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ABSTRACT

Standard supervised learners attempt to learn a model from a labeled dataset.
Given a small set of labeled instances, and a pool of unlabeled instances, a bud-
geted learner can use its given budget to pay to acquire the labels of some unla-
beled instances, which it can then use to produce a model. Here, we explore bud-
geted learning in the context of survival datasets, which include (right) censored
instances, where we know only a lower bound ¢; on that instance’s time-to-event
t;. Here, that learner can pay to (partially) label a censored instance — e.g., to
acquire the actual time ¢; for an instance [e.g., go from (3yr, censor) to (7.2yr,
uncensored)], or other variants [eg, learn about 1 more year, so go from (3yr,
censor) to either (3.2yr, uncensored) or (4yr, censor)]. This serves as a model
of real world data collection, where follow-up with censored patients does not
always lead to uncensoring, and how much information is given to the learner
model during data collection is a function of the budget and the nature of the data
itself. Many fields — such as medicine, finance, and engineering — contain survival
datasets with a large number of censored instance, and also operate under budget
constraints with respect to the learning process, thus making it important to be
able to apply this budgeted learning approach. Despite this importance, very few
other projects have explored this. We provide both experimental and theoretical
results for how to apply state-of-the-art budgeted learning algorithms to survival
data and the respective limitations that exist in doing so. Our approach provides
bounds and time complexity asymptotically equivalent to standard active
learning method”" s . Moreover, empirical analysis on several survival
tasks show that our model performs better than other potential approaches on sev-
eral benchmarks.

1 INTRODUCTION

Often” -times the success of a model is more dependent on the data the model has access to than
the quality of the analysis itself. Data plays a large role in the bias, variance, speed of training, and
generalizability of the model (Domingos| 2012). However, many factors often come into play that

limit the data the model has access to. One such factor " exists—in the cost of obtaining diverse and
relevant data that is needed for the model to generalize effectively (Domingos| 2012). Some fields
such as medicine which depends on clinical trials can often diversity within

the datasets, as well as gathering instances can be costly. " We—wish-to-build

a method to select the most informative instances to learn about in medical and clinical settings
while taking the budget available into consideration. For example, if we have a dataset of 50 labeled
instances, and a budget to learn about 10 other instances (from a large pool of unlabeled instances),
we want to use the given 50 instances to identify the most informative 10.

Here, we want to extend these ideas to survival datasets — where the goal is a model that can predict
the “time to event” (typically death) for a novel instance. This resembles standard regression, except
the training dataset often includes censored data points, where the exact time to event is unknown.
Instead, these instances typically provide only a lower bound (right-censored) for the time to event.
For example, while a cancer study may attempt to follow patients until their death, some patients
may leave the study early, or may survive until the end of the study. Here, we would consider them
right censored as we do not have the true time of death. Censored data points can be incredibly
common in many settings, especially those involving clinical trials (Moghaddam et al.| [2022).
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Many researchers are uncertain " swhatte-do-wsithabout how to handle such data, meaning some will
just remove it. This is a serious issue in a field that needs to use as much data as it can get. Although
there are methods for learning models from such survival data, very few methods have been devel-
oped "leskinsatactivetearninsior active learning with survival data (Dedja et al., 2023), and so far
no method”s ha”sve been developed " l-(—K—)k—I—H“—cHl()l budgeted learning with survival data. That is
the focus of this work.

The field of Active Learning (AL) aims to identify the most important data to learn about (often to
obtain the labels " fs#0f) in order to acquire an effective model, at minimal cost (Ren et al., .
Its goal is to minimize the amount of data needed to reach a target accuracy while also enabling the
model to achieve higher accuracy as qurckly as possrble savrng time and compute (less compute is
needed to train the model " &5 because fewer samples are included

in the training data) (Ren et al| WE

AL has made significant strides as a field, yet its definition remains vague. Researchers often train
models until “convergence”, but this term lacks a clear definition, as it relies on arbitrary thresholds.
Typically, convergence is declared when the loss changes minimally (" by-as-epsilenc) over a certain
number of steps (patience) [2021). This imprecision arises because both € and patience
are heuristically chosen and can vary by task and model, resulting in an inconsistent understanding
of true convergence.

Budgeted Learning (BL) tackles this issue by selecting data instances within a budget to minimize
model loss, offering a more precise framework for active learning (Lizotte et al. [2003). Budgeted
learning attempts to choose the best instances for the model given a budget constraint. If all data
1nstances had the same cost and the task was to minimize the budget " see

ave-ALrather than working within a predefined one, we would essentially have

m

AL Budgeted learmng is more attuned to real world problems where a predefined budget is often
initially given prior to data collection. We show that once this problem is solved, one can easily also
account for real-world situations where data instances may potentially cost different amounts.

Traditional AL makes several assumptions that often don’t hold in real-world scenarios. We have
already noted that it does not account for prior budget constraints, operating under the premise that
the model can run until convergence. Another assumption is that when a data instance is selected
for learning, its true label is revealed—an assumption that doesn’t always apply in survival analysis.
If Alice is censored at time ¢t = 3 years, and you run an additional study to learn 1 more year about
Alice, her death may occur in that 1 year (e.g., uncensored at ¢ = 3.2), or she may be censored at
t = 4 years. AL often assumes that " fullinformationofthedabelthe full label information is provided
when querled Frnally, AL often assumes that 1f a data instance in the pool " deesnethave-theirtrue

: reatedzdoes not yet have its true label, it can still
be quu ied to rev cal the label. " rThrs is agam not the case in the real world. Imagine we are studying
Alice to track her time of death from cancer. If, during the study, she dies from an unrelated cause
— such as being hit by a bus — her time of death from cancer becomes unknown, and we are no
longer able to gather more information about her. In this case, Alice represents a censored 1nstance
that is also unqueryable (meanlng no further 1nf0rmat10n can be learned) U

also dlscuss h(m‘ to adapt our approach to handlc mtuatr()ns where dlttcrcnt instances have different

costs.

Significance of Settings: The settings explored in this work encompass a broad range of appli-
cations, showing the versatility of our method in handling various survival datasets, instance costs,
and scenarios with partial information. While we focus on the classical example of clinical trials,
where random right censoring is a common observational scheme and extending the study time may
not yield additional information, our approach is equally relevant to other domains. For instance, in
industrial reliability studies Ma & Survival (2008), “* where Type I or Type II censoring is frequently
employed, extending the study duration can reveal more events and improve insights. ** Addition-
ally, our method has potential applications in the financial sector|Gao & He|(2020), such as in credit
risk modeling or portfolio survival analysis, where understanding time-to-event data under cost con-
straints is critical.

Theoretical Results: ** [We have addressed our contributions formally below.] 1. We reduce the prob-

lem given to an instance of the maximum coverage problem by creating a modified version of the



Under review as a conference paper at ICLR 2025

BatchBALD (Kirsch et al 2019) we call B By, S0 that it works in surival settings and with partial
information. 2. We show the problem to be NP-Hard in nature but also " szevidepresent the known
greedy algorithm ”"%ha%’rvknown%ther ecognized as the optimal approximation algorithm unless

tion content possible, also shown in the BatchBALD paper. 3. Finally, we provide a new greedy
algorithm that " presidesachieves the same guaranteed lower bound even if the cost of acquiring data
instances ""are-net-all-thesameare not uniform. This is primarily done by extending the problem to

the budgeted maximum coverage problem.

