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Abstract

Graph Neural Networks (GNNs) often suffer from performance degradation as the network
depth increases. This paper addresses this issue by introducing initialization methods that
enhance signal propagation (SP) within GNNs. We propose three key metrics for effective
SP in GNNs: forward propagation, backward propagation, and graph embedding variation
(GEV). While the first two metrics derive from classical SP theory, the third is specifically
designed for GNNs. We theoretically demonstrate that a broad range of commonly used
initialization methods for GNNs, which exhibit performance degradation with increasing
depth, fail to control these three metrics simultaneously. To deal with this limitation, a direct
exploitation of the SP analysis–searching for weight initialization variances that optimize
the three metrics–is shown to significantly enhance the SP in deep GCNs. This approach is
called Signal Propagation on Graph-guided Initialization (SPoGInit). Our experiments
demonstrate that SPoGInit outperforms commonly used initialization methods on various
tasks and architectures. Notably, SPoGInit enables performance improvements as GNNs
deepen, which represents a significant advancement in addressing depth-related challenges
and highlights the validity and effectiveness of the SP analysis framework.

1 Introduction

Increasing depth has been a prominent trend in the development of neural networks. For instance, from
AlexNet (Krizhevsky et al., 2012), VGG19 (Simonyan & Zisserman, 2015) to ResNet (He et al., 2016), the
depth of the Convolutional Neural Network (CNN) has increased from 8, 19 to 52, and the corresponding
test accuracy on ImageNet has increased from 63.3%, 74.4% to 78.57%. Theoretically, the benefit of depth is
often attributed to strong representation power. Research shows that a shallow network would require an
exponential increase in width to match the representational power of a deep network (Telgarsky, 2015; Eldan
& Shamir, 2016; Liang & Srikant, 2017).

In graph-related tasks like node classification, graph classification, or link prediction, graph neural networks
(GNN) (Wu et al., 2022a; 2020) are also expected to benefit from increased depth. A core concept in GNNs is
the message-passing mechanism, where each node aggregates information from its neighboring nodes.1 Deeper
GNNs have larger receptive fields, enabling nodes to gather information from broader local sub-graphs. This is
especially beneficial for capturing long-range relationships in complex graph-related tasks. For instance, GNNs
have shown great potential in solving optimization problems (Gasse et al., 2019; Nair et al., 2020; Han et al.,
2022; Li et al., 2024a). Theoretical studies demonstrate that GNNs possess universal approximation power
for solving various optimization problems, including linear programming (Chen et al., 2023) and quadratic
programming (Chen et al., 2024), but the network depth need to scale with the problem dimensions (Qian
et al., 2024; Li et al., 2024b). Thus, increasing the depth of GNNs is expected to improve their performance
in addressing large-scale optimization problems.

However, GNNs often experience performance degradation in practice when their depth increases (Li et al.,
2018; Wu et al., 2020; Zhou et al., 2020a). Consequently, most GNNs remain shallow, typically comprising

1In this paper, we refer specifically to GNNs as message-passing GNNs. We note that other network structures not based on
message-passing, such as Transformers (Wu et al., 2022b; Kong et al., 2023), are also used in graph-related tasks.
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only 2 to 10 layers (Kipf & Welling, 2017; Veličković et al., 2017; Alon & Yahav, 2021). In recent years,
over-smoothing has been identified as a primary cause of this issue (Li et al., 2018; Oono & Suzuki, 2019; Cai
& Wang, 2020). Over-smoothing refers to a specific issue in GNNs where node embeddings become similar
as depth grows, reducing the distinguishability between nodes and impairing task performance. This poses
a major obstacle to the development of deeper GNNs and may hinder progress in complex graph-related
problems, particularly those involving long-range relationships.

In this paper, we show that over-smoothing can be understood as part of a broader issue known as signal
propagation (SP). SP refers to how the input data is transformed as it passes through the layers of a neural
network. For traditional neural networks like CNNs, SP analysis plays a critical role in developing initialization
strategies to maintain stable signal propagation and prevent gradients from exploding or vanishing during
training (Poole et al., 2016; Schoenholz et al., 2017; Pennington et al., 2017; 2018; Hanin, 2018). This work
extends the SP analysis framework to GNNs. We introduce a new graph-specific SP metric, graph embedding
variation (GEV), which closely relates to over-smoothing. Alongside the standard forward and backward SP
(FSP and BSP) metrics, we use GEV to evaluate signal propagation in GNNs.

Building on this framework, we focus on the family of graph convolutional networks (GCNs), one of the
most widely-used GNN architectures, to demonstrate the interplay between initialization strategies and
signal propagation. While traditional initializations such as Kaiming (He et al., 2015), Xavier (Glorot &
Bengio, 2010), and LeCun (Bottou, 1988; LeCun et al., 2002) initializations are commonly used in standard
GCN implementations (e.g., the PyTorch Geometric library PyG (Fey & Lenssen, 2019)), we theoretically
prove that these initialization methods fail to stabilize all three SP metrics concurrently, leaving deep GCNs
vulnerable to performance degradation.

Motivated by the SP framework, we propose a new initialization method, termed Signal Propagation on
Graph-guided Initialization (SPoGInit), for deep GCNs. SPoGInit consolidates the three SP metrics (FSP,
BSP, and GEV) into a unified optimization objective, where minimizing the objective leads to more stable SP.
Using an iterative algorithm, SPoGInit adjusts the weight initialization variances across layers to minimize
this objective. Thus, SPoGInit can simultaneously stabilize all three SP metrics. Furthermore, the design of
SPoGInit is independent of specific network architectures, and hence it can adapt effectively across diverse
GCN models. The effectiveness of SPoGInit verifies that stabilizing the proposed SP metric can improve the
performance of deep GCNs and mitigate the performance degradation problem.

Our contributions are as follows:

• Theoretical Analysis: We prove that traditional initialization methods for vanilla GCNs and Residual
GCNs (ResGCNs) fail to simultaneously control all three signal propagation metrics. This failure leads to
the explosion or vanishing of one or more metrics, ultimately causing performance degradation as network
depth increases. We also present experimental evidence to validate our theoretical findings.

• Empirical Exploration. Building on the proposed SP framework, we introduce a new initialization
design method, Signal Propagation on Graph-guided Initialization (SPoGInit). SPoGInit employs
an optimization algorithm to determine initial weight variances that effectively stabilize all three signal
propagation metrics. Experimental results demonstrate that SPoGInit significantly improves signal
propagation across various architectures, enhancing the performance of deep GCNs, particularly for
graph-based tasks involving long-range relationships. The effectiveness of SPoGInit demonstrates that
improving the proposed SP metrics is instrumental in boosting deep GCNs’ performance.

2 Preliminaries and Background

For any integer N ∈ N, we define [N ] := {1, 2, . . . , N}. For brevity, we use θ to denote the collection of
trainable parameters in a GNN model. For additional useful notation, see Appendix A.

