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ABSTRACT

Machine learning models have made incredible progress, but they still struggle
when applied to examples from unseen domains. This study focuses on a specific
problem of domain generalization, where a model is trained on one source domain
and tested on multiple target domains that are unseen during training. We propose
IMO: Invariant features Masks for O-of-Distribution text classification, to achieve
OOD generalization by learning invariant features. During training, IMO would
learn sparse mask layers to remove irrelevant features for prediction, where the
remaining features keep invariant. Additionally, IMO has an attention module at
the token level to focus on tokens that are useful for prediction. Our comprehensive
experiments show that IMO substantially outperforms strong baselines in terms of
various evaluation metrics and settings.

1 INTRODUCTION

When deploying natural language processing (NLP) models trained on labeled data in the wild, it
is well known that they suffer from poor predictive performance on the samples drawn from the
distributions different than their training (Wang et al., 2021b). This is due to the fact that the majority
of NLP models assume that training and test data are identically and independently distributed
(i.i.d.) (Schölkopf et al., 2021). Although various domain adaptation techniques have been proposed
to bridge the gaps between training and testing distributions (Liu et al., 2022; Saunders, 2022), they
all assume that labeled or unlabeled data from target domains is available during training and the
domain information is known during testing. However, for many real-world applications, especially
for early-stage businesses, their users may apply their models to arbitrary data such that the test data
may well be Out-of-Distribution (OOD) and the domain information is not available for domain
adaptation. In addition, their training datasets are often expensive to acquire so that they are available
only in one domain. Therefore, this work focuses on single-source domain generalization (DG) for
text classification, which aims to enable classifiers trained in one source domain to robustly work on
the same classification tasks in any unseen OOD data without any model tuning.

Pre-trained large language models (LLMs) have drawn a lot of attentions recently due to their strong
predictive performance on a variety of tasks. Although generative models or classifiers built on top
of pre-trained LLMs outperform prior models in multiple domains, their performance is still not
robust on the tasks, e.g. classification, when the testing distribution differs substantially from the
training distribution (Bang et al., 2023). Recent works (Wang et al., 2021a; Feng et al., 2023; Veitch
et al., 2021) show that one of the key reasons behind this is spurious correlations, which refer to the
correlations between features and model outputs that are not based on causal relationships.

To take a step towards the goal “train it once, apply it anywhere”, we propose a novel greedy
layer-wise Invariant Masking technique for OOD text classification, coined IMO, which selects
domain-invariant features and key token representations from appropriate layers of a pre-trained deep
transformer encoder to mitigate spurious correlations. The resulting hidden representations are sparse
from the top layer to a specific layer of the pretrained model. We demonstrate the effectiveness of
this technique through theoretical justifications and extensive experiments. Similar to (Zhang et al.,
2021) on computer vision tasks, we shed light on how to apply sparsity as an effective inductive bias
to deep pre-trained models for OOD text classification. Our contributions are summarized as follows:
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• We propose IMO, a novel top-down greedy layer-wise sparse representation learning
technique for pre-trained deep text encoders for robust OOD text classification by sharply
reducing task-specific spurious correlations. In comparison with bottom-up layer-wise
and simultaneous search across all layers, we discover that the top-down greedy search is
decisive for performance improvement.

• We develop a theoretical framework that elucidates the relationship between domain-
invariant features and causal features. Additionally, we provide an explanation of how
our method learns invariant features.

• Our comprehensive experimental results demonstrate that
– application of IMO to BART (Lewis et al., 2020), significantly outperforms competi-

tive baselines, including recent LLMs, e.g. CHATGPT, on the classification of topics
and sentiment polarity in the majority of the target domains, where CHATGPT has 10
times more parameters than BART;

– application of IMO to CHATYUAN (Clue-AI, 2023) for Chinese also achieves superior
performance over strong competitors, e.g. CHATGPT, on social factor classification;

– spurious correlations in pre-trained models are harmful for OOD text classification;
– IMO achieves similar OOD performance w.r.t. varying size of training data. The

differences of accuracy between using 1k and 3.5 million training instances are less
than 6%. In contrast, the corresponding accuracy differences of its backbone model
without IMO is more than 16%.

2 RELATED WORK

Figure 1: The overall architec-
ture of our method IMO.

Domain Generalization. Numerous DG methods have been pro-
posed in the past decade, and most of them are designed for multi-
source DG Chattopadhyay et al. (2020); Zhao et al. (2020); Ding
et al. (2022); Zhang et al. (2022); Lv et al. (2022). Existing DG
methods can be roughly classified into two categories: invariant
representation learning and data augmentation. The key idea of the
former category is to reduce the discrepancy between representations
of source domains Muandet et al. (2013); Li et al. (2018a;b); Shao
et al. (2019); Arjovsky et al. (2020). The key idea of data augmen-
tation is to generate out-of-distribution samples, which are used to
train the neural network with original source samples to improve the
generalization ability Xie et al. (2020); Wei & Zou (2019); Volpi &
Murino (2019). This paper focuses on single-source DG, where the
model is trained on a single source domain, then evaluated on mul-
tiple unseen domains. Data augmentation is an effective strategy for
single-source DG. Wang et al. (2021c) proposes a style-complement
module to synthesize images with unseen styles, which are out of
original distributions. Qiao et al. (2020) proposes adversarial do-
main augmentation to encourage semantic consistency between the
augmented and source images in the latent space. Ouyang et al.
(2023) uses a causality-inspired data augmentation approach to en-
courage network learning domain-invariant features. In terms of text
classification, Ben-David et al. (2022); Jia & Zhang (2022) apply
prompt-based learning methods to generate a prompt for each sam-
ple, then feed the prompt to a language model, finally predict labels
based on vocabulary distribution.