Experimental Results: For the experimental results the work provides the following contributions:
1. we compose a series of algorithms to compete with ours in this setting. Since this setting has never
been done before to our knowledge, we needed to create other algorithms to test our method against™
them. The algorithms we created involve controls such as random and 3 “sanity-check” algorithms
which are benchmark strategies people might try within these settings. We also slightly " altermodify
BatchBald and two other well known AL algorithms to work within these settings. 2. we evaluate
our acquisition function against the rest on 3 real world survival datasets " «sianeprimarily using the
MAE-PO Wi evalution method, however we discuss and " shewpresent other metrics
in " the-Additional Data|B| 3. We demonstrate that our version of BatchBald " svhich-we-ealledrefered
to as BBgyyy performs significantly better than other methods in our settings.

2 RELATED WORK

2.1 BUDGETED LEARNING

Although a relatively new field, " there-are " e
nariesseveral studies have explored its appllumon in various scenarios ([Kapoor & Gremer[, a
|[Khan & Greiner, [2014). While these papers introduce the budgeted learning field and apply it to a
variety of tasks, none have applied budgeted learning to survival data where " they-casit is possible
to (partially) “decensor” the labels.

2.2 INCORPORATING ACTIVE LEARNING WITH SURVIVAL ANALYSIS

There are Very few Works in the 1ntersect10n of AL and surv1val analysrs Vrnzamurr etal. 2014 b

m:

- e ;employ a semi- parametrlc deep learmn0 model based on the Cox Proportlonal—
amlds framework, which restricts its apphcablhty to fewer dalasels Furthermore " HGHL—(#HLI[hL]
these papers, nor |[Nezhad et al|(2019)), " ace - e

labelsincorporate budget constraints or consider the muemental decensorm0 of labels.

IHiittel et al.l (]2024 R4 extends the BALD framework to right-censored data, whereas our work em-
ploys the more mathematically complex BatchBALD architecture. Additionally, our method adjusts
the BALD framework differently to incorporate budget constraints, incremental label updates, and
to handle survival analysis with non-uniform instance costs.

Finally, Dedja et al| (2023) " deespropose a AL "approach on survival data " asd-akse-hasthat in-

cludes a mechanism for 1ncrementally updatlng the label V1a an oracle However therr increments are
random" smeaning the
updated 1ntormatlon is not mtegra[ed into the acqumtlon strategy. Fmthermore their method "“dees
: their method is incompatible with
deep learning models as it 1elres on a random forest model Wthh has " mﬂﬂySl"HlllCdnl hmrtatrons
when scaling to larger datasets.” : onsider st st :
watqueAdditionally, they do not address scenarios where the costs of instances are unique.

3 FORMULATION OF THE PROBLEM

"In traditional AL schemes, the learner starts with some labeled instances and many unlabeled in-
stances, queries an oracle for label information about some instances, then repeats. Here we do not
need the process to repeat as we only query the Oracle one time and then evaluate the performance
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of the model. Furthermore we make important changes to the formulation of the traditional AL
problem to account for the survival data and incremental updates.

Given a dataset D = {x;, y!, y¢}" 1, © x; represents the covariates of the dataset, y! denotes the

event time for each data instance. and y; denotes the censored value for each instance. We can
divide this " sendemly-into a test and training set: Dyain = {Ta,i,¥% ;Y512 and Diey =

n—

{zB.,, thm Yp.i i:1L- Where L is the size of the training data. “*For the training data we fur-

ther censor the y4 ; values so we can see the effects of querying and thus the training data also

has censored times and event values (0 if censored and 1 if not), {cf, c¢}l ;. ®¢f . and y5 . now

represent what the Oracle knows while ¢! and ¢¢ represent what the learner is given. We can then

query the oracle, which will update ¢! and ¢ based on ¢’ ; and ¥ ;. © [changed the notation as

per R3 request; and also changed from data_train to L]. Thus the training dataset is actually split into
learn

oracle __ oot e L : : _ ot el
Dgracte = {(xAJ,ylLM,yA’i}i:1 which is what the oracle sees and D54 = {(xa,, ¢k, 5}

which is what the learner sees. From now on we will use Dy;.qip, to refer to Dlearm, 2

the notations more detailed to explicitly show what information the learner and the oracle see.]

[We have made

The i*"datapointcomeswithagivencostc; , where each data point has the same cost in the uniform
setting and can be different in the non-uniform setting. A budget B is provided for a query as well.
In a query, we can choose a batch of data instances via use of some acquisition function, which is
used to evaluate the value of a batch of instances, such that the sum of the costs of the instances
chosen is less than or equal to B.

We wish to find an acquisition function that within the confines of the budget tells us which data
instances we should “decensor”. But how we are allowed to “decensor” or gain information about
the data instances depends on how the information is gathered. If for example a study is done on
a queried instance, if the study is an **I [Changed the font of I, as requested] year study (for example,
I = 10 refers to a 10-year study) then you only learn I more years about the instance (so an instance
might go from being censored at 5 years, to being censored at § years). We consider this formulation
in our work. Notice that this is a generalization over traditional AL methods, which often allow one
to know the exact time of event after a query, which is equivalent to setting I = oco.

To define this notion of “decensoring” rigorously, we introduce an I-oracle with I € RT. In any
query, we can choose a batch B C Dy, For each element (z A yf4 It Y% 't cf4 It % j) C B, the

[ - — H t t —
[-oracle updates the values as follows: ¢y ; = min(c} ;+1,y% ;) and cf ;= (1C2yj:y2yj)*yj’j.

Now we wish to define the model that will be doing the learning in this protocol. We have a Bayesian
model M where the model parameters w follow the distribution p(w | Dyain). For a given data
point z and a classification outcome y € {1,...,t}, the model’s predictions are represented by
p(y | 2,w, Dyain). The dependence of w on Dy, signifies that the model has been trained on the
dataset Dy,in. ®*In survival analysis, time is often continuous but can be discretized into time bins
for this formulation. Many active learning algorithms rely on discrete labels, and using a large num-
ber of bins can effectively approximate continuous time. We found that this simplification yields
good results even without a large number of bins.

¥ Finally we will use the MAE-PO measure defined in [Q1 et al] (20234d). That paper compares this
metric against many others, to show that it is an effective metric closely related to the well-known
mean absolute error (MAE) metric in regression. We also evaluate using other more traditional
metrics as well, however as argued in|Qi et al.[(2023a)), the traditional metrics fail in their interoper-
ability and often provide a less useful evaluation of a survival model.

Initial Assumptions: We wish to make explicit here the exact assumptions we are making in this
formulation. " Assumptions 1 and 2 are assumptions novel to this problem, however assumption
3 is often made in survival settings. ® [As recommended we made our assumptions numbered]1. The
value of I does not change throughout. " This assumption is for simplifying purposes of the prob-
lem and experiments, however, our formulation does not demand this be true. 2. Instances can be
queried only once per query. Since the oracle may not give the full information in one query, it
does make sense to allow the querying of the same point multiple times. We decided to create this
assumption however to simplify the code and the experimental settings. However, the theoretical
work for generalizing over this assumption is shown in the Theoretical Analysis section[A] A final
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note about this assumption is that 1f ina medrcal settrng there isa follow up study, oftentrmes that
study s length cannot change " : o ~

el therelore, requestmg the same mstance twice in a s1ngle
query is illogical if only one follow-up study will be conducted. The appendix will discuss some
real world scenarios where this assumption does not hold, however for many medical situations, this
assumption is realistic " to-expeet. 3. The final assumption we have is that censoring is independent
of the features, and is done unrformly for each 1nstance Th1s is a common assumptron made in the
ﬁeld of survrval e ;

: 'However, efforts to generallze this assumpﬂon have been made, pro—
viding a promising direction for future research in this area (Qi et all 2023a). **This assumption
can also be observed in many real-life scenarios, for example, in clinical trials where patients drop
out of the study for reasons unrelated to their health condition or treatment efficacy. Such censoring
is independent of the features being analyzed, like age, gender, or baseline health metrics, allow-
ing the survival analysis to remain unbiased. Similarly, in reliability studies of mechanical systems,
censoring can occur when testing is stopped due to budget constraints or time limits rather than any
inherent property of the system.

