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Abstract

Conformal prediction (CP) is a distribution-free
framework for achieving probabilistic guarantees
on black-box models. CP is generally applied to
a model post-training. Recent research efforts, on
the other hand, have focused on optimizing CP
efficiency during training. We formalize this con-
cept as the problem of conformal risk minimiza-
tion (CRM). In this direction, conformal train-
ing (ConfTr) by Stutz et al. (2022) is a CRM
technique that seeks to minimize the expected
prediction set size of a model by simulating CP
in-between training updates. In this paper, we
provide a novel analysis for the ConfTr gradi-
ent estimation method, revealing a strong source
of sample inefficiency that introduces training in-
stability and limits its practical use. To address
this challenge, we propose variance-reduced con-
formal training (VR-ConfTr), a CRM method
that carefully incorporates a novel variance re-
duction technique in the gradient estimation of
the ConfTr objective function. Through exten-
sive experiments on various benchmark datasets,
we demonstrate that VR-ConfTr consistently
achieves faster convergence and smaller predic-
tion sets compared to baselines.

1. Introduction
Consider a classification task with input (features) X ∈ X
and corresponding labels Y ∈ Y = {1, . . . ,K}. Let πθ :
X → RK be a parameterized predictor which, for every
input x and label y, approximates the posterior probabil-
ity π(y|x) = P (Y = y |X = x). Using πθ, we can es-
timate the label corresponding to an input x as δθ(x) =
argmaxy∈Y πθ(y|x). Usually, the performance of the pre-
dictor πθ is assessed via the accuracy, which is the portion
of testing samples whose predicted label matches the true
label. While the accuracy is a key performance metric, in
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safety-critical applications it is crucial not only to predict
accurately but also to quantify the uncertainty associated
with a prediction. To address this, conformal prediction
(CP) (Vovk et al., 2005; Shafer & Vovk, 2008; Angelopou-
los et al., 2023), uses the (pre-trained) model πθ to construct,
for an input X , a prediction set C(X) ⊆ Y that contains
the true label with high probability, satisfying the desired
coverage guarantee. For example, the set C(X) satisfies
marginal coverage with miscoverage rate α ∈ (0, 1) if
P (Y ∈ C(X)) ≥ 1− α.

One way to evaluate the usefulness of prediction sets is the
length efficiency (Fontana et al., 2023), which represents a
measure of their size. For instance, while it is possible to
trivially guarantee any desired coverage by including the
entire label space in C(x), a prediction set constructed in
this way is non-informative and useless. Thus, an efficient
C(x) is as small as possible while maintaining the desired
coverage guarantee. Addressing the efficiency challenge
by refining the CP set construction technique applied post-
training, though effective, is inherently constrained by the
performance of the pre-trained model πθ. On the other hand,
by integrating CP into the training process, recent research
efforts (Dheur & Taieb, 2024; Cherian et al., 2024; Ein-
binder et al., 2022; Stutz et al., 2022; Bellotti, 2021) guide
the training of a model πθ via CP-induced metrics, optimiz-
ing the model parameters θ to improve its inherent CP effi-
ciency. Here, we formalize this emerging optimization set-
ting as the problem of conformal risk minimization (CRM).
Among the existing CRM methods, the conformal training
(ConfTr) approach first introduced by Stutz et al. (2022)
is an intuitive technique - based on simulating CP during
training to construct differentiable approximations of pre-
diction sets - which is recently gaining momentum (Cherian
et al., 2024; Yan et al., 2024; Wang et al., 2025). However,
despite its potential, ConfTr suffers from training instabil-
ity and struggles to converge (Stutz et al., 2022; Liu et al.,
2024; Correia et al., 2024). In this paper, we focus on the
following questions:

What is the source of training instability in ConfTr?
How can we address this limitation?

We provide answers to both questions. First, we theoreti-
cally show that ConfTr is intrinsically sample-inefficient.
Second, to address this limitation, we introduce variance-
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reduced conformal training VR-ConfTr, a provably sam-
ple efficient CRM algorithm that radically improves gradient
estimation and enhances training stability.

1.1. Contributions

Our contributions can be summarized as follows:

Analysis of the ConfTr algorithm. Focusing on CRM for
length efficiency optimization in the classification setting,
we provide a novel analysis for the ConfTr (Stutz et al.,
2022) method, which reveals a strong source of sample inef-
ficiency in its gradient estimation technique. In particular,
we show that the ConfTr gradient variance is not reduced
with the batch size, and we show that this is related to the
need for improved estimators of the quantile gradients.

A “plug-in” algorithm. We introduce the pipeline of
variance-reduced conformal training (VR-ConfTr), our
proposed algorithm to overcome this challenge, which (i)
decouples the estimation of the population quantile and of
its gradient, and (ii) leverages a “plug-in” step to incorporate
improved estimates of quantiles’ gradients in the training.

Novel variance reduction technique. Building on a fun-
damental result, which characterizes the gradient of the
population quantile as a conditional expectation, we pro-
pose a novel estimator for quantiles’ gradients, which can
be seamlessly integrated into VR-ConfTr. We show
that, under reasonable assumptions, this integration makes
VR-ConfTr provably sample-efficient: unlike ConfTr,
our approach effectively reduces the variance of the result-
ing estimated gradients with the training batch size.

Empirical validations. We extensively validate our method
on various benchmark and real-world datasets, includ-
ing MNIST, FMNIST, KMNIST, OrganAMNIST, and CI-
FAR10. Our results demonstrate that VR-ConfTr consis-
tently and significantly improves the efficiency and stability
of CRM for length efficiency optimization.

Broad applicability. Our approach and variance reduc-
tion technique can be integrated into any CRM method that
requires quantile gradient estimation, at essentially no ad-
ditional computational cost, extending its utility to a large
class of CP frameworks and learning models.

1.2. Related Works

Conformal prediction (CP) is a distribution-free, principled
framework that provides formal probabilistic guarantees
for black-box models (Vovk et al., 2005; Shafer & Vovk,
2008; Angelopoulos et al., 2023), with exemplar applica-
tions in computer vision (Angelopoulos et al., 2020), large
language models (Mohri & Hashimoto, 2024; Kumar et al.,
2023) and path planning (Lindemann et al., 2023). To study
the expected size of the prediction sets, (Lei, 2017; Lei &

Wasserman, 2014; Vovk et al., 2016) provide asymptotic
analysis in the context of statistical optimality, and (Dhillon
et al., 2024) provide a finite-sample analysis under the split
conformal prediction framework. To improve CP efficiency,
many research efforts have focused on approaches that ap-
ply CP post-training to black-box models. In particular,
recent algorithmic developments address improving length
efficiency through better conformity score design (Romano
et al., 2020; Yang & Kuchibhotla, 2024; Amoukou & Brunel,
2023; Deutschmann et al., 2024; Luo & Zhou, 2024), or
on designing better calibration procedures (Kiyani et al.,
2024; Bai et al., 2022; Yang & Kuchibhotla, 2021; Colombo
& Vovk, 2020). These efforts do not fall under the CRM
framework because they focus on learning low-dimensional
hyper-parameters for pre-trained models as opposed to fully
guiding the training of a θ-parameterized model πθ(y|x).

Conformal risk minimization. There is a growing body
of work (Einbinder et al., 2022; Cherian et al., 2024; Stutz
et al., 2022; Bellotti, 2021; Yan et al., 2024) integrating
ideas from conformal prediction in order to directly train a
model for improved CP. Among these, ConfTr proposed
by Stutz et al. (2022) has gained significant attention. This
approach addresses length efficiency optimization by defin-
ing a loss function obtained by simulating conformal pre-
diction during training. We will extensively describe and
provide a novel analysis for this approach in the next sec-
tion. Earlier work by Bellotti (2021) considered an approach
analogous to ConfTr in that the authors simulate confor-
mal prediction during training. However, the algorithm
provided by Bellotti (2021) treats the quantile-threshold
as fixed and not as a function of the model parameters. It
has been extensively shown by Stutz et al. (2022) that the
approach by Bellotti (2021) provides inferior performance
with respect to ConfTr. Moreover, Yan et al. (2024) use a
similar training pipeline to Stutz et al. (2022) in order to min-
imize the inefficiency of their proposed conformal predictor.
Cherian et al. (2024) train a score function, rather than a
point predictor, subject to conditional coverage constraints
(Gibbs & Candes, 2021). Einbinder et al. (2022) utilizes
conformal prediction insights in order to mitigate overcon-
fidence in multi-class classifiers by minimizing a carefully
designed loss function. Among these approaches, ConfTr
is the method that has been applied the most. For example,
Zhao et al. (2025) investigate the use of the ConfTr loss
function in the context of neural network pruning. Addition-
ally, Wang et al. (2025) have recently attempted to apply
ConfTr to train Graph Neural Networks (GNNs).

2. Problem Formulation
Let us consider a (parameterized) model of logits fθ : X →
RK and let πθ(x) = softmax(fθ(x)) denote the corre-
sponding predicted probabilities. A central objective in
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conformal prediction is to use a given black box model fθ
to construct a set predictor Cθ : X → 2Y in such a way that
Cθ satisfies some form of probabilistic coverage guarantee.
In particular, Cθ(X) satisfies marginal coverage if

P (Y ∈ Cθ(X)) ≥ 1− α, (1)

for a user-specified miscoverage rate α ∈ (0, 1).

One common approach to achieve marginal coverage is
via a thresholding (THR) set predictor (Vovk et al., 2005),
Cθ(x; τ) = {y ∈ Y : Eθ(x, y) ≥ τ} for some well-
chosen threshold τ ∈ R and conformity score Eθ(x, y),
which can be any heuristic notion of uncertainty regard-
ing label y upon input x for the predictor fθ(·). Some
choices for the conformity score include (i) the predicted
probabilities Eθ(x, y) = πθ(y|x) = [πθ(x)]y, (ii) the
logits Eθ(x, y) = [fθ(x)]y, and (iii) the predicted log-
probabilities Eθ(x, y) = log πθ(y|x).

If the distribution of Z = (X,Y ) were known, we could
achieve marginal coverage by setting τ = τ(θ) as the α-
quantile of the scalar random variable Eθ(Z), i.e. τ(θ) =
inf{t ∈ R : P (Eθ(Z) ≤ t) ≥ α}. However since Z is gen-
erally unknown in practice, we estimate τ(θ) from samples
Z1, . . . , Zn and use the empirical quantile τ̂n(θ). If the data
are exchangeable, i.e., their joint distribution is invariant
to permutations, then choosing τ̂n(θ) as the empirical α-
quantile ensures that Cθ(x) := Cθ(x, τ̂n(θ)) satisfies the
marginal coverage guarantee (1). Specifically,

τ̂n(θ) = E(⌈αn⌉)(θ), (2)

where E(1)(θ) ≤ . . . ≤ E(n)(θ) denote the order statistics
for Eθ(Z1), . . . , Eθ(Zn).

