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Figure 1. Global motion aggregation helps resolve ambiguities caused by occlusions. Occlusions—a term we extend to include any
parts of a scene that disappear in the next frame—cause large ambiguities in the optical flow estimation problem that cannot be resolved
by local approaches. Based on the assumption that points on an object have homogeneous motions, which often holds approximately, we
propose to globally aggregate motion features of pixels that are likely to belong to the same object. In this example, most pixels on the
blade move out-of-frame from frame 2 to frame 3. When only these two frames are provided, global aggregation allows motion information
to be passed from non-occluded pixels to occluded pixels, which helps resolve ambiguities caused by occlusions.

Abstract
Occlusions pose a significant challenge to optical flow

algorithms that rely on local evidences. We consider an oc-
cluded point to be one that is imaged in the reference frame
but not in the next, a slight overloading of the standard def-
inition since it also includes points that move out-of-frame.
Estimating the motion of these points is extremely difficult,
particularly in the two-frame setting. Previous work re-
lies on CNNs to learn occlusions, without much success,
or requires multiple frames to reason about occlusions us-
ing temporal smoothness. In this paper, we argue that the
occlusion problem can be better solved in the two-frame
case by modelling image self-similarities. We introduce
a global motion aggregation module, a transformer-based
approach to find long-range dependencies between pixels
in the first image, and perform global aggregation on the
corresponding motion features. We demonstrate that the
optical flow estimates in the occluded regions can be sig-
nificantly improved without damaging the performance in
non-occluded regions. This approach obtains new state-of-
the-art results on the challenging Sintel dataset, improv-
ing the average end-point error by 13.6% on Sintel Final
and 13.7% on Sintel Clean. At the time of submission,
our method ranks first on these benchmarks among all pub-
lished and unpublished approaches. Code is available at
https://github.com/zacjiang/GMA.

1. Introduction
How can we estimate the 2D motion of a point we only

see once? This is the problem faced by optical flow al-
gorithms for points that become occluded between frames.
Estimating the optical flow, that is, the apparent motion of
pixels in an image as the camera and scene move, is a clas-
sic problem in computer vision studied since the seminal
work of Horn and Schunck [14]. There are many factors
that make optical flow prediction a hard problem, including
large motions, motion and defocus blur, and featureless re-
gions. Among these challenges, occlusion is one of the most
difficult and under-explored. In this paper, we propose an
approach that specifically targets the occlusion problem in
the case of two-frame optical flow prediction.

We first define what we mean by occlusion in the con-
text of optical flow estimation. In this paper, an occluded
point is defined as a 3D point that is imaged in the reference
frame but is not visible in the matching frame. This defi-
nition incorporates several different scenarios, such as the
query point moving out-of-frame or behind another object
(or itself), or another object moving in front of the query
point, in the active sense. One particular case of occlusion
is shown in Figure 1, where part of the blade moves out-of-
frame.

The challenge posed by occlusions can be understood by
looking at the underlying assumptions of optical flow algo-
rithms. Traditional optical flow algorithms apply the bright-
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Figure 2. Recovering hidden motions. In row 1, the bottom left corner of the ground moves out-of-frame, but reasoning that it belongs to
the background allows the motion to be recovered from other parts of the image. In row 2, the girl’s staff is mostly occluded in the second
frame, but strong cues from the visible parts can resolve its motion. Our approach can estimate many hidden motions despite the presence
of occlusions. The flow maps and the error maps have been fetched from the Sintel server [8]. Best viewed in colour on a screen.

ness constancy constraint [14], where pixels related by the
flow field are assumed to have the same intensities. It is
clear that occlusions are a direct violation of such a con-
straint. In the deep learning era, correlation (cost) volumes
[15] are used to give a matching cost for each potential dis-
placement of a pixel. However, correlations of appearance
features are unable to give meaningful guidance for learning
the motion of occluded regions. Most existing approaches
use smoothness terms in an MRF to interpolate occluded
motions [9] or use CNNs to directly learn the neighbouring
relationships, hoping to learn to estimate occluded motions
based on the neighbouring pixels [38, 36]. However, state-
of-the-art methods still fail to estimate occluded motions
correctly when occlusions are more significant and local ev-
idence is insufficient to resolve the ambiguity.