4 OUR METHOD

4.1 UTILIZING BATCHBALD FOR MUTUAL INFORMATION ESTIMATION

The BatchBALD algorithm (Kirsch et all, [2019) is a state-of-the-art active learning (AL) method,
enabling the computation of mutual information between multiple data instances and model pa-
rameters. Mutual information, rooted in information theory, quantifies the amount of information
one random variable provides about another. It serves as a key metric for assessing uncertainty by
evaluating how much an observation reduces uncertainty about a model’s parameters.

[Hoffmann & Onnela] m demonstrate that in the limit, "

siskminimizing Lommonly

1<) 1)

used uncertzunty measures aligns with mutual 1n[ormaﬂon in 1edu01n<7 Bayesian risk. Thus, mutual

1nformat10n emerges asa crrtlcal metric for th1s framework Mo!ree#el—the—ﬂembﬂ—}ty—o#—th&l%&eh-

A.Moreover the Bateh—
BALD algor]thm 1S ﬂex1ble enouvh to adapt to survival analysls tasks This makes it a robust tool
for various assumptions and scenarios in budgeted learning and survival settings.

Kirsch et al (2019) define the BatchBALD acquisition function using mutual information as:
aBatehBALD({Z1:6}, P(W | Duain)) = (Y163 w|T1:6, Dirain), Where I represents the mutual in-
formation. Kirsch et al.[(2019)) further define mutual information between the model parameters and
a batch of b data instances as follows:

I(yl:b; W|l‘1;b, Dtrain) = H(yl:b|x1:b7 Dt’rain) - Ep(w|Dtrain,:61:b) [H<y1:b‘x1:ba w, Dtrain)] (1)

H (y1:6|%1:6, Dtrain) determines the information entropy of the labels of the batches given the fea-
tures and training data, while Ep | Dtrain,a..) [H (Y1:6]71:0, W, Dirain)] defines the expected labels
conditioned on the features, training data, and the model parameters.

Following Kirsch et al.| (2019) we choose also to not include conditioning on 1., and Dy,.q;y for
elegance, We can compute ““the right term as

1 bk

By [H(yralw)] = 23> H(yila;) ©)

i=1 j=1

R4 [We included equation numbers]

[Kirsch et al| (2019)"*provide a detailed discussion of this factorization, with a key underlying as-
sumption being that, when conditioned on w, the indices are treated as independent as their depen-
dencies are captured within the parameters. The final step of Equation 2 estimates the expectation by
taking k samples of the model parameters. The paper also shows that we can compute the “*rightleft
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term as: % [we simplified the formulas as we felt they were not integral to the result and the try to explain the
terms that do exist]

k k
1 . 1 PN
H(yp) ~ =Y z > p(drs|@y) | log Z > o)) (©)
j=1 =1

’glrb

sessarilyzero—The difference in averaglng between the left and nght terms of the mutual
1r1format10n means they only cancel out when the model outputs show minimal variation, indicating
high confidence and low information gain. When model uncertainty is high, the entropy of the model
(left term) increases, while the expected entropy of predictions (right term) decreases, leading to

higher mutual information (Kirsch et al.}, 2019).

m:

=3

- : e : . — — .ButehBALD was originally
deswned for elaw fication ms]\s with mutually exclusive elasses However, it can be applied to time-
series tasks by dividing time into exclusive bins as mentioned in the formulation of the problem,
which is a strategy utilized by the Multi-Task Logistic Regression (MTLR) model, a non-parametric
approach to survival analysis. " Eusthermore-BatchBALD™ also requires multiple predictions given
the same feature space, which needs a Bayesian model. Fortunately, [Q1 et al.| (2023b) provides a
Bayesian model that can give ensemble outputs that " &%fequﬂﬁed—cmd—beuln be tramed on surv1val
data. We use this model due to its s1mphclty and " the

suevivabdataits demonstrated strong performance on the datasets we tested. While other models could

be used instead, our work does not favor any particular one, as long as they are Bayesian, effective,
and compatible with survival data.

BatchBALD cannot be used in our settings without first accounting for the censored nature of the
instances, as well as the increment I of the oracle. In order to take these into account, we gen-
erate pyr;nq probabilities in section 5 which we can then use in place of p in equations 2 and 3.
We introduce our method, B Bg,,,, which defines a novel acquisition function, agg,,,,., k2 [We de-
fine aBBsurv originally here]. This function is constructed by adapting the BatchBALD acquisition
function to utilize the newly computed final probabilities.

4.2 MAXIMUM COVERAGE AND GENERALIZING OVER UNIFORM COSTS

Given the BatchBALD implementation mentioned already, we have a submodular (
2019) metric attached to each batch of instances. The problem is now "“#zabout choosing the batch
that " fits-within the budget thatmaximizes the " amountof thismetric " gathered while fitting within the
budget. The maximum coverage problem™ 44} is a combinatorial problem where you are given a
set of elements and a collection of subsets, and the goal is to pick a specified number of these subsets
so that the total number of distinct elements covered by the chosen subsets is maximized
[1999). The weighted maximum coverage problem extends this by associating a weight with
each element, and the objective is to select subsets such that the total weight of the covered elements
is maximized, rather than simply the count of covered elements. In the Theoretical Analysis sec-
tion[A] we further discuss these combinatorial problems and demonstrate that the budgeted learning
problem with " al-eostsbeinseguatuniform costs can be expressed as the weighted maximum cov-
erage problem. Similar reductions are done in other AL works as well (Yehuda et al [2022). The
budgeted maximum coverage problem further extends the weighted version by introducing a cost
constraint to each set. In this variant, each subset has an associated cost, and the goal is to select
subsets such that the total coverage is maximized while keeping the total cost within a given budget.

T" hus—the budgeted learning scenario where the costs are not " ﬂeeded%e%umform can reduce to
the budgeted maximum coverage problem. Fortunately, (Khuller et al.,[1999) " pro
troduces an alternative greedy algorithm that " manages-to-meet the-desiredachieves the same desirable
lower bound of (1 —1/¢) of the optimal solution as the original greedy algorithm. We show this new
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greedy method in Algorithm 2 in the Theoretical Analysis section[A]” [we mention it before Algorithm
1 but Algorithm 2 comes after... is this ok?].

