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ABSTRACT

Out-of-Distribution (OOD) detection has become increasingly critical for deploy-
ing reliable machine learning systems in open-world environments. While vision-
language models (VLMs) like CLIP demonstrate strong potential for OOD detec-
tion, most existing test-time OOD detection methods focus on storing represen-
tative visual features, leaving the textual modality’s adaptation potential largely
unexplored. In this work, we investigate whether text-side adaptation can improve
test-time OOD detection. To this end, we propose Test-time Textual OOD Dis-
covery (TTOD), a framework that harnesses semantic knowledge directly from
the test data stream with an unknown distribution. Our method progressively con-
structs a retrievable OOD textual knowledge bank by continuously updating OOD
prompts during testing under the guidance of pseudo labels from a base detec-
tor. To alleviate the impact of contaminated signals, the method further develops
a purification strategy that exploits clustering properties of similar OOD types to
separate ID samples misclassified as OOD by the base detector from OOD sam-
ples, thereby improving pseudo-label quality for more effective adaptation. Ex-
tensive experiments on two standard benchmarks with nine OOD datasets demon-
strate that TTOD consistently achieves state-of-the-art performance, highlighting
the value of textual intervention for robust test-time OOD detection.

1 INTRODUCTION

Deep learning demonstrates remarkable performance in closed-set scenarios where training and test-
ing data follow identical distributions. However, when deployed in open-world environments, mod-
els frequently encounter OOD data from unknown classes. Critically, models often misclassify such
OOD samples as high-confidence in-distribution (ID) classes (Nguyen et al., 2015; Hendrycks &
Gimpel, 2017), posing significant safety risks in critical applications such as autonomous driving
and medical diagnosis. Therefore, accurately detecting OOD data is essential for ensuring the relia-
bility and safety of AI systems in real-world deployments.

Traditional OOD detection methods (Hendrycks & Gimpel, 2017; Hendrycks et al., 2022; Liu et al.,
2020; Sun et al., 2021) rely on well-trained ID classifiers but are limited to the visual modality. The
emergence of pre-trained VLMs like CLIP (Radford et al., 2021) has enabled leveraging multi-modal
information for enhanced OOD detection. Recent VLM-based methods have been dedicated to learn
OOD-related knowledge through external images or text labels (Wang et al., 2023; Jiang et al.,
2024), or extract such knowledge solely from ID training data, such as background regions (Miyai
et al., 2023) or randomly cropped images (Zeng et al., 2025). However, OOD features derived from
specific datasets inherently cannot cover the infinitely diverse OOD data found in the real world.

In order to obtain more practical OOD knowledge, recent methods employ test-time adaptation to
adapt VLMs to true OOD distributions. One straightforward method (Cao et al., 2025) trains the
OOD detector using test data labeled by a base OOD detector (Figure 1a). However, this method
relies solely on updating model parameters and fails to retain historically discriminative decision
boundaries—ultimately leaving the detector without global discriminative capabilities. To preserve
useful historical information, while some methods only store visual features observed during test-
ing (Yang et al., 2025), AdaNeg (Zhang & Zhang, 2024) additionally leverages the textual modality
by aligning external OOD text semantics with actual test distributions, achieving stronger perfor-
mance. However, AdaNeg relies on a finite set of OOD texts to represent the infinite OOD spectrum,
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Figure 1: Comparison of different test-time OOD detection methods. For a single test batch, (a)
AdaND achieves online adaptation by training an OOD detector; (b) AdaNeg stores representative
image features with external labels; (c) Our method leverages autonomous text knowledge discovery
to enhance historical information utilization without external labels. It dynamically discovers and
improves OOD prompts before storing the refined representations in a self-updating prompt bank.

which proves inherently inadequate. This limitation results in poor adaptability to OOD samples
beyond the scope of predefined categories (Figure 1b), leading to suboptimal performance on chal-
lenging benchmarks. Inspired by prompt learning (Zhou et al., 2022), fine-tuning prompts enables
text embeddings to better align with actual data distributions. We naturally pose a question:

Would directly learning OOD textual semantics from the test stream—rather than aligning specific
ones with OOD distributions—yield better adaptation results?

To this end, this study proposes Test-time Textual OOD Discovery (TTOD), a novel framework that
harnesses textual knowledge directly from test streams without relying on external labeled datasets.
As illustrated in Figure 1c, the framework builds upon a synergistic pipeline with three key compo-
nents. First, OOD Knowledge Discovering gets a pseudo-label of the test sample by using a base
detector and optimizes learnable prompts to extract OOD textual representation. Seconds, OOD
Knowledge Purification employs a novel strategy: leveraging the clustering properties of similar
OOD types to separate ID boundary samples from the potential OOD set, improving pseudo-label
quality for more effective prompt supervision. These discoveries are then stored in an OOD Textual
Knowledge Bank that maintains a dynamic repository of high-quality embeddings for robust score
calibration across evolving test batches, enabling continuous adaptation without external supervi-
sion. Our contributions can be summarized as follows:

• We propose TTOD, the first test-time textual OOD discovery framework that eliminates
reliance on external labeled datasets by dynamically extracting discriminative OOD textual
knowledge directly from test streams, enabling robust adaptation to diverse and previously
unseen OOD scenarios.

• We propose a novel purification strategy that exploits the clustering properties of OOD
types in the semantic space to separate ID boundary samples from the potential OOD set,
effectively filtering contaminated signals from pseudo-label.

• Comprehensive experiments across multiple benchmarks show that TTOD consistently
achieves state-of-the-art performance, with significant improvements of 11.63% FPR95
and 4.29% AUROC over existing methods on average.