2.1 Graph convolutional networks

Featured graph. Let G = (V, E) be an undirected graph, where V is the set of nodes with |V| = n,
and E is the collection of edges. Assume that each node is associated with a d0-dimensional feature and
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a label belonging to the set [C], where C ≥ 2 denotes the number of possible labels. Let xi ∈ Rd0×1

and yi ∈ [C] denote the feature and the label of node i, respectively. Define the node feature matrix as
X = (x1, x2, . . . , xn)⊤ ∈ Rn×d0 . Let A = (1{(i,j)∈E})i,j∈[n] ∈ Rn×n represent the adjacency matrix and
D = diag(A1n) ∈ Rn×n represent the degree matrix. Further, Ã = A+I and D̃ = D +I denote the adjacency
matrix and the degree matrix of graph G with self-loop added to each node. Finally, the normalized adjacency
matrix is given by Â = D̃− 1

2 ÃD̃− 1
2 .

Vanilla GCN. Vanilla GCN (Kipf & Welling, 2017) stacks neighborhood aggregations and feature trans-
formations alternately. Specifically, let H(l), X(l) ∈ Rn×dl denote the pre-activation and the post-activation
embedding matrix at the l-th layer of the vanilla GCN, respectively. They are defined recursively by

H(l) := ÂX(l−1)W (l) + 1n · b(l), X(l) := σ(H(l)),

where W (l) ∈ Rdl−1×dl and b(l) ∈ R1×dl are the weight and the bias term at the l-th layer, respectively.
The input to the first layer is given by X(0) = X, and the output matrix of an L-layer vanilla GCN is
H(L) ∈ Rn×C , which is then fed into a softmax layer to obtain the predicted labels.

ResGCN and gatResGCN. Inspired by He et al. (2016), ResGCN (Kipf & Welling, 2017) combines
residual connections with vanilla GCN. An L-layer ResGCN adds skip connections to the post-activation
embeddings, i.e.,

H(l) := ÂX(l−1)W (l) + 1n · b(l), X(l) := ασ(H(l)) + βX(l−1), ∀l ∈ [L],

where W (l) ∈ Rd×d and b(l) ∈ R1×d are the weight and the bias term at the l-th layer, respectively, while
α, β ∈ R are predetermined hyper-parameters.2 Note that the above formulation requires the hidden
dimensions of ResGCN to be equal across all layers. The input of the first layer is given by X(0) = XW (0),
and the output of the network is given by Xout = X(L)W (L+1), where W (0) ∈ Rd0×d and W (L+1) ∈ Rd×C

are trainable linear transformations to ensure dimension compatability. The output Xout ∈ RN×C is then fed
into a softmax layer to obtain the predicted labels. The architecture of a gating ResGCN (gatResGCN) is
identical to that of ResGCN, with the exception that the fixed hyper-parameters α, β replaced by trainable
gating parameters α(l), β(l) for each layer l ∈ [L].

2.2 Initialization

We consider the following class of initialization methods. At initialization, all W
(l)
k′k are i.i.d. and satisfy

E[W (l)
k′k] = 0, Var[W (l)

k′k] = σ2
w/dl−1; all b

(l)
k are initialized to be 0 for any k′ ∈ [dl−1], k ∈ [dl], l ∈ [L].

Two widely used random initialization methods, LeCun initialization (Bottou, 1988; LeCun et al., 2002) and
Kaiming initialization (He et al., 2015) fit into this framework with σ2

w = 1 and σ2
w = 2 respectively.

• LeCun: E[W (l)
k′k] = 0 and Var[W (l)

k′k] = 1/dl−1.

• Kaiming (usually for ReLU): E[W (l)
ij ] = 0 and Var[W (l)

ij ] = 2/dl−1.

In GCN models, uniform weight distribution with variance σ2
w = 1/3 is also widely used, e.g., in PairNorm

(Zhao & Akoglu, 2020), DropEdge (Rong et al., 2020), DropNode (Huang et al., 2020), SkipNode (Lu et al.,
2021), GCNII (Chen et al., 2020b). We simply refer to this initialization as “Conventional initialization” in
the rest of this paper. Xavier initialization (Glorot & Bengio, 2010) has weight variance 2/(dl−1 + dl) = 1/d
when hidden layers have the same width d.

3 Theoretical Analysis of GCN Initializations

In this section, we evaluate the quality of GCN initializations from three aspects based on the signal
propagation (SP) theory as follows.

2The original version of ResGCN (Kipf & Welling, 2017) focuses on the special case (α, β) = (1, 1).
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Forward signal propagation (FSP) is responsible to extract abstract and higher-level representations
from the input data as the information flows through the network. We propose the FSP metric M(L)

FSP(σ2
w),

which is the expected output-input norm ratio Eθ[∥H(L)(θ)∥2
F/∥X∥2

F]. A proper initialization method should
prevent M(L)

FSP(σ2
w) from either vanishing or exploding as L→∞.

Backward signal propagation (BSP) is responsible for updating the weights by utilizing gradients
computed via back-propagation. In vanilla GCN, the gradient of W (l) at the l-th layer can be decomposed
as ∂ℓ/∂W (l) = σ(H(l−1))T · Â · [∂ℓ/∂H(l)] where ℓ is the training loss. A stable magnitude of ∂ℓ/∂H(l)

with respect to the layer l suggests that the gradient is less susceptible to vanishing or exploding. We
take Eθ[∥∂ℓ/∂W (1)∥2

F] at initialization as the BSP metric M(L)
BSP(σ2

w). A proper initialization method should
prevent M(L)

BSP(σ2
w) from vanishing or exploding as L→∞.

Graph embedding variation (GEV) propagation is responsible for tackling the over-smoothing issue,
a GCN-specific problem. A number of existing works (Cai & Wang, 2020; Zhou et al., 2021a) measure
over-smoothing severity by Dirichlet energy Dir(H(L)) =

∑
(i,j)∈E ∥hi/

√
1 + di − hj/

√
1 + dj∥2, where hi

is the output embedding of node i. Dirichlet energy Dir(H(L)) reveals the embedding variation with the
weighted node pair distance, and a smaller value of Dir(H(L)) is highly related to the over-smoothing. To
eliminate the influence of the embedding norm, we propose the GEV metric M(L)

GEV(σ2
w), which is the expected

of normalized Dirichlet energy Eθ[Dir(H(L))/∥H(L)∥2
F] at initialization. A proper initialization method should

prevent M(L)
GEV(σ2

w) from vanishing as L→∞.

3.1 Theoretical results for vanilla GCN

We first theoretically evaluate the signal propagation (SP) quality at initialization in vanilla GCN. Due to the
nonlinearity and high dimensionality of neural networks, the SP analysis is challenging. In order to simplify it,
we study the infinite-width limit of vanilla GCN using mean field theory (Poole et al., 2016; Schoenholz et al.,
2017). Different from traditional NNs, GNN blocks involve interactions across nodes, so we have to consider
the SP of n nodes as an integrated whole, rather than that of only one data sample in NNs. Under this
approximation, all the channels {H(l)

:,k}
dl

k=1 of each embedding at the l-th layer are i.i.d., following Gaussian
distribution N(0n, Σ(l)). The n× n covariance matrix Σ(l) recursively satisfies

Σ(l) = σ2
wÂG(Σ(l−1))Â, Σ(1) = σ2

wÂXXT Â/d0,

where G(Σ(l)) = Eh∼N(0n,Σ)[σ(h)σ(h)T ] ∈ Rn×n (see Appendix C.1 for the details). This theoretical
framework is referred to as the neural network Gaussian process (NNGP) correspondence. Under the NNGP
correspondence, the forward-propagation (FSP) metric can be approximated by

M(L)
FSP(σ2

w) ≈ EH(L)∼N(0n,Σ(L))

[
∥H(L)∥2

F/∥X∥2
F

]
and the graph embedding variation (GEV) metric can be approximated by

M(L)
GEV(σ2

w) ≈ EH(L)∼N(0n,Σ(L))

[
Dir(H(L))/∥H(L)∥2

F

]
,

where H(L) ∼ N(0n, Σ(L)) means all columns (channels) of H(L) ∈ Rn×C are i.i.d. N(0n, Σ(L)).