In contrast, humans are able to synthesise information
from across the image and apply plausible motion mod-
els to accurately estimate occluded motions. This capabil-
ity is valuable to emulate, because we fundamentally care
about recovering the real 3D motion of objects in a scene,
for which estimating occluded motion is necessary. Down-
stream applications, including tracking and activity detec-
tion [23], can also benefit from short-term predictions of the
motion of occluded points, particularly if they reappear later
or exhibit some characteristic of interest (e.g., high-velocity
out-of-frame motions).

Let us consider how to estimate these hidden motions for
the two-frame case. When direct (local) matching informa-
tion is absent, the motion information has to be propagated
from other pixels. Using convolutions to propagate this in-
formation has the drawback of limited range since convo-
lution is a local operation. We propose to aggregate the
motion features with a non-local approach. Our design is
based on the assumption that the motions of a single object
(in the foreground or background) are often homogeneous.
One source of information that is overlooked by existing
works is self-similarities in the reference frame. For each
pixel, understanding which other pixels are related to it, or
which object it belongs to, is an important cue for accu-

rate optical flow predictions. That is, the motion informa-
tion of non-occluded self-similar points can be propagated
to the occluded points. Inspired by the recent success of
transformers [39], we introduce a global motion aggrega-
tion (GMA) module, where we first compute an attention
matrix based on the self-similarities of the reference frame,
then use that attention matrix to aggregate motion features.
We use these globally aggregated motion features to aug-
ment the successful RAFT [38] framework and demonstrate
new state-of-the-art results in optical flow estimation, such
as those examples in Figure 2.

The key contributions of our paper are as follows. We
show that long-range connections, implemented using the
attention mechanism of transformer networks, are highly
beneficial for optical flow estimation, particularly for re-
solving the motion of occluded pixels where local infor-
mation is insufficient. We show that self-similarities in
the reference frame provide an important cue for selecting
the long-range connections to prioritise. We demonstrate
that our global motion feature aggregation strategy leads to
a significant improvement in optical flow accuracy in oc-
cluded regions, without damaging the performance in non-
occluded regions, and analyse this extensively. We improve
the average end-point error (EPE) by 13.6% (2.86 → 2.47)
on Sintel Final and 13.7% (1.61 → 1.39) on Sintel Clean,
compared to the strong baseline of RAFT [38]. Our ap-
proach ranks first on both datasets at the time of submission.

2. Related Work

Occlusions in optical flow. Occlusion poses a key chal-
lenge in optical flow estimation due to its violation of the
brightness constancy constraint [14]. Most traditional op-
tical flow algorithms treat occlusions as outliers and so de-
velop and optimise robust objective functions. In continu-
ous optimisation for optical flow, Brox et al. [6] used the L1

norm due to its robustness to outliers caused by occlusions
or large brightness variations. Zach et al. [46] added total
variation regularisation and proposed an efficient numerical
scheme to optimise the energy functional. This formulation
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Figure 3. Proposed architecture. Our network is based on the successful RAFT [38] architecture. The proposed global motion aggregation
(GMA) module is contained inside the shaded box, a self-contained addition to RAFT with low computational overhead that significantly
improves performance. It takes the visual context features and the motion features as input and outputs aggregated motion features that
share information across the image. These aggregated global motion features are then concatenated with the local motion features and the
visual context features to be decoded by the GRU into residual flow. This gives the network the flexibility to choose between or combine
the local and global motion features, depending on the needs of the specific pixel location. For example, a location with poor local image
evidence, caused by occlusion for instance, could preference the global motion features.

was later improved by Wedel et al. [42]. Later work intro-
duced additional robust optimisation terms, including the
Charbonnier potential [7] and the Lorentzian potential [4].