2 RELATED WORK

OOD Detection. Traditional OOD detection methods focus on single-modal image analysis, falling
into two categories. The first designs scoring functions using model outputs (e.g., logits, features,
layer statistics) (Hendrycks & Gimpel, 2017; Liang et al., 2018; Liu et al., 2020; Sun et al., 2021).
The second explores ID-OOD decision boundaries via various training strategies (Du et al., 2022;
Ming et al., 2023; Chen et al., 2024b;a). Though achieving satisfactory results, they overlook textual
modalities’ rich semantic information, leading to sub-optimal performance (Jiang et al., 2024).
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To leverage textual knowledge, recent research has focused on employing vision-language models
like CLIP (Radford et al., 2021) with powerful multimodal understanding capabilities. These VLM-
based approaches can be categorized into three main strategies. Concept matching methods such
as MCM (Ming et al., 2022) and CMA (Lee et al., 2025) leverage CLIP’s image-text alignment
to generate OOD scores based on category names or auxiliary concepts. GL-MCM (Miyai et al.,
2025) extends MCM to multi-object scenarios. ID-enhanced methods improve discrimination by
exploiting additional information from ID data. For example, FA (Lu et al., 2025) uses ID prompts
as references for learnable prompt optimization; LoCoOp (Miyai et al., 2023) and SCT (Yu et al.,
2024) employ entropy maximization to reduce background sensitivity; OSPCoOp (Xu et al., 2025),
IDLike (Bai et al., 2024), Negprompt (Li et al., 2024), and Local-Prompt (Zeng et al., 2025) generate
pseudo-OOD samples through background extraction, image cropping, or assuming the relationship
between OOD distribution and ID distribution. External knowledge-based methods tackle OOD de-
tection using explicit OOD information. For example, Neglabel (Jiang et al., 2024) collects potential
OOD labels from large-scale corpora, while CLIPN (Wang et al., 2023) learns negative prompts from
massive datasets. However, such methods prove impractical due to the inherent diversity and infinite
nature of real-world outliers.

In order to obtain more practical OOD knowledge, there has been growing interest in leveraging
information from real-time testing scenarios to assist OOD detection. AUTO (Yang et al., 2023)
updates the parameters of all batch normalization layers and the final feature block in the model
by reducing prediction confidence for potential OOD samples. Unlike updating the original model,
AdaND (Cao et al., 2025) freezes the classification model and detects OOD samples by training an
additional noise detector. OODD (Yang et al., 2025) maintains a priority queue to accumulate more
representative OOD image features, which are used to calibrate detector outputs for test samples.
AdaNeg (Zhang & Zhang, 2024) further exploits external textual labels to guide the selection and
storage of visual features, achieving stronger OOD detection performance. Despite these advances,
existing test-time methods focus primarily on visual-side adaptation or on using text only as a fixed
auxiliary cue. In contrast, our method actively discovers discriminative OOD textual knowledge
during testing, directly exploiting the adaptive potential of the text modality.

Prompt Learning. Originated in NLP as a replacement for manual prompt engineering, prompt
learning has been adapted to vision-language scenarios with VLMs like CLIP (Radford et al., 2021)
serving as strong baselines. Methods such as CoOp (Zhou et al., 2022) use learnable vectors for
template words, boosting CLIP’s performance across tasks. While applied to OOD detection (Bai
et al., 2024; Lu et al., 2025; Zeng et al., 2025), existing approaches operate in training-time with
labeled ID data. Ours is the first to apply it to test-time OOD detection, adaptively learning textual
knowledge aligned with real deployment OOD distributions—enabling dynamic adaptation without
pre-defined OOD categories or external datasets.

3 METHODOLOGY

3.1 PRELIMINARIES

OOD detection. In OOD detection, the goal is to accurately categorize ID samples into their respec-
tive classes and reject OOD samples as non-ID. For any test sample x, this goal can be formulated
as a binary classification task using a scoring mechanism S(·) to differentiate between ID and OOD
inputs with the decision threshold λ. The decision function D(x) is defined as:

D(x) =

{
ID, if S(x) ≥ λ

OOD, if S(x) < λ
. (1)

CLIP and threshold determination. For CLIP-based OOD detection, it leverages both visual
and textual modalities for improved discrimination. CLIP uses two pre-trained encoders: an image
encoder f(·) that converts input image x into a feature vector z = f(x) ∈ Rd, and a text encoder g(·)
that converts class prompt uc into a feature vector tc = g(uc) ∈ Rd, where uc represents the text
prompt for class c. The cosine similarity cos(z, tc) measures the degree of image-text alignment.
For CLIP-based OOD detection, following Li et al. (2023a), the threshold λ is adaptively determined
by minimizing intra-class variance based on the bimodal distribution of OOD scores:

min
λ

1

Nid

∑
S(xi)>λ

[S(xi)− µid]
2 +

1

Nood

∑
S(xj)≤λ

[S(xj)− µood]
2, (2)
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Figure 2: Overview of the proposed TTOD. Guided by pseudo labels obtained from a base detector
Sbase(x), OOD knowledge discovery is performed. To filter out contaminated signals within pseudo
labels, an OOD Knowledge Purification strategy is employed. Finally, the learned OOD textual
embeddings are updated into the OOD Textual Knowledge Bank for real-time prediction calibration.

where µid = 1
Nid

∑
S(xi)>λ S(xi) and µood = 1

Nood

∑
S(xj)≤λ S(xj) are the mean scores above and

below threshold λ, respectively. Nid and Nood denote the number of samples above and below the
threshold in a test-time queue of length Nq .

3.2 TEST-TIME TEXTUAL OOD DISCOVERY

Existing test-time adaptive OOD detection methods for VLMs operate exclusively in the visual
modality by caching or processing image features. Given that VLMs learn cross-modal representa-
tions through text-image alignment, we propose to discover OOD textual knowledge related to the
actual distribution during test time, rather than relying on stored visual features. As illustrated in
Figure 2, our method consists of three key components that exploit textual representations. First,
OOD Knowledge Discovery employs LOMB (OOD-Focused Minority Balanced Loss) to optimize
learnable text prompts by balancing sample weights between ID and OOD classes during pseudo-
label based training. Second, OOD Knowledge Purification employs LOKP to filter misclassified
ID samples by exploiting the clustering property of similar OOD types in the textual embedding
space. Finally, OOD Textual Knowledge Bank maintains a dynamic repository of refined textual
embeddings for robust score calibration across evolving test batches. By operating in the textual
space rather than on visual features, our pipeline achieves continuous adaptation to distribution
shifts without external supervision. The overall optimization objective for test-time adaptation in-
corporates both discovery and purification: L = LOMB + α · LOKP, where α controls the trade-off
between learning from pseudo-labeled data and purifying knowledge quality.