The only problem here is that Algorithm 2 is very computationally expensive as it involves costly
operations in order to meet the theoretical bound. In the Theoretical Analysis section [A] we argue
that we can simplify and closely approximate Algorithm 2 for our settings by only considering the
information contained in the mutual information, to the ratio of the mutual information to the cost
of the batch. This simplification reduces the complixty from cubic to linear. " This-now-not-onby

: : o 5 b b /\llhouvh designed for non- unllmm instance
costs, the new greedy dlmnthm slmpl]he\ to the original greedy algorithm when costs are uniform,
making it applicable to both uniform and non-uniform settings. Therefore, we will be using this
algorithm for selecting the batch that attempt to maximize the mutual information metric. Section
4.1 discussed how to generate mutual information values in these settings using BBy, in this
section we discussed how we can use this mutual information along with a modified version of the
greedy algorithm from [Khuller et al.| (1999) to create an acquisition function to select a batch with
high mutual information with the model parameters. Algorithm 1 illustrates our novel adaptation
of the greedy algorlthm incorporating the proposed acquisition function, agg,,,,. T" hus+he time

complexity of app,,. is equlvalent to that of the BatchBALD acqu151t10n funct1on”’ —\‘vﬂ—l—)—dﬂ—&fkhﬂeﬂﬂ—l

surv

Algorithm 1 BBSurv (1 - 1/e-approximate algorithm)

Require: Budget B, queryable pool Dpool, model parameters p( w | Dtrain )
A+
costs < 0
while costs < B do
n + arg max(appsury( AU {z;}, p(w|Dtrain))/c; )

A+ Au{z,}
costs < costs + ¢,
end while
Output: acquisition batch A

AN A S N

5 ADIJUSTING FOR SURVIVAL DATA

As mentioned before, since the data we are using contains censored data, we cannot directly use
these formulations. We must first adjust the methods to account for the survival data. We can do this
simply by changing the Bayesian probabilities so that those below censored time are 0.

The models predictions are given by p(y | x,w, Dyain), for a data instance with a given set of
covariates = and for all y € {1, ...,¢}. If the instances censored time is ¢;, then p(y | «, w, Dirain) =
0 for all y less than ¢, and for all times greater than or equal to ¢, the probabilities are normalized
to get new probabilities called p..,s as follows:

o = Pylw) 4
pcens(y | ) ZEZCb p(z | w) ( )

‘We must also now account for the oracle and its increment’s impact on the amount of information we
gain. More specifically, the larger the increment, the more information we get from any given data
instance. If we consider two instances: Alice and Bob, lets say Alice dies 10 years from now, while
Bob dies 3 year from now, whether the increment is 1, 5, or 15 years gives far different amounts
of information to us about Alice, but gives the same amount of information to us about Bob. Thus
we must change the algorithms to account for this. We can adjust the Bayesian probabilities so
that, after the oracle-provided increment is applied, all bins beyond the instance’s new time bin are
treated as a single “after increment” bin. In other words, bins within the range of the increment
remain unchanged, but for the acquisition function, all bins outside this range contribute the same
level of information and should therefore be aggregated into a single event.
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More specifically, if we have an I-Oracle, the model’s predictions are given by peens(y | , w, Digain)s
for a given z and for all y € {1,...,c}. If X’s censored time is ¢, then the only relevant classes
of y for our acquisition function to consider are those classes within the increment I, all classes
outside this increment can be grouped as one class as the oracle provides no information about them.
Effectively for out method we only want BatchBALD to see the classes in the increment range, and
than one additional class which represents the cumulation of all classes outside that range. For the
sake of our acquisition function, this can easily in the code by creating a new probability p fnal
which is equal to pe,, for all y < ¢ + I, and equal to O for all y greater than than ¢} 4 I. Then we
can compile the rest into one bin:

c
t .
pﬁnal( cp + I | w ) = § pcens(.? | w) 5)
j:cng]I
R4 [doing this is just a convenience for the code of BBsurv. We could equivalently define a new class as the
cumulation of all classes outside the increment interval and set all other class probabilities outside the interval
to 0; note that would achieve the same effect.]

This may seem a bit counter intuitive, as grouping multiple probabilities into one bin seems almost
like we are losing information. But these methods should only take events that can occur in the next
query into account, as in our problem definition we are evaluating directly after the next query. Thus
taking events that are unknown even after the next query into account will yield less effective results
in this task. For all algorithms apart from our method B Bg,,;.,, We use the p..,,s probabilities rather
than pg,; this has not been done before in the AL literature and we wish to compare its affects
against controls that do not use it.

6 ALTERNATIVE ALGORITHMS

We have not found any existing method that addresses the niche area where budgeted active learning
(AL) is applied to censored data. An algorithm designed for this domain must account for the budget,
handle the increments provided by the oracle, and be compatible with deep learning models.

In this section, we discuss the methods used to benchmark against B Bs,y. Given the extensive
work on AL, we include two well-known algorithms from the AL domain and a third in the form of
BatchBALD, all of which are modified to handle censored data. Additionally, we incorporate three
algorithms as “sanity checks,” representing simple methods that are easy to test and conceptualize
in these scenarios. Finally, we include the random acquisition function as a control.

6.1 COMMON AL ALGORITHMS

Entropy Sampllng Entropy samphng is a well- estabhshed techmque in AL (Ren et al.,[2021])) that
focuses on s

¢ maximizing the 1nformat1on gain from newly labeled data by
targetmg instances where the model s predictive distribution has the highest entropy.

S
(y | 3’5 chens Yy==c¢ | 33) 10g2 pcens(y =G | .T) (6)
=1

where:

* S is the number of possible classes.

* Peens(y = ¢; | x) is the probability of the data point x being classified as ¢;.

"“FThe acquisition function then takes the instances with the largest entropy values until the budget
is used up. This method has two notable drawbacks from BatchBald; it does not take the Bayesian
nature of the model into account, and it does not measure the entropy of a batch (it only measures
entropy of an instance).
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Variance Sampling: his method involves taking the variance of the
values in " pertarker and the e -
values until the budget runs out.
Given {p1,pa,...,pr} as the predicted " prebabilities for a " datapoint x, the variance
Var(x) of the predicted probabilities is calculated as:
1 X
% = = i —D)? 7
ar(p) = = ;(p p) (7)

where p is the mean predicted class.

6.2 SANITY CHECKS

Closest to Half: Let p; denote the predicted probability that the event will occur within the decen-
sored time window for the i*" instance. For each instance, we compute its absolute distance from
0.5:

d; = |p; —0.5| @®)

The goal is to select instances where this distance d; is minimized — i.e., where the predicted proba-
bility is closest to 0.5. We choose the lowest distances here.

Mean Closest to Middle: Let the midpoint of the time range T be Ty = M, where
Tinax and Ty, are the maximum and minimum possible survival times, respectively. For each data
instance ¢, we calculate the distance to the midpoint:

di = |ti — Tiid| )

The algorithm selects data points with the smallest d;, corresponding to those whose predicted sur-
vival times are nearest to the midpoint.

Using Clusters to form Batches: This method leverages clustering and censoring measures for
instance selection. We use Principal Component Analysis (PCA) to reduce the feature space, fol-
lowed by K-means clustering to group the data. Clusters with higher average censoring measures
are prioritized, and instance selection is guided by proximity to cluster centers while respecting cost
constraints.

For each cluster, we calculate the average censoring measure based on the time-to-event data and
the censoring status. Let the censoring status for each instance 7 be represented as ¢; (where ¢; = 1
means the instance is uncensored, and ¢; = 0 means it is censored). The average censoring measure
for a cluster Cj is:

1
Censoring Measure for C; = m Z ci (10)
J ’iECj

Clusters with higher average censoring measures represent areas with greater uncertainty or incom-
plete information. We then calculated proximity as Proximity (i, yt;) = || Xpca,; — 5]|. We choose
our batch by selecting the minimum proximity to cost ratio for each instance.