2.1. Conformal Risk Minimization

As we outlined in the introduction, recent research efforts
have attempted to combine training and CP into one, as
opposed to using CP only as a post-training method. Here,
we formalize this by borrowing terminology from statistical
supervised learning and introducing the problem of con-
formal risk minimization (CRM). CRM can be understood
as a framework for training a parameterized predictor that
learns according to some CP efficiency metric. CRM can
be formulated as follows:

min
θ∈Θ
{L(θ) := E [ℓ(Cθ(X), Y )]} (CRM)

for some conformal loss ℓ, where Cθ(x) is a conformalized
predictor. This problem is closely related to the conformal
risk control explored by Angelopoulos et al. (2022). More
concretely, we will consider the threshold-based set predic-
tor Cθ(x) := Cθ(x; τ(θ)) = {y ∈ Y : Eθ(x, y) ≥ τ(θ)}.

One difficult aspect in solving (CRM) is its non-
differentiability. We can remedy this by introducing a

smoothed approximation of the problem. To do this, we
can adopt measures similar to Stutz et al. (2022). More
precisely, we can first rewrite ℓ(C, y) as ℓ̃(C, y), where
C ∈ {0, 1}K is a vector of binary decision variables with
[C]k = 1k∈C . Then, assuming that ℓ(C, y) is well de-
fined for every C ∈ [0, 1]K , we can consider a smooth ap-
proximation of (CRM) by replacing ℓ(Cθ(x; τ(θ)), y) with
ℓ̃(Cθ(x; τ(θ)), y), where [Cθ(x; τ)]k = 1Eθ(x,y)−τ≥0 is re-

placed with [Cθ(x; τ)]k = sigmoid
(

Eθ(x,y)−τ
T

)
for some

temperature parameter T > 0.

With this, we will focus on the following smoothed version
of problem (CRM):

min
θ∈Θ
{L(θ) := h(E [ℓ(θ, τ(θ), X, Y )]) +R(θ)} ,

(ConfTr-risk)
for some monotone function h(·), loss ℓ(θ, τ, x, y), and
regularizer R(θ). Recall also that τ(θ) = inf{t ∈ R :
P (Eθ(X,Y ) ≤ t) ≥ α} for a given conformity score func-
tion Eθ(x, y).

Unlike the case of risk minimization problems, which can be
understood as traditional stochastic optimization problems
of the form θ 7→ E [ℓ(θ,X, Y )], the problem (ConfTr-risk)
does not lend itself to a trivially unbiased estimator of its gra-
dient with variance decaying as O(1/n) when given n i.i.d.
samples from (X,Y ). The reason, aside from the monotone
transform h(·), lies in the presence of τ(θ). Unlike the tradi-
tional stochastic optimization problem, ∂

∂θ ℓ(θ, τ(θ), X, Y )
cannot be evaluated from a single realization of (X,Y ) since
τ(θ) and ∂τ

∂θ (θ) are unknown due to the underlying distribu-
tion of (X,Y ) being unknown. However, these quantities
can be estimated from data.

The quality of any such estimator directly affects the estima-

tion ∂̂L
∂θ (θ) of ∂L

∂θ (θ) and, consequently, the performance of
any gradient-based optimization algorithm used to approx-
imately solve (ConfTr-risk). Motivated by this, we aim to
answer the following question: can we design a gradient
estimator for L(θ) that achieves arbitrarily small bias and
(co)variance with sufficient samples?

3. Analysis of ConfTr (Stutz et al., 2022)
Stutz et al. (2022) introduced conformal training (ConfTr),
which we categorize as a CRM approach for length effi-
ciency optimization. In particular, ConfTr focuses on
reducing inefficiency of calibrated classifiers, quantified by
the target size of predicted sets. This can be understood as
the problem in (CRM) with ℓ(C, y) = max(0, |C| − κ) for
some target size κ (intended to discourage no predictions at
all) and with a log transform h for numerical stability rea-
sons. In this regard, it is worth noting that the earlier work
of Sadinle et al. (2019) was the first to study the closely
related problem of least ambiguous set-valued classifiers,
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which corresponds to l(C, y) = |C|.

The underlying assumption, just as in any supervised learn-
ing task, is that the marginal distribution of (X,Y ) is un-
known but that instead we can collect some i.i.d. training
data D = {(X1, Y1), . . . , (Xn, Yn)}. With this, an issue
presents itself in that, unlike a typical loss function, we
cannot evaluate ∂

∂θ [ℓ(θ, τ(θ), Xi, Yi)] from realizations of
Xi, Yi alone, because τ(θ) = quantileα(Eθ(X,Y )) and
∂τ
∂θ (θ) are functions of the distribution of (X,Y ) and not
a mere transformation. To resolve this issue, Stutz et al.
(2022) propose their ConfTr algorithm, which randomly
splits a given batch B into two parts, which they refer to
as calibration batch Bcal and prediction batch Bpred. With
this, the authors advocate for employing any smooth (dif-
ferentiable) quantile estimator algorithm for τ(θ) using the
calibration batch. Then, they propose using this estimator
to compute a sampled approximation of (ConfTr-risk), re-
placing expectations by sample means constructed using the
prediction batch. Let L̂(θ) denote the end-to-end empiri-
cal approximation of L(θ). Once L̂(θ) is constructed, the
authors advocate for a (naive) risk minimization procedure
where ∂L̂

∂θ (θ) is computed and passed to an optimizer of
choice.

3.1. Non-Diminishing Variance of ConfTr

In this subsection, we will show that the approach used
in (Stutz et al., 2022) leads to an asymptotically unbiased
gradient estimator, but its variance does not vanish.

We will use Eθ(x, y) and E(θ, x, y) interchangeably and
often write (x, y) as z. To distinguish between partial
and total differentiation, ∂

∂θ ℓ(θ, τ(θ), x, y) denotes the Ja-
cobian of θ 7→ ℓ(θ, τ(θ), x, y) evaluated at θ, whereas
∂ℓ
∂θ (θ, τ(θ), x, y) denotes the Jacobian of ℓ(·, τ(θ), x, y)
evaluated at θ. In particular, we have ∂ℓ

∂θ (θ, τ(θ), x, y) =
∂
∂θ′ ℓ(θ

′, τ(θ), x, y)
∣∣
θ′=θ

. Recall that Zi = (Xi, Yi) are i.i.d.
copies of Z = (X,Y ) and E(1)(θ) ≤ . . . E(n)(θ) denote
the order statistics for Eθ(Z1), . . . , Eθ(Zn). We make the
following regularity assumptions:

Assumption 1. E(θ, x, y) is continuously differentiable
and M -Lipschitz in θ.

Assumption 2. Eθ(Z) and ∂E
∂θ (θ, Z) each admit a continu-

ous probability density function.

Stutz et al. (2022) consider smooth quantile estimators based
on smooth sorting. However, in the next proposition we ar-
gue that the empirical quantile does not need to be smoothed.

Proposition 3.1. E(1)(θ), . . . , E(n)(θ) are almost surely
(a.s.) everywhere differentiable in θ. In particular, the
empirical quantile τ̂n(θ) = E(⌈αn⌉)(θ) is a.s. everywhere
differentiable.

The proof of this result relies on noting that while the sort

function is not differentiable everywhere, it is nonetheless
differentiable almost everywhere. More precisely, the sort
function is piecewise linear, with the non-differentiable
points corresponding to ties in variables that are to be
sorted. Due to the assumed continuous distribution of the
scores Eθ(Z1), . . . , Eθ(Zn), it follows that there are almost
surely (a.s.) no ties, and therefore the order statistics are
indeed differentiable (a.s.). Subsequently, the empirical
quantile τ̂n(θ) is a.s. differentiable (everywhere in θ). Fur-
ther, the smooth quantile τ̂n(θ; ε) based on the smooth sort-
ing method from Blondel et al. (2020) (which Stutz et al.
(2022) re-implement in their own codebase) actually sat-
isfies τ̂n(θ; ε) = τ̂n(θ) = E(⌈αn⌉)(θ) as long as ε > 0 is
small enough, to the order of mini ̸=j |Eθ(Zi) − Eθ(Zj)|,
as can be seen from Lemma 3 in (Blondel et al., 2020).

We can now analyze the quality of the estimate ∂̂L
∂θ (θ) of

∂L
∂θ (θ) using ConfTr, assuming for simplicity that the

“smooth quantile” exactly coincides with the empirical sam-
ple quantile. More precisely, Stutz et al. (2022) propose
to use a batch of 2n i.i.d. samples, which get split in two
parts of equal size n: one part for “calibration” and the
other for “prediction.” The calibration samples, as the name
suggest, are used to estimate τ(θ) as τ̂n(θ) and nothing
else, whereas the prediction samples are used to finish the
estimation of ∂L

∂θ (θ) by merely replacing τ(θ) with τ̂n(θ)
and replacing the expectations with sample means. This is
formalized in Algorithm 1 with τ̂n(θ) := E(⌈αn⌉)(θ) and
∂̂τ
∂θ (θ) :=

∂τ̂n
∂θ (θ) = ∂

∂θE(⌈αn⌉)(θ).

To proceed with our analysis, let us first characterize the
asymptotic behavior of ∂τ̂n

∂θ (θ).
Proposition 3.2. Let τ̂n(θ) = E(⌈αn⌉)(θ). Then,

∂τ̂n
∂θ

(θ)
dist−→ ∂E

∂θ
(θ, Z)

∣∣
Eθ(Z)=τ(θ)

(3)

as n→∞.

Since, Z = (X,Y ) will typically be a high-dimensional
random vector (due to X), ∂E

∂θ (θ, Z)
∣∣
Eθ(Z)=τ(θ)

will not be

a constant. In particular, ∂τ̂n
∂θ (θ) will fail to be a consistent

estimator of ∂τ
∂θ (θ). We can better characterize the behavior

of ∂τ̂n
∂θ (θ) by first noting the following helpful result.

Proposition 3.3 (Hong, 2009, Theorem 2). Suppose that
X is absolutely continuous and Eθ(x, y) is continuously
differentiable in θ and x. Then, for every θ ∈ Θ,

∂τ

∂θ
(θ) = E

[
∂E

∂θ
(θ,X, Y )

∣∣∣Eθ(X,Y ) = τ(θ)

]
. (4)

Using this proposition and leveraging Assumption 1, we
can establish that ∂τ̂n

∂θ (θ) is asymptotically unbiased but its
covariance matrix does not vanish as n→∞. The formal
proof of this can be found in Corollary A.4 in the appendix.
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From Proposition 3.1, we have that, almost surely, θ 7→
ℓ(θ, τ̂n(θ), Z) is differentiable. Therefore, it follows from
the chain rule that

∂

∂θ
[ℓ(θ, τ̂n(θ), Z)] =

∂ℓ

∂θ
(θ, τ̂n(θ), x, y) (5)

+
∂ℓ

∂τ
(θ, τ̂n(θ), Z)

∂τ̂n
∂θ

(θ)

holds almost surely. By inspection, we can see that the
covariance of ∂τ̂n

∂θ (θ) will bottleneck the covariance of (5),

and thus also the covariance of ∂̂L
∂θ (θ). We can formalize

this in the following theorem.

Theorem 3.4. Suppose that ℓ(·, ·, , z) is continuously dif-

ferentiable. For the ConfTr method, the estimator ∂̂L
∂θ (θ)

converges weakly to a random vector that is not constant.
If, in addition, ℓ(·, ·, z) is M -Lipschitz and bounded by M ,

then ∂̂L
∂θ (θ) is asymptotically unbiased but its covariance

matrix does not vanish as n→∞.