Causal Representation Learning. Causal representation learning addresses OOD generalization
by exploring causal features that lead to labels. The assumption behind it is causal features are
stable across different environments or data selections. Since causal representation learning is very
ambitious and even infeasible in real application, a more practical method is invariant representation
learning. Peters et al. (2016) investigated that invariant features, to some extent, infer the causal
structure. Arjovsky et al. (2020) also assumes that prediction conditioned on invariant features
is stable under different environments. Following such assumption, a strand of methods tries to
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learn invariant features by mitigating spurious correlated features, which vary across environments
Muandet et al. (2013); Chattopadhyay et al. (2020); Asgari et al. (2022); Izmailov et al. (2022); Hu
et al. (2022b). This paper also follows this thread of methods, where we treat features that don’t
affect prediction as spurious correlated features. We use sparsification techniques Liu et al. (2020);
Kusupati et al. (2020) to mask out spurious correlations.

3 METHODOLOGY

LLMs are pre-trained on large-scale corpora so that they can capture rich correlations between tokens
across various domains. To enable trained models incorporating LLMs to work across domains,
our key idea originates from the Invariance Assumption that the conditional distributions of labels
conditioned on invariant features do not change across domains (Peters et al., 2016). Zhang et al.
(2021) show that the assumption can hold, and there is a subnetwork inside a full network that can
achieve better OOD performance than the full network. For a specific classification task, such as
sentiment polarity analysis, the assumption indicates that there are certain sparse representations that
are potential causes of labels (Wang & Jordan, 2022) across domains. Our method IMO realizes this
idea by constructing sparse domain-invariant representations from the hidden representations of the
selected layers of pre-trained transformer-based encoders.

Let X be the input space and Y be the label space, a domain is characterized by a joint distribution
PXY on X × Y . In the context of a single source DG, we have access to the data of one source
domain S = {(xs, ys)} drawn from its joint distribution PS

XY . The goal is to learn a predictive
model f : X → Y using only the data sampled from PS

XY to minimize the prediction error on K
unseen target domains T = {Tk = {xk}}Kk=1, each of which is associated with a joint distribution
P

(k)
XY . Due to domain drifts, PS

XY ̸= P
(k)
XY ,∀k ∈ 1, ...,K.

Following (Quinzan et al., 2023), we make the same assumptions that that (i) Y = f(Pa(Y ))+ϵ, (ii) ϵ
is exogenous noise, independent of any features, and (iii) Y has no direct causal effect on any features,
where Pa(Y ) denote parents of Y in the underlying causal graph. Although PS

XY ̸= P
(k)
XY ,∀k ∈

1, ...,K, we show in Sec. 3.3 that under all above assumptions, there is a sparse representation Hi

such that the function Y = f(Hi) + ϵ exists in both source and target domains. The presence of
invariant representations and influence of spurious correlations are empirically studied in Sec. 4.4.

As illustrated in Figure 1, our method constructs sparse domain-invariant representations at both
feature and token levels in a top-down manner. At the feature level, given embeddings produced
by the transformer block of the top layer, a parametric mask layer identifies invariant features from
the embeddings. Then, the mask layer is frozen and the algorithm learns the mask layer for the
lower layer. The process is repeated until a pre-specified layer is reached. At the token level, a soft
attention mechanism incorporates the selected features from the top layer to identify key tokens and
create aggregated sparse representations using only the invariant features for binary classification.
For multi-class classification tasks, a sparse representation is created for each class so that each of
them can focus on class-specific information. The model is regularized during training to increase the
divergences of the representations between classes.

3.1 EXTRACTION OF INVARIANT FEATURES

Given a text input X = [xi]
T
i=0, where xi is a token in X , a transformer-based pre-trained language

model is employed to convert xi to a continuous token representation. We use hidden states produced
by each transformer layer l as token representations, denoted as H l = [hl

i]
T
i=0. hl

i embeds both
invariant features (useful for prediction in different domains) and spuriously correlated features
(irrelevant for prediction) produced by layer l. Based on the Invariance Assumption, the invariant
features h∗ ensure pe(Y |h∗) to be the same for all e ∈ E , where E represents domains. In a
transformer layer l, the spuriously correlated features are filtered out by performing element-wise
multiplication between token representation hl

i and a learnable mask ml.

A mask layer m = r ⊙ q contains zero and non-zero elements, where we define a trainable
weight vector r ∈ Rd and a trainable pruning threshold vector s ∈ Rd. A unit step function

g(t) =

{
0 if t < 0

1 if t ≥ 0
is applied to get a binary mask q = g(|r| − s). By applying element-wise
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multiplication eli = hl
i ⊙ ml, the zero elements of m remove corresponding features in token

embeddings hl, while non-zero elements characterize the importance of corresponding features.