OOD Knowledge Discovering. The objective is to discover discriminative textual embeddings
that effectively separate ID and OOD samples during test time, without relying on ground-truth
ID/OOD labels. To achieve this, a pseudo-labeling strategy is adopted where a base detector provides
weak supervision signals to guide the optimization of OOD prompts toward semantically meaningful
representations. Specifically, the OOD prompts are first initialized with the ID prompts template.
Then, for each batch of incoming samples, text embeddings tood

k and tid
j are obtained from the OOD

prompts and ID prompts, respectively, along with image embeddings z for the test image. A base
OOD detector Sbase(·) is used to obtain the OOD score Sbase(x) of the sample x, after which an
adaptive threshold λ is applied to obtain the pseudo label ŷ:

ŷ =

{
0 if Sbase(x) < λ

1 if Sbase(x) ≥ λ
, (3)

where ŷ = 1 indicates ID samples, and ŷ = 0 indicates OOD samples. To integrate the learnable
OOD prompts into the detection mechanism, the OOD prediction probability of xi is estimated by
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measuring the alignment between these textual embeddings and the image embedding, i.e.,

p(xi) =

M∑
k=1

qk(xi) =

∑M
k=1 exp

(
cos(f(xi), t

ood
k )/τ

)∑N
j=1 exp

(
cos(f(xi), t

id
j )/τ

)
+
∑M

j=1 exp
(
cos(f(xi), t

ood
j )/τ

) , (4)

where M denotes the number of learnable OOD textual prompts, qk(xi) represents the response
intensity of the k-th OOD embedding to the i-th sample xi. Summing the response intensities of
all OOD prompts to integrate diverse OOD semantics avoids biases from any single prompt. The
probability p(xi) and pseudo-labels ŷ together provide supervision for optimizing the learnable
prompts. To address the challenge of severe class imbalance commonly encountered in test-time
scenarios, an OOD-focused minority balanced loss is designed to ensure balanced learning from
both minority and majority classes:

LOMB = − 1

π+
E(x,ŷ)∼Dtest [1{ŷ = 1} log(1− p(x))]− 1

π−
E(x,ŷ)∼Dtest [1{ŷ = 0} log p(x)] , (5)

where π+ and π− denote the proportions of samples labeled as potential ID and OOD, respectively,
estimated using empirical frequencies within mini-batches.

OOD Knowledge Purification. While the learned textual embeddings provide valuable OOD tex-
tual knowledge, their quality is diminished by contamination signals from pseudo-labeling. Since
perfect OOD detectors rarely exist (AUROC < 1), samples flagged as OOD inevitably include a
mixture of OOD samples and misclassified ID samples—we term these misclassified samples as
“ID boundary samples”. Such a mixture not only limits the discriminative power of the learned
embeddings but also risks disrupting subsequent adaptation processes.

To address this challenge, we leverage a key property of CLIP’s image-text alignment training:
text prompts serve as compact, concept-level representations with higher-level semantic structure,
which gives rise to a critical “semantic clustering” phenomenon. Specifically, a single text prompt
corresponding to a certain semantic concept can map to multiple OOD image samples sharing that
concept, forming a cluster in the feature space. This semantic clustering property enables us to filter
pseudo-label noise by exploiting the shared textual semantics inherently present in test streams. The
mechanism works as follows. When most OOD samples in a batch belong to the same high-level
textual semantic cluster (denoted as semantic A), if the base detector misclassifies some samples
in this cluster as ID—while the textual semantics of the actual ID samples in the batch (denoted as
semantic B) are distinctly different from semantic A—we can leverage this semantic discrepancy
to rectify the misclassifications. Specifically, samples labeled OOD are first collected, and these
samples are then re-scored using the OOD probability score p(x) computed via the OOD prompts,
which quantifies their alignment with semantic A. Meanwhile, the OOD prompts are further opti-
mized to strengthen their affinity with the semantic A cluster while pushed away from the confusing
semantic B cluster. This process effectively filters out contaminated supervision signals caused by
misclassified samples. Building on this text-driven mechanism, OOD knowledge purification is
achieved by explicitly separating high-confidence OOD samples from uncertain ones within each
batch and encouraging their OOD probability distributions to become more bimodal. Formally, the
purification process can be obtained by minimizing the OOD knowledge purification loss

LOKP = −

 1

|Sh|
∑
i∈Sh

p(xi)−
1

|Sℓ|
∑
j∈Sℓ

p(xj)

 , (6)

where Sh = {i | p(xi) > θ} represents purified OOD samples with higher confidence, while Sℓ =
{j | p(xj) ≤ θ} denotes the uncertain set containing ID boundary samples and ambiguous OOD
instances. Here, θ is the adaptive threshold computed for OOD pseudo-labeled samples using OOD
probability −p(x) as OOD scores. The gradient formula for LOKP with respect to OOD embedding
toodk is as follows:

∇toodk
LOKP = −

(
1

|Sh|
∑
i∈Sh

qk(xi)(1− p(xi))zi −
1

|Sℓ|
∑
i∈Sℓ

qk(xi)(1− p(xi))zi

)
, (7)

where qk(xi) denotes the response intensity of the k-th OOD embedding to sample i. This update
drives toodk closer to high-confidence OOD samples while further away from uncertain samples. The
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per-sample weight qk(xi)(1− p(xi)) ensures updates focus on samples relevant to k-th prompt and
down-weights saturated examples, making the optimization both class-specific and adaptive.

OOD Textual Knowledge Bank. A key challenge in test-time adaptation is that text embeddings
optimized on individual batches capture only local semantic patterns, making them vulnerable to
distribution shifts in subsequent batches. To overcome this limitation, we propose the OOD Textual
Knowledge Bank (OKB), which accumulates discriminative textual embeddings discovered across
test batches. The OKB serves two critical purposes: (1) preserving valuable OOD textual knowledge
that might be forgotten when adapting to new batches, and (2) providing broader semantic coverage
through diverse distribution patterns. By leveraging cross-batch semantic consistency through such
historical knowledge, more robust OOD detection is enabled. To maintain computational efficiency,
the bank operates with a fixed capacity K. Each OOD textual embedding is evaluated using a
potential OOD score, defined as its minimum distance to all ID textual embeddings:

Sin(t
ood
i ) = min

c

[
− cos(tidc , toodi )

]
. (8)

This score guides the bank’s update strategy: when capacity is reached, the method retains only the
K highest-scoring embeddings, ensuring the most discriminative OOD patterns are preserved.