The first part of the theorem follows from the continuous
mapping theorem and by noting that τ̂n(θ)

a.s.−→ τ(θ) (Ser-
fling, 1980). The second part follows by noting that all the
terms in line 7 of Algorithm 1 are uniformly integrable.

The takeaways of the analysis in this section are that ∂τ̂n
∂θ (θ)

is a poor estimator of ∂τ
∂θ (θ), even though τ̂n(θ) is an ef-

fective estimator of τ(θ). This in turn causes the overall
gradient’s variance to be Ω(1), because, as we show in The-
orem 3.4, the bias and covariance of ∂τ̂n

∂θ (θ) get inherited

by ∂̂L
∂θ (θ). This motivates our proposed solution addressing

the gradient estimation issue of ConfTr, which we present
next.

4. Variance-Reduced Conformal Training
In order to surpass the shortcoming of ConfTr described
in the previous section, let us first note that the gradient of
the conformal risk (ConfTr-risk) can be written as

∂L

∂θ
(θ) = h′ (E[ℓ(θ, τ(θ), Z)

])
×

(
E
[
∂ℓ

∂θ
(θ, τ(θ), Z)

]
+E

[
∂ℓ

∂τ
(θ, τ(θ), Z)

]
∂τ

∂θ
(θ)

)
,

(6)

where h′ denotes the derivative of h, Z = (X,Y ). Note
that we dropped the regularizer for simplicity.

Discussion: Inspecting equation (6), we note that, in or-

der to estimate the gradient ∂L
∂θ (θ), the estimator ∂̂τ

∂θ (θ) of
the population quantile gradient ∂τ

∂θ (θ) does not necessar-
ily need to be the gradient of the sample quantile τ̂(θ),
which was the strategy adopted by the ConfTr method.

As we show in section 3.1, this naive choice, which sets
∂̂τ
∂θ (θ) =

∂τ̂
∂θ (θ), results in a highly sample-inefficient gra-

dient estimator. With this in mind, we will now lever-
age the structure of the population quantile gradient es-
tablished in (4) to design a novel estimator for ∂τ

∂θ (θ). Then,
in section 4.2, we illustrate the pipeline of our proposed
VR-ConfTr algorithm, showing how we can integrate the

new estimator in computing the estimate ∂̂L
∂θ of ∂L

∂θ (θ).

4.1. Quantile Gradient Estimation

We will now use the relationship established in Proposi-
tion 3.3 to design a novel estimator of the quantile gradient.
The idea is as follows: let us denote

ηε(θ) := E
[
∂E

∂θ
(θ,X, Y )

∣∣Aε(θ)

]
,

Σε(θ) := cov

(
∂E

∂θ
(θ,X, Y )

∣∣Aε(θ)

)
,

(7)

for ε > 0, where Aε(θ) := {|Eθ(X,Y ) − τ(θ)| ≤ ε}.
Note that the term ηε(θ) in (7) is approximately equal to
the population quantile gradient ∂τ

∂θ (θ) if ε ≈ 0. Based on
this, assuming that we have a good estimate τ̂(θ) of the
population quantile τ(θ) available, we can estimate η(θ) =
∂τ
∂θ (θ), using ηε(θ) via the following ε-threshold strategy:

η̂(θ) :=
1∑n

i=1 1Âε,i(θ)

n∑
i=1

1Âε,i(θ)

∂E

∂θ
(θ,Xi, Yi), (8)

using i.i.d. samples (X1, Y1), . . . , (Xn, Yn), where
Âε,i(θ) = {|Eθ(Xi, Yi) − τ̂(θ)| ≤ ε}. In other words,
given a batch of n samples, the estimator η̂(θ) in (8) is
computed as the average of m =

∑n
i=1 1Âε,i(θ)

confor-
mity scores’ gradients, corresponding to the samples whose
conformity scores are ε-close to the estimated population
quantile τ̂(θ).

Tuning ε with m-ranking. In practice, a good value of ε
may depend on batch and parameter θ, and it could signif-
icantly change for each iteration of the optimization pro-
cess. Furthermore, fine-tuning a time-varying value of a
scalar quantity ε > 0 can be challenging, and we there-
fore need some other heuristic way to tune ε adaptively.
One intuitive way to do this, that we adopt in our exper-
iments, is to fix an integer m, sort the samples based on
the distances {

∣∣Eθ(Xi, Yi)− τ̂(θ)
∣∣}i=1,...,n, and then aver-

age the “top” m samples (smallest distances) to estimate
the quantile gradient. This strategy is equivalent to select-
ing ε = inf

{
ε′ > 0 :

∑n
i=1 1Âε′,i(θ)

≥ m
}

, and it is very
practical since it only requires to fine-tune an integer m.

4.2. Proposed Algorithm: VR-confTr

Suppose that the variance-reduced estimator for ∂τ
∂θ (θ) has

been already designed. Then, the new estimate for τ(θ) and
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Figure 1. In this figure, we illustrate the VR-ConfTr pipeline and position it with respect to a typical CP procedure.

∂τ
∂θ (θ) can be plugged into expression (6) for the gradient of
the conformal training risk function, before approximating
the expectation by sample means, leading to the plug-in es-
timator for ∂L

∂θ (θ). Naturally, the plug-in gradient estimator
is then passed through an optimizer in order to approxi-
mately solve (CRM). Our proposed pipeline, which we call
variance-reduced conformal training (VR-ConfTr) algo-
rithm, paired with our novel estimator in (8), constitutes
our main contribution and proposed solution to improve the
sample inefficiency of ConfTr. The critical step of con-
structing the plug-in estimator is summarized in Algorithm 1
and the entire pipeline is illustrated in Figure 1. Similar to
Theorem 3.4, we can establish that the bounds on the bias
and covariance of ∂̂τ

∂θ (θ) get inherited by ∂̂L
∂θ (θ), assuming

that τ̂(θ) a.s.−→ τ(θ).

4.3. Sample-Efficiency of VR-ConfTr

We now provide an analysis for the ε-estimator η̂(θ) (8)
of the population quantile gradient, establishing its bias-
variance trade-off in the following theorem.

Theorem 4.1. Fix θ and ε > 0. Let η̂(θ) be the gradient
estimator defined in (8). Then, the bias and variance of the
estimator can be characterized as follows:

(i) E [η̂(θ)] = (1− [qε(θ)]
n
)ηε(θ)

(ii) cov (η̂(θ)) ⪯ 2Σε(θ)

pε(θ)n
+ [qε(θ)]

n
ηε(θ)η

T
ε (θ),

where pε(θ) = P(Aε,(θ)) and qε(θ) = 1− pε(θ).

The main takeaway of result (i) is that η̂(θ) is an asymptoti-
cally unbiased estimator of ηε(θ), but not η(θ). However,
by definition we also have ηε(θ) ≈ η(θ) for ε ≈ 0. The
second result (ii), instead, shows that variance reduction is
obtained by the proposed estimator, when compared to the

Algorithm 1 Gradient estimator of VR-ConfTr

Require:
batch B = {(X1, Y1), . . . , (X2n, Y2n)} of i.i.d. sam-
ples from (X,Y ),
score function E(θ, x, y) : Θ×X × Y → R,
conformal loss ℓ(θ, x, y, τ) : Θ×X × Y × R→ R,
monotone transformation F : R→ R,
estimator τ̂(·) for τ(θ) = Qα(Eθ(X,Y )),

estimator ∂̂τ
∂θ (·) for ∂τ

∂θ (θ).

Ensure: output an estimate ∂̂L
∂θ of the gradient ∂L

∂θ (θ) of
the conformal training risk (ConfTr-risk)

1: partition B into {Bcal, Bpred}, with |Bcal| =
|Bpred| = n.

2: τ̂ ← τ̂(Bcal) // estimate τ(θ) using Bcal

3: ∂̂τ
∂θ ←

∂̂τ
∂θ (Bcal) // estimate ∂τ

∂θ (θ) using Bcal

4: ℓ̂← 1
|Bpred|

∑
(x,y)∈Bpred

ℓ(θ, x, y, τ̂)

5: ∂̂ℓ
∂θ ←

1
|Bpred|

∑
(x,y)∈Bpred

∂ℓ
∂θ (θ, x, y, τ̂)

6: ∂̂ℓ
∂τ ←

1
|Bpred|

∑
(x,y)∈Bpred

∂ℓ
∂τ (θ, x, y, τ̂)

7: ∂̂L
∂θ ← h′(ℓ̂)

(
∂̂ℓ
∂θ + ∂̂ℓ

∂τ
∂̂τ
∂θ

)
+ ∂R

∂θ (θ) // “plug-in”

naive estimator ∂τ̂
∂θ (θ). For large n, the variance reduction

is proportional to pε(θ)n, which is equal to the (expected)
proportion of samples that are used in the estimator. More
precisely, the variance of the estimator is O

(
1

pε(θ)n

)
as

ε → 0 or n → ∞. A key takeaway of (i) and (ii) is the
explicit characterization of the bias-variance trade-off as a
function of the threshold ε > 0 and of the batch size n: for a
given batch size n, a larger ε increases the expected amount
of samples used by the estimator, reducing its variance.
However, larger ε also increases the bias of the estimator

6
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Dataset Model Algorithm Accuracy (Avg ± Std) Size (Avg ± Std) (%)

MNIST Linear
Baseline 0.887± 0.004 4.122± 0.127 (+12%)
ConfTr (Stutz et al., 2022) 0.842± 0.141 3.990± 0.730 (+8%)
VR-ConfTr (ours) 0.886± 0.071 3.688± 0.350

Fashion-MNIST MLP
Baseline 0.845± 0.002 3.218± 0.048 (+15%)
ConfTr (Stutz et al., 2022) 0.799± 0.065 3.048± 0.201 (+9%)
VR-ConfTr (ours) 0.839± 0.043 2.795± 0.154

Kuzushiji-MNIST MLP
Baseline 0.872± 0.046 4.982± 0.530 (+6%)
ConfTr (Stutz et al., 2022) 0.783± 0.125 4.762± 0.226 (+2%)
VR-ConfTr (ours) 0.835± 0.098 4.657± 0.680

OrganA-MNIST ResNet-18
Baseline 0.552± 0.017 4.823± 0.748 (+2%)
ConfTr (Stutz et al., 2022) 0.526± 0.047 6.362± 0.857 (+33%)
VR-ConfTr (ours) 0.547± 0.021 4.776± 1.178

CIFAR-10 ResNet-20
Baseline 0.743± 0.003 2.881± 0.038 (+12%)
ConfTr (Stutz et al., 2022) 0.733± 0.051 2.806± 0.389 (+10%)
VR-ConfTr (ours) 0.742± 0.023 2.508± 0.039

Table 1. Summary of evaluation results. For VR-ConfTr, we show in percentage the average set size (Size (Avg ± Std) (%)) improvement
against ConfTr by (Stutz et al., 2022). The third column presents the average accuracy and its standard deviation (Accuracy (Avg ±
Std)). The confidence level α used for conformal prediction is fixed at 0.01 for all datasets except CIFAR-10, where it is set to 0.1.

towards the unconditional expectation E
[
∂E
∂θ (θ,X, Y )

]
.

