
HEPrune: Fast Private Training of Deep Neural
Networks With Encrypted Data Pruning

Yancheng Zhang1, Mengxin Zheng1, Yuzhang Shang2, Xun Chen3, and Qian Lou1

1University of Central Florida
2Illinois Institute of Technology

3Samsung Research America
{yancheng.zhang,mengxin.zheng,qian.lou}@ucf.edu;

yshang4@hawk.iit.edu; xunchen@outlook.com

Abstract

Non-interactive cryptographic computing, Fully Homomorphic Encryption (FHE),
provides a promising solution for private neural network training on encrypted
data. One challenge of FHE-based private training is its large computational
overhead, especially the multiple rounds of forward and backward execution on
each encrypted data sample. Considering the existence of largely redundant data
samples, pruning them will significantly speed up the training, as proven in plain
non-FHE training. Executing the data pruning of encrypted data on the server
side is not trivial since the knowledge calculation of data pruning needs complex
and expensive executions on encrypted data. There is a lack of FHE-based data
pruning protocol for efficient, private training. In this paper, we propose, HEPrune,
to construct a FHE data-pruning protocol and then design an FHE-friendly data-
pruning algorithm under client-aided or non-client-aided settings, respectively. We
also observed that data sample pruning may not always remove ciphertexts, leaving
large empty slots and limiting the effects of data pruning. Thus, in HEPrune, we
further propose ciphertext-wise pruning to reduce ciphertext computation numbers
without hurting accuracy. Experimental results show that our work can achieve a
16× speedup with only a 0.6% accuracy drop over prior work. The code is publicly
available at https://github.com/UCF-Lou-Lab-PET/Private-Data-Prune.

1 Introduction

Machine learning, especially deep neural networks, has been widely applied in various domains,
including healthcare [1], finance [2], and so forth. Due to the lack of expertise and computational
resources, the average user often outsources the training task to the cloud servers in the machine-
learning-as-a-service (MLaaS) setting. However, the training data is often highly private and private,
and it should not be directly shared because of business, legal, and ethical constraints. Private training
enables the cloud server to train machine learning models on encrypted data, where strong privacy
guarantees are offered by cryptographic primitives such as FHE [3].

However, FHE-based private training is significantly hindered by its substantial execution time. For
example, the encrypted training can be 1 ∼ 3 orders of magnitudes slower than in the plaintext
training [4, 5, 6]. The high execution time primarily stems from the transformation of a plaintext
dataset into an encrypted format, along with the substitution of straightforward plaintext computations
with more resource-intensive ciphertext operations. Reducing the number of data samples used for
training could greatly accelerate the process. To optimize plaintext datasets, methods like dataset
pruning are commonly employed, where the model trainer has access to both the dataset and model.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/UCF-Lou-Lab-PET/Private-Data-Prune

Dataset pruning involves analyzing data samples, calculating an importance score for each sample
during training iterations, and discarding redundant samples to streamline training. Prior research
indicates that dataset pruning can enable machine learning model training on a fraction of the
data—sometimes as little as 10%—with minimal to no loss in accuracy [7, 8, 9, 10, 11].

Pruning private datasets in encrypted form to accelerate training remains an open problem due to
several challenges. First, calculating importance scores and sorting data samples for removal require
complex encrypted computations, such as costly non-linear and sorting operations. For instance,
calculating the importance score requires tracking changes in training dynamics [11, 12]—such as
logits, gradients, and losses—and computing corresponding distances on encrypted data, all of which
involve costly FHE operations. These high overheads that may offset—or even surpass—the potential
benefits of dataset pruning. Second, plaintext-level data pruning used in the prior plaintext data
pruning [7, 8, 9, 10, 11] does not always yield execution and ciphertext reduction benefits, as a single
ciphertext often contains multiple plaintext samples within its slots. Therefore, effective ciphertext
pruning is critical to enable faster private training.

In this paper, we propose HEPrune, the first encrypted data pruning framework for private training.
We begin by constructing an encrypted data pruning method using pure FHE. To accelerate FHE-
enabled data pruning, we introduce a homomorphic encryption-friendly score (HEFS) to effectively
evaluate the importance of data samples. To avoid costly FHE-based sorting, we propose client-aided
masking (CAM) to identify less important samples while ensuring data privacy. To bridge the gap
between sample-wise importance scores and ciphertext-wise data, we develop a ciphertext-wise
pruning (CWP) technique to reduce the number of ciphertexts during private training. We conduct
experiments in both training-from-scratch and transfer-learning settings. The proposed encrypted
data pruning framework can accelerate private training by 16× with only a 0.6% accuracy drop.

2 Background

2.1 Fully Homomorphic Encryption-Enabled Private Training

Fully Homomorphic Encryption (FHE)[3] is a cryptographic primitive that supports arbitrary com-
putation on encrypted data. An FHE workflow involves four functions: client-side KeyGen, Enc,
Dec, and server-side Eval. For Eval, FHE natively supports homomorphic addition, subtraction,
and multiplication between ciphertexts and plaintexts, denoted as ⊞, ⊟, and ⊠, respectively. Non-
linear functions such as the comparison function, max function, SoftMax function, and square root
function can be approximated using polynomials. We denote these functions as HE.Cmp[13, 14],
HE.Max[14], HE.SoftMax[6, 15], and HE.Sqrt[16], respectively. FHE enables confidential training
on encrypted datasets. While early works focused on training simple models on small datasets, such
as linear regression and logistic regression models[17, 18, 19, 20], recent research has advanced
towards training deep neural networks (DNNs) using HE. Although HE provides theoretical data
privacy guarantees, privately training DNNs on large encrypted datasets typically incurs substantial
computational overhead. For example, training a dense model for one step on a batch of 60 MNIST
samples can take over 1.5 days in FHESGD [4].

A line of research has been proposed to accelerate HE-enabled private training. Glyph [5] incorporates
two HE schemes, TFHE and BGV, to enable private training in the transfer learning setting, allowing
training of an MNIST mini-batch in only 0.04 hours. The most recent work, HETAL [6], achieves
private training within 1 hour on the MNIST and CIFAR-10 datasets by using optimized matrix
multiplication and GPU acceleration. While other cryptographic tools, such as Multi-Party Computa-
tion (MPC), can also achieve private training, most existing MPC approaches [21, 22, 23, 24] rely
on a non-colluding server assumption, where multiple non-colluding servers are required to ensure
security. Additionally, MPC-based methods typically incur significant communication overhead;
training a LeNet model on the MNIST dataset, for instance, can generate approximately 500 GB
of communication overhead [24]. In contrast, FHE-enabled private training does not require the
non-collusion assumption and incurs significantly less communication overhead.

2.2 Dataset Redundancy and Pruning

Not all data samples contribute equally to DNN training [25]; some samples are less important and
can be pruned during training. Training on only a subset of data can effectively reduce computational

2

overhead while achieving generalization performance comparable to training on the full dataset [10,
11]. Several methods have been proposed to identify the most informative data samples. Among
these, score-based methods [7, 8, 9, 10] are widely used for their simplicity and effectiveness. These
methods compute sample-wise importance scores during training and select the most informative
samples based on these scores.