As the unit step function g is not differentiable, we approximate its derivative by using the derivative
estimator proposed in Xu & Cheung (2019) such that all parameters of a mask layer are trainable by
using back-propagation and the family of stochastic gradient descent algorithms.

d

dt
g(t) =


2− 4|t|, −0.4 ≤ t ≤ 0.4

0.4, 0.4 ≤ |t| ≤ 1

0, otherwise
(1)

Following Xu & Cheung (2019), we add a sparse regularization term Lsparse to the training loss to
encourage the sparsity of mask layers:

Lsparse =

N∑
i=1

exp(−si), s ∈ Rd (2)

where exp(−si) encourages high thresholds but prevents them from being extremely large. A higher
threshold leads to removal of more features. During inference, we retain the mask layers to retain
invariant features while discarding irrelevant ones.

3.2 IDENTIFICATION OF INVARIANT TOKENS

Given a long token sequence, not all information is useful for target tasks. For example, function
words, such as ‘the’, or ‘that’, provide little information for predicting sentiment polarity. Thus, we
employ a token-level attention mechanism to focus on important tokens. Instead of using all features
of a token representation, we compute attention scores by using only the identified invariant features.
The proposed attention mechanism differs slightly between binary and multi-class classification.

Binary Classification. For binary classification, we treat the mask vector mL from the last layer
L as the query vector and compute the attention weight by performing the matrix product between
mL and each token embedding from the last layer eLi : ai = mLeLi . Here, the mask vector and
token embeddings are interpreted as matrices, with mL ∈ R1×d and eLi ∈ Rd×1. For an input
token sequence, we aggregate the masked token embeddings to obtain a sequence representation
v =

∑T
i aie

L
i , where v ∈ R1×d. Finally, the sequence representation is fed into a fully-connected

layer, followed by generating a distribution over the label space as follows: ŷ = softmax(vP).

Multi-class Classification. For the multi-class classification task, we propose using multiple mask
layers mL

y in the last layer L to capture corresponding features and tokens for labels y. The number
of mask layers equals the number of labels. Each label has its own attention weights aL

y = mL
y e,

and its own representation vL
y =

∑T
i aLyiei. Instead of using a fully-connected layer, we use a

learnable weight vector per class to project vL to a scalar: cL = vLpL, where vL ∈ R1×d and
pL ∈ Rd×1. The rationale behind this is that each class should have its own weight vector and hidden
representations for encoding class-specific information. Then, we concatenate these scalars to a
vector c = [cL], and compute the predictive distribution by ŷ = softmax(c).

To encourage mask layers to extract label-specific features, we propose the following regularization
term to penalize pairwise cosine similarities between the corresponding mask layers:

Ldist =
1

N(N − 1)

∑
i ̸=j

cos(mi,mj) (3)

where N is the number of label-specific mask layers.

Training Procedure. Rather than training all mask layers simultaneously, we adopt a layer-wise
training procedure to train them sequentially from the top layer to the bottom layer. As illustrated in
Figure 1, for each layer, a new mask layer, mL−i, is introduced on the top of the (L−i)-th transformer
layer, with i ∈ {0, 1, 2, ...L − 1}. Crucially, during this phase, the previously trained mask layers
remain frozen to preserve their learned parameters. Upon each layer’s training completion, the model
is stored as θL:L−i. This iterative procedure continues until the training of the most bottom mask
layer, m1, is completed. Consequently, a suite of models, ranging from θL to θL:1, is collected. We
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empirically determine the model’s efficacy by evaluating its performance on the validation set from
the source domain. The best-performing model is chosen as the model to test on the target domains.

Objective Function. During training, the overall objective for binary classification is to (1) have
good predictive performance on classification tasks and (2) maximize sparsity in mask layers to only
keep invariant features. When training mask at layer l, the loss function is:

L = Lce + αLl
sparsity (4)

where Lce denotes standard cross entropy loss and f denotes the predictive model. α is a hyperparam-
eter that controls the balance between predictive performance and sparsity in mask layers. Ll

sparsity
is the sparse regularization term for mask at layer l.

For multi-class classification, we add a distance regularization term:

L = Lce + αLl
sparsity + βLdist (5)

The hyperparameter β serves to calibrate the equilibrium between features specific to individual
labels and those shared across multiple labels.

3.3 THEORETICAL ANALYSIS

Based on our assumptions, Y = f(Hi) + ϵ exists, when Hi are the parent nodes of Y in the
underlying causal graph. Because Hi are a subset among all possible hidden representations correlated
with Y , there should be a subset of hidden representations serving as parents of Y , otherwise the
invariance assumption does not hold. Due to the widely used faithfulness assumption stating that
statistical independences imply the corresponding causal structures (Neal, 2020), we aim to find out
Hi ⊥̸⊥ Y |Hj , where Hj is any feature set non-overlapped with Hi.

We start our theoretical analysis by introducing a sparsity regularization term Ω(Y,Hi, ...,Hj), which
counts the number of edges between Y and the random variables of features in a underlying causal
graph, where Y is the variable for labels and Hk denotes the random variable of the feature hk. Then
we introduce a loss function LΩ(Y,Hi, ...,Hj) = Lce + αΩ(Y,Hi, ...,Hj), analog to Eq. (4).

Considering the simplest case that there is only a causal feature hi and a non-causal feature hj , the
corresponding random variables are denoted by Hi and Hj . From any causal graphs in Fig. ??, we
conclude that p(Y |Hi, Hj) = p(Y |Hi) so that the cross entropy term in LΩ remains the same when
using the term p(Y |Hi), but the loss decreases after removing the non-causal feature from the loss
due to the regularization term Ω(Y,Hi, Hj).