5. Experiments
We evaluate VR-ConfTr against (i) a baseline model
trained with cross-entropy loss (Baseline), and (ii)
ConfTr. We perform experiments across benchmark
datasets - MNIST (Deng, 2012), Fashion-MNIST (Xiao
et al., 2017a), Kuzushiji-MNIST (Clanuwat et al., 2018),
CIFAR10 (Krizhevsky, 2009), and a healthcare dataset
comprising abdominal computed tomography scans, Or-
ganAMNIST (Yang et al., 2021). One of the main perfor-
mance metrics that we consider is the length-efficiency of
the conformal prediction sets produced by applying a stan-
dard CP procedure to the trained model. Other relevant
metrics are the convergence speed of the algorithm, as well
as the final accuracy of the model. To tune the VR-ConfTr
ε-estimator for the quantile gradient in (8), we employ the
m-ranking method 4.1, and investigate multiple choices for
m, detailed in Appendix C. We provide extensive details
about the training settings, the adopted model architectures
and hyper-parameters in Appendix D. Next, we summarize
results from evaluating the trained model, reporting average
accuracy and CP length efficiency over multiple runs. In
Section 5.2 we compare Vr-ConfTr and ConfTr illus-
trating curves of relevant evaluation metrics, highlighting
the improved training performance and variance reduction.

5.1. Summary of Evaluation Results

Table 1 presents the CP set size resulting from CP procedure
applied post-training, and the accuracy of the trained model
for each dataset.

The metrics in Table 1 are averaged over 5-10 training trials,
with details on trial variations in Appendix D. For a fair
comparison, we used the same model architecture for all
methods (ConfTr, VR-ConfTr, Baseline) and identi-
cal hyper-parameters for ConfTr and VR-ConfTr. For
post-training CP, we use the standard THR method with the
corresponding α. Average set sizes are reported over 10
calibration-test splits. The main takeaway from Table 1
is that VR-ConfTr improves over all considered metrics
compared to ConfTr. VR-ConfTr consistently achieves
smaller prediction set sizes than ConfTr and Baseline.
Important to note that our focus is not to optimize ConfTr
but to demonstrate that VR-ConfTr improves performance
and stability regardless of ConfTr’s performance or hyper-
parameters. As noted by Stutz et al. (2022), Baseline
sometimes achieves slightly higher accuracy than ConfTr
and VR-ConfTr, though VR-ConfTr consistently out-
performs ConfTr. However, the focus of conformal train-
ing is to improve CP efficiency by reducing prediction set
sizes while maintaining comparable accuracy to non-CRM
methods, not surpassing Baseline in accuracy.

5.2. On the Training Performance of VR-ConfTr

Here, we focus on the training performance of VR-ConfTr,
with special attention to the speed in minimizing the confor-

7
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Figure 2. Learning curves for MNIST, Fashion-MNIST, Kuzushiji-
MNIST, and OrganAMNIST. Each row shows training loss (left)
and test CP set sizes (right) for the corresponding dataset, evaluated
using the THR conformal predictor.

mal training loss described in section 2, and in minimizing
the CP set sizes on test data. The results illustrate the evo-
lution of the different metrics across epochs, validate the
beneficial effect of the variance reduction technique and the
superior performance of VR-ConfTr when compared to
the competing ConfTr by Stutz et al. (2022).

In Figure 2, we show the training performance for four
datasets (MNIST, FMNIST, KMNIST and OrganAMNIST)
illustrating two key metrics: (i) the evolution of the confor-
mal training loss defined in section 2 and (ii) the test CP size
across epochs. In all the plots, we see that VR-ConfTr
reaches smaller values of the loss and in significantly fewer
epochs as compared to ConfTr. In the case of MNIST,
for example, VR-ConfTr reaches a lower value of the loss
in 10 times fewer epochs as compared to ConfTr. Sim-
ilarly, for FMNIST VR-ConfTr achieves a smaller size
in one third of epochs compared to ConfTr. For both
Kuzushiji-MNIST and OrganA-MNIST, we notice that not
only VR-ConfTr is faster, but it also gets to significantly
smaller values of the loss. For the more challenging OrganA-

MNIST dataset, this difference appears even more accentu-
ated, not only in the training loss but also in the test CP set
sizes. Notice that for all the three methods (VR-ConfTr,
ConfTr and Baseline) we performed hyper-parameter
tuning. Notably, in the case of the OrganA-MNIST dataset,
we were not able to obtain an improvement with ConfTr in
the final set size with respect to Baseline, which stresses
the need for a method with improved gradient estimation,
as the one we propose in this paper.

Fine-tuning Cifar-10: Figure 3 presents the training per-
formance for CIFAR-10, where we fine-tune the last linear
layer of a pretrained ResNet20 trained with cross-entropy
loss. Unlike the other datasets, where we train all model pa-
rameters using the ConfTr or VR-ConfTr loss, we train
CIFAR-10 fine-tuning the final layer only. Fine-tuning with
ConfTr has gained traction due to its reduced computa-
tional overhead (Yan et al., 2024). Despite modifying only
the final layer, Vr-ConfTr consistently yields smaller CP
sets compared to ConfTr, while also achieving higher ac-
curacy within the first epoch.

Figure 3. Learning curves for CIFAR-10 illustrating the fine-tuning
process of a linear layer on a pretrained ResNet20 model using
ConfTr and VR-ConfTr. Test CP set sizes are evaluated using
the THR conformal predictor, consistent with the other datasets.

6. Concluding Remarks and Future Directions
We theoretically justified the sample inefficiency in the
ConfTr method proposed by Stutz et al. (2022), which
is a conformal risk minimization (CRM) method for length
efficiency optimization. We have shown that the source of
sample inefficiency lies in the estimation of the gradient of
the population quantile. To address this issue, we introduced
a novel technique that improves the gradient estimation of
the population quantile of the conformity scores by provably
reducing its variance. We show that, by incorporating this es-
timation technique in our proposed VR-ConfTr algorithm,
the training becomes more stable and the post-training con-
formal predictor is often more efficient as well. Our work
also opens up possibilities for future research in the area
of CRM. Indeed, further methods for quantile gradient es-
timation could be developed and readily integrated with
our “plug-in” algorithm, for which we can expect improved
training performance.

8
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Impact statement
In this paper, we propose VR-ConfTr, a novel algorithmic
framework for Conformal Prediction that improves the effi-
ciency and stability of training. This work has immediate
applications in areas requiring reliable uncertainty quantifi-
cation, such as healthcare, autonomous systems, and natural
language processing. We do not anticipate any negative
societal impact from this research.
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A. Proofs for Section 3 and 4
In this appendix, we provide the proofs of all the theoretical results presented in section 3.

Proposition A.1. (Proposition 3.1) E(1)(θ), . . . , E(n)(θ) are almost surely (a.s.) everywhere differentiable in θ. In
particular, the empirical quantile τ̂n(θ) = E(⌈αn⌉)(θ) is a.s. everywhere differentiable.

Proof. We will formally show that the ordered statistics E(j)(θ), with j = 1, ..., n, are differentiable for any θ with
probability 1. We first recall some notation. Let E(1)(θ) ≤ . . . ≤ E(n)(θ) denote the order statistics corresponding to the
scalar random variables E(θ,X1, Y1), . . . , E(θ,Xn, Yn).
Let us also denote by ω(θ) : [n]→ [n] the permutation of indices [n] := {1, . . . , n} that correspond to the order statistics,
i.e., ω(θ) = (ω1(θ), . . . , ωn(θ)), and (E(1)(θ), . . . E(n)(θ)) = (E(θ,Xω1(θ), Yω1(θ)), . . . , E(θ,Xωn(θ), Yωn(θ))). Now
define the set An as follows:

An = {(E1, ..., En) : Ei = Ej for some i ̸= j}. (9)

Now note that, by definition, the conformity score function E(θ,X, Y ) is continuous and differentiable in θ. Now fix some
θ̄. Consider the event in which the ordered statistics are such that E(1)(θ̄) < . . . < E(n)(θ̄), hence

(E(θ̄, Xω1(θ̄), Yω1(θ̄)), . . . , E(θ̄, Xωn(θ̄), Yωn(θ̄))) = (E(1)(θ̄), . . . , E(n)(θ̄)) /∈ An, (10)

which means that ω(θ̄) is the unique ordered statistics permutation for {E(θ,Xi, Yi)}ni=1 and note that this happens almost
surely (with probability 1), because E(θ,X, Y ) is an absolutely continuous random variable. The key step is now to note
that by continuity of E(θ,Xi, Yi) in θ, there exists δ > 0 such that, for θ ∈ {θ′ : ∥θ′ − θ̄∥ ≤ δ}, we have ω(θ) = ω(θ̄),
which means that, if ∥θ − θ̄∥ ≤ δ,

(E(1)(θ), . . . , E(n)(θ)) = (E(θ,Xω1(θ), Yω1(θ)), . . . , E(θ,Xωn(θ), Yωn(θ)))

= (E(θ,Xω1(θ̄), Yω1(θ̄)), . . . , E(θ,Xωn(θ̄), Yωn(θ̄)))
(11)

At this point, let j ∈ {1, ..., n}, and let us denote E(j)(θ) = E(θ,Xωj(θ), Yωj(θ)) = E(θ, ωj(θ)), and, for any θ ∈ {θ′ :
∥θ′ − θ̄∥ ≤ δ} the derivative of E(j)(θ) is

∂

∂θ
E(j)(θ) =

∂

∂θ
E(θ, ωj(θ)) =

∂

∂θ
E(θ, ωj(θ̄)) =

∂E

∂θ
(θ, ωj(θ̄)), (12)

which is true because, as we show in (11) above, for θ ∈ {θ′ : ∥θ′− θ̄∥ ≤ δ}, the function ωj(θ) is a constant equal to ωj(θ̄).
Note that, as we do in the main paper, we here denote by ∂E

∂θ (θ, ωj(θ̄)) the partial derivative with respect to θ. Note that,
given that the choice of θ̄ is arbitrary, we have shown that the function θ 7→ E(θ,Xωj(θ), Yωj(θ)) is indeed differentiable
with probability 1 for all j = 1, . . . , n.
To be absolutely convinced that (11) is true, note that we can show it by continuity of θ 7→ E(θ,X, Y ), as follows: let’s fix
θ̄ and let us denote again E(j)(θ) = E(θ,Xωj(θ), Yωj(θ)) = E(θ, ωj(θ)). We want to show that there exists δ > 0 such that
ω(θ̄) = ω(θ) for any θ ∈ {θ′ : ∥θ′ − θ̄∥ ≤ δ}. To do so, it is sufficient to show that, for any θ ∈ {θ′ : ∥θ′ − θ̄∥ ≤ δ},

E(θ, ωi+1(θ̄)) > E(θ, ωi(θ̄)), for i = 1, ..., n− 1. (13)

Let us define
ε = min

i=1,...,n−1
{E(θ̄, ωi+1(θ̄))− E(θ̄, ωi(θ̄))}. (14)

From continuity of θ 7→ E(θ,X, Y ), there exists δ > 0 such that if θ ∈ {θ′ : ∥θ′ − θ̄∥ ≤ δ}, we have

|E(θ, ωi(θ̄))− E(θ̄, ωi(θ̄))| <
ϵ

2
. (15)

Note that, from (14) and (15), we have for all i = 1, . . . , n,

E(θ̄, ωi+1(θ̄)) ≥ E(θ̄, ωi(θ̄)) + ϵ, (16)

and
E(θ, ωi(θ̄)) > E(θ̄, ωi(θ̄))−

ϵ

2
. (17)

12
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Hence, note that, starting from this last inequality, and then using (16)

E(θ, ωi+1(θ̄)) > E(θ̄, ωi+1(θ̄))−
ϵ

2

≥ E(θ̄, ωi(θ̄)) +
ϵ

2
.