The importance score can be as simple as the entropy loss [8, 10] for each sample. Another commonly
used score is the forgetting score [7], which counts the number of "forgetting events" that occur
for each sample during training, where a forgetting event is defined as a change in the model’s
prediction for the same sample between two consecutive epochs. GraNd [9] uses the ℓ2-norm of
the sample-wise gradient to represent sample importance, while ELN2 [9] approximates GraNd by
calculating the ℓ2-norm of the error vector. Additional methods for identifying sample importance
include submodularity-based methods like GraphCut [26] and gradient-matching-based methods like
GradMatch [12]. These methods typically start with an empty set and gradually add samples, in
contrast to score-based methods, where sample importance scores are computed simultaneously and
independently.

Data pruning methods are generally divided into static and dynamic pruning methods. Static pruning
refers to data pruning performed once before training [7, 8, 9, 26], while dynamic pruning involves
pruning data every few epochs during training [12, 11, 10]. Although these methods were designed
with different motivations and target settings, they can be adapted for use in either setting. For
instance, [8] uses entropy loss in a static setting, while [11, 10] apply it in a dynamic setting.
Similarly, dynamic pruning methods like [26, 12] can be adapted to static settings, as demonstrated
by [27], without losing effectiveness. In this paper, we focus on dynamic pruning.

30 40 50 60 70 80 90
Data Fraction(%)

90

92

94

96

Te
st

 A
cc

ur
ac

y(
%

)

(a)

Forget
Entropy
GraNd

ELN2
No Pruning

Forget
Entropy

GradNdEL2N HEFS
101

102

103

104

105

H
E

Ti
m

e(
m

in
)

(b)

Runtime
Acc

0 1 2 3 4 5 6
#Remaining Sample

0

40

80

120

150

#
Ci

ph
er

te
xt

(c)

Empty CT
Sparse CT

88

90

92

94

96

Ac
cu

ra
cy

(%
)

Figure 1: (a). Test accuracy under various pruning fractions in plaintext dataset (ResNet-18 on
CIFAR-10). (b) The encrypted training overhead and accuracy of different data pruning methods. (c)
The distribution of data sample numbers in a ciphertext after data pruning. Only a small fraction of
ciphertexts are empty with a naïve sample-wise pruning.

Motivation. FHE-enabled private training provides a strong privacy guarantee for user data. However,
private training remains significantly slower in runtime compared to unencrypted training. One
primary reason for this is the large dataset size typically used for training, often comprising tens
of thousands of samples. As shown in Figure 1(a), removing a fraction of data during training has
minimal impact on model accuracy: even with only 30% of the data, the accuracy drop is within 2%.
However, directly applying plaintext data pruning methods to private training might not only fail to
accelerate the process but could actually extend the training time. As shown in Figure 1(b), computing
importance scores with existing methods—such as the forgetting score [7], entropy score [11, 10],
GraNd [9], and EL2N [9]—can introduce prohibitive overhead. This inefficiency arises because FHE
natively supports only addition and multiplication, while existing data pruning methods often require
a range of non-linear operations. Although these non-linear operations can be implemented in FHE
through lookup tables or approximations, these computations are extremely costly in FHE, potentially
negating the benefits of data pruning. Furthermore, as illustrated in Figure 1(c), although existing
methods can effectively prune samples from datasets, they do not necessarily reduce the number of
ciphertexts in private training. This is because, during private training, a single ciphertext can contain
multiple samples. Naïvely applying sample-wise data pruning can lead to a large number of sparse
ciphertexts that cannot be excluded from training.

Threat Model. We consider a private training scenario where a client outsources model training to a
cloud server. Our protocol is designed to allow a client to outsource model training while preserving
the privacy of their data and model weights. The client’s private dataset and model weights are treated
as intellectual property that must not be disclosed to the server at any point. We assume the server is

3

semi-honest, meaning it will follow the protocol specifications but may attempt to gain unauthorized
knowledge, such as the dataset and model weights. Sharing certain meta-information about training,
such as the model architecture, dataset size, and early stopping signal, is assumed to be safe [6].
Side-channel attacks are beyond the scope of this paper.

3 HEPrune Design

We begin by outlining the pipeline for private training with encrypted data pruning in Section 3.1. In
Section 3.2, we provide details of our FHE-based data pruning algorithm. Specifically, we construct
an encrypted data pruning baseline to demonstrate how sample importance evaluation and sample
removal can be performed using pure FHE operations. We then enhance the efficiency of the data
pruning algorithm through FHE-friendly scoring (HEFS) and client-aided masking (CAM). Finally,
in Section 3.3, we introduce ciphertext-wise pruning (CWP), which removes sparse ciphertexts and
further accelerates the data pruning process.

Training
Data

Encrypt1

Pruned
Ciphertexts

Homomorphic Sample Scoring3

Rot

Rot

Sub

Sub

Max

Sample Masking4 Ciphertext-wise Pruning5

Predictions

L
abels

𝑌 𝑃

Forward Pass2

Predictions

𝑷

Sort &
C

om
pare

Scores

𝑆

Pruning
Mask

𝑀

1
0
1
0

Add

Add

Train 𝚫𝝉 epochs6

HE Operations

Add Sub Rot Max

Data Encrypted
in Ciphertexts

Decrypt Model7

Encrypted
BP

𝐶′
𝐶

Figure 2: The overall workflow of private training with encrypted data pruning.

3.1 Pipeline of Private Training with Encrypted Data Pruning

It has been widely studied how to perform the gradient descent algorithm in the encrypted state
during FHE-enabled private training [4, 5, 6]. However, it remains unclear how data pruning can be
incorporated into existing private training frameworks. We illustrate our FHE-based encrypted data
pruning framework in Figure 2. During private training, ❶ the client first encrypts the dataset with
FHE and sends the encrypted dataset to the server. From this point forward, the dataset will never be
decrypted. We refer to the encrypted data samples as ciphertexts. To identify the most informative
subset of samples, ❷, the server first runs the forward pass algorithm on all ciphertexts to obtain
the encrypted prediction vector P . ❸ With P and the encrypted ground truth label Y , the server
computes the sample-wise importance score S = H(x). We propose an HE-friendly importance score
in Section 3.2. ❹ With the importance score, the server can decide which samples to prune. This is
achieved by sorting the importance score and finding the threshold importance score H̄ corresponding
to the pruning ratio [7]. A pruning mask is generated by comparing the importance score with the
threshold as M = 1{H(x) < Ht}. The unimportant samples can be masked by simply multiplying
the ciphertexts with the corresponding masks. ❺ To fully reduce the number of ciphertexts, the server
performs ciphertext-wise pruning according to the current pruning mask. ❻ The server performs a
backpropagation algorithm on the pruned ciphertexts for ∆τ epochs, and then ❷ starts a new round
of the data pruning algorithm to update the training subset. ❼ At the end of private training, the
server sends the encrypted model back to the client, and the client decrypts the model.