For OOD prompt initialization, we focus adaptation on challenging near-OOD samples by initializ-
ing prompts in the immediate neighborhood of ID embeddings via the same textual template (e.g.,
“a photo of a {classname}”). For testing computational efficiency, a shared prompt prefix (instead
of class-specific ones) is used to enable scalable adaptation across diverse test scenarios.

3.3 CALIBRATION OF THE PREDICTION

The OOD Knowledge Bank calibrates the base detector using real OOD semantic information from
testing. For each test sample with feature z, the final score combines base detection with semantic
calibration:

Sfinal(x) = Sbase(x) + β · Scal(x), where Scal(x) = − max
j∈{1,...,K}

cos(z, toodj ) (9)

The negative sign in Scal(x) ensures samples similar to stored OOD semantics receive lower scores,
while β balances semantic information and order of magnitude. This mechanism continuously re-
fines OOD detection by leveraging accumulated real OOD semantic information.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets and evaluation protocol. Following prior protocols (Miyai et al., 2023; Chen et al.,
2024b), we evaluate our method on two standard benchmarks. For large-scale evaluation, ImageNet-
1K (Deng et al., 2009) was used as the ID dataset, with OOD test sets comprising iNaturalist (Horn
et al., 2018), SUN (Xiao et al., 2010), Places (Zhou et al., 2018), and Texture (Cimpoi et al.,
2014). Other experiment was also conducted using CIFAR-100 (Krizhevsky et al., 2009) as the
ID dataset to enable broader comparison across different scales and resolutions, with corresponding
OOD datasets including SVHN (Netzer et al., 2011), LSUN-C (Yu et al., 2015), LSUN-R (Yu et al.,
2015), iSUN (Xu et al., 2015), Texture (Cimpoi et al., 2014), and Places365 (Zhou et al., 2018).
For evaluation, we adopt two standard metrics: (1) FPR95: false positive rate at 95% recall; (2)
AUROC: area under the receiver operating characteristic curve

Implementation details. Following previous studies (Zhang & Zhang, 2024), we use CLIP (Rad-
ford et al., 2021) with ViT-B/16 (Dosovitskiy et al., 2021) as our VLM and MCM (Ming et al.,
2022) as the base OOD detector. The OOD prompt is optimized using the AdamW (Kingma & Ba,
2015) optimizer with a learning rate of 0.005 and batch size of 64. TTOD has four hyperparameters:
loss weight α = 0.5 for balancing training objectives, OKB capacity K = 2048 for storing text
feature, threshold queue length NM

q = 4096 for adaptive threshold θ, and ID dataset-specific fusion
coefficient β for integrating MCM scores (0.006 for CIFAR-100, 0.0005 for ImageNet-1k, set based
on score distributions). All experiments run on a single Nvidia 3090 GPU, with additional details
provided in the Appendix.
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Table 1: Performance comparison on ImageNet-1k OOD detection benchmarks. The results marked
with † are taken from (Lu et al., 2025). Lower FPR95 and higher AUROC are better. Best results
are in bold and the second-best results are underlined.

Method
iNaturalist SUN Places Texture Average

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

Training-free & non-adaptive methods
MCM (Ming et al., 2022) 30.92 94.61 37.59 92.57 44.71 89.77 57.85 86.11 42.77 90.76
GL-MCM (Miyai et al., 2025) 15.09 96.72 29.08 93.41 37.07 90.37 58.94 83.11 35.04 90.90
CMA (Lee et al., 2025) 23.84 96.89 30.11 93.69 29.86 93.17 47.35 88.47 32.79 93.05
Neglabel (Jiang et al., 2024) 2.00 99.47 20.95 95.47 36.48 91.56 45.00 90.02 26.1 94.13

Training-based methods
MSP† (Hendrycks & Gimpel, 2017) 74.57 77.74 76.95 73.97 79.72 72.18 73.66 74.84 74.98 76.22
ODIN† (Liang et al., 2018) 98.93 57.73 88.72 78.42 87.80 76.88 85.47 71.49 90.23 71.13
Energy† (Liu et al., 2020) 64.98 87.18 46.42 91.17 57.40 87.33 50.39 88.22 54.80 88.48
ReAct† (Sun et al., 2021) 65.57 86.87 46.17 91.04 56.85 87.42 49.88 88.13 54.62 88.37
CLIPN (Wang et al., 2023) 19.17 96.17 26.43 94.02 32.26 92.62 41.23 90.12 30.21 93.19
LoCoOp (Miyai et al., 2023) 23.24 95.27 31.56 93.76 38.55 91.19 43.43 90.28 34.19 92.62
IDLike (Bai et al., 2024) 19.23 96.70 54.15 87.64 56.63 85.86 34.69 91.90 41.17 90.52
NegPrompt† (Li et al., 2024) 37.79 90.49 32.11 92.25 35.52 91.16 43.93 88.38 37.34 90.57
Local-Prompt (Zeng et al., 2025) 8.62 98.06 23.78 95.22 32.43 92.50 48.47 88.84 28.32 93.65
FA (Lu et al., 2025) 13.37 96.8 28.83 93.12 30.3 92.54 30.50 92.66 25.75 93.78

Test-time adaptation methods
AdaNeg (Zhang & Zhang, 2024) 0.9 99.69 11.57 96.97 35.16 93.69 29.27 94.34 19.22 96.17
OODD (Yang et al., 2025) 2.13 99.39 21.99 95.01 41.91 88.13 28.53 93.84 23.64 94.09
AdaND (Cao et al., 2025) 3.45 99.1 17.07 95.86 20.95 94.57 21.88 93.00 15.99 95.63
TTOD (Ours) 0.42 99.87 7.18 98.45 15.86 96.22 26.39 94.6 12.46 97.29

Comparison methods. Comparisons of TTOD with competitive CLIP-based OOD detection meth-
ods across three paradigms: (1) training-free & non-adaptive methods (MCM, GL-MCM, Neglabel
and CMA), (2) training-based methods (MSP, ODIN, Energy, ReAct, CLIPN, LoCoOp, IDLike,
NegPrompt, Local-Prompt and FA), and (3) test-time adaptation methods (OODD, AdaNeg and
AdaND).