The two feature case can be easily extended to the case having more than two features. It is trivial
that excluding a non-causal feature from the loss LΩ leads to the decrease of LΩ due to the Markov
property of causal graphs (Peters et al., 2017).
Corollary 1. If there is no edge between Y and Hk in a causal graph, then LΩ(Y,Hi, ...,Hj) <
LΩ(Y,Hi, ...,Hj , Hk).

During training, we start with a loss LΩ(Y,H1, ...,HN ) with a complete set of features. If a non-
causal feature Hk is removed, LΩ(Y,Hi, ...,Hj) decreases according to Corollary 1. In contrast, if
a causal feature Hk is removed, the cross entropy term increases because the mutual information
I(Y ;Hk|Hi, ...,Hj) > 0. Namely, Hk adds additional information for predicting Y . However, in
that case, LΩ(Y,Hi, ...,Hj) may still decrease if the increase of Lce is smaller than the decrease of
the regularization term αLΩ(Y,Hi, ...,Hj). The exceptional case can be mitigated if α is sufficiently
small. As a result, the loss LΩ provides an effective way to guide the search for the features serving
as the causes of the labels, although we cannot recover the underlying true causal graphs. Herein, the
loss (4) is a surrogate of LΩ(Y,Hi, ...,Hj) by using a deep neural network.

4 EXPERIMENTS

4.1 TASKS AND DATASETS

We evaluate our method on binary and multi-class classification. We evaluate the performance of
the models using accuracy as the metric for binary classification tasks and macro-F1 as the metric

5



Under review as a conference paper at ICLR 2024

IMDB→ Amazon→ Yelp→ TweetEval→
Models Amazon Yelp TweetEval IMDB Yelp TweetEval IMDB Amazon TweetEval IMDB Yelp Amazon Avg.
BERT 89.77* 87.12* 78.52* 88.09* 92.18* 83.75* 86.98* 92.10* 87.55* 82.59* 84.87* 86.80* 86.69*
BART 89.91* 88.01* 68.47* 87.93* 91.01* 82.98* 86.44* 91.97* 88.21* 78.21* 89.51* 87.01* 85.80*
BERT-EDA 87.73* 87.47* 72.10* 88.89* 92.43* 86.40* 88.11* 92.98* 87.92* 81.64* 85.82* 87.77* 86.61*
BERT-UDA 87.76* 87.02* 70.23* 89.87* 93.78* 86.37* 86.89* 92.81* 84.91* 82.83* 85.95* 87.29* 86.31*
BERT-PGB 88.40* 83.61* 70.51* 89.70* 93.66* 86.19* 86.09* 92.72* 87.95* 81.88* 85.13* 87.54* 86.11*
PADA 85.73* 89.84* 88.40 84.47* 93.96 85.92* 87.71* 91.42* 90.33 80.30* 84.69* 90.61 87.78*
PDA 89.35* 90.59* 87.71* 88.16* 94.20 85.61* 88.17* 93.59 89.88* 82.05 86.37 86.41 88.51*
CHATGPT 91.08 92.06 81.01 90.50 92.06 81.01 90.50 91.08 81.01 90.50 92.06 91.08 88.66
ALPACA-7B 90.14 92.30 88.66 83.01 92.30 88.66 83.01 90.14 88.66 83.01 92.30 90.14 88.52
ALPACA-7B-LoRA 89.80 82.80 87.77 81.00 82.80 87.77 81.00 89.80 87.77 81.00 82.80 89.80 85.34
IMO-BART 93.97 94.63 89.58 90.86 95.14 91.08 90.08 94.87 91.62 85.39 92.84 91.66 91.81
IMO-BART B2T 75.86* 75.37* 71.90* 73.27* 73.74* 72.58* 72.90* 73.47* 72.06* 69.74* 73.29* 75.81* 73.33*
IMO-BART w/o sq 74.88* 76.41* 67.97* 70.47* 72.33* 71.98* 71.59* 72.30* 71.73* 71.25* 71.62* 70.63* 71.93*
IMO-BART last 91.71* 92.82* 89.01 89.41 93.01* 89.85* 89.67 93.51 90.10* 84.69* 91.22* 90.95* 90.49*

Table 1: Single-source domain generalization evaluation on sentiment analysis datasets. ”B2T”
signifies bottom-up layer-wise search. w/o sq indicates simultaneous search. ”last” refers to only
applying the mask on the last layer. PADA and PDA results are reproduced in our experiments since
the original study evaluated performance on different datasets. Accuracy is the metric for evaluation.
Asterisk * represents a significant difference compared to IMG-BART using a t-test with a p ≤ 0.05.

for multi-class classification tasks. To assess the statistical significance of our results, we trained the
models using five distinct random seeds.

The binary sentiment analysis datasets include Amazon Review Polarity Zhang et al. (2015b), Yelp
Review Polarity Zhang et al. (2015b), IMDB Maas et al. (2011), TweetEval Sentiment Barbieri et al.
(2020) and Yahoo! Answers Sentiment Li et al. (2019). TweetEval dataset has three categories:
positive, negative, and neutral. We remove all neutral instances to align with other datasets. AG News
Gulli (2005); Del Corso et al. (2005); Zhang et al. (2015a) is a collection of news articles for topic
classification tasks. AG News contains news titles, and news descriptions, which belong to four topic
classes. We train models on title phrases and test models on descriptions, and vice versa. SocialDial
Zhan et al. (2023) is a Chinese socially-aware dialogue corpus consisting of two parts: synthetic
conversation generated by CHATGPT and human-written conversations. Both are annotated with
social factors such as location, social distance, and social relation. We train classification models on
synthetic conversations and test models on human-written conversations. The statistics of the datasets
can be found in Appendix A.1.