We formalize the above workflow into an encrypted data pruning protocol in Figure 5 in Appendix A.
Our protocol is the first of its kind to introduce data pruning to private training and is an enhanced
private training framework with encrypted data pruning extension over existing works [4, 5, 6].
Additionally, our protocol can work in both the transfer learning setting [5, 6] and training-from-
scratch setting [4]. Our protocol is fully compatible with the early stop techniques adopted in [6]. As
in [6], sending meta information during training is allowed in our protocol, such as the logits, early
stop signals, and importance scores. The privacy of data and models is strongly guaranteed as they
are encrypted and never decrypted by the server. We first instantiate a baseline of encrypted data
pruning using only FHE operations in Section 3.2, and then propose HEFS and CAM to optimize the
overhead of the encrypted data pruning algorithm. In Section 3.3, we propose CWP to effectively
reduce the number of ciphertexts involved in training and thus boost the efficiency of private training.

4

3.2 HE-enabled Data Pruning

While FHE can support arbitrary computation on encrypted data, computing non-linear functions is
typically expensive. Applying existing data pruning methods to private training can lead to additional
overhead that negates or even exceeds the benefits of performing data pruning. For the entropy-based
methods [8, 11, 10], although the entropy loss is typically considered cost-free in the plaintext,
it is not explicitly computed during private training. Instead, we compute the gradient directly
without calculating the loss itself, as illustrated in Figure 5, step 3(b). Computing the entropy loss
in FHE requires approximating the logarithm function, which is computationally expensive. The
forgetting score [7] is simpler to compute, requiring only comparison operations between the current
prediction and prediction from the last epoch. However, the forgetting score cannot be easily made
dynamic, as it usually requires calculations over the full dataset for multiple epochs. The most
viable existing data pruning method is the EL2N [9], which simply utilizes the prediction P and
label Y . Although originally proposed as a static pruning method, we find that EL2N also remains
effective in a dynamic setting, similar to the entropy score [10]. We first instantiate an FHE-enabled
data pruning algorithm, detailed in Algorithm 1, based on the dynamic version of EL2N (HE2LN).
Subsequently, we demonstrate that even EL2N remains computationally expensive in the encrypted
state and propose the HE-friendly score (HEFS) and client-aided masking (CAM) to accelerate the
encrypted data pruning.

Algorithm 1: Homomorphic Data Pruning
Input :The encrypted dataset D̄ = {X̄i, Ȳi}C−1

i=0 and the modelM with weights W̄ , the pruning ration
p, the sample number N and the target class number n.

Output :The pruned encrypted dataset D̄′ = {X̄ ′
i, Ȳ ′

i}C
′−1

i=0 , where C′ ≤ C.
for i← 0 to C − 1 do

P̄i ← HE.SoftMax(M(X̄i; W̄)) ; // Prune.Eval

¯erri ← P̄i ⊟ Ȳi ; // compute the error vector
¯erri ← ¯erri ⊠ ¯erri;

¯err_sumi = ¯erri;
for j ← 0 to logn− 1 do

¯err_ti ← HE.Rotate(¯err_sumi, 2
j);

¯err_sumi ← ¯err_sumi ⊞ ¯err_ti;

¯scorei ← HE.Sqrt(¯err_sumi) ; // compute the importance score

¯s_score← {}; // Prune.Remove
B ← N/ C;
for i← 0 to C − 1 do

for j ← 0 to B − 1 do
¯s_scoreiC+j ← HE.Rotate(¯scorei, j) ; // extract sample-wise scores

for i← 0 to N − 1 do
for j ← 0 to N − i do

¯less← HE.Cmp(¯s_scorei, ¯s_scorej); // sort the sample-wise scores
(¯s_scorei)← (¯less⊠ s_scorej)⊞ ((1⊟ ¯less)⊠ s_scorei);
(¯s_scorej)← (¯less⊠ s_scorei)⊞ ((1⊟ ¯less)⊠ s_scorej);

threshold_index← N × p;
θ̄ ← ¯s_scorethreshold_index;
for i← 0 to C − 1 do

¯mask ← HE.Cmp(¯scorei, θ̄); // remove unimportant samples
(X̄i, Ȳi)← (¯mask ⊠ 0)⊞ ((1⊟ ¯mask)⊠ (X̄i, Ȳi));

return D̄′ ← {X̄ ′
i, Ȳ ′

i}C−1
i=0

HEL2N Baseline. The EL2N score is defined as H(x) = Ewt
∥p(x;wt) − y∥2, where p(x;wt)

is the prediction vector for sample x and y the corresponding ground truth label. In essence, the
EL2N score is the ℓ2-norm of the error vector, which can be computed via pure FHE operation
as shown in Algorithm 1. We first compute the prediction vector P by encrypted forward pass.
The HE.SoftMax in the forward pass is evaluated by polynomial approximation [15] and domain
extension technique [28]. Computing the forward pass in the encrypted state is the same as existing
private training frameworks [6]. With the encrypted prediction vector P and the ground truth label

5

Y , we can compute the EL2N score homomorphically. Specifically, we first compute the sum of
squares over the error vector, which requires homomorphic subtraction, multiplication, and rotation.
Then we take the square root of sum of squares to compute the ℓ2-norm of the error vector. While
HE.Sqrt can be implemented via Newton iterative algorithm [16], the overhead is prohibitive as the
Newton iterative algorithm needs ∼ 10 iterations to compute an accurate square root. Additionally,
the Newton iterative algorithm in FHE involves considerable ciphertext-ciphertext multiplication.
This leads to a large number of additional relinearization and bootstrapping operations. A single
square root over a ciphertext can take up to 2 minutes.

HE-friendly Score. Simple as the EL2N score is, using it to evaluate the importance of data
samples in the encrypted state can still incur prohibitive overhead due to its complex non-linearity.
We propose an HE-friendly importance score (HEFS) to address this issue. We first derive the
formulation of HEFS, and then demonstrate how it can be computed via pure FHE operation. To
determine how a single data sample affects the training, we can quantify the importance of a sample
by the difference of the gradient before and after removing a sample. Denote the gradient of a
sample (x, y) over the weights at time t as gt(x, y) = ∇wt

ℓ(p(wt−1, x), y). Given a minibatch
of B samples S = {(xi, yi)}B−1

i=0 , the importance of a sample can be quantified by the difference
of the time derivative of the loss function, ∆t , before and after removing the sample from the
minibatch. The difference of the derivative is bounded by the sample’s gradient [9]. Specifically, let
S¬k = S \ {(xk, yk)} be the set after removing a certain sample (xk, yk). For ∀(xi, yi) ∈ S and
i ̸= k, it holds that

∥∆t((xi, yi), S)−∆t((xi, yi), S¬k)∥2 ≤ c∥gt(xk, yk)∥2 (1)

Algorithm 2: Client-aided Sample Pruning
Input :The pruning ratio p. The server holds the

encrypted dataset D̄ = {X̄i, Ȳi}C−1
i=0

and encrypted score ¯score and the client
holds the secret key SK.