Now we analyze the SP of GCN under various activation functions. We start with ReLU since it is the most
commonly used activation in popular GCN models (e.g., Zhao & Akoglu (2020); Rong et al. (2020); Huang
et al. (2020); Lu et al. (2021); Chen et al. (2020b)). The following theorem states that under ReLU activation,
if the initial weight variance σ2

w ≤ 2, which covers Conventional, Kaiming, and LeCun initialization, deep
vanilla GCNs suffer from poor FSP and GEV.
Theorem 3.1. Under the NNGP correspondence approximation, when the activation function σ is ReLU, we
have

1. If σ2
w = 2, either the limit graph embedding variation (GEV) metric limL→∞ M(L)

GEV (σ2
w) = 0 or the limit

forward-propagation (FSP) metric limL→∞ M(L)
FSP (σ2

w) = 0;
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2. When σ2
w < 2, the forward-propagation (FSP) metric M(L)

FSP (σ2
w) ≤ 2C

d0
· (σ2

w/2)L for any L ≥ 1.

Part 1 of Theorem 3.1 shows that under Kaiming initialization in ReLU-activated vanilla GCN, either M(L)
FSP

or M(L)
GEV vanishes as L→∞. Part 2 of Theorem 3.1 characterizes the shrinkage of M(L)

FSP when σ2
w is even less

than that of Kaiming initialization.

Theorem 3.2. Under the NNGP correspondence approximation, when the activation is ReLU, the graph
embedding variation (GEV) metric M(L)

GEV is independent of σ2
w.

Theorem 3.2 states that it is impossible to improve the GEV metric, M(L)
GEV(σ2

w), by simply refining σ2
w for

ReLU-activated vanilla GCN. In other words, the over-smoothing issue cannot be resolved by adjusting weight
variance σ2

w in ReLU-activated vanilla GCN.
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Figure 1: Plots of (a,d) forward metrics, (b,e) backward metrics, and (c,f) graph embedding variation metrics
of deep vanilla GCNs with different initialization variances and activations on Cora. (Sub-figures (a)-(c) are
for ReLU activation, while sub-figures (d)-(f) are for tanh activation.) We average the results over 20 runs.
We see that the choice of initialization variance plays a crucial role in forward and backward propagation.
The graph embedding variation propagation can be made stable with proper initialization variance for tanh
activation, but not for ReLU activation.

We now provide numerical evidence for Theorem 3.1 and 3.2. The purple lines in Figure 1(a)-1(c) illustrate the
shrinkage of the three SP metrics under Conventional initialization as the network depth L increases. Figure
1(a) when σ2

w presents the vanishing pattern of M(L)
FSP(σ2

w) is no greater than that of Kaiming initialization,
which validates Theorem 3.1. Figure 1(b) shows that M(L)

BSP(σ2
w) transits from vanishing to stable, and then

to exploding as σ2
w increases. Figure 1(c) shows that M(L)

GEV(σ2
w) cannot be improved via merely changing σ2

w,
which validate Theorem 3.2.3

Different from ReLU-activated GCNs, Figure 1(f) shows that GEV metric transits from vanishing to stable
for tanh-activated models as σ2

w increases. With proper σ2
w, stable propagation for all three types of signals

3In all the figures illustrating SP metrics, disappearing nodes and vertical lines are caused by surpassing the machine precision.
Specifically, the vanishing FSP result in vertical lines in the plots of the GEV metric, while the exploding FSP leads to node
disappearance in the plots of the GEV metric.

5



Under review as submission to TMLR

can be achieved; see the orange lines in Figure 1(d)-1(f). A theoretical result of the FSP for tanh-activated
vanilla GCNs is provided in Appendix C.5.

3.2 Theoretical results for ResGCN

Similarly to vanilla GCN, performance degradation has also been reported in deeper ResGCN (Huang et al.,
2020; Rusch et al., 2023a). In this subsection, we focus on the SP in ResGCN.

For simplicity, we study linear ResGCN with identity activation in the theoretical analysis. Such a simplification
is very common in NN theory (Saxe et al., 2014; Xu et al., 2021). Similar to vanilla GCN, all the channels
of H(L) are i.i.d. N(0n, Σ̃(L)) under the infinite-width limit (a.k.a. NNGP correspondence). The n × n
covariance matrix Σ̃(l) recursively satisfies

Σ̃(l) = σ2
wÂΣ̃(l−1)Â + Σ̃(l−1), Σ̃(1) = σ4

wÂXXT Â/d0, (1)

See Appendix D.1 for the details.

The following theorem implies that linear ResGCN may suffer from forward signal explosion and over-
smoothing under the NNGP approximation at initialization.

Theorem 3.3. Suppose that there exists an eigenvector u of Â corresponding to the eigenvalue 1, such that
the input feature X ∈ Rn×d0 satisfies XT u ̸= 0d0×1. Under the NNGP correspondence for linear ResGCN, if
α2σ2

w + β2 > 1 and α ̸= 0, then we have

lim
L→∞

M(L)
FSP (σ2

w) =∞ and lim
L→∞

M(L)
GEV (σ2

w) = 0.

Since (α, β) = (1, 1) for the original ResGCN (Kipf & Welling, 2017), α2σ2
w + β2 > 1 and α ̸= 0 always hold

for any nonzero initialization variance, which indicates exploding M(L)
FSP(σ2

w) and shrinking M(L)
BSP(σ2

w).
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Figure 2: (a) The forward metrics and (b) the graph embedding variation metrics of ReLU-activated deep
ResGCN on Cora. We average the results over 20 runs. ResGCNs with non-zero initialization variances
always suffer from exploding forward propagation and over-smoothing.

Numerical experiments demonstrate that the consequences of Theorem 3.3 can be observed on ResGCNs with
non-linear activations. In Figure 2, we plot the FSP and the GEV of ReLU-activated ResGCN with different
initialization variances. We see that the widely used Conventional and Kaiming initialization schemes (Huang
et al., 2020; Kipf & Welling, 2017) (and essentially any non-zero initialization variance) lead to exploding
forward propagation and over-smoothing.