4.2 BASELINE MODELS

AG News
Models Title → Desc Desc → Title Avg-F1
BERT 81.11* 67.95* 74.68*
BART 80.12* 71.22* 75.96*
BERT-EDA 80.52* 72.10* 76.58*
BERT-UDA 80.41* 71.81* 75.82*
BERT-PGB 78.53* 73.51* 76,02*
PADA 82.39* 75.52* 78.96*
PDA 83.61* 75.96* 79.79*
CHATGPT 85.13 79.28 82.21
ALPACA-7B 70.61 70.44 71.49*
ALPACA-7B-LoRA 56.17 49.44 52.81*
IMO-BART 89.40* 81.97* 85.68*
IMO-BART B2T 70.31* 64.59* 67.45*
IMO-BART w/o sq 62.59* 57.27* 59.93*
IMO-BART last 88.22 80.05* 84.13*

Table 2: Evaluation results on multi-class classification
datasets. ‘Desc’ represents description. The metric is macro
F1.

Empirical Risk Minimization mod-
els. As Gulrajani & Lopez-Paz (2021)
showed that simple empirical risk min-
imization (ERM) outperforms many
state-of-the-art domain generalization
algorithms, we finetune BERT De-
vlin et al. (2019) and encoder of
BART Lewis et al. (2020) using
cross-entropy loss as two baselines.
For Chinese text classification, we
use BERT-zh Devlin et al. (2019),
BART-zh Shao et al. (2021) and
CHATYUAN Clue-AI (2023).

Domain Generalization Models.
PADA Ben-David et al. (2022) is an
example-based autoregressive prompt
learning algorithm for domain gener-
alization based on the T5 language
model Raffel et al. (2020). Given an
input, PADA first generates a prompt
and then predicts the label of input concatenated with this prompt. PDA Jia & Zhang (2022) is a
prompt-based learning algorithm for domain generalization, which applies vocabulary distribution
alignment and feature distribution alignment to reduce the gap between different domains.
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Large Language Models. As CHATGPT shows promising zero-shot ability on various NLP tasks
OpenAI (2023), we treat CHATGPT (gpt-3.5-turbo model) as one baseline. It is worth noting
that, as datasets for experiments are publicly available, we are uncertain if CHATGPT used these
datasets during training. ALPACA-7B Taori et al. (2023) is another baseline, which is fine-tuned
from the 7B LLaMA model Touvron et al. (2023) on 52K instruction-following data generated
by self-instruct Wang et al. (2022). ALPACA-7B-LoRA is fine-tuned ALPACA-7B model using
low-rank adaptation Wang (2023); Hu et al. (2022a). CHATGLM-6B THUDM (2023) is an open
large language model based on General Language Model Du et al. (2022) framework, optimized for
Chinese question-answering and dialogue. All LLMs use a few-shot in-context learning setting. The
specific query templates adopted for LLMs can be found in Appendix A.2.

Data Augmentation. Wiles et al. (2022); Gokhale et al. (2022) find data augmentation benefit domain
generalization tasks. Thus, we use three text data augmentation techniques as baselines. EDA Wei
& Zou (2019) is a widely used text data augmentation technique, which consists of four simple but
powerful operations: synonym replacement, random insertion, random swap, and random deletion.
UDA Xie et al. (2020) use back-translation to generate diverse paraphrases while preserving the
semantics of the original sentences. Shiri et al. (2023), henceforth referred to as PGB for brevity,
generates syntactically and lexically diversified paraphrases using a fine-tuned BART.

Ablation Study Models. Besides baselines, we also apply ablation studies. Our method can apply
to backbone models such as BART, T5, and BERT. To distinguish these specific implementations,
these implementations are referred to as IMO-BART, IMO-T5, and IMO-BERT. To clarify the
contribution of each component in our model, we conduct additional experiments where we exclude
mask layers and attention mechanisms. These modified variants are denoted as w/o m, w/o a, w/o
am indicating the removal of mask layers, attention mechanisms, and both components respectively.
Additionally, we employ various sparsification techniques to implement sparse layers, namely, STR
Kusupati et al. (2020), STE Bengio et al. (2013); Liu et al. (2020), and Scalar, where a learnable
single scalar is used instead of the threshold vector s. Training details can be found in Appendix A.2.

SocialDial

Models Loc (Synthetic)
→ Loc (Human)

SD (Synthetic)
→ SD(Human)

SR (Synthetic)
→ SR(Human) Avg- F1

BERT-zh 18.11* 35.05* 32.39* 28.51*
CHATYUAN 18.23* 34.94* 33.92* 29.03*
BERT-EDA 13.98* 35.71* 26.38* 25.36*
BERT-UDA 15.20* 33.59* 27.03* 25.27*
CHATGPT 21.44 38.46 35.12 31.67
CHATGLM-6B 20.57 20.53 11.55 17.55
IMO-CHATYUAN 23.22 46.04 42.71 37.32
IMO-CHATYUAN B2T 14.31* 30.29* 32.45* 25.68*
IMO-CHATYUAN w/o sq 13.37* 29.81* 29.05* 24.07*
IMO-CHATYUAN last 21.47* 44.73 39.89* 35.36*

Table 3: Evaluation results on SocialDial dataset. Loc represents Location; SD represents Social
Distance; SR represents Social Relation. The metric is macro F1.