Output :The pruned encrypted dataset
D̄′ = {X̄ ′

i, Ȳ ′
i}C

′−1
i=0 , where C′ ≤ C.

Client:
score← HE.Dec(¯score,SK);
θ ← QuickSelect(score, p);
mask ← Compare(score, θ);
Sends mask to the server;

Server:
D̄′ ← D̄;
for i← 0 to C − 1 do

if maski == 0 then
D̄′ ← D̄′ \ {(X̄i, Ȳi)}; // remove
an empty ciphertext

else
(X̄i, Ȳi)← maski ⊠ (X̄i, Ȳi);
// remove unimportant
samples

return D̄′

EL2N approximates the ℓ2-norm of the gradient
by the ℓ2-norm of the error vector. We further
streamline the EL2N score using the ℓ1-norm.
More formally, we define the HEFS as:

H(x) = Ewt∥p(x;wt)− y∥1 (2)

HEFS can be efficiently computed during pri-
vate training. Specifically, the circuit for HEFS
consists of only two FHE subtractions and one
max operation, which can be computed as:

score = HE.Max((Y ⊟ P), (P ⊟ Y)) (3)

In the above equation, the homomorphic subtrac-
tion ⊟ is significantly faster than other FHE op-
erations. HE.Max can be effectively computed
via HE.Cmp. While the HE.Max operation has
the same time complexity as HE.Cmp, the con-
crete runtime of HE.Max is even more efficient,
typically 1.5 ∼ 2× faster under the same pa-
rameter setting [14]. The proposed HEFS is a
close approximation to the original EL2N score,
which guarantees the effectiveness of the HEFS-
based data pruning. We show the accuracy of
the data pruning using HEFS in Section 4.

Client-aided Masking. After evaluating the importance of each data sample, we need to remove
the less informative ones from the training set. This requires the server to sort all importance scores
homomorphically to determine the threshold of important scores, H̄. Given a dataset with N data
samples, O(N2) homomorphic comparisons are needed. Since N is typically large for machine
learning model training, such sorting incurs prohibitive overhead in the encrypted state, which can
offset the benefits of data pruning or even prolong the total training time. To effectively identify and
remove the less important data samples, we propose client-aided masking (CAM) in Algorithm 2. We
offer an analysis on the computation, communication overhead, and security implications as follows.

Efficiency. In contrast to the heavy server-side homomorphic sorting, finding Ht is extremely fast on
the client’s side, with only O(N) runtime via the quick select algorithm. In practice, this process
takes only 15 ms on the CIFAR-10 dataset. Additionally, the communication overhead is minimal.

6

For the CIFAR-10 dataset with 43, 750 training samples, only 2 CKKS ciphertexts are needed to
transfer the encrypted importance scores when the slots are fully utilized. This incurs only 4 MB
of communication overhead. For comparison, the early stopping signals used to determine early
stopping incur 18 MB communication overhead when transferring the encrypted logits [6].

Security. Directly asking the client to decrypt and reveal the model weights and datasets to the
server clearly breaches the client’s privacy and is therefore prohibited. However, exchanging meta
information about training does not directly compromise private information and is typically permitted.
For instance, HETAL [6] allows the server to send the logits of the validation set to the client, who
then computes the loss and determines whether to stop training early. Such exchanges of meta
information are crucial to ensure the effectiveness of private training. Further details can be found in
Appendix B.

1 0 1 0

0 0 0 0

0 0 1 0

1 1 1 1

pop_front()

pop_back()

Pruning Mask𝑴Ciphertexts 𝑫 Ciphertext Queue

Pruned Ciphertexts 𝑫′

HE.Rot

HE.Add

Compute
Sparsity1

2

0

1

4

Sort by
Sparsity2

𝒔𝒑𝒂𝒓𝒔𝒊𝒕𝒚

Merge Sparse Ciphertexts3

Figure 3: Example of ciphertext-wise pruning.
3.3 Ciphertext-wise Pruning

Algorithm 3: Ciphertext-wise Pruning
Input :The encrypted dataset

D̄ = {X̄i, Ȳi}C−1
i=0 and pruning masks

mask = {Mi}C−1
i=0 , where

Mi ∈ {0, 1}B and B is the number of
samples in each ciphertexts.

Output :The pruned encrypted dataset
D̄′ = {X̄ ′

i, Ȳ ′
i}C

′−1
i=0 , where C′ ≤ C.

D̄′ ← ∅;
for i← 0 to C − 1 do

spasityi ← B −
∑B−1

j=0 Mi[j]; // compute
the ciphertext-wise sparsity

ct_queue← Sort(spasity, D̄,mask);
ct_queue← Trim(ct_queue);
while ct_queue.is_not_empty() do

ctfront ← ct_queue.pop_front();
ctback ← ct_queue.pop_back();
slotempty ← FZero(ctfront);
slotused ← FOne(ctback);
k ← slotused − slotempty;
ctalign ← Mask(ctback);
ctfront ← ctfront ⊞ HE.Rot(ctalign, k);
if ct_queue.is_empty() ∨
ctfront.sparsity == 0 then

D̄′ ← D̄′ ∪ {ctfront.ct};
else

ct_queue.push_front(ctfront);

ct_queue.push_back(ctback);

return D̄′

While the HEFS and CAM make the encrypted
data pruning algorithm much more practical,
the resulting ciphertexts remain largely sparse,
thus limiting the training time acceleration. To
this end, we propose ciphertext-wise pruning
to effectively reduce the number of ciphertexts
involved in training, as illustrated in Figure 3,
which further boosts the efficiency of the private
training. We detail the steps of ciphertext-wise
pruning in Algorithm 3. Without loss of gen-
erality, we refer to all the slots occupied by a
single sample within a ciphertext as a sample
slot. Once the server obtains the pruning mask,
ciphertext-wise pruning can be performed with-
out client involvement.

We denote the number of samples in each ci-
phertext as B and Mi is a Boolean array that
indicates whether each of the B samples should
be pruned.❶ The server first computes the spar-
sity of each ciphertext, which is done by simply
counting the number of 0-s in each Mi. ❷ Af-
ter computing the ciphertext-wise sparsity, the
server can sort the ciphertexts along with their
corresponding masks. We represent the sorted
ciphertexts in a dequeue. To perform ciphertext-
wise pruning, the server first identifies two ci-
phertexts ctfront and ctback from the queue. ❸
After removing the full ciphertexts and empty
ciphertexts from the queue via Trim(), we then
leverage the most sparse ciphertext ctback to fill
in the empty slots in the least sparse ciphertexts ctfront. The key step is to align samples in ctback
with the empty slots in ctfront. The function FZero() returns the index of the first empty sample
slot slotempty in ctfront, sets the corresponding mask to 1, and decreases the sparsity of ctfront
by 1. Similarly, FOne() returns the first non-empty sample slot slotused in ctback and sets the
corresponding mask and sparsity. By taking the difference of slotused and slotempty , the server can

7

determine how much the ctback should be rotated to align with ctfront. We mask out the other slots
in ctback and obtain ctalign and keep only the first sample slot slotused. This ensures only the empty
sample slot in ctfront is filled and the non-empty slots in ctfront will not be corrupted. Then, ctalign
is rotated and added to ctfront to fill in the empty slot in ctfront. After merging the two ciphertexts,
if ctfront is full or there are no remaining ciphertexts to merge, the server adds it to the final set D̄′.
We defer the details about Trim(), FZero() ,Fone() and Mask() to the Appendix D. We remark the
pruning mask generated by CAM is not encrypted, while enables efficient operations related to the
pruning mask without invoking heavy FHE computation.