4.2 PERFORMANCE ON BENCHMARKS

Effectiveness on ImageNet-1k. As shown in Table 1, TTOD substantially outperforms the best
methods in each category: 13.64% lower FPR95 than Neglabel (best non-adaptive method), 13.29%
lower than FA (best training-based method), and 3.53% lower than AdaND (best test-time adap-
tation method). Notably, unlike AdaNeg/Neglabel, TTOD uses no external datasets, yet achieves
better performance by discovering task-specific OOD knowledge during testing. This reduces ID-
OOD distribution overlap (Figure 3) as TTOD leveraging the extracted OOD textual knowledge for
calibration. These results support that TTOD’s ability to discover OOD textual knowledge during
testing leads to better alignment with the actual data distribution.

Effectiveness on CIFAR-100. To further validate our method’s generalization, TTOD is evaluated
on the CIFAR-100 benchmark. As shown in Table 2, TTOD consistently outperforms all competing
methods across individual OOD datasets and achieves the best average performance. Specifically,
among test-time adaptation methods, TTOD demonstrates strong performance on the challenging
Places365 dataset, where other adaptation approaches struggle to achieve effective detection.

Table 2: Performance comparison on the CIFAR-100 OOD benchmarks.

Method SVHN LSUN-R LSUN-C iSUN Texture Places365 Average

F↓ A↑ F↓ A↑ F↓ A↑ F↓ A↑ F↓ A↑ F↓ A↑ F↓ A↑

Neglabel 54.33 85.13 35.63 87.43 28.22 92.47 35.72 87.69 52.97 89.45 91.46 63.12 41.82 81.01
FA 15.58 97.33 48.02 89.75 33.11 93.18 51.29 89.37 22.34 95.47 46.28 89.49 36.11 92.43

AdaNeg 16.8 95.13 32.29 89.85 30.84 91.35 38.09 88.1 45.88 91.31 79.21 78.08 40.52 88.97
OODD 60.6 90.52 75.2 84.61 44.72 92.08 75.98 83.85 90.85 73.12 98.09 59.09 74.24 80.55
AdaND 3.51 99.12 11.29 96.87 6.11 98.24 17.36 95.6 19.96 93.53 74.37 70.65 22.1 92.34
TTOD (Ours) 0.01 99.98 2.52 99.47 2.01 99.54 1.27 99.67 1.68 98.91 6.65 97.98 2.36 99.26
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4.3 ANALYSIS OF OUR PROPOSED METHOD

Ablation study. Ablation studies are conducted on ImageNet-1k to validate the key components of
TTOD: LOMB, LOKP, and OKB. As shown in Table 3, LOMB provides the foundation by discovering
OOD-related textual knowledge. The differential loss LOKP further enhances performance by better
separating ID-boundary and OOD samples. The OKB component demonstrates comparable impor-
tance when combined with LOMB, indicating that accumulating historical embeddings captures more
discriminative OOD knowledge. The full TTOD framework, combining all components, achieves
optimal performance, demonstrating the effectiveness of its synergistic integration.

Table 3: Effectiveness of each component.

LOMB LOKP OKB FPR95↓ AUROC↑

% % % 42.77 90.76
✓ % % 30.56 92.54
✓ ✓ % 24.59 93.95
✓ % ✓ 18.40 95.63
✓ ✓ ✓ 12.46 97.29

CalibrationOverlap:24.67%
Overlap:2.76%

Figure 3: Comparison of the MCM score distri-
bution on SUN dataset.

Calibration strategies. Four strategies for enerating final calibrated prediction Sfinal using dis-
covered OOD knowledge are evaluated on ImageNet-1k: (1) Max OOD Similarity (MaxSim); (2)
Exponentiated Sum OOD (ExpSum); (3) ID-OOD Softmax Ratio (IDR); and (4) Base-Calibration
Score (BCS). As shown in Table 4, the most effective strategy is BCS, which directly subtracts
OKB similarity from the base detector score. This show that OOD knowledge functions as a com-
plementary corrective signal, with effectiveness depending primarily on knowledge quality rather
than sophisticated scoring mechanisms. Detailed formulations are provided in the Appendix.

Variants of LOMB. LOMB consistently outperforms standard cross-entropy LCE (Table 5) on
ImageNet-1k. By balancing the weight of ID/OOD sample weights, LOMB effectively preserving
the learning signal of minority-class samples.

Visual analysis of LOKP. As shown in Figure 5, with LOKP, the potential OOD set progressively
splits into a much clearer bimodal distribution over time. This confirms that LOKP successfully
separates OOD samples from ID boundary samples, the source of contamination, ultimately enabling
more reliable test-time adaptation for OOD detection.

Table 4: Comparision of calibration strategies.

Function FPR95↓ AUROC↑
MaxSim 20.52 95.57
ExpSum 19.61 95.44
IDR 22.85 94.74
BCS 12.46 97.29

Table 5: Ablation study of the LOMB .

Function FPR95↓ AUROC↑
LCE 14.23 96.98
LOMB 12.46 97.29
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Figure 4: OOD probability density of test samples
with OOD pseudo-labels (without/with LOKP, with 64
mixed test samples per step)

Retention Strategies of OKB. Four OKB renewal strategies are evaluated on ImageNet-1k: (1)
Random (RAND) (Genkin et al., 2023) — random replacement when OKB is full; (2) First-In-
First-Out (FIFO) (Yang et al., 2021); (3) Storing All (SA) (Cai et al., 2022) — unlimited retention;
and (4) Distance-Based Retention (DBR) (Yang et al., 2025) — keeping entries farthest from ID
embeddings. Results in Table 6 show that DBR performs best. Intuitively, DBR keeps the most se-
mantically distinct entries from ID prompts, yielding stronger and more compact corrective signals.

Visual analysis of OKB. Figure 5 presents a t-SNE visualization in the cross-modal feature space.
While the ID text embeddings lie close to both ID images and some OOD image clusters (i.e.,
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they do not clearly separate the two groups), the learned OOD text embeddings in the OKB move
noticeably closer to OOD image clusters. Such a shift supports that TTOD successfully discovries
textual signals that align with true OOD semantics.

Table 6: Performance of OKB retention strategies.