IMDB→ Amazon→ Yelp→ TweetEval→
Models Amazon Yelp TweetEval IMDB Yelp TweetEval IMDB Amazon TweetEval IMDB Yelp Amazon Avg.
IMO-BART 93.97 94.63 89.58 90.86 95.14 91.08 90.08 94.87 91.62 85.39 92.84 91.66 91.81
IMO-T5 93.45 93.88 84.92* 89.23* 93.38* 89.73* 88.27* 93.02* 91.01 81.39* 91.93 89.97* 90.01*
IMO-BERT 86.10* 81.73* 77.41* 81.35* 84.69* 82.08* 80.96* 87.79* 86.51* 78.13* 80.20* 84.13* 82.59*
IMO-BART w/o a&m 89.94* 89.13* 69.59* 88.19* 92.20* 82.69* 86.85* 90.64* 85.83* 78.98* 89.25* 87.58* 85.91*
IMO-BART w/o m 92.15* 92.49* 85.61* 89.48* 92.97* 88.53* 88.28 92.75 87.44 80.10 89.57 88.09* 88.95*
IMO-BART w/o a 91.35* 91.04* 84.18* 88.51* 92.49* 84.97* 87.10* 91.87* 88.01* 83.31* 90.61* 88.87* 88.52*
IMO-BART STE 91.11* 91.71* 88.05* 88.29* 91.69* 87.09* 88.91* 91.39* 89.12* 82.48* 89.37* 88.50* 88.97*
IMO-BART STR 89.79* 88.97* 72.98* 86.26* 87.48* 79.48* 86.40* 88.31* 77.49* 81.43* 85.13* 82.49* 83.85*
IMO-BART Scalar 87.31* 89.92* 87.34* 87.73* 86.03* 83.41* 87.11* 86.43* 85.94* 81.44* 84.75* 85.41* 86.06*

Table 4: Ablation study on sentiment analysis datasets.

4.3 DOMAIN GENERALIZATION RESULTS

Tables 1, 2, 3 present our results. We report the accuracy score for binary classification (i.e.,
sentiment analysis) and the macro-F1 score for multi-class classification.
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AG News
Models Title → Desc Desc → Title Avg-F1
IMO-BART 89.40 81.97 85.68
IMO-T5 86.91* 79.75* 83.33*
IMO-BERT 84.79* 75.38* 80.09*
IMO-BART w/o a&m 80.91* 73.89* 77.40*
IMO-BART w/o m 83.29* 77.08* 80.19*
IMO-BART w/o a 82.72* 77.27* 79.99*
IMO-BART Binary 87.79* 79.82* 83.81*

Table 5: Ablation study on AG News dataset. ’Binary’
refers to the application of the proposed binary classification
method on multi-label classification tasks. The evaluation
metric is macro F1.

Results on Binary Classification
are presented in Table 1, where our
method using BART as backbone (i.e.,
IMO-BART) outperforms all base-
lines in 7 of 12 settings. In terms of av-
erage accuracy, IMO-BART reaches
the highest result, exhibiting average
performance gains of 2.63% than the
best baseline (i.e., CHATGPT). Inter-
estingly, CHATGPT stands out as the
leading model in 3 out of 12 settings.
Notably, ALPACA-7B demonstrates
a performance level matching with
CHATGPT. ALPACA-7B-LoRA also shows relatively good performance across all settings. In
comparison, it remains uncertain whether CHATGPT has been trained on the datasets used in this
paper. To the best of our knowledge, it is unlikely that ALPACA-7B and ALPACA-7B-LoRA have
been trained on these datasets. These observations indicate the strong generalization ability of
large language models. Moreover, it is noteworthy that data augmentation methods (i.e., BERT-
EDA, BERT-UDA, BERT-PGB) show slightly inferior performance in comparison to the simple
fine-tuning of BERT in terms of average accuracy. This suggests that simply back-translating or
paraphrasing instances within source domains does not enhance performance on target domains. A
plausible explanation could be that augmented data inherently belongs to source domains. Thus,
while training on such data might improve performance in source domains, it is unlikely to increase
performance in unseen target domains.

In addition, we find out that our method has better performance than bottom-up layer-wise search
(B2T), simultaneous search (w/o sq), and only applying a mask on the last layer (last). This indicates
that the top-down greedy search is crucial for performance improvement.

Results on Multi-class Classification are presented in Table 2 and 3. Our method outperforms all
baselines in terms of average macro-F1 by 3.22% and 5.16% on AG News and SocialDial respectively.
Among baselines, CHATGPT exhibits the strongest performance on both datasets and surpasses
ALPACA-7B, ALPACA-7B-LoRA, and CHATGLM by a large margin. This superior performance
shows that current open-source large language models still have a substantial performance gap with
CHATGPT when handling difficult tasks.