4 Experiments
4.1 Experimental Setup

Models and Datasets. To demonstrate the generalizability, we evaluate the proposed encrypted
data pruning methods in two settings, the transfer learning setting as in HETAL [6] and training-
from-scratch setting as in FHESGD [4]. For the transfer learning setting, we adopt the same feature
extractors as [6], the pre-trained ViT Base [29] model and the pre-trained MPNet Base [30] model.
The client first extracts samples into a 768-dimension feature and then encrypts the features. The
server performs private training on the encrypted features. For the training-from-scratch setting, the
client encrypts the raw dataset directly, and the server performs private training on the encrypted
dataset. We use a 3-layer MLP, with two hidden layers of dimension 128, which is a widely used
structure in the private training setting [4, 21]. We perform encrypted data pruning on four widely
used image datasets: MNIST [31], CIFAR-10 [32], Face Mask Detection [33], DermaMNIST [34]
for image classification and one audio dataset SNIPS [35] for sentiment analysis. We partition the
datasets as training, validation, and test set. The size of the training set and validation set is 7 : 1. We
defer the number of samples in each set in the Appendix C.

System Setup and Implementation. We use the RNS version of the CKKS [36, 37] scheme for
homomorphic encryption. We use the bootstrapping method for CKKS in [38]. Our implementation
is based on the OpenFHE [39] library. For HE parameters, we set the cyclotomic ring dimension
as N = 216 and ciphertext modulus 1555 bits to guarantee a security level of 128-bit under the
Homomorphic Encryption Standard [40]. Each ciphertext has N/2 = 32768 slots and we set the
multiplicative depth as L = 12. All experiments were conducted using an AMD Ryzen Threadripper
PRO 3955WX processor operating at 2.2GHz, equipped with 125GB of memory. We use the Single-
Instruction-MultipleData (SIMD) technique [41] to fully utilize the ciphertext slots and amortize
the cost of homomorphic operations. Under SIMD, multiple data samples can be coded into one
ciphertext. We adopt the most efficient encoding methods proposed in [6, 42]. For nonlinear
operations like SoftMax and ReLU, we adopt approximation-based methods. We report the CPU
version of HETAL, as their GPU implementation is not publicly available.

4.2 Results

End-to-end performance. As shown in Table 1, we compare the end-to-end training time and
accuracy on five datasets with HETAL [6] and an unencrypted baseline. HETAL is known to be the
most efficient full-data private training framework. For fair comparison, we unify the batch size as
128. For HETAL, we maintain the security parameters used in their original paper. For the proposed
encrypted data pruning method, we set the pruning ratio as p = 0.9, i.e., only 10% of the data remains
for training in each epoch. The total training time is reduced by ∼ 6.6× across datasets. The accuracy
drop is as small as 0.25% on the Face Mask Detection dataset. With encrypted data pruning, the
accuracy is even 0.14% higher than the unencrypted baseline and HETAL.

Table 1: End-to-end comparison across different datasets The pruning ratio is set as p = 0.9.
Method MNIST CIFAR-10 Face Mask Detection DermaMNIST SNIPS

Unencrypted Acc(%) 95.69±0.02 96.62±0.02 95.46±0.06 75.91±0.11 94.43±0.05

HETAL
Acc(%) 96.27±0.02 96.57±0.04 95.46±0.05 76.06±0.18 95±0.08

Runtime(h) 276.75 293.3 32.88 101.55 113.7

Ours
Acc(%) 95.54±0.05 96.31±0.06 95.21±0.06 75.86±0.15 95.14±0.08

Runtime(h) 41.89 44.76 5.02 15.5 17.36

8

Table 2: Effectiveness of the proposed method. We tested different private training methods on the
CIFAR-10 dataset, with a pruning ratio p = 0.9. Communication is the size of logits and importance
score ciphertexts server sends to client for early stopping and data pruning.

Method Accuracy(%) Runtime(h) Speedup Communication(MB)
Full Data(HETAL) 96.57±0.04 293.3 ×1 18.1

Prune Baseline 95.98±0.12 488.91 ×0.6 18.1
+Client Aided 96.16±0.07 196.91 ×1.49 22

+HEFS 96.31±0.06 105.57 ×2.78 22
+Ciphertext-wise Pruning 96.31±0.06 44.76 ×6.55 22

Effectiveness of the proposed methods. In Table2, we demonstrate the effectiveness of each
proposed technique. We start by training on the full CIFAR-10 dataset using the framework of
HETAL. For the encrypted data pruning methods, we fix the pruning ratio as p = 0.9. In the prune
baseline, we naively apply plaintext data pruning method to HETAL, which prolongs the total training
time. Sorting 43750 importance score in CIFAR-10 can take more than 200 hours, which offsets
the benefits of data pruning. By incorporating the client-aided masking, the server can remove the
unimportant samples more effectively. The client-aided methods speed up the private training by
1.49× with a 0.41% accuracy drop. The communication cost increases slightly by approximately
1.2×. Yet, as the EL2N score involves costly square root computation, the speed-up is modest. By
incorporating HEFS, we improve the overhead during importance score computation. With HEFS,
the private training can be accelerated by 2.78×. The HEFS also achieves a ∼ 0.2% higher accuracy.
When ciphertext-wise pruning is applied, the runtime speed-up is the most significant, achieving a
6.5× speed-up over HETAL with only 0.2% accuracy drop.

1 5 10 20 40 50 60 70 80 90
Data Fraction(%)

0
50

100
150
200
250
300

H
E

Ti
m

e(
m

in
)

(a) Different pruning ratios on CIFAR-10

1 5 10 20 40 50 60 70 80 90
Data Fraction(%)

0
50

100
150
200
250
300

H
E

Ti
m

e(
m

in
)

(b) Different pruning ratios on MNIST

95.6
95.8
96.0
96.2
96.4
96.6
96.8
97.0

Ac
cu

ra
cy

(%
)

88
90
92
94
96
98
100

Ac
cu

ra
cy

(%
)

Runtime Acc No Pruning Acc

Figure 4: Private training time and accuracy with different fractions of data of (a) CIFAR-10 dataset
and (b) MNIST dataset

Ablation on the pruning ratio. In Figure 4, we demonstrate the effectiveness of the proposed
encrypted data pruning method under different data pruning ratios. In Figure 4 (a), we demonstrate the
training time and accuracy achieved using different fractions of the CIFAR-10 dataset. Surprisingly,
we find that even using only 1% of the data, the accuracy drop is only around 0.6%, and the training
can be sped up by ∼ 16×. Training with the 40% ∼ 70% of the data even leads to higher accuracy
than training with the full dataset. The same phenomenon is observed in plaintext data pruning [9].
This is because some noisy or low-quality samples are excluded from training while retaining enough
informative samples are maintained. We note that we can achieve ∼ 2.2× speed up when training
with 40% of the data without any loss of accuracy on the CIFAR-10 dataset. In Figure 4 (b), we
experiment with the MNIST dataset and observe a similar trend. On the MNIST dataset, using only
1% of the data achieves 91.29% accuracy with ∼ 15× speed-up. Yet, using 5% of the data achieves a
significantly higher accuracy of 95.2%, which is only 0.5% lower than training with the full dataset.