In summary, the discussions in Section 3.1 and 3.2 provide a theoretical guarantee that the traditional
initialization schemes utilized in both vanilla GCN and ResGCN fail to achieve proper SP. To address this
challenge, we will introduce new initialization schemes in the subsequent section.
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4 SPoGInit: Initialization guided by signal propagation on graph

In this section, we propose a new initialization design method, termed Signal Propagation on Graph-guided
Initialization (SPoGInit), by enhancing the three types of signal propagation (SP) of GCNs. Through
this method, we aim to demonstrate that stabilizing SP can lead to improved performance in deep GCNs
and effectively mitigate the performance degradation problem. SPoGInit determines layer-wise initialization
variances by solving an optimization problem tailored to the SP of GCNs. To be more specific, given a GCN
with L layers, we denote the variance of the l-th layer by σ2

w,l. SPoGInit solves the following optimization
problem.

minimize
{σw,l}L

l=1

w1VFSP + w2VBSP − w3M(L)
GEV , (2)

where VFSP and VBSP respectively measure the stability for the FSP and BSP metrics across varying depths.

For vanilla GCNs, the computational graph can often be abstracted as a simple path, suggesting that the
stability of SP might be inferred by comparing the SP metrics between very shallow and very deep blocks.
Accordingly, we define VFSP := (M(1)

FSP/M(L−1)
FSP − 1)2 to encourage stable FSP across hidden layers. Similarly,

VBSP is defined as (M(2)
BSP/M(L−1)

BSP − 1)2 to encourage BSP, with the superscript numbers in parentheses
indicating the layer indices relevant to the gradient norm. We use M(2)

BSP rather than M(1)
BSP to compute VBSP

to ensure consistent dimensionality across different layers, since the weight parameters of the first layer differ
in size from those of the subsequent layers.

For GCNs with skip connections, the computational graph becomes more complex. It is challenging to directly
assess the stability of signal propagation by merely examining the SP metrics in very shallow and very deep
blocks. Instead, we replace the denominator in vanilla GCN’s VFSP formula with the smallest FSP metric
value, and the numerator with the largest FSP metric value across all the layers. Mathematically, we have

VFSP =
(

max
1≤l<L

M(l)
FSP/ min

1≤l<L
M(l)

FSP − 1
)2

.

Similarly, we introduce the modification on VBSP for GCNs with skip connections as follows:

VBSP =
(

max
1<l<L

M(l)
BSP/ min

1<l<L
M(l)

BSP − 1
)2

.

Besides, in (2), w1, w2, w3 > 0 are pre-defined for balancing these three SP metrics. During the implementation
of SPoGInit, we adjust the weight initialization variances across layers by gradient descent algorithm. More
details about SPoGInit are in Appendix E.

5 Numerical Experiments

In this section, we examine the proposed SPoGInit initialization through a series of empirical experiments on
various GCN architectures and benchmarks. In Section 5.1, we briefly introduce the experimental settings. In
Section 5.2, we demonstrate how SPoGInit improves signal propagation (SP) in different GCN architectures.
Finally, in Section 5.3, we showcase the performance of deep GCN models equipped with SPoGInit on
mainstream datasets and graph-based tasks involving long-range relationships.

5.1 Experiments setting

Datasets. We focus on four mainstream datasets and two graph-based tasks involving long-range relationships.

The mainstream datasets include Cora, PubMed (Sen et al., 2008; Yang et al., 2016), OGBN-Arxiv (Hu
et al., 2020), and Arxiv-year (Lim et al., 2021). For these mainstream datasets, we use their default
training/validation/test splits. Statistics of these datasets are summarized in Table 1.

As for the graph-based tasks involving long-range relationships, we consider 1) the semi-supervised node
classification task under missing feature settings, and 2) solving mixed integer linear programming (MILP)
problems using GCN-based methods. Further details on these tasks will be provided in Section 5.3.
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Table 1: Statistics of the mainstream datasets used in the experiments.

Dataset Nodes Features Edges Class Homophily Training/Validation/Test
Cora 2,708 1,433 10,556 7 0.81 5.2%/18.5%/36.9%

PubMed 19,717 500 88,648 3 0.80 0.3%/2.5%/5.1%
OGBN-Arxiv 169,343 128 1,166,243 40 0.66 53.7%/17.6%/28.7%

Arxiv-year 169,343 128 1,166,243 5 0.22 50%/25%/25%
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Figure 3: Plots of (a) forward metrics, (b) backward metrics, and (c) graph embedding variation metrics
of deep vanilla GCNs with different depths on Cora. SPoGInit is highly effective in stabilizing all three SP
metrics.

Architectures and Baselines. For the GCN architectures, we consider the vanilla GCN, and the GCN
models with skip-connections: ResGCN (Kipf & Welling, 2017) and the popular MixHop (Abu-El-Haija
et al., 2019). Additionally, we examine ResGCN with trainable gating parameters, referred to as gatResGCN.
Regarding initialization baselines, we consider standard initialization methods in DNNs and GNNs, including
Xavier and Conventional initialization. Besides, we also include VirgoFor and VirgoBack, which are the
initialization techniques tailored for GCNs (Li et al., 2023), as part of our baselines. We note that since every
layer of MixHop mixes the powers (with different orders) of the adjacency matrix during its information
aggregation, VirgoFor and VirgoBack are not directly applicable to MixHop. Thus, our baselines for MixHop
only include Conventional and Xavier initializations.

Implementation. We conduct all experiments using PyTorch. To prevent out-of-memory issues with deeper
models and ensure fair comparisons, we fix the width of all models at 64. In our experiments, we use the
tanh activation function for vanilla GCNs, as Theorem 3.2 shows that the graph variation embedding of
vanilla GCNs with ReLU activation does not benefit from further optimization. For other GCN architectures,
we use the ReLU activation function. All results are averaged over at least three runs. More details of
hyperparameters are provided in Appendix F.1.

5.2 Experiments on mainstream datasets

In this section, we illustrate how our proposed SPoGInit improves the performance of deep GCN models on
mainstream datasets. Specifically, we address the following questions:

Q1: Can SPoGInit improve the signal propagation (SP) of GCN models?

Q2: Can SPoGInit alleviate the performance degradation in deep GCNs?

Can SPoGInit improve the SP of GNN models (Q1)? On the Cora dataset, we examine the SP across
various models, including GCN, ResGCN, and MixHop, under different initializations and depths.

Figures 3, 4, and 5 respectively present the changes in three SP metrics as the depths of GCNs, ResGCN, and
MixHop models increase. The results in Figure 3 indicate that on vanilla GCN, both Conventional and Xavier
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Figure 4: Plots of (a) forward metrics, (b) backward metrics, and (c) graph embedding variation metrics of
deep ResGCNs with different depths on Cora. SPoGInit is highly effective in stabilizing all three SP metrics.
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Figure 5: Plots of (a) forward metrics, (b) backward metrics, and (c) graph embedding variation metrics of
deep MixHop with different depths on Cora. SPoGInit is highly effective in stabilizing all three SP metrics.

initializations cause diminishing forward SP, backward SP, and graph embedding variations (GEV), which
lead to gradient vanishing and over-smoothing issues. The VirgoFor and VirgoBack initialization methods can
stabilize the forward SP and maintain the diversity of graph features, but they result in exploding backward
SP, leading to gradient explosion. In contrast, SPoGInit is highly effective in stabilizing all three SP metrics.

Figure 4 shows that as the depth increases, ResGCNs with all baseline initializations suffer from exploding
forward-backward SP, and diminishing GEV, which lead to gradient explosion and over-smoothing problems.
In contrast, the SPoGInit method effectively stabilizes all three SP metrics in deep ResGCNs.