SocialDial

Models Loc (Synthetic)
→ Loc (Human)

SD (Synthetic)
→ SD(Human)

SR (Synthetic)
→ SR(Human) Avg- F1

IMO-CHATYUAN 23.22 46.04 42.71 37.32
IMO-BART-zh 19.94* 41.39* 39.27* 33.53*
IMO-BERT-zh 14.68* 36.75* 27.41* 26.28*
IMO-CHATYUAN w/o a&m 19.12* 37.75* 34.07* 30.31*
IMO-CHATYUAN w/o m 22.47* 41.86* 38.95* 34.43*
IMO-CHATYUAN w/o a 21.05* 39.88* 37.28* 32.73*
IMO-CHATYUAN w/o Binary 20.17* 39.26* 39.41* 32.95*

Table 6: Ablation study on SocialDial datasets.

4.4 ANALYTICAL EXPERIMENTS

Presence of Invariant Representations. We visualize the masks of the top layer in multiple
domains in Fig. 3. A close investigation shows that there are indeed several features shared across
domains. We further compute Cosine similarities between the masks of the top layer trained on
different source domains. As shown in Table 10, the similarities between masks range from 0.68 and
0.85. The token-level sparsity is illustrated by the attention weights visualized in Fig.2 to show the
presence of shared key words across domains.

Impact of Spurious Correlations in Classification. To study whether our proposed masking
mechanism indeed identifies robust features, we conduct experiments where we replace the learned

8
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Yelp→ Amazon→
Models Yelp

(Source)
IMDB

(Target)
Amazon
(Target)

TweetEval
(Target)

Amazon
(Source)

IMDB
(Target)

Yelp
(Target)

TweetEval
(Target)

IMO-BART 95.94 -5.86 -1.07 -4.32 95.34 -4.48 -0.20 -4.26
IMO-BART- SC 89.01* -7.81* -3.88* -11.20* 90.12* -7.64* -3.47* -12.59*

Table 7: Comparison between the proposed model and model using spurious correlation features (SC).
In target datasets, we report the reduced percentage of accuracy compared to the source domains. The
asterisk * in the reverse mask model represents a significant difference compared to the performance
of our proposed model.

binary masks q by |1− q|. We freeze all parameters except the classification head, then train a model
using spurious features identified by |1− q|. The results in Table 7 show that models using spurious
features have an approximate 6% accuracy reduction in source domains and perform also worse than
using all features. In target domains, the corresponding performance decrease using spurious features
is significantly higher than both our method and the models using all features.

Ablation Study. We compare variants of IMO and report the results in Table 4, 5, 6. Compared
with variants that remove both the attention module and mask layers, IMO with the attention module
or mask module has a performance improvement in terms of average accuracy or average F1, which
suggests the two modules promote performance mutually. Moreover, we replace different backbone
models. The experiment results suggest that encoder-decoder pre-trained language models have (i.e.,
BART, T5) present better performance than encoder-only language models (i.e., BERT).

Additionally, we compare IMO with various sparsity methods to implement mask layers. The
experiment results are presented in Table 4. STE provides a distinct derivative estimation of the unit
step function, exhibiting a marginally lesser impact on our approach. STR, another threshold-based
method to implement sparsity in neural networks, results in a performance decline but can achieve
higher sparsity in mask layers. Scalar, a variant of our method, substitutes threshold vectors with a
single learnable scalar, severely reducing its capacity to achieve sparsity in mask layers.

Amazon→
Models Yelp IMDB TweetEval Avg.
IMO-1k 92.21 87.29 85.18 88.22
IMO-10k 94.82 89.11 88.43 90.78
IMO-100k 94.90 90.24 89.01 91.38
IMO-1M 94.95 90.29 89.20 91.48
IMO-3.6M 95.14 90.86 91.08 92.36
IMO- w/o am -1k 70.62 68.61 66.07 68.43
IMO- w/o am -10k 84.88 79.02 75.19 79.70
IMO- w/o am -100k 87.05 84.95 80.48 84.16
IMO- w/o am -1M 91.38 87.06 81.59 86.68
IMO- w/o am -3.6M 92.20 88.19 82.69 87.69

Table 8: Domain generalization experiment with
different training sizes in the source domain.

Training Data Size in Source Domains. To
explore the influence of source domain training
data size on performance within target domains,
we train models based on BART with and with-
out our method on the Amazon review dataset
with varying sizes of training data (i.e., 1k, 10k,
100k, 1M, and 3.6M). The results in Table 8
show that our method depends significantly less
on training data size, though more training data
can improve the performance overall. Notably,
1k training data yields a remarkable decline for
the models without using IMO, while the corre-
sponding performance reduction is significantly
less by using our method.

5 CONCLUSION

This paper presents the first work aiming to improve single-source domain generalization on pre-
trained deep encoders for text classification tasks. Herein, we introduce a novel method called IMO,
which is a greedy layer-wise representation learning method aiming to identify invariant features and
token representations from multiple layers of the encoder. The key idea is to retain invariant features
through trainable mask layers, and incorporate a token-level attention module to focus on the tokens
that directly lead to the prediction of labels. In addition, we provide a theoretical explanation about
why our method works from a causal perspective. Through extensive experiments, we demonstrate
that IMO achieves superior OOD performance over competitive baselines on multiple datasets, if the
pre-trained encoders provide strong domain-invariant features. The visualization of mask layers and
attention weights empirically justifies the identified domain-invariant sparse representations.
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A APPENDIX

A.1 EXPERIMENT DATASETS

The statistics of datasets are listed in Table 9.