More recently, discrete optimisation approaches, espe-
cially Markov Random Fields (MRFs) [5], have been used
to estimate optical flow. These algorithms [27, 9, 43] first
estimate the forward and backward flows separately using a
robust, truncated data term. They then conduct a forward–
backward consistency check to determine the occluded re-
gions. Lastly, as a post-processing step, they use interpola-
tion methods [31] to fill in the optical flow of the occluded
regions.

Other work incorporates occlusion estimation as a joint
objective together with optical flow estimation. Alvarez et
al. [1] use forward–backward consistency as an optimisa-
tion objective, thus estimating time-symmetric optical flow.
In addition to forward–backward consistency, MirrorFlow
[18] incorporates occlusion–disocclusion symmetry in the
energy function and achieves performance improvements.
Since occlusions are caused by 3D motions, other works
[35, 33] explicitly model local depth relationships into lay-
ers and reason about occlusions.

Contrary to the above approaches, we do not overload
the loss function with explicit occlusion reasoning. Instead,
we adopt a learning approach, similar to other supervised
deep optical flow learning approaches [36, 45, 17, 19, 44,
2, 47, 38, 22]. Rather than estimating an occlusion map
explicitly, our goal is to improve the optical flow accuracy
at occluded regions. We take an implicit approach to glob-
ally aggregate motion features, which provides extra infor-
mation to correctly predict flow at occluded regions. Our
approach can be thought of as a non-local interpolation ap-
proach [34], in contrast to local interpolation approaches
[31]. In the deep learning literature, the occlusion prob-
lem has been addressed in an unsupervised learning set-

ting [41, 21, 25], however, existing supervised learning ap-
proaches all rely on convolutions to interpolate in occluded
regions, which are prone to failure for more significant oc-
clusions.

Self-attention and transformers. Our design principle is
inspired by the recent successes of the transformer litera-
ture [39]. The transformer architecture was first success-
ful in natural language processing (NLP), due to its abil-
ity to model long-range dependencies and its scalability
for GPU parallel processing. Among various modules in
the transformer architecture, self-attention is the key design
feature that make transformers work. Recently, researchers
have introduced the transformer and related attention ideas
to the vision community, mostly in high-level tasks such
as image classification [30, 10] and semantic segmentation
[12, 40, 16]. To the best of our knowledge, we are the first
to use the idea of attention to solve the optical flow prob-
lem. Different from many existing works in the transformer
literature, we do not use self-attention in our work. Self-
attention refers to the query, key and value vectors coming
from the same features. In our case, query and key vectors
come from the context features modelling the appearance
of the image while value vectors come from the motion fea-
tures, which is an encoding of the correlation volume.

3. Method

3.1. Background

We base our network design on the successful RAFT ar-
chitecture [38]. Our overall network diagram is shown in
Figure 3. For completeness, we briefly describe the main
contributions of RAFT from which our model benefits. The
first contribution is the introduction of an all-pairs correla-
tion volume, which explicitly models matching correlations
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Figure 4. Details of the GMA module. To model the self-similarity of the first frame, we project the context feature map to a query
feature map and a key feature map. We then take the dot product of the two feature maps and a softmax to obtain an attention matrix,
which encodes self-similarity in appearance feature space. Similar to transformer networks [39], we also take the dot product between the
query feature map and a set of positional embedding vectors which augments the attention matrix with positional information. Separately,
the motion feature map encoded from the correlation volume is projected using the learned value projector. Its weighted sum, using the
obtained attention matrix, produces the aggregated global motion features.

for all possible displacements. The benefit of using all-pairs
correlations is its ability to handle large motions. The sec-
ond major contribution is the use of a gated recurrent unit
(GRU) decoder for iterative residual refinement [19]. The
constructed 4D correlation volumes are encoded to 2D mo-
tion features, which are iteratively decoded to predict the
residual flow. The final flow prediction is a sum of the se-
quence of residual flows. The benefit of using a GRU to per-
form iterative refinement lies in the reduction of the search
space. In RAFT, convolutions are used in the GRU decoder,
which learn to model spatial smoothness. Due to the lo-
cal nature of convolutions, they can learn to handle small
occlusions but tend to fail when these become more signifi-
cant and local evidence is insufficient to resolve the motion.