Random: This method picks a random data instances to query until the budget is used up. We
adjust random so that the probability of random choosing any given instance is proportionate to the
reciprocal of the instance cost.

7 EXPERIMENTS

For each dataset, we first divide it into training and test sets. We assign the labels to time bins as
quantiles of the time to event label. We use the same bins as the training data to assign the labels of
the test data. We artificially censor points in the training data so that we can decensor them in our
experiments. Hiding information from the model to test its performance is common for uncensored
data, however, we can do this for censored data as well. For censored data, we can artificially
“further” censor them for this purpose, the only difference is that they cannot be decensored until
the time to event.
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To artificially censor the dataset, a number of data instances in the training data are further censored
at a uniformly random time between O and their current “true time” — regardless of whether that
time is censored or uncensored. This process assigns each instance a “fake time” after the additional
censoring. The true time for each instance is kept hidden from the model (only the oracle can see
it). Instances where the fake time is less than the true time are considered queryable, meaning
the

. On the other hand, instances from which no new information can be gained
are unqueryable.

At the time of querying, the current fake time is compared to the hidden true time by the oracle
and updated accordingly. When an instances time becomes decensored by the oracle, it can still be
queryable if the resulting fake time is still less than the true time. But, if the fake time is now equal
to the true time, that instance is no longer able to be queried.

We explored 3 real world survival datasets: The Study to Understand Prognoses Preferences Out-
comes and Risks of Treatment (SUPPORT; 9,105 patients, censored = 32%, 42 features)(Knaus
et al., [1995), Medical Information Mart for Intensive Care (MIMIC)- IV; n= 38520, censored =
67%, features = 93)(Johnson et al., 2022)), and The Northern Alberta Cancer Dataset (NACD; 2402
patients, 53 features, 36% censorship)(Haider et al.,2020). These 3 represent different sized datasets
containing various percentages of censored data, complexities for the model to learn, and sizes of
features space. We used 5000 epochs with a Bayesian Linear MTLR model with the same initial
parameters provided in (Qi et al., 2023b)) with a spike and slab prior. For evaluation, Table 1 men-
tions the MAE-PO (Qi et al., | 2023a)) metric for evaluating survival models, however " i=-results were
obtained for other survival metrics including c-index (Haider et al., 2020), and Brier score as well.
More results are shown in the Additional Data section[B|. We also have results using MAE omitting
censored data from the test data (as there was relatively fewer in there). Finally, we have run exper-
iments for a setting where the costs are the same for each instance, and one where they are not. For
the latter, we gave each instance a random real value cost between 0.2 and 0.8, the 0.2 and 0.8 were
chosen so that the minimum is not too close to 0 and the maximum not too close to 1.

Table 1: Comparison of Acquisition Functions accross Datasets and Time Horizons when Budget =
10. MIMIC, NACD, and SUPPORT are represented by M, N, and S.

Dataset BB surv  BatchBALD  Entropy Var CtH CfB MCtH Random
M +5y 423+.01 434+.02 428+.01 428+.02 445+.01 432+.02 423+.02 446+ .01
M+10y | 426 +£.01 435+.02 428+.01 433+£.02 431+.01 427+.02 428+.01 4.28+.02
M +100y | 418 £.02 4.18+.01 4.18+.02 427+.01 4274+.02 423+.01 418+.02 4.18+.01
N +5y 3.63+£.01 363+.02 3.64+.01 366+.02 369+.01 370+.02 3.81+.01 3.89+.02
N +10y 359+.01 3.60+.02 3.61+.01 365+.02 371+.01 377+.02 3.58+.01 3.74+.02
N +100y | 3.67+.01 3.66+.01 3.68+.01 373+.02 3.734+.01 3.65+.02 3.68+.01 3.70+.02
S +5y 209+.01 2.11+.01 2.124+.02 2.10+.01 2.10+£.02 2.10+£.01 2.11+£.01 2.12+.02
S +10y 209+.01 209+.02 210+£.01 209+.01 209+.02 2.10£.01 209+.01 2.114.02
S+100y | 2.08+.01 2.09+.01 210+£.02 209+.01 210+£.01 2.10+.02 2.094+.01 2.11+.02

8 RESULTS

Table 1 shows that, across 3 different increments for the oracle, BBy, outperforms other algo-
rithms when budget is equal to 20 across all 3 real world datasets. This is promising as not only
does this show that our method beat other metrics, but we also outperform BatchBALD which sug-
gests that the method we used to deal with the incremental gain helped the models performance.
In particular we can also see that as the increment increases, the traditional BatchBALD method
and our altered method converge as the original BatchBALD is equivalent theoretically to BBy
when I = oco. The Additional Data section [B] shows more information in results including differ-
ent metrics, and budgets. There is a very large amount of randomness here, the Bayesian model

10
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Figure 1: Plot of MAE-PO evaluation of different acquisition functions as a function of budget.
Each point is the average of 40 predictions by the model. The plot uses the MIMIC dataset starting
with a pool of 900 censored and 100 uncensored points. The increment is 5 years. Each instance
costs the same.
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Figure 2: Plot of MAE-PO evaluation of different acquisition functions as a function of budget.
Each point is the average of 40 predictions by the model. The plot uses the NACD dataset starting
with a pool of 900 censored and 100 uncensored points. The increment is 10 years. Each instance
has a random cost between 0.2 and 0.8.

itself provides different predictions and we made each evaluation as an average over 40 predictions.
Furthermore, there is inherent randomness as to what instances you initially give to the model. For
BatchBALD and in turn our model to succeed, you cannot have so few points that the models pre-
dictions are entirely inaccurate, if this is the case we recommend sampling randomly for some time
as it may be better (Yehuda et al., [2022). Furthermore the model also cannot have too many data
instances to start as then no method works as the model has converged already. We initialized our
models with 100 instances uncensored and 900 censored in the training data (enough must be in
the pool so that the acquisition functions have more to choose from). One final point here is that
in table 1, MCtH does occasionally tie with BBy, for the lowest MAE-PO values. MCtH is a
more involved method and in certain budget settings it does seem to do surprisingly well. This is a
surprising finding, however this pattern does not hold in the non-uniform costs setting.

11
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In figure 1 we can see that across budgets for all 3 datasets, BB,,,, does the best, however a
further note is that there is more inherent randomness when we compare across budget as each time
represents a new training of a model rather than the same model trained further.

In figure 2 we can see that the same results as the uniform costs case seem to present themselves in
the non-uniform costs case. Except this time we note that B By,,,, has an even more distinct advan-
tage. We believe this is because the method of dealing with the budget for B By, is developed for
based off of reducing the problem to the maximum coverage problem. Since many of the other met-
rics do not measure mutual information, then perhaps they do not reduce to the maximum coverage
problem and thus they need to handle the non-uniform costs differently. Mutual information is an
incredibly flexible metric that allows for us to easily handle budget in our method.

For MIMIC, a larger budget was needed for both settings due to the complexity of the dataset, thus
in all our results although the budget is the same, the cost of instances was one fifth as much as the
other cases. These results held consistently for other evaluation metrics including concordance, as
well as MAE measured without including the survival test data.

9 CONCLUSION

In this paper, we discussed a generalized form of active learning that incorporates budget constraints
and, when necessary, accounts for the individual costs of queried instances. We explored methods
to extend acquisition functions for use with censored data and to account for scenarios where only
partial information is gained during queries. Our proposed method was evaluated across three real-
world datasets; however, we anticipate that this emerging area of research will inspire many future
studies.