Binary Classification
Dataset Domain #Train #Dev #Test
Amazon Review of products 3.6M 0 40k
IMDB Review of movies 25k 0 25k
Yelp Review of businesses 560k 0 38k
TweetEval Tweet 25k 1k 6k
Yahoo Questions from Yahoo! Answers 4k 2k 1k

Multi-class Classification
Dataset Domain #Train #Dev #Test
AG News Title of news articles 120k 0 7k
AG News Description of news articles 120k 0 7k
SocialDial Synthetic conversations by CHATGPT 68k 7k 7k
SocialDial Human-written conversations 0 0 5k

Table 9: Statistics of datasets.

A.2 TRAINING DETAILS

We use the encoder of BART Lewis et al. (2020) as the default pre-trained language model. All
models are trained up to 100 epochs with a minibatch size 32 in the source domain. We use Adam
(Kingma & Ba, 2015) optimizer with hyperparameters tuned on the validation sets. As a result, we
run Adam with β1 = 0.9 and β2 = 0.999. The learning rate is 5× 10−5. We use a linear learning
rate scheduler that dynamically decreases the learning rate after a warm-up period. All experiments
are conducted on NVIDIA A40 GPU.

The process of model selection in domain generalization is inherently a learning problem. In
this approach, we employ training-domain validation, which is one of the three selection methods
introduced by Gulrajani & Lopez-Paz (2021). We divide each training domain into separate training
and validation sets. Models are trained on the training set, and the model that achieves the highest
accuracy on the validation set is chosen as the selected model.
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Yelp Amazon IMDB TweetEval
Yelp 1.0 0.7930 0.7533 0.6838
Amazon - 1.0 0.8458 0.7687
IMDB - - 1.0 0.8069
TweetEval - - - 1.0

Table 10: Cosine similarities between mask vectors m trained on different source domains.

Yelp Amazon IMDB TweetEval
Yelp 1.0 0.5869 0.5231 0.4504
Amazon - 1.0 0.6513 0.5614
IMDB - - 1.0 0.6139
TweetEval - - - 1.0

Table 11: Jaccard similarities between binary vectors q trained on different source domains.

When using large language models to predict target classification labels, the query template for
sentiment analysis is: “There are some examples about sentiment analysis: {examples}. Given
text: {sentence}, what is the sentiment conveyed? Please select the answer from ‘positive’ or
‘negative’.”. The query template for AG News topic classification is ”There are some examples for
topic classification: {examples}. Given text: {sentence}, what is the topic of this text? Please select
the answer from ‘Business’, ‘Sci/Tech’, ‘World’ or ‘Sports’.” The query templates for SocialDial
are “There are some examples for classification: {examples}. Given conversation: {conversation},
what’s the location/social distance/social relation of this conversation? Please select the answer from
{labels}”1 (Min et al., 2022; Wang et al., 2023; Yang et al., 2023).

A.3 VISUAL EXPLANATION

To intuitively show how the attention module and mask module work in models, we visualize attention
weights on tokens and mask vectors in Figure 2 and 3, respectively. We also demonstrate cosine
similarities between mask vectors m trained on different source domains and Jaccard similarities
between binary vectors q trained on different source domains on Table 10 and Table 11, respectively.

From Figure 2, we can find that our model primarily focuses its attention on sentiment-indicative
tokens. Notably, positive reviews exhibit high attention weights for tokens like ‘good,’ ‘great,’ and
‘nice,’ indicating their significance. Conversely, negative reviews assign high attention weights to
tokens such as ‘horrible’ and ‘slow,’ highlighting their importance in expressing negativity.

In Figure 3, we visualize mask vectors m and binary vectors q trained on different source domains
across dimensions. It can be observed that certain dimensions are consistently assigned zero (or
non-zero) values across different training domains, indicating our mask layers can capture some
features that are irrelevant (or invariant) across domains. We quantify invariant features across
domains by computing vector similarity. We calculate cosine similarities between different mask
vectors m. The results are shown in Table 10. We can find that most mask vector pairs have over
0.75 similarity, except the Yelp-TweetEval pair, which is probably because of a larger divergence
between Yelp and TweetEval domains. Table 11 shows Jaccard similarities between binary vectors
q. Most binary vector pairs have similarities of over 0.5, except the Yelp-TweetEval pair, with a
similarity of 0.45.

1Since SocialDial is a Chinese dataset, we provided a translated query from Chinese to English in order to
enhance comprehension for large language models.
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(a) The sentiment label is positive. (b) The sentiment label is positive.

(c) The sentiment label is negative. (d) The sentiment label is negative.

Figure 2: Visualization of attention weights on tokens in Yelp dataset reviews.
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Figure 3: Visualization of mask layers in IMO-BART trained on sentiment analysis datasets. The
top figure visualizes the mask vectors m, while the bottom one visualizes the binary vectors q. The
x-axis signifies the dimensionality of mask layers, whereas the y-axis denotes values attributed to
each dimension.

18


	Introduction
	Related Work
	Methodology
	Extraction of Invariant Features
	Identification of Invariant Tokens
	Theoretical Analysis

	Experiments
	Tasks and Datasets
	Baseline Models
	Domain Generalization Results
	Analytical Experiments

	Conclusion
	Appendix
	Experiment Datasets
	Training details
	Visual Explanation