(18)

Now, we can use again (15) (continuity) to show that

E(θ̄, ωi(θ̄)) > E(θ, ωi(θ̄))−
ϵ

2
, (19)

and thus observe that, for all i = 1, . . . , n,

E(θ, ωi+1(θ̄)) > E(θ̄, ωi(θ̄)) +
ϵ

2
> E(θ, ωi(θ̄)), (20)

from which we can confirm that, for θ ∈ {θ′ : ∥θ′ − θ̄∥ ≤ δ}, ω(θ) = ω(θ̄), and we can conclude.

Lemma A.2. Given any continuous, bounded function h, the function g(t, θ) = E
[
h(∂E∂θ (θ, Z) |Eθ(Z) = t

]
is continuous

in t.

Proof. Given an absolutely continuous random vector V , we will denote its probability density function (PDF) as fV (v).
Let Eθ and Vθ denote the support of Eθ(Z) and ∂E

∂θ (θ, Z) respectively, i.e. the set of points where the PDF is strictly positive.
Suppose that t ∈ Eθ. Then,

g(t, θ) = E
[
h

(
∂E

∂θ
(θ, Z)

)
|Eθ(Z) = t

]
=

∫
Vθ

f ∂E
∂θ (θ,Z)|Eθ(Z)=t(v)h

(
∂E

∂θ
(θ, v)

)
dv

=

∫
Vθ

f ∂E
∂θ (θ,Z),Eθ(Z)(v, t)

fEθ(Z)(t)
h

(
∂E

∂θ
(θ, v)

)
dv.

Since f ∂E
∂θ (θ,Z),Eθ(Z)(v, t) is continuous in t (from Assumption 2), then so is fEθ(Z)(t). Subsequently, their ratio is

continuous, and the result follows.

Proposition A.3. (Proposition 3.2) Let τ̂n(θ) = E(⌈αn⌉)(θ). Then,

∂τ̂n
∂θ

(θ)
dist−→ ∂E

∂θ
(θ, Z)

∣∣
Eθ(Z)=τ(θ)

(21)

as n→∞.

Proof. Let Zi = (Xi, Yi) for i ∈ {1, . . . , n} and Z = (X,Y ). Let h be a bounded, continuous function. Then,

E
[
h

(
∂τ̂n
∂θ

(θ)

)]
= E

[
h

(
∂E

∂θ
(θ, Zω⌈αn⌉(θ))

)]
= Et∼dist(τ̂n(θ))

[
E
[
h

(
∂E

∂θ
(θ, Zω⌈αn⌉(θ))

) ∣∣ τ̂n(θ) = t

]]
.

Now, focusing on the inner expectation, we can see that τ̂n(θ) = t occurs almost surely (assuming no ties in the scores
Eθ(Z1), . . . , Eθ(Zn)) if and only if exactly one of the scores is equal to t and exactly ⌈αn⌉ − 1 of the remaining being
strictly smaller than t. Due to exchangeability of the scores, every ordering is equally likely. Therefore,

E
[
h

(
∂E

∂θ
(θ, Zω⌈αn⌉(θ))

) ∣∣ τ̂n(θ) = t

]
= E

[
h

(
∂E

∂θ
(θ, Z1)

) ∣∣Eθ(Z1) = t,

n∑
i=2

1Eθ(Zi)<t = ⌈αn⌉ − 1

]
.

13
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Now, due to the assumed independence of Z1, . . . , Zn, we can drop {
∑n

i=2 1E(θ,Zi)<t = ⌈αn⌉ − 1} from the conditional,
because h

(
∂E
∂θ (θ, Z1)

)
does not depend on Z2, . . . , Zn. Subsequently,

E
[
h

(
∂τ̂n
∂θ

(θ)

)]
= Et∼dist(τ̂n(θ))

[
E
[
h

(
∂E

∂θ
(θ, Z1)

) ∣∣Eθ(Z1) = t

]]

= Et∼dist(τ̂n(θ))

[
E
[
h

(
∂E

∂θ
(θ, Z)

) ∣∣Eθ(Z) = t

] ]
= Et∼dist(τ̂n(θ))[g(t, θ)],

where g(t, θ) := E
[
h
(
∂E
∂θ (θ, Z)

) ∣∣Eθ(Z) = t
]
. Therefore,

E
[
h

(
∂τ̂n
∂θ

(θ)

)]
= E [g(τ̂n(θ), θ)] .

Noting that τ̂n(θ) → τ(θ) in distribution, it follows from Lemma A.2 and by the continuous mapping theorem that
g(τ̂n(θ), θ)

dist−→ g(τ(θ), θ). We can rewrite this as

lim
n→∞

E
[
h

(
∂E

∂θ
(θ, Zω⌈αn⌉)

)]
= E

[
h

(
∂E

∂θ
(θ, Z)

) ∣∣Eθ(Z) = τ(θ)

]
.

Since h was arbitrary, it follows from the Portmanteau lemma that

∂E

∂θ
(θ, Zω⌈αn⌉)

dist−→ ∂E

∂θ
(θ, Z)

∣∣
Eθ(Z)=τ(θ)

(22)

as n→∞.

Corollary A.4. Under the same conditions as Proposition 3.2, we have

E
[
∂τ̂n
∂θ

(θ)

]
→ E

[
∂E

∂θ
(θ, Z)

∣∣∣Eθ(Z) = τ(θ)

]
(23)

and

cov

(
∂τ̂n
∂θ

(θ)

)
→ cov

(
∂E

∂θ
(θ, Z)

∣∣∣Eθ(Z) = τ(θ)

)
(24)

as n→∞.

Proof. For the corollary, simply note that we can apply the Portmanteau lemma again, choosing some continuous, bounded
h such that h(θ) = θl and h(θ) = θlθp (with l, p indexing components of θ) over {∥θ∥ ≤ M}. This way, noting that
∥∂E∂θ (θ, z)∥ ≤M , we can see that

E
[
∂τ̂n
∂θl

(θ)

]
→ E

[
∂E

∂θl
(θ, Z)

∣∣∣Eθ(Z) = τ(θ)

]
and

E
[
∂τ̂n
∂θl

(θ)
∂τ̂n
∂θp

(θ)

]
→ E

[
∂E

∂θl
(θ, Z)

∂E

∂θp
(θ, Z)

∣∣∣Eθ(Z) = τ(θ)

]
.

Gathering all the indices l, p completes the proof.
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Proof of Theorem 4.1

We start with two preliminary results that we will use in the proof.

Some preliminaries. First, we recall a well-known result. Let k ∼ Binomial(n, p) be a random variable sampled from a
Binomial distribution with n trials and with probability p of success. The following holds:

E
[

1

1 + k

]
=

(1− (1− p)n+1)

(n+ 1)p
. (25)

Note that this follows from the following simple steps:

E
[

1

1 + k

]
=

n∑
k=0

1

1 + k
·
(
n

k

)
pk (1− p)

n−k

=
1

p(n+ 1)

n∑
k=0

(
n+ 1

k + 1

)
pk+1(1− p)n−k

=
1

p(n+ 1)

n+1∑
j=1

(
n+ 1

j

)
pj(1− p)n+1−j

=

(
1− (1− p)n+1

)
p(n+ 1)

.

Next, we state another well-known identity. Let us consider the following recursion:

an+1 = ρ an + b,

where ρ > 0. Simply unrolling the recursion, we can obtain

an = ρna0 + b

(
1− ρn

1− ρ

)
. (26)

Proof of the Theorem.

Before we proceed, we introduce some notation. For simplicity, since τ̂(θ) converges almost surely to τ(θ), we assume
τ̂(θ) = τ(θ) in the analysis. Let us then denote

Gi(θ) =
∂E

∂θ
(θ,Xi, Yi),

Aε,i(θ) = {ε ≤ E(θ,Xi, Yi)− τ(θ) ≤ ε},

Rε,n(θ) =

n∑
i=1

χAε,i(θ),

Sϵ,n(θ) = {i ∈ [n] : χAϵ,i(θ) = 1},

(27)

where χAε,i(θ) is an indicator function for the event Aε,i(θ), i.e.,

χAε,i(θ) =

{
1, if |Eθ(Xi, Yi)− τ(θ)| ≤ ε

0, if |Eθ(Xi, Yi)− τ(θ)| > ε
. (28)

We are now ready to analyze the estimator η̂ε,n(θ) for ηε(θ):

η̂ε,n(θ) =

{
1

Rε,n(θ)

∑n
i=1 χAε,i(θ)Gi(θ), if Rε,n(θ) > 0

0 if Rε,n(θ) = 0
, (29)

where ε and n are denoted explicitly to remove ambiguity.
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Equipped with the basic results established earlier in this subsection, we can proceed first with proving assertion (i). Note
that, by definition (29), and because {Xi, Yi}ni=1 are sampled independently, we have

E

 1

|Sϵ,n(θ)|
∑

i∈Sϵ,n(θ)

Gi|
⋂

i∈Sϵ,n(θ)

Aϵ,i(θ)

 =
1

|Sϵ,n(θ)|
∑

i∈Sϵ,n(θ)

E
[
χAϵ,i(θ)Gi(θ)|Aϵ,i(θ)

]
= ηϵ. (30)

Also note that Sϵ,n(θ) = ∅ is equivalent to Rϵ,n(θ) = 0, and that

P (Sϵ,n(θ) = ∅) = P (Rϵ,n(θ) = 0) = qϵ(θ)
n, (31)

with qϵ(θ) = 1− pϵ(θ) and pϵ(θ) = P(Aε,i(θ)). For simplicity, we denote p = pε(θ) and q = 1− p for the remainder of
the proof. Hence, we can get (i) as follows:

E [η̂ϵ,n(θ)] = qnE [η̂ϵ,n(θ)|Rϵ,n(θ) = 0] + (1− qn)ηϵ, (32)

where we used the fact that
∑

S ̸=∅ P (Sϵ,n(θ) = S) = 1− P (Sϵ,n(θ) = ∅) = 1− qn.

Now, we prove (ii). We start by analyzing E
[
η̂ϵ,n(θ)η̂ϵ,n(θ)

⊤]:
E
[
η̂ϵ,n(θ)η̂ϵ,n(θ)

⊤] = ∑
S⊆[n]

P (Sϵ,n(θ) = S)E
[
η̂ϵ,n(θ)η̂ϵ,n(θ)

⊤|Sϵ,n(θ) = S
]

= P (Sϵ,n(θ) = ∅)E
[
η̂ϵ,n(θ)η̂ϵ,n(θ)

⊤|Sϵ,n(θ) = Sϵ,n(θ)
]

+
∑
S ̸=∅

P (Sϵ,n(θ) = S)E

( 1

|S|
∑
i∈S

Gi(θ)

)(
1

|S|
∑
i∈S

Gi(θ)

)⊤

|
⋂
i∈S

Aϵ,i(θ)


= P (Sϵ,n(θ) = ∅)E

[
η̂ϵ,n(θ)η̂ϵ,n(θ)

⊤|Rϵ,n(θ) = 0
]

+
∑
S ̸=∅

P (Sϵ,n(θ) = S)
1

|S|2
∑
i∈S

∑
j∈S

E
[
Gi(θ)Gj(θ)

⊤|Aϵ,i(θ), Aϵ,j(θ)
]
.