ImageNet-1k CIFAR-100

Strategy FPR95↓ AUROC↑ FPR95↓ AUROC↑
RAND 27.29 93.07 29.06 87.07
FIFO 14.69 96.40 8.15 98.78
SA 23.19 94.27 27.33 88.04
DBR 12.46 97.29 2.36 99.26

Table 7: OOD prompt learning strategies.
Prefix Classname Update FPR95↓ AUROC↑

Random Random ✓ 13.63 96.75
Random ID ✓ 15.32 96.45
Manual ID % 56.49 87.32
Manual ID ✓ 12.46 97.29

OOD Image
ID Text
OKB Text
ID Image

Figure 5: t-SNE visualization of textual
embeddings in OKB, utilizing ImageNet-1k,
SUN as ID, and OOD dataset respectively.

OOD prompt learning. Table 7 compares several OOD-prompt initialization and update schemes
on ImageNet-1k. Random represents using random initialization. ID represents using ID classnames
initialization. The manual represents using ”a photo of a” initialization. The results indicate that
initializing OOD prompts with the same textual template as the ID prompts (e.g. “a photo of a
classname.”) and enabling online optimization at test time yields the most discriminative OOD text
embeddings and the best detection performance.

OOD detector-agnostic. As Figure 6 shows, TTOD improves performance across all base OOD
detectors on ImageNet-1k, demonstrating its detector-agnostic nature. The gains are particularly
pronounced when combined with FA, achieving 5.88% FPR95 and 98.76% AUROC, highlighting
how test-time textual discovery can effectively complement strong other OOD detectors.

Sensitivity study. Sensitivity studies are conducted to evaluate the influence of key hyperparame-
ters: knowledge bank length K ∈ [28, 214], threshold queue length NM

q ∈ [28, 214], loss weighting
parameter α ∈ [0.2, 1.0], and Fusion-Gap Coefficient β ∈ [0.0002, 0.0008]. As shown in Figure 7,
our method consistently outperforms the strongest baseline across all configurations.

GL_MCM Neglabel LoCoOp FA80
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100
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Figure 6: AUROC of TTOD inte-
grated with other base detectors.
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Figure 7: Sensitivity studies on ImageNet-1k.

5 CONCLUSION

We identify that existing cross-modal OOD detection methods fail to fully exploit the adaptive po-
tential of textual modalities during test time. To address this limitation, we propose TTOD, which
progressively constructs a retrievable OOD textual knowledge bank by continuously updating OOD
prompts under the guidance of pseudo labels from a base detector To mitigate contamination from
imperfect pseudo-labeling, our method incorporates a purification strategy that exploits clustering
properties of similar OOD types to separate ID boundary samples, improving pseudo-label quality
and adaptation. Notably, TTOD use no external labeled data yet achieves SOTA performance across
multiple benchmarks. Extensive experiments validate the effectiveness of each proposed component
and demonstrate the value of textual intervention for robust test-time OOD detection.
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A BASIC STATEMENT

A.1 THE USE OF LARGE LANGUAGE MODELS

Throughout the entire work, we use GPT, Tongyi Qianwen, and Doubao for language polishing and
code assistance.

A.2 REPRODUCIBILITY STATEMENT

Comma separated list of kTo ensure the reproducibility of the experimental results presented in this
work, we will make the complete implementation code, including model training configurations and
evaluation scripts, publicly available on GitHub upon the acceptance of this paper. Additionally,
we will provide detailed documentation specifying dependencies and step-by-step instructions to
replicate all reported experiments. This ensures that researchers can easily verify our findings and
build upon our method for future work.

A.3 DETAILED EXPERIMENT SETTING

Experimental details The proposed TTOD method was implemented using Python 3.9 and PyTorch
2.3.0, with all experiments conducted on a single NVIDIA GeForce RTX 3090 GPU. Following
prior work (Zeng et al., 2025; Shu et al., 2022; Li et al., 2023b; Ming et al., 2022; Yang et al.,
2025), we adopted ViT-B/16 (Dosovitskiy et al., 2021) as the backbone model. The OOD prompt
was optimized via AdamW (Kingma & Ba, 2015) with a learning rate of 0.005 and batch size of 64.
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Table 8: Inference strategies.

Function formula FPR95↓ AUROC↑
MaxSim −maxj∈{1,...,K} cos(zx, t

ood
j ) 20.52 95.57

ExpSum −
∑K

j=1 exp
(
cos(z, tood

i )/τ
)

19.61 95.44

IDR
∑N

j=1 exp(cos(z,tid
i )/τ)∑N

j=1 exp(cos(z,tid
j )/τ)+

∑K
j=1 exp(cos(z,tood

j )/τ)
22.85 94.74

BCS Sbase(x)− β · Scal(x) 12.46 97.29
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Figure 8: Effect of LOKP on separating ID-boundary and OOD samples, 64 samples/step. Top row:
OOD probability density without LOKP; bottom row: OOD probability density with LOKP.

We set Nq = 512 and τ = 1, and used MCM (Ming et al., 2022) as the base OOD detector across
all experiments.

TTTOD includes four hyperparameters: (1) loss weight α = 0.5; (2) OKB capacity K = 2048;
(3) threshold queue length NM

q = 4096 (for computing threshold θ); and (4) an ID dataset-specific
fusion coefficient β. Specifically, β is set to 0.006 for CIFAR-100 and 0.0005 for ImageNet-1k,
determined based on the MCM score distribution.

Specific inference formula. Please refer to Table 8.

More details about Adaptive Threshold. OWTTT (Li et al., 2023a) searches for the optimal
parameter λ using a fixed step size of 0.01 between 0 and 1, which is actually unsuitable for different
OOD scores (e.g., using ImageNet as ID data and the SUN dataset as OOD data, a step size of
0.01 could span the entire range of MCM Scores across all samples). Here, we propose using the
minimum score encountered during testing as the lower bound for the search and the maximum score
as the upper bound. Within this range, we uniformly divide the interval into segments matching
OWTTT’s approach to search for the optimal parameter λ.

B ALGORITHMS

This section provides a detailed breakdown of Algorithm 1 (Test-time Textual OOD Discovery),
complementing the core description in the main text. The algorithm aims to dynamically adapt
OOD text prompts during testing, leveraging both visual and textual information to enhance OOD
detection performance without relying on external pre-defined OOD categories.