Table 3: Privately Training an MLP from scratch under different data pruning ratios.
Method 1% 5% 10% 20% 40% 50% 60% 70% 80% 90%

Acc.
Acc(%) 93.23 97.12 97.39 98.38 98.52 98.55 98.5 98.48 98.45 98.45
∆Acc. -5.26 -1.37 -1.1 -0.11 +0.03 +0.06 +0.01 -0.01 -0.04 -0.04

Runtime(h)
Time(h) 32.25 110.61 208.56 404.46 796.26 992.16 1188.06 1383.94 1579.88 1775.72
speed up 60.8× 17.2× 9.4× 4.8× 2.5× 1.9× 1.7× 1.4× 1.2× 1.1×

Training from scratch. We show the performance of encrypted data pruning in the training from
scratch setting in Table 3. We train a 3-layer MLP on the MNIST dataset. We set the pruning

9

frequency as 10 epoch. When training with only 1% data, the end-to-end training time could be
60.8× faster with an accuracy drop of 5.26%. Increasing the training data fraction can effectively
improve the test accuracy. When using 40% and 50% fraction of data, the training accuracy is
0.03% ∼ 0.06% higher than training with the full dataset. We remark that warm-start strategy can
also improve the test accuracy.

5 Discussion

Broader Impact. In this paper, we propose a framework that enables encrypted data pruning during
confidential training. The proposed techniques can accelerate the private training without sacrificing
the model accuracy. By incorporating data homomorphic friendly data pruning techniques, our
framework makes the HE-enabled private training more practical while ensuring the data privacy.

Limitations. (1) More Model Support. Currently, the proposed methods have only been applied to
simple models like MLP. Extending the encrypted data pruning to private training on larger models
like CNNs and Transformers can enhance its utility. (2) More Dataset Support. In this paper, we have
experimented on relatively small datasets. Extending to larger datasets will enhance its utility.

6 Conclusion
The paper presents a novel framework for encrypted data pruning aimed at enhancing private training
of deep neural networks. Plaintext data pruning methods offer limited benefits in encrypted settings
due to their lack of optimization for cryptographic processes. Our approach introduces crypto-oriented
optimizations, including HE-friendly score, client-aided masking, and ciphertext-wise pruning, which
effectively harness the potential of data pruning, achieving up to a 16-fold acceleration in training
times without compromising accuracy.

References
[1] Dinggang Shen, Guorong Wu, and Heung-Il Suk. Deep learning in medical image analysis.

Annual review of biomedical engineering, 19:221–248, 2017.

[2] Matthew F Dixon, Igor Halperin, and Paul Bilokon. Machine learning in finance, volume 1170.
Springer, 2020.

[3] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the
forty-first annual ACM symposium on Theory of computing, pages 169–178, 2009.

[4] Karthik Nandakumar, Nalini Ratha, Sharath Pankanti, and Shai Halevi. Towards deep neural
network training on encrypted data. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition workshops, pages 0–0, 2019.

[5] Qian Lou, Bo Feng, Geoffrey Charles Fox, and Lei Jiang. Glyph: Fast and accurately training
deep neural networks on encrypted data. Advances in neural information processing systems,
33:9193–9202, 2020.

[6] Seewoo Lee, Garam Lee, Jung Woo Kim, Junbum Shin, and Mun-Kyu Lee. Hetal: Efficient
privacy-preserving transfer learning with homomorphic encryption. In International Conference
on Machine Learning, pages 19010–19035. PMLR, 2023.

[7] Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua Bengio,
and Geoffrey J Gordon. An empirical study of example forgetting during deep neural network
learning. arXiv preprint arXiv:1812.05159, 2018.

[8] Cody Coleman, Christopher Yeh, Stephen Mussmann, Baharan Mirzasoleiman, Peter Bailis,
Percy Liang, Jure Leskovec, and Matei Zaharia. Selection via proxy: Efficient data selection for
deep learning. arXiv preprint arXiv:1906.11829, 2019.

[9] Mansheej Paul, Surya Ganguli, and Gintare Karolina Dziugaite. Deep learning on a data diet:
Finding important examples early in training. Advances in Neural Information Processing
Systems, 34:20596–20607, 2021.

10

[10] Truong Thao Nguyen, Balazs Gerofi, Edgar Josafat Martinez-Noriega, François Trahay, and
Mohamed Wahib. Kakurenbo: Adaptively hiding samples in deep neural network training.
Advances in Neural Information Processing Systems, 36, 2024.

[11] Ziheng Qin, Kai Wang, Zangwei Zheng, Jianyang Gu, Xiangyu Peng, Zhaopan Xu, Daquan
Zhou, Lei Shang, Baigui Sun, Xuansong Xie, et al. Infobatch: Lossless training speed up by
unbiased dynamic data pruning. arXiv preprint arXiv:2303.04947, 2023.

[12] Krishnateja Killamsetty, Sivasubramanian Durga, Ganesh Ramakrishnan, Abir De, and Rishabh
Iyer. Grad-match: Gradient matching based data subset selection for efficient deep model
training. In International Conference on Machine Learning, pages 5464–5474. PMLR, 2021.

[13] Jung Hee Cheon, Dongwoo Kim, and Duhyeong Kim. Efficient homomorphic comparison
methods with optimal complexity. In Advances in Cryptology–ASIACRYPT 2020: 26th Inter-
national Conference on the Theory and Application of Cryptology and Information Security,
Daejeon, South Korea, December 7–11, 2020, Proceedings, Part II 26, pages 221–256. Springer,
2020.

[14] Eunsang Lee, Joon-Woo Lee, Jong-Seon No, and Young-Sik Kim. Minimax approximation of
sign function by composite polynomial for homomorphic comparison. IEEE Transactions on
Dependable and Secure Computing, 19(6):3711–3727, 2021.

[15] Joon-Woo Lee, HyungChul Kang, Yongwoo Lee, Woosuk Choi, Jieun Eom, Maxim Deryabin,
Eunsang Lee, Junghyun Lee, Donghoon Yoo, Young-Sik Kim, et al. Privacy-preserving machine
learning with fully homomorphic encryption for deep neural network. iEEE Access, 10:30039–
30054, 2022.

[16] Hongyuan Qu and Guangwu Xu. Improvements of homomorphic evaluation of inverse square
root. Available at SSRN 4258571.