Figure 5 shows that as the depth increases in the MixHop model, Conventional and Xavier initializations
succeed in maintaining forward SP and the GEV. However, the backward SP significantly diminishes, leading
to severe gradient vanishing in deep models. SPoGInit, on the other hand, effectively stabilizes all three SP
metrics.

In summary, these results demonstrate that SPoGInit is capable of finding initializations that stabilize these
three SP metrics, thereby alleviating the training difficulties associated with deep models and mitigating the
performance degradation as the networks go deeper.

Can SPoGInit Alleviate Performance Degradation in Deep GCN Models (Q2)? We present the
detailed numerical results for GCN models with varying depths and initializations across four mainstream
datasets, shown in Table 2. More details of hyperparameters are provided in Appendix F.1.

Table 2 demonstrates that SPoGInit significantly reduces performance degradation compared to baseline
initializations across various GCN models and datasets. For certain models and tasks, SPoGInit can even
enhance the performance consistently as network depth increases from 4 to 64, unleashing the potential of
deep GCNs. Specifically, in deep ResGCN and gatResGCN models, baseline initializations cause notable test
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Table 2: Test accuracies of GCN models with varying depths and initializations. The bold figure highlights
the best performance among different initializations. "Deg" refers to the test accuracy degradation as the
depth increases from 4 to 64 layers. The smallest performance drops are highlighted in orange. The results
demonstrate that SPoGInit significantly reduces performance degradation compared to baseline initializations
and enhances the performance of deep GNN models across different architectures.

Model Init. Cora Arxiv
4 8 16 32 64 Deg. 4 8 16 32 64 Deg.

GCN

Conventional 79.3 71.2 56.6 48.5 33.3 ↓ 46.0 69.2 67.5 44.9 39.1 8.0 ↓ 61.2
Xavier 80.3 79.1 75.2 72.8 71.5 ↓ 8.8 69.6 69.3 64.1 57.9 38.1 ↓ 31.5

VirgoFor 80.4 80.0 76.7 74.3 73.4 ↓ 7.0 69.9 69.4 69.3 67.0 61.4 ↓ 8.5
VirgoBack 80.3 77.4 74.9 74.3 73.2 ↓ 7.1 69.7 69.5 69.2 67.5 60.9 ↓ 8.8
SPoGInit 79.8 79.6 78.2 75.8 73.7 ↓ 6.1 69.8 69.1 66.8 63.8 48.4 ↓ 21.4

ResGCN
Conventional 78.0 78.5 77.5 77.6 78.2 ↑ 0.2 70.3 71.6 72.0 70.4 34.8 ↓ 35.5

Xavier 78.0 79.1 77.7 76.8 71.6 ↓ 6.4 70.5 71.6 70.7 53.0 16.5 ↓ 54.0
VirgoFor 78.5 78.6 77.5 74.1 54.2 ↓ 24.3 70.5 71.0 66.4 20.3 11.3 ↓ 59.2

VirgoBack 79.3 78.2 77.8 73.9 29.2 ↓ 50.1 70.6 71.1 66.5 20.1 12.5 ↓ 58.1
SPoGInit 75.7 77.9 78.5 78.5 80.1 ↑ 4.4 70.4 71.5 72.3 71.8 71.3 ↑ 0.9

gatResGCN
Conventional 77.4 78.2 78.0 77.9 77.0 ↓ 0.4 70.7 71.8 71.6 70.0 27.9 ↓ 42.8

Xavier 77.9 78.5 76.6 77.4 73.2 ↓ 4.7 70.5 71.4 70.8 45.1 16.5 ↓ 54.0
VirgoFor 78.9 78.1 77.6 70.5 35.5 ↓ 43.4 70.4 70.7 65.7 20.4 11.3 ↓ 59.1

VirgoBack 79.0 78.3 76.2 70.5 37.9 ↓ 41.1 70.5 70.7 65.9 20.1 12.5 ↓ 58.0
SPoGInit 76.3 77.8 78.2 78.1 77.6 ↑ 1.3 70.2 71.5 72.1 72.5 72.8 ↑ 2.6

MixHop
Conventional 72.5 52.0 36.4 46.9 42.0 ↓ 30.5 68.0 64.1 59.8 52.6 38.2 ↓ 29.8

Xavier 79.3 75.1 71.6 64.3 56.3 ↓ 23.0 67.9 64.0 60.1 53.0 38.0 ↓ 29.9
SPoGInit 79.6 75.0 76.8 72.0 72.2 ↓ 7.4 69.9 70.9 70.3 68.6 61.5 ↓ 8.4

Model Init. PubMed Arxiv-year
4 8 16 32 64 Deg. 4 8 16 32 64 Deg.

GCN
Conventional 75.9 68.1 67.1 68.0 60.8 ↓ 15.1 44.1 42.7 44.2 43.6 39.9 ↓ 4.2

Xavier 78.1 76.8 76.0 77.2 75.7 ↓ 2.4 44.0 42.3 45.5 45.6 43.9 ↓ 0.1
VigorFor 78.9 78.5 78.2 77.8 75.9 ↓ 3.0 43.9 30.0 45.4 45.6 41.8 ↓ 2.1

VigorBack 78.1 75.5 76.5 76.0 74.7 ↓ 3.4 43.7 29.8 45.5 45.4 41.8 ↓ 1.9
SPoGInit 77.4 77.5 77.0 78.4 78.1 ↑ 0.7 43.9 41.9 45.2 44.9 43.9 0

ResGCN
Conventional 74.9 76.1 76.0 76.8 76.6 ↑ 1.7 48.2 49.6 49.7 43.6 32.6 ↓ 15.6

Xavier 75.8 77.5 75.7 76.5 74.8 ↓ 1.0 48.4 49.0 46.0 31.9 23.0 ↓ 25.4
VigorFor 76.2 77.6 76.6 76.1 74.5 ↓ 1.7 48.3 48.4 38.9 29.6 26.2 ↓ 22.1

VigorBack 77.0 77.6 76.9 77.0 74.9 ↓ 2.1 48.1 48.1 38.6 29.1 24.9 ↓ 23.2
SPoGInit 75.4 76.2 76.4 77.0 77.4 ↑ 2.0 47.7 49.8 50.9 51.9 49.3 ↑ 1.6

gatResGCN
Conventional 74.4 76.9 76.0 76.6 76.0 ↑ 1.6 48.7 50.5 49.5 41.6 31.8 ↓ 16.9

Xavier 76.3 77.6 75.6 77.2 75.8 ↓ 0.5 48.5 49.5 45.8 32.6 23.0 ↓ 25.5
VirgoFor 76.2 77.6 77.1 76.1 74.3 ↓ 1.9 48.5 48.4 38.9 31.5 26.2 ↓ 22.3

VirgoBack 76.6 77.9 76.8 75.8 75.0 ↓ 1.6 48.3 48.1 38.8 29.6 25.0 ↓ 23.3
SPoGInit 74.8 75.9 75.6 76.7 77.2 ↑ 2.4 47.9 49.3 50.0 50.6 51.0 ↑ 3.1

MixHop
Conventional 73.3 65.1 68.1 65.9 56.4 ↓ 16.9 47.8 48.6 49.2 47.7 42.3 ↓ 5.5

Xavier 76.6 76.4 72.5 72.4 71.1 ↓ 5.5 47.9 48.6 49.2 48.5 42.0 ↓ 5.9
SPoGInit 76.8 77.1 75.2 76.3 74.3 ↓ 2.5 48.3 50.2 51.3 52.0 50.5 ↑ 2.2

accuracy drops exceeding 30% on the OGBN-Arxiv dataset and 15% on the Arxiv-year dataset compared
to their shallow counterparts. In contrast, deep ResGCN and gatResGCN models with SPoGInit achieve
performance gains of from 1.2% to 3.0% as depth increases from 4 to 64 across all the tested datasets. For
deep vanilla GCNs and MixHop models, SPoGInit exhibits substantially less accuracy decline than baseline
initializations on most of the tested datasets. For example, SPoGInit reduces the test accuracy drop for the
64-layer MixHop by around at least 20% on both Cora and OGBN-Arxiv datasets.