(33)

Now note that

E
[
Gi(θ)Gj(θ)

⊤|Aϵ,i(θ), Aϵ,j(θ)
]
= δi,jE

[
Gi(θ)Gi(θ)

⊤|Aϵ,i(θ)
]

+ (1− δij)E [Gi(θ)|Aϵ,i(θ)]E
[
Gj(θ)

⊤|Aϵ,j(θ)
]

= E [Gi(θ)|Aϵ,i(θ)]E
[
Gj(θ)

⊤|Aϵ,i(θ)
]

+ δij
(
E
[
Gi(θ)Gi(θ)

⊤|Aϵ,i(θ)
]
− E [Gi(θ)|Aϵ,i(θ)]E

[
Gi(θ)

⊤|Aϵ,i(θ)
])

= ηϵη
⊤
ϵ + δijΣϵ,

(34)

where δi,j =

{
1 if i = j,

0 if i ̸= j.
. We used the fact that {Xi, Yi}ni=1 are sampled i.i.d. and the definitions in (27). Now, we can

proceed as follows:
E
[
η̂ϵ,n(θ)η̂ϵ,n(θ)

⊤] = qnE
[
η̂ϵ,n(θ)η̂ϵ,n(θ)

⊤|Rϵ,n(θ) = 0
]

+
∑
S ̸=∅

P (Sϵ,n(θ) = S)

|S|
(
|S|ηϵη⊤ϵ +Σϵ

)
= qnE

[
η̂ϵ,n(θ)η̂ϵ,n(θ)

⊤|Rϵ,n(θ) = 0
]

+ (1− qn)ηϵη
⊤
ϵ + fnΣϵ,

(35)

where we write

fn =
∑
S ̸=∅

P (Sϵ,n(θ) = S)

|S|
. (36)

Now, we will show that

fn ≤
2− p

pn
. (37)
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First, let us define the following function

f(k) =

{
0, if k = 0
1
k if k ≥ 1

, (38)

and note that

fn = E [f(|Sϵ,n(θ)|)] = E [f(Rϵ,n(θ))] . (39)

Now note that

fn+1 = E [f(Rϵ,n+1(θ))]

= P (Aϵ,i(θ)
c)E [f(Rϵ,n(θ))] + P (Aϵ,i(θ))E [f(1 +Rϵ,n(θ))]

= qE [f(Rϵ,n(θ))] + pE [f(1 +Rϵ,n(θ))]

= qfn + pE
[

1

1 +Rϵ,n(θ)

]
= qfn +

1− qn+1

n+ 1
,

(40)

where, in the last equation, we used the fact shown in the preliminaries (see (25)):

E
[

1

1 +Rϵ,n(θ)

]
=

1− qn+1

p(n+ 1)
. (41)

Now let an = nfn. We can write

(n+ 1)fn+1 = (n+ 1)

(
qfn +

1− qn

n+ 1

)
, (42)

from which we obtain the following recursion:

an+1 = qnfn + qfn + (1− qn+1)

= qan + qfn + (1− qn+1)

≤ qan + 1 + q,

(43)

where we used the fact that fn ≤ 1 and that 1− qn ≤ 1. With this recursion, we can now use the result illustrated in the
preliminaries in (26) and get, using q = 1− p,

an ≤ qna0 +
1− qn

1− q
(1 + q) ≤ 2− p

p
. (44)

From the above inequality, we can conclude that

0 ≤ fn =
an
n
≤ 2− p

pn
. (45)

Plugging this last result in (35), we can get

E
[
η̂ϵ,n(θ)η̂ϵ,n(θ)

⊤] ⪯ qnE
[
η̂ϵ,n(θ)η̂ϵ,n(θ)

⊤|Rϵ,n(θ) = 0
]
+ (1− qn)ηϵη

⊤
ϵ +

2− p

pn
Σϵ. (46)
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We are now in the position to write and bound cov(η̂ϵ,n(θ)):

cov (η̂ϵ,n(θ)) = E
[
η̂ϵ,n(θ)η̂ϵ,n(θ)

⊤]− [η̂ϵ,n(θ)]
[
η̂ϵ,n(θ)

⊤]
⪯ qnE

[
η̂ϵ,n(θ)η̂ϵ,n(θ)

⊤|Rϵ,n(θ) = 0
]
+ (1− qn)ηϵη

⊤
ϵ +

2− p

pn
Σϵ

− (qnE [η̂ϵ,n(θ)|Rϵ,n(θ) = 0] + (1− qn)ηϵ)

· (qnE [η̂ϵ,n(θ)|Rϵ,n(θ) = 0] + (1− qn)ηϵ)
⊤

=
2− p

pn
Σϵ + (1− qn)ηϵη

⊤
ϵ − (1− qn)2ηϵη

⊤
ϵ

=
2− p

pn
Σϵ + (1− qn)(1− (1− qn))ηϵη

⊤
ϵ

=
2− p

pn
Σϵ + (1− qn)qnηϵη

⊤
ϵ

⪯ 2− p

pn
Σϵ + qnηϵη

⊤
ϵ ,

(47)

where we used (i), the fact that 1− qn ≤ 1 and the fact that E [η̂ϵ,n(θ)|Rϵ,n(θ) = 0] = 0, which follows by (29).

B. Useful Facts and Derivations
In this appendix, we provide, for completeness, some useful facts and explicit derivations of properties that we use in the
paper. In particular, we explicitly derive equation (5) using the generalize chain rule (GCR).

B.1. Explicit derivation of equation (5)

Please note that equation (5) follows from taking the derivative of a function of multiple variables and the chain rule. This is
also called the generalized chain rule in some textbooks (Herman & Strang, 2018)(see Theorem 4.10). In the paper, when
writing

∂

∂θ
ℓ(θ, τ̂(θ), X, Y ), (48)

we mean the total derivative of the function θ 7→ l(θ, τ̂(θ), X, Y ), evaluated at a dummy θ. On the other hand, when writing

∂ℓ

∂θ
(θ, τ̂(θ), x, y), (49)

we mean the partial derivative of ℓ(θ, q, x, y) with respect to θ, evaluated at (θ, q, x, y) = (θ, τ̂(θ), X, Y ). The difference
is that, in the partial derivative, τ̂(θ) is treated as a constant, whereas for the total derivative we do not treat τ̂(θ) as a
constant. Now, the generalized chain rule (in vector form) can be written as follows: let u(θ) ∈ Rn and v(θ) ∈ Rm be two
differentiable functions of θ, and f(u, v) a differentiable function of two vector variables u and v. Then

∂

∂θ
f(u(θ), v(θ)) =

(
∂u

∂θ
(θ)

)⊤
∂f

∂u
(u(θ), v(θ)) +

(
∂v

∂θ
(θ)

)⊤
∂f

∂v
(u(θ), v(θ)), (50)

where ∂u
∂θ (θ) is the Jacobian of u(θ), i.e., the matrix with ∂ui

∂θj
(θ) in the i-th row and j-th column (equivalently, ∂v

∂θ (θ) is the
Jacobian of v(θ)). Note that in the case of ℓ(θ, τ̂(θ), x, y), x and y do not depend on θ so we can focus on ℓ as a function of
the two functions u(θ) = θ and v(θ) = τ̂(θ). Replacing these u(θ) and v(θ) in equation (50), and replacing f(u(θ), v(θ))
with ℓ(θ, τ̂(θ), x, y) we see that then

∂

∂θ
ℓ(θ, τ̂(θ), x, y) =

∂ℓ

∂θ
(θ, τ̂(θ), x, y) +

∂ℓ

∂τ̂
(θ, τ̂(θ), x, y)

∂τ̂

∂θ
(θ), (51)

which is precisely equation (5) in the main paper, where we used the fact that
(
∂θ
∂θ

)
= Id, where Id is a d× d identity matrix,

with d the dimension of θ.
Given that usually in textbooks the generalized chain rule (GCR) is only shown for scalar multi-variable functions, we
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now report the derivation of equation (5) using the scalar GCR as reported and proved in the statement of Theorem 4.10
in (Herman & Strang, 2018). Hence, we will now provide the derivation of (5) at a more granular level. Consider a
differentiable function ℓ of k variables, ℓ : Rk → R. Now let f1, ..., fk be differentiable functions, with fi : Rd → R, for
i = 1, ..., k and some d ≥ 1. Then, denoting a vector [t1, ..., td] ∈ Rd and w = ℓ(f1(t1, ..., td), ..., fk(t1, ..., td)) we have
(GCR):

∂w

∂tj
=

k∑
i=1

∂w

∂fi

∂fi
∂tj

. (52)

Now note that in the case of our paper, we have w = ℓ(θ, τ̂(θ), x, y). Note that x and y have no dependency on parameters
in θ and hence their derivatives will be zero. We can then focus on θ and τ̂(θ). For convenience, note that we can write
θ = [θ1, ..., θd]. Now note that the gradient of w is

∂

∂θ
[w] =

[
∂w

∂θ1
, ...,

∂w

∂θd

]⊤
. (53)

Now note that, for some j ∈ {1, ..., d}, using the chain rule (52) above,

∂w

∂θj
=

d∑
i=1

∂w

∂θi

∂θi
∂θj

+
∂ℓ

∂τ̂
(θ, τ̂(θ), x, y)

∂τ̂

∂θj
(θ)

+
∂w

∂x

∂x

∂θj
+

∂w

∂y

∂y

∂θj

=
∂ℓ

∂θj
(θ, τ̂(θ), x, y) +

∂ℓ

∂τ̂
(θ, τ̂(θ), x, y)

∂τ̂

∂θj
(θ),

(54)

where we used the fact that ∂θi
∂θj

= 0 if i ̸= j and ∂θi
∂θi

= 1. We also explicitly used the fact that ∂x
∂θj

= 0 and ∂y
∂θj

= 0

because the samples do not depend on the parameter θ. Stacking together ∂w
∂θj

we can see that we obtain precisely equation
(5) of the paper:

∂

∂θ
[w] =

∂

∂θ
[ℓ(θ, τ̂(θ), X, Y )]

=
∂ℓ

∂θ
(θ, τ̂(θ), X, Y ) +

∂ℓ

∂τ̂
(θ, τ̂(θ), X, Y )

∂τ̂

∂θ
(θ).

(55)
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C. Additional experiments
Here, we provide additional experimental results to complement the findings in the main paper.

C.1. GMM

As a warm-up, we validate the results of Theorem 4.1 on a synthetic Gaussian Mixture Model (GMM) dataset. To tune the
ε-estimator in (8), we employ the m-ranking method described in section 4.1. The results, as shown in Figure 4, illustrate
that our estimator (VR-ConfTr) reduces variance effectively, while the naive one (ConfTr) is sample inefficient.

Figure 4. Sample batch from the GMM distribution (left); bias and variance for the quantile gradient estimates, comparing ConfTr and
VR-ConfTr on the GMM dataset (right).