C FULL RESULTS OF ABLATION STUDIES

Effect of LOKP. More visualization results about Effect of mathcalLOKP on separating ID-
boundary and OOD samples can be found in Figure 8.

Different base OOD detectors. Please refer to Table 9. We can see that we have achieved a
positive improvement in performance for different basic detectors. And it’s for all datasets, not just
the average results.

Effectiveness of each component. Please refer to Table 10. We can see that each module is highly
effective.
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Algorithm 1 Algorithm for Test-time Textual OOD Discover

Require: test data stream {xi}Ti=1, text encoder g(·), image encoder f(·), text prompt for ID uid
c ,

learnable text prompt for OOD uood
c , batch size B, the priority queue OKB with capacity K

1: Initialize OOD prompt: uood
c = uid

c
2: Compute and obtain ID text embeddings: tidc = g(uid

c )
3: for each data sample xi ∈ D do
4: Calculate base OOD score for xi using the base detector: sbase(xi)
5: Compute adaptive threshold: λ by Equal 2
6: Assign pseudo-label to xi: ŷ
7: Obtain current OOD text embeddings: toodc = g(uood

c )
8: Compute OOD probability p by Equal 4
9: Update queue Q: Q ← Q∪ {ŷ, p}

10: if len(Q) = B then
11: train uood

c :
12: Calculate loss LOMB loss by Equal 5, input data: Q
13: Compute grouping threshold θ by Equal 2
14: Calculate loss LOKP by Equal 6, input data: Q, θ
15: Update uood

c using LOMB and LOKP
16: Obtain updated OOD prompt embeddings: toodc = g(uood

c )
17: Score the updated OOD prompt embeddings by Equal 8
18: Store each OOD prompt embedding into the priority queue OKB
19: Q← ∅
20: end if
21: Perform inference correction and prediction:
22: Compute final OOD score Sfinal(xi) by Equal 9
23: end for
24: return Sfinal(xi) for all samples in D

Table 9: Complementarity to other OOD detectors with the ID dataset of ImageNet-1k. Green
indicates an improvement, while red indicates the opposite.

Method
iNaturalist SUN Places Texture Average

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

GL-MCM 15.09 96.72 29.08 93.41 37.07 90.37 58.94 83.11 35.04 90.90
+ TTOD 0.42 99.88 7.71 98.37 16.14 96.04 33.67 92.1 14.49 96.6
Improve -14.67 +3.16 -21.37 +5.67 -20.93 +5.67 -25.27 +8.99 -20.55 +5.7

Neglabel 2.00 99.47 20.95 95.47 36.48 91.56 45.00 90.02 26.1 94.13
+ TTOD 0.44 99.86 6.49 98.68 15.26 96.81 10.74 98.0 8.23 98.34
Improve -1.56 +0.39 -14.46 +3.21 -21.22 +5.25 -34.26 +7.98 -17.87 +4.21

LoCoOp 23.24 95.27 31.56 93.76 38.55 91.19 43.43 90.28 34.19 92.62
+ TTOD 0.22 99.93 4.92 98.88 13.91 96.51 16.12 96.44 8.79 97.94
Improve -23.02 +4.66 -26.64 +5.32 -24.64 +5.32 -27.31 +6.16 -25.4 +5.32

FA 13.37 96.80 28.83 93.12 30.30 92.54 30.50 92.66 25.75 93.78
+ TTOD 0.28 99.90 5.87 98.68 10.20 97.81 7.15 98.66 5.88 98.76
Improve -13.09 +3.10 -22.96 +5.56 -20.10 +5.27 -23.35 +6.00 -19.87 +4.98

Table 10: Effectiveness of each component.

LOMB LOKP OKB iNaturalist SUN Places Texture Average
FPR95↓AUROC↑ FPR95↓AUROC↑ FPR95↓AUROC↑ FPR95↓AUROC↑ FPR95↓AUROC↑

% % % 30.92 94.61 37.59 92.57 44.71 89.77 57.85 86.11 42.77 90.76
✓ % % 2.62 99.39 30.81 94.88 34.95 90.68 53.85 85.22 30.56 92.54
✓ ✓ % 1.13 99.64 16.71 97.04 25.04 94.47 55.46 84.65 24.59 93.95
✓ % ✓ 1.34 99.61 13.58 97.50 22.12 93.91 36.56 91.50 18.40 95.63
✓ ✓ ✓ 0.43 99.87 6.48 98.55 15.29 96.38 28.19 94.02 12.46 97.29
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Table 11: Inference strategies.

Function iNaturalist SUN Places Texture Average
FPR95↓AUROC↑ FPR95↓AUROC↑ FPR95↓AUROC↑ FPR95↓AUROC↑ FPR95↓AUROC↑

MaxSim 1.04 99.66 16.23 97.24 23.07 95.21 41.74 90.17 20.52 95.57
ExpSum 0.92 99.63 14.99 97.20 22.31 95.16 40.21 89.74 19.61 95.44
IDR 1.06 99.57 17.75 96.89 23.58 95.03 49.02 87.45 22.85 94.74
BCS 0.43 99.87 6.48 98.55 15.29 96.38 28.19 94.02 12.46 97.29

Table 12: Comparing LCE and LOMB across multiple datasets.

Function iNaturalist SUN Places Texture Average
FPR95↓AUROC↑ FPR95↓AUROC↑ FPR95↓AUROC↑ FPR95↓AUROC↑ FPR95↓AUROC↑

LCE 2.97 99.47 9.26 98.17 20.05 95.80 24.63 95.13 14.23 96.98
LOMB 0.43 99.87 6.48 98.55 15.29 96.38 28.19 94.02 12.46 97.29

Comparision of different inference strategies. Please refer to Table 11.

Comparing LCE and LOMB across multiple datasets. Please refer to Table 12.

OOD prompt learning strategies. Please refer to Table 13.

D ADDITIONAL RESULTS

Different Backbone Architectures. Please refer to Table 14. As shown in the results, TTOD still
achieved the best performance under different backbones.