In particular, one promising direction is to combine BBy, with a semi-supervised approach. As
noted in |Kirsch et al.| (2019)), such an approach may enhance performance, and given the success
of MCtH, we believe this is a worthwhile avenue to explore. Additionally, it would be valuable
to revisit some of our assumptions, such as whether the increment changes over time or if data is
censored in ways other than randomly.

Finally, there is a substantial body of literature on methods for approximating the maximum cover-
age problem. Alternative approximation schemes beyond the greedy approach may prove advanta-
geous and warrant further investigation in future work.
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A THEORETICAL ANALYSIS

A.1 REDUCING BATCH SELECTION TO WEIGHTED MAX COVER

The maximum coverage problem is a well known combinatorial problem that involves choosing k
sets, from a group of N sets of integers. The task is to choose the k sets whose union is maximal.
For example if the sets are as follows: S; = {1,2,3}, Sy = {2,3,4}, S3 = {4,5}, S4 = {6},
where here N=4 and k=2, then the optimal choice of sets here are sets S; and S3, as their union
{1,2,3,4,5} is larger than the union of S; and Ss: {1,2,3,4} or Sy and S3 = {2,3,4,5}, and all
pairs with S; make at max 4. This problem is known to be np-hard to solve optimally.

There is an extension of this problem called the ”weighted” maximum cover problem where every-
thing is the same except each integer has attached to it a weight, and the goal is now to maximize
the sum of the weight of the union rather than simply the size of the union. In the example above, if
the integers 1,2,3,4, and 5 all had weight 1, but 6 had weight 10, then now we certainly would wish
to include Sy as part of one of the sets we choose, in this case you could choose S; and Sy, or S
and Sy, as both would give you a total highest weight of 13.

If you have a set of data points D, then each data point d; € D, provides some amount of informa-
tion. Any two data points d; and d; also have an intersection to consider. Indeed for any batch of
data points,we consider information as area that is covered by an area in the information space.

If we now label each unique intersection as an integer, then we now have a bunch of sets, each
filled with integers. Furthermore we can give each integer a weight as the amount of area they cover
in information space (the amount of information they are expected to give the model). In the batch
active learning case, the task now becomes choosing the k data points (which are sets in this case) out
of the N total data points that give maximal information cover maximal area). Thus we can simplify
the active learning problem using this formulation of mutual information provided by BatchBALD
into the weighted maximum coverage problem discussed above.

This representation allows us to see that this problem, at least with the information given, is NP-hard
as the maximum coverage probelm is NP-hard. In future works maybe it turns out that most datasets
have an underlying structure that makes batch selection easier, however in this general case we can
argue NP-hardness This is a very useful representation of the problem as it allows an easier way to
think about the machine learning problem as a simpler combinatorial one. Furthermore there exists
literature in this field that we can use.

One such insight from literature is that if the information function is a submodular function, then
the greedy algorithm does very well.

A set function f : 2V — R defined on the subsets of a finite set NV is called submodular if for every
A,BCN,
fA)+f(B) = [f(AUuB)+ f(ANB).

Equivalently, f is submodular if it satisfies the diminishing returns property: forevery A C B C N
andz € N\ B,
flAU{a}) = f(A) = [f(BU{z}) - f(B).

The greedy approach (Khuller et al., [1999), gives the highest known guaranteed lower bound of all
polynomial time approximation schemes (Khuller et al.|[1999)). In fact proving there is a polynomial
time approximation scheme that achieves a higher lower bound is equivalent to proving P = NP.

The greedy algorithm achieves a lower bound of 1-1/e which is about 63% of the optimal. And
indeed is the algorithm used in BatchBALD for selecting it’s batch.

Another advantage of this formulation is it allows us extend to the non-uniform case. There is
an extension of the weighted maximum cover problem known as the ’budgeted” maximum cover
problem where along with the constrained from the weighted problem a budget is also given and
each set has a given cost attached.

Khuller et al.|(1999) have provided a modified greedy algorithm to the budgeted problem that also
meets the lower bound of 1-1/e. They further showed that finding a polynomial time algorithm that
achieves a better lower bound in this setting would be equivalent to proving NP C Dtime(n!°81°8 ™).

15



Under review as a conference paper at ICLR 2025

A.2 CHANGING THE BUDGETED MAXIMUM COVERAGE ALGORITHM

In Khuller et al.{(1999), a novel greedy algorithm for the budgeted maximum cover case is provided
that still provides the same lower bound guarantees as the original greedy algorithm. We illustrate
this novel algorithm in Algorithm 2.

Algorithm 2 Optimal 1 - 1/e-approximate algorithm for Budgeted Maximal Coverage

Require: Pool of points S, budget B, weights w;, costs ¢;, subset size k
I: Hy + argmax{w(G) : G C S,|G| < k,c¢(G) < B}

2: H2 <— @

3: for all G C S such that |G| = k and ¢(G) < B do
4: U+ S\G

5: repeat

6: Select ; € U that maximizes f—

7: if ¢(G) + ¢; < B then

8: G+~ GU X;

10: end if

11:  untilU =Qorce(G)+¢; > B
12: if w(G) > w(Hz) then

13: Hy G
14: end if
15: end for

16: if w(H;) > w(Hz) then
17: Output: H,

18: else

19: Output: H,

20: end if

This new greedy algorithm is very computationally
expensive. The first part of the algorithm relies on finding the set out of all sets of size less than £ = 3
size (via brute force) that maximizes the weight, and assigning it to H1 which has a complexity of
O(n?) if we denote n = |D,o0i|. The rest of the algorithm involves for every possible initial set
of size k = 3 instances, greedily adding instances to this selected batch based off of the ratio of
the weight to cost of an instance, which is of order O(n?®). We argue that for the purposes of
our settings, we do not need the first step and we can greatly reduce the complexity of the second
step. The arguments we are making are not guaranteed or proven, however it has shown results
experimentally and serves as a strong approximation of this algorithm in most settings.

For the first part of the algorithm, in deep learning models, often two or 3 points are not significant
enough to significantly alter the models loss Domingos| (2012). The first part of the algorithm is
only relevant if it turns out that a set of size 3 points gives more information than a set of larger size.
In deep learning models all data instances provide some information, and when accounting for the
weight to cost ratio, it is very likely that the points within H'1 are also selected in sets of larger size.
Thus we omit this step in the algorithm, especially with larger budgets it is very unlikely to help.

The second part of the algorithm which involves for every possible initial set of size £ = 3 instances,
greedily adding instances to this selected batch based off of the ratio of the weight to cost of an
instance. The main part that dramatically increases the computational complexity here is having
to consider all n? starting positions. In|Khuller et al. (1999) they discuss one main setting where
considering all possible starting states is useful, is if the points you are choosing from are dense in
information space, that is that the sets share a very high amount of similar elements between them
and learning about any one instance implies you learn about the larger group. In our setting, we start
out with a small number of instances and wish to learn about a complex function that covers a large
amount in information space, the instances in the pool we can learn from are often very sparse and
give us vastly different information from different parts of the information space rather than all being
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dense and giving us the same types of information. Under these settings you often are not choosing
multiple instances from a clump of points but rather want to spread out your queried instances. Thus
considering all possible starting points is not efficient and we recommend omiting it all together.

If we omit these two elements from Algorithm 2, we end up with the method described in the paper
shown in Algorithm 1.