Furthermore, we emphasize that SPoGInit exhibits greater robustness over various GCN models. Specifically,
we see that Xavier, VirgoFor, and VirgoBack perform well on deep vanilla GCNs, all surpassing Conventional
initialization on the four datasets. However, their performance significantly degrades on deep ResGCNs. In
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contrast, SPoGInit demonstrates excellent versatility, achieving less performance degradation across models
of varying depths and architectures.

Further exploration on SPoGInit. SPoGInit, as previously introduced, begins with a given starting
initialization and searches for a more stable signal propagation (SP) by solving an optimization problem (2).
In most cases, we select Xavier initialization as the starting point for SPoGInit in the experiments above.
Now we explore the adaptability of SPoGInit by studying how it performs when starting from
different initializations.

Table 3: Test accuracies of GCN models with varying depths and initializations on the OGBN-Arxiv dataset.
"Improv." refers to the test accuracy changes after replacing the original initializations with SPoGInit, which
starts from those initializations. The results demonstrate that SPoGInit achieves better performance across
various models by starting from different initializations.

Model Init. Arxiv
4 8 16 32 64

GCN

Conventional 69.2 67.5 44.9 39.1 8.0
+SPoGInit 69.7 69.2 68.1 63.1 56.9

Improv. ↑ 0.5 ↑ 1.7 ↑ 23.2 ↑ 24.0 ↑ 48.9
Xavier 69.6 69.3 64.1 57.9 38.1

+SPoGInit 69.8 69.1 66.8 63.8 48.4
Improv. ↑ 0.2 ↓ 0.2 ↑ 2.7 ↑ 5.9 ↑ 10.3
VirgoFor 69.9 69.4 69.3 67.0 61.4

+SPoGInit 69.6 69.6 68.7 67.2 61.4
Improv. ↓ 0.3 ↑ 0.2 ↓ 0.6 ↑ 0.2 0

VirgoBack 69.7 69.5 69.2 67.5 60.9
+SPoGInit 69.6 69.7 69.0 67.2 61.8

Improv. ↓ 0.1 ↑ 0.2 ↓ 0.2 ↓ 0.3 ↑ 0.9

ResGCN

Conventional 70.3 71.6 72.0 70.4 34.8
+SPoGInit 70.3 71.2 71.9 71.9 71.5

Improv. 0 ↓ 0.4 ↓ 0.1 ↑ 1.5 ↑ 36.7
Xavier 70.5 71.6 70.7 53.0 16.5

+SPoGInit 70.4 71.5 72.3 71.8 71.3
Improv. ↓ 0.1 ↓ 0.1 ↑ 1.6 ↑ 18.8 ↑ 54.8
VirgoFor 70.5 71.0 66.4 20.3 11.3

+SPoGInit 70.0 71.3 72.0 72.1 71.2
Improv. ↓ 0.5 ↑ 0.3 ↑ 6.4 ↑ 51.8 ↑ 59.9

VirgoBack 70.6 71.1 66.5 20.1 12.5
+SPoGInit 70.2 71.4 72.0 72.3 71.4

Improv. ↓ 0.4 ↑ 0.3 ↑ 5.5 ↑ 52.2 ↑ 58.9

We report the performance of vanilla GCNs on the OGBN-Arxiv dataset, with four baseline initializations,
alongside SPoGInit which is applied starting from each of these four initializations, as shown in Table 3.
The results indicate that SPoGInit can effectively incorporate different initializations, leading to better
performance. Specifically, when starting from the Xavier and Conventional initializations, SPoGInit achieves
nearly 10% and 50% improvements in vanilla GCNs with 64 layers compared to these two initializations.
Furthermore, when starting from the GNN-based initializations (VirgoFor and VirgoBack), SPoGInit also
delivers better performance in deep GCNs. However, it is important to note that when using ResGCN,
VirgoFor and VirgoBack exhibit significant performance degradation. Despite this, starting from these
GNN-based initializations, SPoGInit still significantly improves performance by more than 58% in deep
ResGCNs with 64 layers.

These results demonstrate that although different GNN architectures may favor specific initializations, starting
from these initializations, SPoGInit can further enhance the performance. Its strong adaptability allows
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SPoGInit to achieve better results across various models by effectively integrating with different initialization
techniques.

Additionally, we provide an ablation study on the SP metric components within SPoGInit in Appendix F.2.

5.3 Experiments on graph-based tasks involving long-range relationships

Missing feature settings. To investigate the performance of SPoGInit on the graph-based tasks involving
long-range relationships, we first conduct experiments on the datasets under missing feature settings following
(Zhao & Akoglu, 2020). Specifically, we construct graph datasets by zeroing out a designated proportion
of node features in the validation and test sets while preserving their corresponding labels. The details of
the missing feature settings are provided in Appendix F.1. Within the semi-supervised learning framework,
a high proportion of missing features necessitates multiple feature aggregations from the training set for
accurate label prediction in the validation and test sets. This approach effectively amplifies the challenge of
learning long-range relationships within the dataset.

Table 4: The optimal performance of various deep GCN models, ranging from 8 to 64 layers, with different
initializations under missing feature settings. The figures in parentheses denote the depth corresponding to
the optimal performance. Bold figures show the best performance for each model and the best performances
across all architectures are highlighted in orange. The term “optimal improvement” refers to the maximum
performance enhancements achieved by SPoGInit compared to the best performance of baseline initializations
across the various models. The results indicate that optimal performance on datasets with long-range
relationships is attained at greater depths, and SPoGInit enhances the performance of deep GCN architectures.