3.2. Overview

In his first paper from 1976, Geoffrey Hinton wrote that
“local ambiguities have to be resolved by finding the best
global interpretation” [13]. This idea still holds true in the
modern deep learning era. To resolve ambiguities caused by
occlusions, our core idea is to allow the network to reason
at a higher level, that is, to globally aggregate the motion
features of similar pixels, having implicitly reasoned about
which pixels are similar in appearance feature space. We
hypothesise that the network will be able to find points with
similar motions by looking for points with similar appear-
ance in the reference frame. This is motivated by the ob-
servation that the motions of points on a single object are
often homogeneous. For example, the motion vectors of a
person running to the right have a bias towards the right,
which holds even if we do not see where a large part of the
person ends up in the matching frame due to occlusion. We
can use this statistical bias to propagate motion information
from non-occluded pixels, with high (implicit) confidence,
to occluded pixels, with low confidence. Here, confidence

can be interpreted as whether there exists a distinct match-
ing, i.e., a high correlation value at the correct displacement.

With these ideas, we take inspiration from transformer
networks [39], which are known for their ability to model
long-range dependencies. Different from the self-attention
mechanism in transformers, where query, key and value
come from the same feature vectors, we use a generalized
variant of attention. Our query and key features are projec-
tions of the context feature map, which are used to model
the appearance self-similarities in frame 1. The value fea-
tures are projections of the motion features, which them-
selves are an encoding of the 4D correlation volume. The
attention matrix computed from the query and key features
is used to aggregate the value features which are hidden rep-
resentations of motions. We name this a Global Motion Ag-
gregation (GMA) module. The aggregated motion features
are concatenated with the local motion features as well as
the context features, which is to be decoded by the GRU. A
detailed diagram of GMA is shown in Figure 4.

3.3. Mathematical Formulation

Let x ∈ RN×Dc denote the context (appearance) fea-
tures and y ∈ RN×Dm denote the motion features, where
N = HW and H and W are the height and width of the fea-
ture map, D refers to the channel dimension of the feature
map. The ith feature vector is denoted xi ∈ RDc . Our GMA
module computes the feature vector update as an attention-
weighted sum of the projected motion features. The aggre-
gated motion features are given by

ŷi = yi + α

N∑
j=1

f(θ(xi), ϕ(xj))σ(yj), (1)

where α is a learned scalar parameter initialised to zero, θ,
ϕ and σ are the projection functions for the query, key, and
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(a) Reference Frame (b) Matching Frame (c) Occ (d) Occ-in (e) Occ-out

Figure 5. Examples of the Sintel Albedo dataset and occlusion maps. The Albedo dataset is rendered without the illumination effects.
The occlusion map in this example contains mostly foreground objects occluding the background scene as well as the background on the
left moving out of the field-of-view. Figure 5(c) is the occlusion map (Occ) for this example. Figure 5(d) and Figure 5(e) are the in-frame
(Occ-in) and out-of-frame (Occ-out) occlusion maps respectively.

value vectors, and f is a similarity attention function given
by

f(ai,bj) =
exp

(
aTi bj/

√
D
)

∑N
j=1 exp

(
aTi bj/

√
D
) . (2)

The projection functions for the query, key and value vec-
tors are given by

θ(xi) = Wqryxi, (3)
ϕ(xi) = Wkeyxi, (4)
σ(yi) = Wvalyi, (5)

where Wqry,Wkey ∈ RDin×Dc and Wval ∈ RDm×Dm .
The learnable parameters in our GMA module include
Wqry,Wkey,Wval and α.

