is

gu
st

Te
xt

 d
iv

er
si

ty

Fe
ar

Jo
y

Po
lit

en
es

s

Re
ad

in
g 

di
ffi

cu
lty

Sa
dn

es
s

Su
rp

ri
se

Ve
rb

os
ity

Id
en

tit
y 

at
ta

ck

In
su

lt

O
bs

ce
ni

ty

Se
ve

re
 to

xi
ci

ty

Th
re

at

To
xi

ci
ty

Observed movement

Anger

Disgust

Text diversity

Fear

Joy

Politeness

Reading difficulty

Sadness

Surprise

Verbosity

Re
qu

es
te

d 
m

ov
em

en
t

0.26* 0.21* -0.02 -0.03 -0.29*-0.43*-0.20* -0.14 0.11 0.04 0.14 0.13 0.11 0.04 0.06 0.17

0.18 0.31* 0.06 -0.05 -0.25* -0.20 -0.08 0.02 0.01 0.04 0.15 0.16 0.06 0.03 0.10 0.21

0.10 -0.18 0.15 0.10 0.13 -0.04 0.35* 0.04 -0.13 0.13 0.02 0.02 0.03 0.02 -0.01 0.04

0.14 -0.01 -0.12 0.39* -0.25*-0.36* 0.16 0.02 -0.10 0.03 0.05 0.10 0.05 0.03 0.05 0.17

-0.12 -0.17 0.04 -0.33* 0.44* 0.23* -0.18 -0.33* 0.21* 0.07 -0.02 -0.07 -0.02 0.00 0.07 -0.07

-0.40*-0.21* -0.05 0.19 0.24* 0.29* 0.26* 0.09 -0.06 -0.03 -0.19 -0.43*-0.30* -0.11 -0.23*-0.56*

-0.04 -0.05 0.08 0.08 0.06 -0.08 0.26* 0.08 -0.15 0.15 0.03 0.11 0.03 0.02 -0.02 0.07

0.01 0.04 -0.16 0.31* -0.33*-0.21* 0.02 0.34* -0.17 0.04 0.05 0.05 -0.01 0.01 0.08 0.04

-0.01 0.03 0.06 -0.08 -0.07 -0.05 -0.07 -0.14 0.21* 0.09 -0.01 -0.04 -0.05 -0.02 0.06 -0.04

-0.15 -0.19 -0.01 0.33* 0.19 -0.04 0.66* -0.10 -0.03 0.23* -0.08 -0.09 -0.09 -0.05 -0.12 -0.13

Regular goals                                                            Toxicity

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

C
orrelation coefficient

Llama3-8B Adjusted Cross-Correlation across goals (Pearson's r)

Figure 12: Adjusted cross-correlation matrix between requested goals and observed goal-space
movement, Llama3-8B. “*” denotes statistical significance at α = 0.05, with a Bonferroni cor-
rection for multiple hypotheses (n = 160).
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Figure 13: Adjusted cross-correlation matrix between requested goals and observed goal-space
movement, Llama3-70B. “*” denotes statistical significance at α = 0.05, with a Bonferroni cor-
rection for multiple hypotheses (n = 160).
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Figure 14: Adjusted cross-correlation matrix between requested goals and observed goal-space
movement, Mistral-7B. “*” denotes statistical significance at α = 0.05, with a Bonferroni cor-
rection for multiple hypotheses (n = 160).
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Figure 15: Adjusted cross-correlation matrix between requested goals and observed goal-space
movement, Mistral-8x7B. “*” denotes statistical significance at α = 0.05, with a Bonferroni correc-
tion for multiple hypotheses (n = 160).
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