[17] Valeria Nikolaenko, Udi Weinsberg, Stratis Ioannidis, Marc Joye, Dan Boneh, and Nina Taft.
Privacy-preserving ridge regression on hundreds of millions of records. In 2013 IEEE symposium
on security and privacy, pages 334–348. IEEE, 2013.

[18] Hao Chen, Ran Gilad-Bachrach, Kyoohyung Han, Zhicong Huang, Amir Jalali, Kim Laine, and
Kristin Lauter. Logistic regression over encrypted data from fully homomorphic encryption.
BMC medical genomics, 11:3–12, 2018.

[19] Andrey Kim, Yongsoo Song, Miran Kim, Keewoo Lee, and Jung Hee Cheon. Logistic regression
model training based on the approximate homomorphic encryption. BMC medical genomics,
11:23–31, 2018.

[20] Miran Kim, Yongsoo Song, Shuang Wang, Yuhou Xia, Xiaoqian Jiang, et al. Secure logistic
regression based on homomorphic encryption: Design and evaluation. JMIR medical informatics,
6(2):e8805, 2018.

[21] Payman Mohassel and Yupeng Zhang. Secureml: A system for scalable privacy-preserving
machine learning. In 2017 IEEE symposium on security and privacy (SP), pages 19–38. IEEE,
2017.

[22] Payman Mohassel and Peter Rindal. Aby3: A mixed protocol framework for machine learning.
In Proceedings of the 2018 ACM SIGSAC conference on computer and communications security,
pages 35–52, 2018.

[23] Sameer Wagh, Shruti Tople, Fabrice Benhamouda, Eyal Kushilevitz, Prateek Mittal, and Tal
Rabin. Falcon: Honest-majority maliciously secure framework for private deep learning. arXiv
preprint arXiv:2004.02229, 2020.

[24] Jean-Luc Watson, Sameer Wagh, and Raluca Ada Popa. Piranha: A {GPU} platform for secure
computation. In 31st USENIX Security Symposium (USENIX Security 22), pages 827–844,
2022.

11

[25] Angelos Katharopoulos and François Fleuret. Not all samples are created equal: Deep learning
with importance sampling. In International conference on machine learning, pages 2525–2534.
PMLR, 2018.

[26] Rishabh Iyer, Ninad Khargoankar, Jeff Bilmes, and Himanshu Asanani. Submodular combina-
torial information measures with applications in machine learning. In Algorithmic Learning
Theory, pages 722–754. PMLR, 2021.

[27] Chengcheng Guo, Bo Zhao, and Yanbing Bai. Deepcore: A comprehensive library for coreset
selection in deep learning. In International Conference on Database and Expert Systems
Applications, pages 181–195. Springer, 2022.

[28] Jung Hee Cheon, Wootae Kim, and Jai Hyun Park. Efficient homomorphic evaluation on large
intervals. IEEE Transactions on Information Forensics and Security, 17:2553–2568, 2022.

[29] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al.
An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

[30] Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. Mpnet: Masked and permuted
pre-training for language understanding. Advances in neural information processing systems,
33:16857–16867, 2020.

[31] Li Deng. The mnist database of handwritten digit images for machine learning research [best of
the web]. IEEE signal processing magazine, 29(6):141–142, 2012.

[32] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[33] Larxel. Face mask detection, 2020. Accessed: May 20, 2024.

[34] Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao, Bilian Ke, Hanspeter Pfister,
and Bingbing Ni. Medmnist v2-a large-scale lightweight benchmark for 2d and 3d biomedical
image classification. Scientific Data, 10(1):41, 2023.

[35] Alice Coucke, Alaa Saade, Adrien Ball, Théodore Bluche, Alexandre Caulier, David Leroy,
Clément Doumouro, Thibault Gisselbrecht, Francesco Caltagirone, Thibaut Lavril, et al. Snips
voice platform: an embedded spoken language understanding system for private-by-design
voice interfaces. arXiv preprint arXiv:1805.10190, 2018.

[36] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomorphic encryption
for arithmetic of approximate numbers. In Advances in Cryptology–ASIACRYPT 2017: 23rd
International Conference on the Theory and Applications of Cryptology and Information
Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part I 23, pages 409–437.
Springer, 2017.

[37] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo Song. A full rns
variant of approximate homomorphic encryption. In Selected Areas in Cryptography–SAC 2018:
25th International Conference, Calgary, AB, Canada, August 15–17, 2018, Revised Selected
Papers 25, pages 347–368. Springer, 2019.

[38] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo Song. Bootstrapping
for approximate homomorphic encryption. In Advances in Cryptology–EUROCRYPT 2018: 37th
Annual International Conference on the Theory and Applications of Cryptographic Techniques,
Tel Aviv, Israel, April 29-May 3, 2018 Proceedings, Part I 37, pages 360–384. Springer, 2018.

[39] Ahmad Al Badawi, Jack Bates, Flavio Bergamaschi, David Bruce Cousins, Saroja Erabelli,
Nicholas Genise, Shai Halevi, Hamish Hunt, Andrey Kim, Yongwoo Lee, Zeyu Liu, Daniele
Micciancio, Ian Quah, Yuriy Polyakov, Saraswathy R.V., Kurt Rohloff, Jonathan Saylor, Dmitriy
Suponitsky, Matthew Triplett, Vinod Vaikuntanathan, and Vincent Zucca. Openfhe: Open-
source fully homomorphic encryption library. Cryptology ePrint Archive, Paper 2022/915, 2022.
https://eprint.iacr.org/2022/915.

12

https://eprint.iacr.org/2022/915

[40] Martin Albrecht, Melissa Chase, Hao Chen, Jintai Ding, Shafi Goldwasser, Sergey Gorbunov,
Shai Halevi, Jeffrey Hoffstein, Kim Laine, Kristin Lauter, et al. Homomorphic encryption
standard. Protecting privacy through homomorphic encryption, pages 31–62, 2021.

[41] Nigel P Smart and Frederik Vercauteren. Fully homomorphic simd operations. Designs, codes
and cryptography, 71:57–81, 2014.

[42] Eric Crockett. A low-depth homomorphic circuit for logistic regression model training. Cryp-
tology ePrint Archive, 2020.

[43] Baiyu Li and Daniele Micciancio. On the security of homomorphic encryption on approximate
numbers. In Annual International Conference on the Theory and Applications of Cryptographic
Techniques, pages 648–677. Springer, 2021.

13

Appendix

A Encrypted data pruning protocol

In this section, we detail the proposed encrypted data pruning protocol. The main overhead associated
with performing performing encrypted data pruning is determined by Step 3.(d) in Figure 5.

Parties: Client C, Server S.
Input: C holds a private dataset D, with N samples and labels {(Xi, Yi)}N−1

i=0 .
Output: C learns a trained modelM and S learns nothing.

Protocol:
1: C encrypts the dataset with HE.Enc, and sends the encrypted dataset D̄ = {X̄i, Ȳi}C−1

i=0 to the server.