The final output is [y | ŷ |x], a concatenation of the three
feature maps. The GRU decodes this to obtain the resid-
ual flow. Concatenation allows the network to intelligently
select from or combine the motion vectors, modulated by
the global context feature, without prescribing exactly how
it is to do this. It is plausible that the network learns to
encode some notion of uncertainty, and decodes the aggre-
gated motion vector only when the model cannot be certain
of the flow from the local evidence.

We also explore the use of a 2D relative positional em-
bedding [3], allowing the attention map to depend on both
the feature self-similarity and the relative position from the
query point. For this, we compute the aggregated motion
vector as

ŷi = yi + α

N∑
j=1

f(θ(xi), ϕ(xj) + pj−i)σ(yj), (6)

where pj−i denotes the relative positional embedding vec-
tor indexed by the pixel offset j − i. Separate embedding
vectors are learned for the vertical and horizontal offsets
and are summed to obtain pj−i. If it is useful to suppress
pixels that are very close or very far from the query point
when aggregating the motion vectors, then this positional
embedding has the capacity to learn this behaviour.

We also investigated computing the attention map from
only the query vectors and positional embedding vectors,

without any notion of self-similarity. That is,

ŷi = yi + α

N∑
j=1

f(θ(xi),pj−i)σ(yj). (7)

This can be regarded as learning long-range aggregation
without reasoning about the image content. It is plausible
that positional biases in the dataset could be exploited by
such a scheme. In Table 2, the results for (6) and (7) are
denoted as Ours (+p) and Ours (p only).

4. Experiments
4.1. Experimental Setup

We follow the standard optical flow training procedure
[20, 36, 38] of first pre-training our model on FlyingChairs
[11] for 120k iterations with a batch size of 8 and then on
FlyingThings [26] for another 120k iterations with a batch
size of 6. We then fine-tune on a combination of FlyingTh-
ings, Sintel [8], KITTI 2015 [28] and HD1K [24] for 120k
iterations for Sintel evaluation and 50k on KITTI 2015 [28]
for KITTI evaluation. A batch size of 6 is set for fine-
tuning. We train our model on two 2080Ti GPUs with the
PyTorch library [29] using the mixed precision strategy.
We adopt the same hyperparameters as RAFT [38] for the
base network. We adopt the one-cycle learning rate pol-
icy [32] with the highest learning rate set to 2.5× 10−4 for
FlyingChairs then 1.25 × 10−4 for the rest. For GMA, we
choose channel dimensions Din = Dc = Dm = 128.

The main evaluation metric we use is average end-point
error (AEPE), which refers to the mean pixelwise flow error.
KITTI also uses the Fl-All (%) metric which refers to the
percentage of optical flow vectors whose end-point error is
larger than 3 pixels or over 5% of ground truth.

The Sintel dataset has been created with different ren-
dering passes that have different levels of complexity. For
training and test evaluation on the Sintel server, we used the
Clean and Final passes. The Clean pass is rendered with
illumination including smooth shading and specular reflec-
tions. The Final pass is created with full rendering, which
includes motion blur, camera depth-of-field blur, and atmo-
spheric effects.

In the Sintel training set, they also provided the Albedo
pass, which is rendered without illumination effects and has
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Sintel RAFT Ours Rel. Impr.
Dataset Type (AEPE) (AEPE) (%)

Clean
(train)

Noc 0.32 0.29 9.3
Occ 5.36 4.25 20.7
Occ-in 4.45 3.81 14.4
Occ-out 7.01 5.03 28.2
All 0.74 0.62 16.2

Final
(train)

Noc 0.66 0.59 10.6
Occ 7.09 6.22 12.2
Occ-in 6.21 5.30 14.6
Occ-out 8.71 7.90 9.3
All 1.19 1.06 10.9

Albedo
(test)

Noc 0.34 0.32 5.9
Occ 6.35 5.58 12.1
Occ-in 5.83 5.23 10.3
Occ-out 7.29 6.20 15.0
All 0.84 0.76 9.5

Table 1. Optical flow error for different Sintel datasets, parti-
tioned into occluded (‘Occ’) and non-occluded (‘Noc’) regions.
In-frame and out-of-frame occlusions are further split and denoted
as ‘Occ-in’ and ‘Occ-out’. The best results and the largest relative
improvement in each dataset are styled in bold.

roughly piecewise-constant colours. An example is shown
in Figure 5. We do not use this set for training, but reserve it
as an evaluation dataset. The motivation for doing so is that
the Albedo set adheres to brightness constancy everywhere
apart from occluded regions. By evaluating and analysing
on the occluded regions and non-occluded regions sepa-
rately, we can clearly see how well our method performs
when addressing the occlusion problem.