A.3 CHOOSING THE SAME INSTANCE MULTIPLE TIMES IN ONE QUERY

Since in our setting the Oracle does not give full information. It opens up the question as to if you
can choose the same instance multiple times in one query. For example, if the Oracle gives 5 years of
new information for Alice, you might want to ask the Oracle to give you 10 years but for double the
cost of course. This is not often seen in the real world, perhaps if you are working with a software
that has all the instances but only gives incremental updates. Or maybe when dealing with “’label
delays”, covered in Dedja et al.[(2023)).

Fortunately, our formulation allows for generalization over this as well. Instead of considering how
many times we should ask for the ”Alice” instance, we can see it such that asking for two increments
of Alice, is a seperate instance with its own cost as asking for one increment of Alice. Furthermore,
the entire information that can be gained from for the one increment instance is contained in asking
for the 2 increment instance. The question now becomes is the extra information work the cost?
Since the costs between these two instances is different, we again have a case of the budgeted
maximum coverage problem, for which we show in the paper that there already exists an optimal
approximation greedy algorithm for this setting. A final note is that there is never an incentive to
ask for both the Alice with 2 increments instance and the Alice with 1 increment instance, but the
optimal greedy algorithm does not assume this and may take this action. Thus we can actually
create an even better algorithm than greedy in this specific case by only allowing it to ever choose
the maximum number of increments instance each time.

B ADDITIONAL DATA

We show here some additional results for the two settings. We have only included results we find
most interesting, however we will submit all our results and code upon acceptance.

Table 2: MAE-PO across datasets and increments, budget = 0. Uniform setting.

Dataset BB surv BatchBALD  Entropy Var CtH CfB MCtH Random

M +5 years 4.55£0.05 455+£0.05 455+£0.05 455+£0.05 455+£0.05 455+0.05 4.55+0.05 4.55+0.05
M+10years | 455+0.05 455+005 4.55+£0.05 455+005 4.55+£0.05 4.55+£0.05 455+005 4.55+0.05
M +100 years | 4.55+0.05 455+0.05 4.55+£0.05 455+0.05 4.55+0.05 4.55+£0.05 455+005 4.55+0.05
N +5 years 398+0.03 398+£0.03 398+0.03 398+0.03 398+0.03 3.98+0.03 3.98+0.03 3.98+0.03
N +10 years 398+£0.03 398+0.03 398+0.03 398+0.03 3.98+0.03 3.98+0.03 3.98+0.03 3.98+0.03
N +100 years | 3.98+0.03 3.98+0.03 398+0.03 398+0.03 3.98+0.03 398+0.03 398+0.03 3.98+0.03
S 45 years 2.12+£0.02 2.12£0.02 2.12+0.02 2.12£0.02 2.12+0.02 2.12+0.02 2.12£0.02 2.12+0.02
S +10 years 2.12+£0.02  2.12+0.02 212+0.02 2.12+0.02 2.12+0.02 2.12+0.02 2.12+0.02 2.12+0.02
S+100years | 2.12+0.02 2.12+0.02 2.12+0.02 2.12+0.02 2.12+0.02 2.12+0.02 2.12+0.02 2.12+0.02

Table 3: MAE-PO across datasets and increments, budget = 5. Uniform setting.

Dataset BB surv BatchBALD  Entropy Variance CtH CfB MCtH Random

M +5 years 436+0.03 443+0.03 439+0.03 444+003 4.65+0.04 443+0.03 451+0.03 4.51+0.03
M +10years | 437+0.03 442+0.03 431+£0.03 439+0.03 437+0.03 437+£0.03 442+0.03 442+0.03
M +100 years | 4.21 +0.04 426+0.04 4.26+£0.04 437+0.03 447+0.03 429+0.03 425+0.03 425+0.03
N +5 years 382+£0.03 3.83+0.03 383+0.03 385+0.03 3.85+0.03 3.94+0.03 3.95+0.03 3.95+0.03
N +10 years 374+0.03 3.73+£0.03 3.76+0.03 3.79+£0.03 385+0.03 3.90+0.03 3.75+0.03 3.75+0.03
N +100 years | 3.78+0.03 3.78+0.03 3.79+£0.03 3.88+0.03 3.88+0.03 3.81+0.03 3.79+0.03 3.79+0.03
S +5 years 209+£0.01 2.11+£0.01 211+£0.02 211+0.02 2.11+0.02 2.11+0.02 2.10+£0.01 2.10+0.02
S +10 years 209+£0.01 210+£0.02 211+0.01 210+0.02 2.10+0.02 2.11+0.01 2.10+0.02 2.10+0.02
S+100years | 208 +0.01 2.10+£0.02 2.11+£0.02 2.10+£0.02 2.10+0.01 2.11+0.02 2.10+£0.01 2.10+0.02
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Table 4: MAE-PO across datasets and increments, budget = 10. Uniform setting.

Dataset BB surv  BatchBALD  Entropy Var CtH CfB MCtH Random
M +5y 423+ .01 434+.02 428+.01 428+.02 445+.01 4324+.02 423+.02 446+ .01
M+10y | 426+ .01 435+.02 428+.01 4334+.02 431+.01 427+.02 428+.01 428+.02
M+100y | 4.18 £.02 4.18+.01 4.18+.02 427+.01 4274+.02 423+.01 4.18+.02 4.18+ .01
N +5y 363+.01 3.63+.02 3.64+.01 3.66+.02 3.69+.01 370+.02 3.81+.01 3.89+.02
N +10y 3.59 + .01 360+.02 3.61+.01 3.65+.02 371+.01 377+.02 3.58+.01 3.74+.02
N +100y | 3.67+.01 3.66+.01 3.68+.01 373+£.02 3.73+.01 3.65+.02 3.68+.01 3.70+.02
S +5y 209+.01 211+.01 212+.02 210£.01 210£.02 2.10+.01 2.114+.01 2.12+.02
S +10y 2.09 + .01 209+.02 210+£.01 209+.01 209+.02 210+.01 2.09+.01 2.11+.02
S+100y | 2.08+.01 2.09+.01 210+£.02 2.09+.01 210£.01 210+£.02 2.09+.01 2.11£.02

Table 5: MAE-PO across datasets and increments, budget = 500 (to show convergence). Uniform
setting.

Dataset BBsurv  BatchBALD  Entropy Variance CtH CfB MCtH Random

M +5 years 389+£0.02 389+002 389+0.02 3.89+002 3.89+0.02 3.89+0.02 389+0.02 389+0.02
M+10years | 3.89+0.02 389+0.02 3.89+0.02 389+002 3.88+0.02 3.89+0.02 3.89+0.02 3.88+0.02
M +100 years | 3.85+0.02 3.85+0.02 3.85+0.02 3.85+0.02 3.85+0.02 3.85+0.02 3.85+0.02 3.85+0.02
N +5 years 330+£0.02 330+0.02 330+0.02 330+£002 3.31+0.02 3.30+0.02 3.30+0.02 3.30+0.02
N +10 years 3274002 327+002 327+0.02 327+£002 3.28+0.02 3.27+0.02 327+0.02 3.28+0.02
N +100 years | 3.33+0.02 3.33+0.02 333+0.02 3.33+0.02 3.34+0.02 333+0.02 333+0.02 3.34+0.02
S +5 years 1.88+0.02 1.88+0.02 1.88+0.02 1.78+0.01 1.88+0.01 1.78+0.01 1.88+0.02 1.88+0.01
S +10 years 1.78+0.01 1.88+0.01 1.81+0.01 1.78+0.01 1.88+0.01 1.88+0.01 1.88+0.01 1.81+0.01
S+100years | 1.78+0.02 1.78+0.01 1.78+0.02 1.79+0.01 1.79+0.02 1.78+0.01 1.89+0.02 1.79+0.02

When evaluated on other forms of MAE (without including survival data in the dataset) we saw very
similar results as the ones presented in this section. However we felt it important to also include
a measure of concordance. We have tables of MAE-PO for various budgets on both uniform and
non-uniform settings here.
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Figure 3: Plot of MAE-PO evaluation of different acquisition functions as a function of budget.
Each point is the average of 40 predictions by the model. The plot uses the NACD dataset starting
with a pool of 900 censored and 100 uncensored points. The increment is 10 years. Each instance
has a random cost between 0.2 and 0.8
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Table 6: MAE-PO across datasets and increments, budget = 0. Non-Uniform setting.