C.2. Additional Training Curves

We first present additional training curves, specifically the test loss and accuracy per epoch for MNIST, Fashion-MNIST,
KMNIST, and OrganAMNIST. These plots highlights the performance throughout the training process, providing further
insights into convergence behavior and generalization performance. It can be seen that the test loss exhibits a pattern similar
to the training loss in 2. In terms of accuracy, VR-ConfTr achieves higher accuracy than ConfTr.

Figure 5. Learning curves for MNIST, Fashion-MNIST, Kuzushiji-MNIST, and OrganAMNIST. For each dataset, we show the test loss on
the first row and tets accuracy on the bottom row at the end of each epoch.
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C.2.1. VARIANCE OF THE GRADIENTS OVER THE COURSE OF TRAINING

In this section, we present visualization for the variance of the estimated quantile gradients during training for our proposed
method Vr-ConfTr, compared to ConfTr in figure 6. We conduct this experiment on the MNIST dataset, using the
m-ranking estimator with Vr-ConfTr, and evaluate performance across different batch sizes. This analysis aims to
empirically substantiate our claim that Vr-ConfTr reduces variance of the estimated quantile gradients over the epochs,
leading to more stable gradient updates and improved final performance. Furthermore, we demonstrate that with an
appropriate choice of the hyperparameter m for the m-ranking estimator, Vr-ConfTr not only reduces variance but also
shows improvements in terms of the bias of the estimated quantile gradients during training. In order to compute the variance

and bias for the estimated quantile gradient ∂̂τ
∂θ , we estimate the population quantile τ(θ) and its gradient ∂τ

∂θ at each model
update utilizing the full training, calibration, and test datasets.

Figure 6. Variance and bias of the estimated quantile gradients during training for ConfTr and Vr-ConfTr, evaluated on the MNIST
dataset across different batch sizes. The left figure shows the variance of the gradients over epochs. The right panel illustrates the bias of
the estimated gradients, demonstrating that Vr-ConfTr maintains low bias while effectively reducing variance.

C.3. Ablation study for m and ε

C.3.1. ε-THRESHOLD TUNING ABLATION STUDY

This study evaluates the bias and variance of the ∂̂τ
∂θ using the ε-threshold estimator and tuning the threshold ε, with

VR-ConfTr for the GMM dataset depicted in figure 4. Figure 7 shows how varying ε impacts the estimator’s performance,

highlighting the trade-offs between bias and variance of ∂̂τ
∂θ as ε changes.

Figure 7. Bias and variance for the quantile gradient estimates tuning the ε threshold in VR-ConfTr on the GMM dataset. The left panel
shows the variance, and the right panel shows the bias for different ε values.
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C.3.2. ε-THRESHOLD TUNING WITH m-RANKING ABLATION STUDY

We evaluate the bias and variance of ∂̂τ
∂θ this time using the m-ranking strategy to fine-tune ε with VR-ConfTr for the

GMM dataset. Figure 8 shows how varying m impacts the estimator’s performance, highlighting the trade-offs between bias

and variance of ∂̂τ
∂θ as m changes. Here m explicitly depends on the desired miscoverage rate α and the sample size n.

Figure 8. Bias and variance for the quantile gradient estimate using the m-ranking to adaptively tune ε with VR-ConfTr on the GMM
dataset. The left panel shows the bias, and the right panel shows the variance for different m values

C.3.3. ON TUNING THE ϵ-THRESHOLD WITH m-RANKING

In practice, using the ε-estimator, when training the models, we noticed that a “good” value of ε varies significantly across
iterations. Note that a good value of the threshold ε not only depends on the specific batch Bcal at a given iteration, but
also on the model parameters θ at that iteration. Hence, hyper-parameter tuning with the ε-threshold estimator requires
some heuristic to adapt the threshold to specific iterations. In this sense, the m-ranking estimator is a natural heuristic for a
batch and parameter-dependent choice of the threshold ε. We noticed indeed that performing hyper-parameter tuning of the
m-ranking estimator we were able to provide a good value of m to be used across all iterations, which from the point of
view of hyper-parameter tuning is a great advantage.
To empirically illustrate this connection and validate the importance of dynamically tuning the ε-threshold estimator, figure 9
presents the adaptive choice of the ε-threshold estimator on the Fashion-MNIST dataset when using m-ranking tuning
strategy with m = 6.

Figure 9. Adaptive tuning of the ε-threshold estimator on Fashion-MNIST using the m-ranking strategy. The variability in ε underscores
the necessity of dynamic adjustment in threshold-based approaches.

22



Conformal Risk Minimization with Variance Reduction

C.4. Class-conditional coverage and set size

We evaluated the trained models in terms of class-conditional coverage and set size, using the same CP-procedure applied
post-training with the standard THR method and α = 0.01. Figure 18 displays the class-conditional coverage and set sizes
for each dataset. The results show the effectiveness of Vr-ConfTr in achieving reliable class-conditional coverage while
outperforming ConfTr in terms of producing smaller class-conditional prediction set sizes. The results are taken as the
average over all the training and testing trials.

C.5. Tuning VR-ConfTr: Number of Points for Gradient Estimation (m)

In VR-ConfTr, the number of points (m) used in the m-ranking strategy plays a crucial role in the bias-variance trade-off.
Consistent with the theory, increasing m (which translates to increasing the threshold ε) reduces the variance but potentially
increases the bias of the gradient estimate. We conduct a grid search over the values [4, 6, 8, 10, 16, 20] for m and report
the results of tuning m for MNIST and Fashion MNIST. We select the value of m that experimentally provides the best
trade-off between bias and variance. MNIST Results: We show in Fig 19, plots corresponding to the loss on the training
loss, test loss, and the test accuracy per epoch. The results illustrate a consistent reduction in the variance of the gradient
estimates as m increases. However, once m deviates from its best value, the bias of the gradient estimates increases, which
results in higher values of the training loss as well as increase in the size of the prediction sets.

Fashion-MNIST: Similarly, tuning m on Fashion-MNIST shows that a value of m = 6 provides the best results, as depicted
in Fig 20

C.6. Alternative Architecture

In this section, we compare the performance of VR-ConfTr on Kushuniji-MNIST using a simpler linear model architecture,
different than the MLP used in the main paper. The results further reinforce that regardless of the model architecture,
the trends observed in terms of convergence speed and prediction set efficiency remain consistent across datasets and
architectures. Table 2 shows the average accuracy and set sizes for the two different model architectures trained on K-MNIST.

Dataset Model Name Accuracy (Avg ± Std) Set Size (Avg ± Std)

K-MNIST (Linear)
Baseline 0.695± 0.007 6.799± 0.117
ConfTr 0.582± 0.047 6.646± 0.226
VR-ConfTr 0.612± 0.033 6.488± 0.148

K-MNIST (MLP)
Baseline 0.872± 0.046 4.982± 0.530
ConfTr 0.783± 0.125 4.762± 0.226
VR-ConfTr 0.835± 0.098 4.657± 0.680

Table 2. Evaluation results of the KMNIST dataset trained with different model architectures. Columns present average accuracy and set
size with their standard deviations (Avg ± Std).
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Figure 10. Class-Conditional Coverage (Fashion-MNIST) Figure 11. Class-Conditional Set Sizes (Fashion-MNIST)

Figure 12. Class-Conditional Coverage (MNIST) Figure 13. Class-Conditional Set Sizes (MNIST)

Figure 14. Class-Conditional Coverage (Kuzushiji-MNIST) Figure 15. Class-Conditional Set Sizes (Kuzushiji-MNIST)

Figure 16. Class-Conditional Coverage (OrganA-MNIST) Figure 17. Class-Conditional Set Sizes (OrganA-MNIST)

Figure 18. Class-conditional coverage rates and average prediction set sizes for each dataset, reported over 10 randomized test trials. For
each dataset, the left plot shows the class-conditional coverage rates with the target coverage level of 1 − α = 0.99 indicated by the
horizontal red dashed line. The right plot shows the class-conditional average prediction set sizes.
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Figure 19. Training curves for different values of m on MNIST

Figure 20. Learning curves for different values of m on Fashion-MNIST
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D. Experimental Details
In this section we describe the experimental setup, including model architectures, dataset configurations, training protocol,
testing procedure, and the corresponding hyper-parameters. The focus of the experiments is on evaluating the CP set sizes
during training, convergence speed, and accuracy while ensuring a fair comparison between ConfTr and our proposed
VR-ConfTr.

D.1. Dataset Configurations

We consider the benchmark datasets MNIST (LeCun et al., 1998), Fashion-MNIST (Xiao et al., 2017b), Kuzushiji-MNIST
(Clanuwat et al., 2018) and OrganAMNIST (Yang et al., 2021) and CIFAR-10 (Krizhevsky, 2009). MNIST is a dataset of
handwritten digits with 10 classes, and Fashion-MNIST consists of 10 fashion product categories. Kuzushiji-MNIST extends
the MNIST paradigm by incorporating 10 classes of cursive Japanese characters. OrganAMNIST, derived from medical
images, contains 11 classes of abdominal organ slices. CIFAR-10 is a dataset of natural images with 10 object categories.
The training, calibration, and testing splits for each dataset are summarized in Table 3. MNIST and Fashion-MNIST are
provided by the torchvision library, while Kuzushiji-MNIST and OrganAMNIST, and CIFAR-10 are available from their
respective repositories. For MNIST, Fashion-MNIST, Kuzushiji-MNIST, and CIFAR-10 10% of the training set is reserved
as calibration data. For OrganAMNIST, the validation set is used as the calibration data. During evaluation, we combine
the calibration and test data and perform evaluations over 10 random splits of the combined dataset into calibration/test
partitions. Model parameters are learned exclusively on the training data, while calibration and test data are used to evaluate
the model as a black-box at the end of each epoch. The transformations applied to the dataset are as follows: for MNIST,
Fashion-MNIST, and Kuzushiji-MNIST, images are normalized to have zero mean and unit variance, using a mean of 0.5
and a standard deviation of 0.5. For OrganAMNIST, images undergo random horizontal flips, random rotations of up to 15
degrees, and are normalized similarly. for CIFAR-10, we use random resizing, horizontal flips, and normalization as data
augmentations.