4.2. Occlusion Analysis

To verify the effectiveness of our proposed GMA module
at estimating the motion of occluded points, we make use of
the occlusion maps provided in the Sintel training set, which
partition the pixels into non-occluded (Noc) and occluded
(Occ) pixels. We further divide the occluded pixels into in-
frame (‘Occ-in’) and out-of-frame (‘Occ-out’) occlusions,
depending on whether the ground-truth flow vector points
inside or outside the image frame. An example is shown in
Figure 5.

We evaluated on all three rendering passes of Sintel,
where the results for Clean and Final are training set errors
and those for Albedo are test set errors. We evaluated the
AEPE for different regions, results of which are shown in
Table 1. We observe that the relative improvement of our
method compared to RAFT is predominantly attributable
to better predictions of the flow for occluded points. This
is reinforced by the results on the Albedo dataset where
the brightness constancy assumption holds exactly for non-

occluded points, removing confounding factors. Finally,
out-of-frame occlusions are more challenging than in-frame
occlusions for both models, but we still observe a significant
improvement for these pixels. We hypothesise that the im-
provement in non-occluded regions is due to GMA’s ability
to resolve ambiguities caused by other brightness variations,
for example specular reflections, blurs, and other sources.
This result strongly supports our claim that global aggrega-
tion can help resolve ambiguities caused by occlusion.

4.3. Comparison with Prior Works

Having shown that our approach can improve optical
flow estimates for occluded regions, we compare against
prior works on the overall performance. We evaluate our
approach on the Sintel dataset [8] and the KITTI 2015 op-
tical flow dataset [28]. At the time of submission, we have
obtained the best results on both the Sintel Final and Clean
benchmarks among all submitted results published and un-
published. Compared with our baseline approach RAFT
[38], we have improved the AEPE from 2.86 to 2.47 (13.6%
improvement) on Sintel Final and 1.61 to 1.39 (13.7% im-
provement) on Sintel Clean. This significant improvement
over RAFT validates our claim that our approach can im-
prove flow prediction for occluded regions without damag-
ing the performance of non-occluded regions. The Sintel
server also reports the metric ‘EPE unmatched’, which mea-
sures the endpoint error over regions that are visible only
in one frame, predominantly caused by occlusion. Our ap-
proach also ranks first under this metric in both Clean and
Final, with a margin of 0.9 EPE on Clean (2.2 w.r.t. RAFT)
and 1.3 EPE on Final (1.7 w.r.t. RAFT). Overall, our model
achieves a new state-of-the-art result in optical flow estima-
tion, which demonstrates the usefulness of addressing the
occlusion problem in optical flow.

On the KITTI 2015 test set, our results are on par with
RAFT. ‘Ours (p only)’, which uses positional attention only,
outperforms RAFT, while ‘Ours’, which uses content self-
similarity attention, slightly underperforms. It is likely that
the lack of improvement on this dataset is due to having
insufficient training data (only 200 pairs of images) for the
network to learn high-level appearance feature similarities.