Model Init. Missing 50% Missing 100%

GCN

Conventional 43.1 (16) 41.6 (16)
Xavier 43.3 (16) 42.5 (16)
VirgoFor 40.1 (16) 41.9 (16)
VirgoBack 42.0 (16) 42.0 (16)
SPoGInit 43.1 (32) 42.4 (16)

ResGCN

Conventional 45.8 (16) 43.9 (16)
Xavier 45.2 (8) 43.1 (8)
VirgoFor 45.4 (8) 43.0 (8)
VirgoBack 45.2 (8) 42.9 (8)
SPoGInit 46.3 (64) 45.1 (64)

gatResGCN

Conventional 45.5 (16) 43.3 (16)
Xavier 44.7 (8) 42.2 (8)
VirgoFor 45.2 (8) 42.6 (8)
VirgoBack 45.0 (8) 42.6 (8)
SPoGInit 45.3 (16) 43.4 (32)

MixHop

Conventional 45.1 (8) 42.9 (16)
Xavier 45.1 (8) 42.8 (16)
SPoGInit 44.9 (8) 44.6 (16)

Optimal Improvements +0.5 +1.7

We adopt the missing feature setting with different missing proportions on the Arxiv-year dataset. We
examine the performance of various GCN models with different depths and initializations over these settings.
Table 4 presents the best performance of different GCN models, ranging from 8 layers to 64 layers, along
with the optimal depth that achieves the best performance. The results indicate that under higher feature
missing proportion, the models with SPoGInit tend to achieve their best performance at larger depths.
SPoGInit demonstrates a significant improvement over baseline initializations, especially under 100% missing
proportion, i.e., where all node features in the validation and test sets are missing. Moreover, deep ResGCN
with SPoGInit achieves the best performance across all the tested architectures and initializations. These
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findings demonstrate the potential of deep GCNs in graph-based tasks involving long-range relationships and
the effectiveness of SPoGInit in unleashing such potential.

GCNs for Combinatorial Optimization. In recent years, GNNs have emerged as a powerful tool for
addressing Combinatorial Optimization (CO) problems, which are fundamental in areas such as computer
science and operations research (Paschos, 2014). Many classical CO problems are extremely difficult to solve
due to their NP-hardness (Bomze et al., 1999; Gavish & Graves, 1978; Coffman Jr et al., 1984). To address
these difficult CO problems, expert-designed heuristic algorithms (Boussaïd et al., 2013) are developed to find
near-optimal solutions within reasonable computational limits. Over the past decade, machine learning-based
methods (Bengio et al., 2021) have gained significant interest in tackling CO problems. It has been shown
that with sufficient data and proper training, neural networks have the potential of surpassing expert-designed
methods in both performance and efficiency (Alvarez et al., 2017; Khalil et al., 2016; 2017). Given that many
CO problems naturally have a graph structure, GNNs have become a highly promising approach (Gasse et al.,
2019).

In this work, we consider the Maximal Independent Set (MIS) problem, a classic CO problem in graph theory
with significant applications in network analysis, wireless communication, etc. Given an undirected graph
G = (V, E), the objective is to find a subset S ⊆ V of vertices such that S is independent, meaning no two
vertices in S are adjacent, and S is maximal, implying that no additional vertex can be added to S without
violating its independence.

We note that MIS problems can involve inherent long-range relationships between nodes. The inclusion of
a node in the independent set may significantly affect all other nodes in the set. For example, consider a
cycle graph G with an even number of nodes V1, V2, . . . , V4m. In this cycle, each node connects to two others,
forming a closed loop. If V1 is included in S, its adjacent nodes V4m and V2 cannot be part of S, allowing
nodes V4m−1 and V3 to potentially be included in S. This cascading effect continues around the cycle, and
it is straightforward to show that the maximal independent set is {V1, V3, . . . , V2m−1, V2m+1, . . . , V4m−1}.
Similarly, if V1 is excluded from S, the maximal independent set becomes {V2, V4, . . . , V2m, . . . , V4m−1}.
Notably, the predictions of whether V1 and V2m are in the maximal independent set depend on each other,
while the two nodes have a distance of 2m− 1.

In this work, we follow the setting in Han et al. (2022) and apply GNN to solve MIS problems. The MIS
problem is typically formulated as an Integer Linear Programming (ILP) problem:

max
x

∑
i∈V

xi

s.t. xi + xj ≤ 1, ∀(i, j) ∈ E ,

xi ∈ {0, 1}.
Based on this formulation, a variable-constraint bipartite graph representation is constructed. The set of
variable nodes V (each denoted by i) is placed on one side of the bipartite graph, while the set of constraint
nodes E (each representing an edge (i, j) in the original graph) is placed on the other side. Each variable
node i and j is connected to the corresponding constraint node (i, j). Following Han et al. (2022), we adopt
a predict and search framework. The predicting stage utilizes GNN over the bipartite graph representation
to find a good initial solution to the MIS problem, while the search stage refines this solution using the
traditional ILP solver such as SCIP or Gurobi to obtain the final result.

We investigate the power of SPoGInit in improving the performance of bipartite GCNs for solving MIS
problems. We utilize the Independent Set (IS) dataset (Bergman et al., 2016), where each instance comprises
600 constraints and 1500 binary variables. The bipartite GCN models are trained on 80 problem instances
and then applied to predict the optimal solution (0 or 1) for each node across 20 test instances. We set the
learning rates as 1e-3, 5e-4, and 5e-5, for bipartite GCN models with 2, 8, and 16 layers, respectively.

The experimental results, shown in Table 5, indicate that bipartite GCNs often achieve performance
improvements as their depths increase. With Xavier initialization, there is approximately a 4% increase in
accuracy from 2 to 16 layers. Moreover, employing SPoGInit yields greater performance enhancements, with
an approximate 7% increase in accuracy from 2 to 16 layers, and surpasses the baseline methods on the
16-layer network.
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Further, we adopt skip connection in bipartite GCNs and train the models with various depths using the
Adam optimizer at a learning rate of 1e-3. We see that incorporating skip connections boosts the performance
of Bipart GCNs. This enhancement is likely attributed to the reinforcement of the initial embeddings
associated with the ILP problem. However, Xavier initialization faces training failure issues and fails to
deliver substantial benefits during the deepening process, and Conventional initialization shows minimal gains
when the network depth is increased from 8 to 16 layers. Conversely, SPoGInit consistently provides ongoing
benefits as the network depths increase. With SPoGInit, the 16-layer bipartite GCN with skip connections
achieves optimal performance across all initializations, models, and depths.

Table 5: Test accuracy of bipartite GNN models on ILP tasks across varying initializations and depths.
The results underscore the critical role of depth in solving ILP problems with Bipart GCNs. Furthermore,
SPoGInit significantly boosts the performance of deep Bipart GCNs, leading to optimal accuracy.

Model Init. 2 layer 8 layer 16 layer

Bipartite GCN
Conventional 78.9 82.7 84.1

Xavier 78.5 81.0 82.2
SPoGInit 78.7 83.0 85.2

Bipartite GCN with skip connection
Conventional 79.4 85.4 85.5

Xavier 79.4 82.2 48.6
SPoGInit 79.4 84.7 87.5

6 Related works

Over-smoothing in GCNs. The concept of over-smoothing is first introduced in Li et al. (2018) to explain
the performance degradation in deeper GCNs. This issue is later explored through both theoretical and
empirical studies (Oono & Suzuki, 2019; Cai & Wang, 2020; Yang et al., 2020; Maskey et al., 2024; Yang
et al., 2024; Chen et al., 2020a; Nguyen et al., 2023; Rusch et al., 2023b; Roth & Liebig, 2024; Roth, 2024;
Luan et al., 2020; Cong et al., 2021; Zhang et al., 2022). While the smoothing effect of graph convolution may
benefit shallow GCNs (Keriven, 2022; Wu et al., 2023), it adversely affect the performance of deep GCNs.