Ordering of Testing Data. Test-time adaptation methods are inevitably affected by the order in
which the test samples arrive. To rigorously test this aspect, we randomly shuffled the order of the
test data using three distinct seeds. We observed that our method exhibits robustness to changes in
the ordering of test data. Specifically, across three experiments conducted on the ImageNet dataset,
the AUROC scores were 97.34%, 97.2%, and 97.34%, respectively, demonstrating fluctuations of
less than 0.2%. We report the average results from three random runs in our paper.

Effectiveness on OpenOOD benchmark. We use four popular ID datasets CIFAR-
10/100 (Krizhevsky et al., 2009), ImageNet-200/1K (Deng et al., 2009). Following the OpenOOD
benchmark (Yang et al., 2022), the OOD testing datasets are categorized into two groups: Near
OOD and Far OOD. Specifically, for CIFAR-10/100 benchmarks, the Far OOD group includes
MNIST (LeCun et al., 1998), SVHN (Netzer et al., 2011), Texture (Cimpoi et al., 2014),
Places365 (Zhou et al., 2018), and the Near OOD group comprises CIFAR-100/10 and Tiny
ImageNet-200 (Deng et al., 2009). For ImageNet-200/1K, the Near OOD group includes SSB-
hard (Vaze et al., 2022), NINCO (Bitterwolf et al., 2023), and the Far OOD group comprises iNatu-
ralist (Horn et al., 2018), Texture (Cimpoi et al., 2014), and OpenImage-O (Wang et al., 2022).

As shown in Table 15 and Table 16 on the OpenOOD benchmark (Yang et al., 2022), under the
far-out-of-distribution (far-OOD) setting, our method consistently achieves the best results. Under
the near-OOD setting, when using CIFAR-10, CIFAR-100, and ImageNet-200 as in-distribution
(ID) datasets, our method performs comparably to AdaNeg, which utilizes an external dataset. This

Table 13: OOD prompt learning strategies across multiple datasets.

Prefix Classname Update iNaturalist SUN Places Texture Average
F↓ A↑ F↓ A↑ F↓ A↑ F↓ A↑ F↓ A↑

Random Random ✓ 0.30 99.90 7.19 98.43 16.47 95.76 30.55 92.91 13.63 96.75
Random ID ✓ 0.30 99.90 7.82 98.28 18.84 95.35 34.31 92.28 15.32 96.45
Manual ID x 54.84 89.38 53.59 89.08 57.78 86.04 59.77 84.75 56.49 87.32
Manual ID ✓ 0.43 99.87 6.48 98.55 15.29 96.38 28.19 94.02 12.46 97.29
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Table 14: Performance comparison on the ImageNet-1K benchmark with ResNet50 backbone.

Method
iNaturalist SUN Places Texture Average

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

Neglabel 2.6 99.29 22.62 95.05 47.71 90.0 42.85 89.80 28.95 93.53
FA 68.97 82.02 55.84 86.93 62.58 82.68 34.96 91.74 55.59 85.84

AdaNeg 1.07 99.63 13.22 96.78 35.11 93.44 25.61 94.67 18.75 96.13
OODD 3.72 99.05 30.80 93.66 60.06 83.76 48.58 88.55 35.79 91.25
AdaND 4.21 98.9 19.5 95.62 21.61 94.2 17.9 95.06 15.50 95.94
TTOD(ours) 0.73 99.75 9.39 98.16 18.49 95.25 26.88 94.21 13.87 96.84

demonstrates the effectiveness of our approach across diverse experimental settings. When our
method employs the baseline detector MCM, which performs poorly at distinguishing ID and OOD
samples, our approach exhibits performance degradation. This occurs in the most challenging near
OOD setting using ImageNet-1k as the ID dataset. It is worth mentioning that this phenomenon
also appears in the training-based method IDlike. Under such extreme difficulty, all methods face
significant limitations. We attempted to replace the baseline detector with a more effective one,
FA. The results show that when our method is combined with FA across all test cases, it achieves
remarkable performance and consistently yields the best results. This demonstrates that our method
remains effective even under extremely challenging conditions.

Table 15: Performance Comparison on OOD Detection Across Datasets. Lower FPR95 and higher
AUROC are better. Best results are in bold, and the second-best results are underlined.

ID Dataset Method External Data Near OOD Far OOD
FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑

CIFAR 10

MCM × 35 91 12.57 96.77
Neglabel

√
35.32 92.96 15.74 96.29

AdaNeg
√

32.38 94.01 7.31 98.28
OODD × 48.61 89.19 14.11 96.7
AdaND × 35.13 90.81 0.78 99.62
ours × 30.25 93.6 1.07 99.75

CIFAR 100

MCM × 91.01 70.53 73.27 79.66
Neglabel

√
77.54 71.9 59.66 79.84

AdaNeg
√

71.62 77.56 40.81 88.41
OODD × 91.52 70.23 69.48 79.88
AdaND × 77.35 70.5 22.45 92.53
ours × 52.34 82.33 0.21 99.64

ImageNet-200

MCM × 63.66 83.66 17.97 96.13
Neglabel

√
49.83 87.61 9.36 97.87

AdaNeg
√

41.48 88.76 9.79 98.05
OODD × 48.39 83.82 14.82 96.13
AdaND × 50.35 85.62 15.15 95.86
ours × 48.16 87.75 7.89 98.5
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Table 16: Performance Comparison on ImageNet1k OOD Detection. Lower FPR95 and higher
AUROC are better. Best results are in bold, and the second-best results are underlined.

ID Dataset Method External Data Near OOD Far OOD
FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑

ImageNet1k

MCM × 84.17 69.22 44.39 90.61
Neglabel

√
69.27 75.38 23.23 94.94

LoCoOp × 82.51 68.03 33.42 92.12
IDLike × 86.23 59.51 36.11 92.16
LocalPrompt × 77.91 73.44 28.6 93.71
FA × 69.21 77.97 25.78 93.67
AdaNeg

√
67.35 76.01 20.9 95.44

AdaNeg + FA
√

76.15 73.79 95.38 19.75
OODD × 73.83 67.08 24.81 91.87
OODD + FA × 60.06 77.31 23.52 92.21
AdaND × 70.93 73.93 20.45 94.07
AdaND + FA × 69.15 75.82 18.69 94.66
ours × 89.44 56.3 19.88 95.59
ours + FA × 56.53 83.33 13.62 97.05
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