4.4. Qualitative Results

Qualitative results are shown in Figure 2 for two ex-
amples in the Sintel Clean dataset. The optical flow error
in regions of the image that move out-of-frame or behind
another object is significantly reduced compared to RAFT.
These scenes are highly challenging with lots of motion and
occlusion. For example, it is not unreasonable that RAFT
is unable to keep track of the wooden staff that becomes
partially occluded in the second image, given that it is well-
camouflaged in a forest, fast-moving, and very thin. How-
ever, our model is able to very accurately predict the staff’s
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Training
Data

Sintel (train) KITTI-15 (train) Sintel (test) KITTI-15 (test)

Method Clean Final AEPE Fl-all (%) Clean Final Fl-all (%)

C + T

VCN[44] 2.21 3.68 8.36 25.1 - - -
MaskFlowNet[47] 2.25 3.61 - 23.1 - - -
FlowNet2[20] 2.02 3.54 10.08 30.0 3.96 6.02 -
RAFT[38] 1.43 2.71 5.04 17.4 - - -

Ours (p only) 1.48 2.88 5.01 16.9 - - -
Ours (+p) 1.33 2.87 4.83 16.6 - - -
Ours 1.30 2.74 4.69 17.1 - - -

C + T +
S/K (+ H)

FlowNet2 [20] (1.45) (2.01) (2.30) (6.8) 4.16 5.74 11.48
PWC-Net+[37] (1.71) (2.34) (1.50) (5.3) 3.45 4.60 7.72
VCN [44] (1.66) (2.24) (1.16) (4.1) 2.81 4.40 6.30
MaskFlowNet[47] - - - - 2.52 4.17 6.10
RAFT[38] (0.76) (1.22) (0.63) (1.5) 1.61⋆ 2.86⋆ 5.10

Ours (p only) (0.64) (1.08) (0.56) (1.2) 1.48⋆ 2.56⋆ 4.93
Ours (+p) (0.65) (1.11) (0.58) (1.3) 1.54⋆ 2.63⋆ 5.08
Ours (0.62) (1.06) (0.57) (1.2) 1.39⋆ 2.47⋆ 5.15

Table 2. Quantitative results on Sintel and KITTI 2015 datasets. We report the average end-point error (AEPE) where not otherwise
stated, as well as the Fl-all measure for the KITTI dataset, which is the percentage of optical flow outliers with an error larger than 3
pixels. “C + T” refers to results that are pre-trained on the Chairs and Things datasets. “S/K (+ H)” refers to methods that are fine-tuned
on the Sintel and KITTI datasets, with some also fine-tuned on the HD1K dataset. Parentheses denote training set results and bold font
denotes the best result. “Ours (p only)” denotes the position-only attention model defined in (7). “Ours (+p)” denotes the joint position and
content-wise attention model defined in (6). “Ours” denotes our main content-only self-similarity attention model defined in (1). ⋆Results
evaluated with the “warm-start” strategy detailed in the RAFT paper [38].

Reference Frame Attention map 1 Attention map 2 Attention map 3 Flow

Figure 6. Attention map visualisations. For each row, we show the first frame and three query points. Then we show the three attention
maps corresponding to these query points (brighter colours mean higher attention weights). We also give a visualisation of the predicted
optical flow for comparison. Best viewed on screen.

motion, despite these challenges.

We also present visualisations of the learned attention
maps for two examples in Figure 6. To train effectively, the
network should learn to attend to pixels that share similar
motion vectors. For foreground points, we expect this to
be most easily achieved by attending to points on the same
object, while for background points it may be sufficient to
attend to any other background point. These examples jus-
tify this expectation and provide support for the argument
that appearance (and higher-order) self-similarity is being
learned by the network, and that this is helpful for estimat-
ing the flow of the occluded points.

4.5. Ablation Results

To verify our design, we conducted the following ab-
lation experiments. We first compare the performance of
the tested variants of the model, where positional attention
replaces (p only) or adds to (+p) the self-similarity atten-
tion, as presented in Table 2. We find that self-similarity
is sufficient to achieve the performance improvements, with
the positional encoding only helping for the KITTI dataset.
This coincides with our intuition that long-range connec-
tions are helpful and that distance-based suppression is un-
necessary. In addition, we ablate over three design choices:
(1) learning the scalar parameter α vs fixing it at 1, (2) con-
catenating with local motion features vs replacing local mo-
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Chairs Things Sintel
Clean Final Clean Final

Component (val) (test) (test) (train) (train)

1 0.82 3.10 2.78 1.35 2.82
α 0.79 3.14 2.80 1.30 2.74

replace 0.88 3.16 2.94 1.41 2.79
concatenate 0.79 3.14 2.80 1.30 2.74

w/o residual 0.88 3.13 2.83 1.40 2.75
w/ residual 0.79 3.14 2.80 1.30 2.74

Table 3. Ablation experiment results. Settings used in our final
model are underlined.