Dataset BB surv  BatchBALD  Entropy Variance CtH CfB MCtH

M +5 years 455+£0.05 455+£0.05 455+005 455+005 4.55+0.05 4.55+0.05 4.55+£0.05
M +10years | 4.55+0.05 455+0.05 4.55+£0.05 4.55+£0.05 4.55+£0.05 4.55+£0.05 4.55+0.05
M +100 years | 455+0.05 4.55+£0.05 4.55+0.05 4.55+0.05 4.55+0.05 4.55+£0.05 4.55+0.05
N +5 years 398+£0.03 398+£0.03 398+0.03 398+0.03 398+0.03 398+0.03 3.98+0.03
N +10 years 398+0.03 398+0.03 398+0.03 398+0.03 398+0.03 3.98+0.03 3.98+0.03
N +100 years | 3.98+0.03 3.98+0.03 398+0.03 398+0.03 398+0.03 3.98+0.03 3.98+0.03
S +5 years 2.11+£0.02 211£002 211+£0.02 2.11+£0.02 2.11+£0.02 2.11+£0.02 2.11+0.02
S +10 years 2.11+£0.02 211+£002 211+£0.02 2.11+£0.02 2.11+£0.02 2.11+£0.02 2.11+0.02
S+100years | 2.11+0.02 2.11+£0.02 2.11+£0.02 2.11+£0.02 2.11+£0.02 2.11+£0.02 2.11+0.02

Table 7: MAE-PO across datasets and increments, budget = 5. Non-Uniform setting.

Dataset BB surv BatchBALD  Entropy Variance CtH CfB MCtH Random

M +5 years 421+£0.05 423+£0.05 451+£005 435+£005 439+£0.05 429+0.05 458+0.05 4.59+0.05
M+10years | 432+0.05 435+005 4.59+£0.05 4.61+005 459+£0.05 4.59+0.05 4.62+005 4.62+0.05
M +100 years | 4.32+0.05 433+0.05 434+£0.05 435+005 445+0.05 433+£0.05 439+005 443+0.05
N +5 years 388+0.03 392+0.03 391+0.03 3.87+0.03 388+0.03 3.88+0.03 3.95+0.03 3.97+0.03
N +10 years 373+0.03 3.82+0.03 3.74+0.03 3.75+£0.03 3.76+0.03 3.73+0.03 3.84+0.03 3.84+0.03
N +100 years | 3.73+0.03 3.73+0.03 3.74+£0.03 3.75+0.03 3.76+0.03 3.73+£0.03 3.84+0.03 3.84+0.03
S 45 years 2.09+£0.02 2.10+£0.02 210+£0.02 2.09+0.02 2.09+0.02 2.11+0.02 2.10+£0.02 2.11+0.02
S +10 years 209+£0.02 2.10+£0.02 210+£0.02 211+0.02 2.09+0.02 2.11+0.02 2.10+£0.02 2.11+0.02
S+100years | 209+0.02 2.11+£0.02 2.10+0.02 2.10+£0.02 2.09+0.02 2.11+0.02 2.10+£0.02 2.11+0.02

Table 8: MAE-PO across datasets and increments, budget = 10. Non-Uniform setting.

Dataset BBsurv  BatchBALD  Entropy Variance CtH CfB MCtH Random

M +5 years 417+£0.05 4.18+£0.05 425+0.05 435+0.05 437+0.05 434+005 4.39+0.05 4.49=+0.05
M +10years | 3.97+0.05 4.00+£0.05 3.97+0.05 4.10+£0.05 4.10£0.05 3.96+0.05 4.15+0.05 4.25+0.05
M +100 years | 4.00+0.05 4.01+0.05 4.05+0.05 4.14+0.05 4.19+0.05 4.03+0.05 4.07+0.05 4.07+0.05
N +5 years 381+0.03 3.83+003 384+0.03 3.81+003 3.81+0.03 3.83+0.03 3.73+0.03 3.83+0.03
N +10 years 372+0.03 3.72+0.03 3.74+0.03 3.72+0.03 3.72+0.03 3.76+0.03 3.83+0.03 3.76+0.03
N +100 years | 3.71+£0.02 3.74+0.02 3.73+0.02 3.80+0.02 3.73+0.02 3.66+0.02 3.77+0.02 3.66+0.02
S 45 years 2.08+0.02 210+£0.02 2.10+£0.02 2.10£0.02 2.10+0.02 2.10+£0.02 2.10+£0.02 2.12+0.02
S +10 years 2.09+0.02 2.10+£0.02 210+£0.02 2.09+0.02 2.10+£0.02 2.10+0.02 2.10+0.02 2.12+0.02
S+100years | 208+0.02 2.10+£0.02 2.10+0.02 2.10£0.02 2.10+0.02 2.10+£0.02 2.10+0.02 2.10+0.02

Table 9: MAE-PO across datasets and increments, budget = 500 (for convergence). Non-Uniform
setting.

Dataset BB surv BatchBALD  Entropy Variance CtH CfB MCtH Random

M +5 years 4.19+£0.02 4.19+0.02 4.19+£0.02 4.19+£0.02 4.19+£0.02 4.19+0.02 4.19+0.02 4.19+0.02
M+10years | 423+0.02 423+0.02 423+£0.02 423+002 4.23+0.02 423+0.02 423+002 4.23+0.02
M +100 years | 4.15+0.02 4.15+0.02 4.15£0.02 4.15+0.02 4.15+£0.02 4.15£0.02 4.15+0.02 4.15+0.02
N +5 years 3.60+£0.02 3.60+£0.02 3.60+0.02 3.60£0.02 3.61+002 3.60+0.02 3.60+0.02 3.60+0.02
N +10 years 357+0.02 3.57+£0.02 357+£0.02 3.57+£0.02 358+0.02 3.57+0.02 3.57+0.02 3.57+0.02
N +100 years | 3.63+0.02 3.63+0.02 3.63+£0.02 3.63+0.02 3.64+0.02 3.63+£0.02 3.63+0.02 3.63+0.02
S 45 years 2.08+0.01 2.08+0.01 2.08+0.01 2.08+£0.01 208001 2.08+0.01 208+0.01 2.08=+0.01
S +10 years 208+£0.01 2.08+0.01 208+0.01 208+0.01 2.08+0.01 2.08+0.01 2.08+0.01 2.08=+0.01
S +100 years | 209+0.01 2.08+0.01 2.08+0.01 2.09+0.01 2.09+0.01 2.08+0.01 2.09+0.01 2.09+0.01
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