Dataset Classes Image Size Training Set Calibration Set Test Set

MNIST 10 28× 28 55,000 5,000 10,000
Fashion-MNIST 10 28× 28 55,000 5,000 10,000
OrganMNIST 11 28× 28 34,561 6,491 17,778
Kuzushiji-MNIST 10 28× 28 55,000 5,000 10,000
CIFAR-10 10 32× 32 45,000 5,000 10,000

Table 3. Dataset Splits

D.2. Model Architectures

In our experiments, we implemented all models using JAX (Bradbury et al., 2018). We utilize a range of architectures
including linear models, multi-layer perceptrons (MLPs), and modified ResNet architectures tailored for specific datasets.
For the MNIST dataset, we employ a simple linear model, which consists of a single dense layer. The input images, reshaped
from 28× 28 into a flattened vector of size 784, are passed through a fully connected layer mapping the inputs directly to
the 10 output classes. For Fashion-MNIST, we use a multi-layer perceptron (MLP), with two hidden layers. We use 64
units per hidden layer, with ReLU activations (Nair & Hinton, 2010) , followed by a dense layer for the 10 output classes.
For Kuzushiji-MNIST, we utilize a similar MLP architecture. The model contains two hidden layers with 256 and 128
units, respectively. The input data is flattened and passed through these fully connected layers with ReLU activations. For
OrganAMNIST, we used a residual network, inspired by the ResNet architecture from (He et al., 2016) , with modifications.
The model consists of an initial convolutional layer followed by four stages of residual blocks, each with two layers. Each
residual block uses 3 × 3 convolutions with ReLU activations. The number of output channels doubles after each state
(64, 128, 256, 512). Global average pooling is applied before the final fully connected layer, which maps the pooled feature
representations to the 11 output classes. For CIFAR-10, we use a ResNet20 architecture, a lightweight version of ResNet (He
et al., 2016) with 20 layers. Particularly, we use a pretrained ResNet20 model trained with cross-entropy loss. The last linear
layer of the model is reinitialized and then fine-tuned using the ConfTr and VR-ConfTr algorithms. We do not attempt
to optimize the model architectures in order to solve the datasets with high accuracy. Instead, we focus on the conformal
prediction results, and ensure that the architecture used across different algorithms are identical for a fair comparison.
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D.3. Training Details

Similar to (Stutz et al., 2022), we trained all models using Stochastic Gradient Descent (SGD) with Nesterov momentum
(Sutskever et al., 2013). The learning rate follows a multi-step schedule where the initial learning rate was decreased by
a factor of 0.1 after 2/5, 3/5, and 4/5 of the total number of epochs. The models were trained using cross-entropy-loss
for Baseline training, and for ConfTr and VR-ConfTr based on the size-loss as described by (Stutz et al., 2022).
During training, for MNIST, FMNIST, KMNIST, and OrganAMNIST we set the conformal prediction threshold parameter
α = 0.01. For fine-tuning CIFAR-10, we use α = 0.1, and a weight decay term of 0.0005 for the optimizer. To ensure
statistical robustness, we conducted multiple randomized training trials for each dataset, using a different random seed
for each trial. Specifically, we performed 10 training trials for MNIST and 5 training trials each for FMNIST, KMNIST,
OrganAMNIST, and CIFAR-10. The corresponding learning curves, i.e the training loss, testing loss, accuracy and CP set
sizes evaluated on the test data at the end of every epoch, were averaged over these randomized trials to provide a smooth
and general view of the model’s performance.

The key hyper-parameters used for training are listed in Table 4. These hyper-parameters include size weight which scales
the loss term associated with the size of the CP sets during training, alpha α corresponding to the miscoverage rate, batch
size for SGD, learning rate for the optimizer, and the number of epochs for which the model is trained for. For the
baseline method, we primarily optimized the model using Stochastic Gradient Descent (SGD) with Nesterov momentum. In
cases where it led to improved performance, we employed the Adam optimizer instead. For ConfTr, the hyperparameters
were obtained using a grid search over the following values: for batch size in {50, 100, 250, 300, 500}, learning rate in
{0.005, 0.01, 0.05, 0.1, 0.5}, training epochs in {10, 50, 100, 150}, temperature in {0.1, 0.5, 1}, target set size in {0, 1}, size
weight in {0.01, 0.05, 0.1, 0.5}, and the m-rank in {4, 6, 8, 10, 16, 20}. For VR-ConfTr the best reported hyperparameter
for ConfTr were used. For the baseline we obtained the learning rate via grid search over {0.001, 0.005, 0.01, 0.05, 0.1, 0.5}
and the batch size via grid search over {32, 64, 128, 256}.

Hyper-parameter MNIST Fashion-MNIST Kuzushiji-MNIST OrganA-MNIST CIFAR-10

Batch Size 500 500 500 500 500
Training Epochs 50 150 100 100 50
Learning Rate 0.05 0.01 0.01 0.01 0.01
Optimizer SGD SGD SGD SGD SGD
Temperature 0.5 0.1 0.1 0.5 1
Target Set Size 1 0 1 1 0
Regularizer Weight 0.0005 0.0005 0.0005 0.0005 0.0005
Size Weight 0.01 0.01 0.01 0.1 0.05
α 0.01 0.01 0.01 0.01 0.1
m-rank 6 6 4 4 6

Table 4. Training and evaluation hyper-parameters for each dataset.

D.4. Evaluation Details

The evaluation of our models was conducted in two stages: (1) computing the test accuracy for each model after training, and
(2) evaluating the conformal prediction (CP) set sizes and coverage over multiple test and calibration splits. Test Accuracy:
For each dataset, the test accuracy of the trained models was evaluated on the test data, and the results were averaged over
the randomized training trials. CP set sizes We first combine the holdout calibration and test data. We then randomly split
this combined data into calibration and test portions, repeating the process 10 times. For each split, we apply the CP THR
algorithm with α consistent with the value during training, and compute the CP set sizes on the test portion. The results are
averaged across the 10 random splits. The cardinality of each split is consistent with the dataset configurations outlined in
Table 3. This procedure is performed for each trained model, and the final reported results are averaged across both the
training trials and testing splits.

27



Conformal Risk Minimization with Variance Reduction

D.5. Differences from ConfTr reports

We report the performance of Conftr with a batch size of 100 for Fashion-MNIST, as originally reported by (Stutz et al.,
2022), selected for optimal performance. While a batch size of 500 yields smaller set sizes, it results in a slight ( 1%)
decrease in accuracy. For completeness, we include the results for both configurations.

Model Batch Size Accuracy (Avg ± Std) Set Size (Avg ± Std)

ConfTr 100 0.809± 0.051 3.125± 0.197
ConfTr 500 0.799± 0.065 3.048± 0.201
VR-ConfTr 500 0.839± 0.043 2.795± 0.154

Table 5. Final evaluation results for Fashion-MNIST, showing average accuracy and set size with their standard deviations (Avg ± Std).

Retrieving exact reported set sizes as (Stutz et al., 2022): Our experimental results and trends align with those reported in
(Stutz et al., 2022). However, the smaller set sizes for Conftr on MNIST and FMNIST in their paper are likely due to their
use of different architectures. Despite this, the overall trends— Conftr outperforming Baseline, and VR-Conftr
outperforming Conftr—remain consistent regardless of the model. Our focus is on a fair comparison across algorithms by
using the same architecture, rather than reproducing the exact figures or architectures from (Stutz et al., 2022).
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E. On the Computational Complexity of VR-ConfTr.
We will now discuss the computational complexity of VR-ConfTr when compared to ConfTr. We will argue that the
computational complexity of the two algorithms is essentially the same. We start by breaking down the computational cost
of ConfTr and then illustrate the difference with VR-ConfTr.
Per-step computational complexity of ConfTr. Given a batch and partition B = {Bcal, Bpred}, with |Bcal| = |Bpred| = n,
the first step of ConfTr is to compute a sample α quantile τ̂(θ) based on the calibration batch Bcal = {Xcal

i , Y cal
i }ni=1,

which requires the computation of the calibration batch conformity scores {Eθ(X
cal
i , Y cal

i )}ni=1 and of their α-quantile. At
this point, the computation of the ConfTr gradient is performed computing the gradient of the loss

1

|Bpred|
∑

(x,y)∈Bpred

ℓ(θ, τ̂(θ), x, y). (56)

Note that for each sample (x, y), computing the ConfTr gradient implies computing the following (equation (5) in the
main paper):

∂

∂θ
[ℓ(θ, τ̂(θ), x, y)] =

∂ℓ

∂θ
(θ, τ̂(θ), x, y) +

∂ℓ

∂τ̂
(θ, τ̂(θ), x, y) · ∂τ̂

∂θ
(θ) (57)

Note that computing this gradient requires computing (i) the gradients ∂ℓ
∂θ (θ, τ̂(θ), x, y) and ∂ℓ

∂τ (θ, τ̂(θ), x, y) for all samples
(x, y) ∈ Bcal, and (ii) the gradient ∂τ̂

∂θ (θ). The difference in terms of computational complexity between ConfTr and our
proposed VR-ConfTr lies in the computation of estimates of ∂τ

∂θ (θ), which in ConfTr is done via computing the gradient

of τ̂(θ), while in our algorithm is done plugging an improved estimate ∂̂τ
∂θ (θ). We describe the computational difference

between these two approaches in the next paragraph.

Per-step computational complexity of VR-ConfTr. Note that in our proposed algorithm VR-ConfTr, given
a batch B defined as above, we consider the same per-step loss function of ConfTr of equation (56). However, instead of

computing directly the gradient of (56), we compute separately an estimate ∂̂τ
∂θ (θ) of ∂τ

∂θ (θ) using our novel estimation

technique and then plug this estimate in equation (57) in place of ∂τ̂
∂θ (θ). In the proposed estimator, computing ∂̂τ

∂θ (θ)

equals computing gradients {∂E∂θ (θ, x, y)}(x,y)∈B̄ , where B̄ is the set containing the m samples whose conformity scores
fall within ϵ distance from the sample quantile τ̂(θ). Note that, computationally, our algorithm requires computing
∂ℓ
∂θ (θ, τ̂(θ), x, y) and ∂ℓ

∂τ (θ, τ̂(θ), x, y), which is the same as ConfTr, while we do not need to compute the gradient ∂τ̂
∂θ (θ).

Instead, we replace the computation of the gradient of τ̂(θ) with the computation of an average of m gradients of conformity
scores. In conclusion, the main computational difference between ConfTr and VR-ConfTr is in the computation of the
estimate of ∂τ

∂θ (θ), which for both of the techniques boils down to computing and averaging a certain set of conformity
scores. This is why we can safely conclude that the computational complexity of the two algorithms is essentially the same.
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F. Extended Related Works
Variance Reduction There is a large body of work on variance reduction techniques for stochastic optimization problems in
standard machine learning setting ((Johnson & Zhang, 2013; Defazio et al., 2014; Shalev-Shwartz & Zhang, 2013; Nguyen
et al., 2017)). In particular, SVRG ((Johnson & Zhang, 2013)) is based on the idea of increasing the number of samples used
in the estimate of the gradient to reduce variance, which is done by periodically computing a full gradient using the full
dataset to perform the updates. Another well known approach SAGA ((Defazio et al., 2014)), maintains a memory of past
gradients to again increase the number of samples used at each iteration to reduce the variance of the updates. For both
SVRG and SAGA, they achieve variance reduction by increasing the number of samples used at each iteration, increasing
the computational effort, and increasing memory usage. In contrast, the conformal training ConfTr objective presents
a variance reduction challenge that is not seen in standard objectives. ConfTr (Stutz et al., 2022) simulates conformal
prediction in the loop, which in turn requires embedding a quantile estimation into the training loss. This means that each
gradient update involves differentiating through an empirical quantile of a sampled distribution. The key issue that arises is
that the variance of the quantile-based stochastic gradient does not diminish with larger sample sizes. In other words, unlike
an ordinary SGD where averaging more samples yields a lower variance gradient estimate, increasing the batch size in
ConfTr does not proportionally reduce the noise in the gradient. Our proposed VR-ConfTr is based on plugging an
improved estimate of a specific quantity - the population quantile gradient ∂τ

∂θ (θ)- in the conformal training cost function
gradient, without requiring to increase the batch size, nor the memory, and it has essentially the same computation cost of
the existing ConfTr algorithm.
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