2: S initializes M with random parameters W0 and chooses the hyperparamerters for training: the
learning rate η, pruning ratio p and the pruning frequency ∆τ .

3: For each epoch τ , repeat the following:

(a) S performs forward pass homomorphically: P = HE.SoftMax(M(X,W))

(b) S computes gradients and updates model:
Wτ+1 ←Wτ + η∇W , where∇WLCE = 1

N
(P − Y)TX

(c) S sends P to C, C determines early stop.
(d) If (τ mod∆τ == 0), S performs data pruning as follows:

(i) S computes the importance score: ¯score = Prune.Eval(P̄ , Ȳ)
(ii) S sends ¯score to C, can C computes a pruning mask mask.

(iii) S removes unimportant samples: D̄′ = Prune.Remove(D̄,mask)

(iv) Continue step 3(a) to train the model on the pruned dataset D̄′ = {X̄ ′
i, Ȳ ′

i}C
′−1

i=0

4: S sends the trained modelM with encrypted optimal weights W̄ ∗ to C. C decrypts the model with
HE.Dec and obtain the final modelM with optimal plaintext weights W ∗.

Figure 5: Private Data Pruning Protocol.

B Analysis of Client-aided Masking

In this section, we offer more details about the proposed Client-aided Masking (CAM).

The main privacy issue is that (1) the server may learn private information based on the meta
information, (2) the server may crack the secret key. Exposing the pruning mask mask to the server
only reveals the location of unimportant data samples, while all samples are still encrypted by HE,
hence the server still learns nothing about the data sample itself, which avoids the security issue (1).
One of the most recent and well-known attacks is the IND-CPA+ [43]. However, it operates under
the assumption that the server can ask the client to decrypt specific ciphertexts. The assumption is
not upheld in Algorithm 2. Since the server can not specify the ciphertext to be decrypted and that
the client only sends the server the resulting mask, rather than the decrypted scores.

The communication depends on the level of ciphertexts. As shown in Table 4, the lower level the
ciphertext is at, the smaller the ciphertext is. Therefore, the server can set the ciphertext to L = 0 to
reduce the communication overhead.

Table 4: Ciphertext sizes under different levels.

N = 216 L = 0 L = 1 L = 2 L = 3 L = 4 L = 5

Ciphertext Size(MB) 1.01 2.03 3.02 4 5.02 6

14

Algorithm 4: Ciphertext-wise Pruning
Input :The encrypted dataset D̄ = {X̄i, Ȳi}C−1

i=0 and pruning masks mask = {Mi}C−1
i=0 , where

Mi ∈ {0, 1}B and B is the number of samples in each ciphertexts.
Output :The pruned encrypted dataset D̄′ = {X̄ ′

i, Ȳ ′
i}C

′−1
i=0 , where C′ ≤ C.

D̄′ ← ∅;
for i← 0 to C − 1 do

spasityi ← B −
∑B−1

j=0 Mi[j]; // compute the ciphertext-wise sparsity

ct_queue← Sort(spasity, D̄,mask);
while ct_queue.is_not_empty() do

ct_front← ct_queue.pop_front(); // The Trim() removes full and empty ciphertexts
from the ct_queue

if ct_front.sparsity == 0 then
D̄′ ← D̄′ ∪ {ct_front.ct};
continue;

else
ct_queue.push_front(ct_front);
break;

while ct_queue.is_not_empty() do
ct_back ← ct_queue.pop_back();
if ct_back.sparsity == B then

continue;

else
ct_queue.push_back(ct_back);
break;

while ct_queue.is_not_empty() do
ctfront ← ct_queue.pop_front();
ctback ← ct_queue.pop_back();
slotempty ← 0; // The FZero() returns index of the first 0 in ctfront

for slot← 0 to B − 1 do
if ct_front.mask[slot] == 0 then

slotempty ← slot;
ct_front.mask[slot]← 1;
ct_front.sparsity −= 1;

slotused ← 0; // The FOne() returns index of the first 1 in ctback
for slot← 0 to B − 1 do

if ct_back.mask[slot] == 1 then
slotused ← slot;
ct_back.mask[slot]← 0;
ct_back.sparsity += 1;

slotused ← FOne(ctback);
k ← slotused − slotempty;
Mt ← {0}B ; // The Mask() keep only the sample at slotused in ctback
Mt[slotused]← 1;
ctalign ← ctback ⊠Mt;
ctfront ← ctfront ⊞ HE.Rot(ctalign, k);
if ct_queue.is_empty() ∨ ctfront.sparsity == 0 then

D̄′ ← D̄′ ∪ {ctfront.ct};
else

ct_queue.push_front(ctfront);

ct_queue.push_back(ctback);

return D̄′

C Datasets and Hyperparameters

We detail how we divide the training set, validation set and test set in Table 5. For all tasks, we use a
batch size of 128. For the transfer learning setting, we use a learning rate of 0.5 and set the pruning
frequency as every ∆τ = 5 epochs. For the training from scratch setting, we use a leaning rate of

15

0.1 and set the pruning frequency as every ∆τ = 10 epochs. Prior works [9, 12] adopt a warm start
strategy, which trains the model for 10 ∼ 20 epochs on the full dataset. The warm start period is
computation intensive as it uses the whole dataset. Therefore, we use a random start strategy and
randomly choose a fraction of data samples according to the pruning ratio p.

Table 5: Dataset Distribution for Various Machine Learning Challenges
Dataset Total Train Validation Test
MNIST 70000 52500 7500 10000

CIFAR-10 60000 43750 6250 10000
Face Mask Detection 4072 2849 408 815

DermaMNIST 10015 7007 1003 2005
SNIPS 14484 13084 700 700

D Ciphertext-wise pruning

In Algorithm 4, we detail the Trim(), FZero(), Fone() and Mask() functions, which are used during
ciphertext-wise pruning. When k > 0, the server perform left rotation on ctback by |k| sample slot. If
K < 0, right rotation is performed.

16

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We accurately describe the Abstract and Introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: In Section 5.

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Section 3.1

17

Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: In Section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer:[Yes]

18

Justification: Code is released with anonymity.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section 4

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: In Section 4, we report the mean and variance of the results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

19

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Section 4 System Setup.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The authors have reviewed the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We report Broader Impact in Section 5.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to

20

https://neurips.cc/public/EthicsGuidelines

generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite datasets and models in the paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

21

paperswithcode.com/datasets

Answer: [Yes]
Justification: We provide an anonymous URL to release our code in the abstract.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This work does not involve crowdsourcing or human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:This work does not involve crowdsourcing or human subjects.

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

22

	Introduction
	Background
	Fully Homomorphic Encryption-Enabled Private Training
	Dataset Redundancy and Pruning

	HEPrune Design
	Pipeline of Private Training with Encrypted Data Pruning
	HE-enabled Data Pruning
	Ciphertext-wise Pruning

	Experiments
	Experimental Setup
	Results

	Discussion
	Conclusion
	Encrypted data pruning protocol
	Analysis of Client-aided Masking
	Datasets and Hyperparameters
	Ciphertext-wise pruning