Metric RAFT [38] Ours

Parameters 5.3M 5.9M
Timing 60ms 72ms
GPU Memory 16.0GB 17.7GB

Table 4. Timing, parameters and memory. The GMA module
has a modest computational overhead.

tion features, and (3) using a residual connection (adding
the output of the aggregator to the local motion features)
vs not using residual connection (directly concatenating the
output of the aggregator with the motion features and con-
text features). The results are shown in Table 3.

The key experiment here is showing that concatenation
is an important part of the network design. The hypothesis
was that the network should learn how to select or combine
the local and globally-aggregated features, based on some
implicit measure of uncertainty. That is, it is not helpful to
replace local features in most non-occluded regions, where
they may be more reliable and precise than the aggregated
features. While the residual connection may also be able to
handle this, using both mechanisms leads to the best perfor-
mance.

4.6. Timing, Parameter Counts and Memory

We demonstrate that the computational overhead of
GMA is low relative to the performance improvement, as
shown in Table 4. The parameter count for our model is
5.9M compared to RAFT which is 5.3M. We tested the in-
ference time on a single RTX 3090 GPU, with RAFT taking
60ms on average and ours taking 72ms for a single pair of
image in the Sintel dataset. The image size is 436×1024.
The GRU iteration number is set to 12. We also tested the
GPU memory consumption for training. When training on
FlyingChairs on a single 3090 card, with a random crop of
368×496 and batch size of 8, RAFT takes 16.0GB mem-
ory while our network takes 17.2GB memory. We can see
that overall the computational overhead is modest while the
improvement in results is significant.

5. Discussion

We have demonstrated empirically that long-range con-
nections, weighted by image self-similarities, are very ef-
fective at resolving the optical flow of occluded 3D points.
The intuition is that if the network can determine which
non-occluded points are moving in the same way, this in-
formation can be transmitted to ‘in-paint’ the motion of the
occluded points. Determining which points have similar
motion characteristics is a non-trivial task and relies on the
exploitation of statistical biases. Similar flow vectors are
frequently observed for points belonging to the same class,
due to the homogeneous motion in 3D. This suggests that
we should enable the network to aggregate over motions of
the same scene objects, which motivates our choice to ex-
plicitly expose the self-similarity of image features to our
GMA module. However, additive aggregation of this kind
is only helpful when the flow field of the attended locations
is approximately homogeneous. This does not hold exactly
for general object and camera motions, where the flow fields
may be far from homogeneous, even on the same rigid ob-
ject. An example is an object that is directly in front of the
camera and rotating about the optical axis, where the flow
vectors are in opposite directions. To deal with such scenar-
ios, one possible future work is to first transform the motion
features based on the relative positions and perform aggre-
gation afterwards.

6. Conclusion

Occlusions have long been considered a significant chal-
lenge and a major source of error in optical flow estimation.
Inspired by the recent success of transformers, we introduce
a global motion aggregation module to globally aggregate
motion features based on appearance self-similarity of the
first image. This has been validated by experiments that
show significantly improved optical flow predictions for oc-
cluded regions, particularly the large reduction of EPE on
Sintel Clean and Final. Our approach of aggregating infor-
mation over long-range connections using self-similarity is
a simple and effective way to introduce higher-order reason-
ing into the optical flow problem and is applicable to any
supervised flow network. We expect that further develop-
ment of aggregation mechanisms or alternatives would lead
to additional performance improvements.
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