To alleviate over-smoothing, various techniques have been proposed (Chen et al., 2022c; Wang et al., 2021),
including node or edge dropping (Srivastava et al., 2014; Zou et al., 2019; Rong et al., 2020; Huang et al., 2020;
Lu et al., 2021), normalization methods (Ioffe & Szegedy, 2015; Zhao & Akoglu, 2020; Zhou et al., 2020b;
Yang et al., 2020; Zhou et al., 2021b; Li et al., 2020; Guo et al., 2023), and regularization strategies (Chen
et al., 2020a; Yang et al., 2020; Zhou et al., 2021a). In addition to these techniques, substantial efforts have
been dedicated to modifying GCN architectures, such as incorporating residual connections (Kipf & Welling,
2017; Jaiswal et al., 2022; Chen et al., 2022b; Scholkemper et al., 2024), jumping connections (Xu et al., 2018;
Liu et al., 2020; Zhu et al., 2020), and other architectural modifications (Bose & Das, 2023; Di Giovanni
et al., 2022; Chien et al., 2021; Gasteiger et al., 2019; Luan et al., 2019; Chen et al., 2020b; Li et al., 2019;
Yan et al., 2022; Guo et al., 2022; Min et al., 2020; Chen et al., 2022a; Jin et al., 2022; Zheng et al., 2021;
Yang et al., 2023b; Li et al., 2021; Zhang et al., 2020; Feng et al., 2022; Dong et al., 2021; Wu et al., 2024;
Choi et al., 2024). Different from these works, our paper investigates the impact of weight initialization to
tackle over-smoothing (as well as gradient pathology) in GCNs. While a few recent works (Guo et al., 2022;
Jaiswal et al., 2022; Li et al., 2023) have explored initialization to improve the training of GNN, they do not
explicitly treat over-smoothing as one of their primary concerns. Although Han et al. (2023) applies analog
MLP initialization to GNNs, it does not specifically address the performance degradation of deep GNNs.

Signal propagation. Classical signal propagation theory has built up a foundation for understanding
how information flows through deep neural networks (DNNs) and guides the random weight initialization.
At first, Glorot & Bengio (2010); He et al. (2015) study the forward-backward propagation in linear or
ReLU-activated models. Then, the mean-field theory (Neal, 1996; Lee et al., 2018; Matthews et al., 2018)
is incorporated to study the signal propagation in models with general non-linear activation. Theoretical
analysis on fully-connected neural networks (FCNNs) includes the study of Edge-of-Chaos (EOCs) (Poole
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et al., 2016; Schoenholz et al., 2017; Hayou et al., 2019; 2022) and dynamical isometry (Saxe et al., 2014;
Pennington et al., 2017; 2018). Other works study the signal propagation in deep CNN (Xiao et al., 2018),
RNN (Chen et al., 2018), ResNet (Yang & Schoenholz, 2017; Hayou et al., 2022), autoencoder (Li & Nguyen,
2019), and LSTM/GRU (Gilboa et al., 2019).

In the realm of GCNs, some recent works propose weight initialization methods to stabilize signal propagation.
Specifically, Jaiswal et al. (2022) design their method based on topology-aware isometry, while Guo et al. (2022);
Li et al. (2023) build theirs upon forward and backward signal propagation. In contrast, our work additionally
investigates how initialization affects graph embedding variation (GEV) to mitigate over-smoothing in deep
GCNs. Furthermore, our proposed SPoGInit method is not tailored to any specific model; instead, it adopts
a weight initialization search strategy to improve signal propagation across diverse architectures, which offers
better flexibility.

Weight initialization search. In traditional deep learning, some works have explored weight initialization
search to improve training stability (Dauphin & Schoenholz, 2019; Zhu et al., 2021). However, their objectives
differ from ours. Dauphin & Schoenholz (2019) aims to minimize the curvature effects around the initial
parameters by reducing the gradient quotient, which reflects local curvature sensitivity. Zhu et al. (2021)
aims at finding an initialization that minimizes the loss after a single training step. Our proposed SPoGInit,
however, primarily targets mitigating signal propagation instability in the initialization of deep GCNs, by
addressing both forward and backward SP as well as the over-smoothing issue.

Other works. Some existing works study graph neural tangent kernel (GNTK) (Bayer et al., 2022; Du
et al., 2019; Huang et al., 2022; Jiang et al., 2022; Sabanayagam et al., 2021; 2022; Zhou & Wang, 2022;
Gebhart, 2022; Krishnagopal & Ruiz, 2023; Yang et al., 2023a). They analyze the training dynamics of GCNs
under the infinite-width limit.

7 Conclusion

We attempt to address the performance degradation of deep GCNs from the lens of signal propagation.
We consider three metrics: forward propagation, backward propagation, and graph embedding variation
propagation. Our theoretical analysis and empirical studies revealed that widely used initialization methods
in GCNs fail to control these metrics simultaneously, resulting in undesirable performance degradation as
depth increases. Motivated by our SP framework, a new initialization method, termed SPoGInit, is proposed.
The experiment results demonstrate that SPoGInit enhances the signal propagation of various deep GCN
architectures. Moreover, SPoGInit significantly mitigates performance degradation or enables performance
enhancement as depths increase, especially in graph-based tasks involving long-range relationships. Both
our theoretical and empirical findings underscore the importance of stabilizing these three SP metrics for
boosting the performance of deep GCNs.
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Appendix
A Supplemental notation

For any integer n ∈ N, we define [n] ≜ {1, 2, . . . , n}. We may denote a matrix X ∈ Rm×n by (xij)i∈[m],j∈[n],
where xij is the entry in the i-the row and the j-th column. We further use Xi,: ∈ R1×n and X:,j ∈ Rm×1

to denote the i-th row and the j-th column of X, respectively. ∥ · ∥F denotes the Frobenius norm. Given
any function f : Rm×n → R, its derivative ∂f/∂X with respect to X ∈ Rm×n is the m × n matrix with
(∂f/∂X)ij = ∂f(X)/∂xij . For any activation function σ : R → R, we use σ(X) ∈ Rm×n to denote the
output of applying σ entry-wise to the matrix X, i.e., (σ(X))ij = σ(xij). We denote ReLU activation by
ReLU(x) ≜ max(0, x) and tanh activation by tanh(x) ≜ (ex − e−x)/(ex + e−x). For brevity, we use θ to
denote the collection of all trainable parameters in a GCN model.

For any matrix X = (xij) ∈ Rm×n, the vectorizaion of X is defined by

vec(X) := (x11, . . . , xm1, x12, . . . , xm2, . . . , x1n, . . . , xmn)T ∈ Rmn×1.

For any matrix X = (xij) ∈ Rm×n and Y = (yij) ∈ Rp×q, the Kronecker product of X and Y is a mp× nq
block matrix defined by

X ⊗ Y :=

x11Y . . . x1nY
...

. . .
...

xm1Y . . . xmnY

 .

For a matrix X = (xij) ∈ Rm×n, if xij = 0 for all i ∈ [m] and j ∈ [n], we denote X = 0m×n; if xij = 1 for all
i ∈ [m] and j ∈ [n], we denote X = 1m×n. For a vector Z = (zi) ∈ Rn, if zi = 0 for all i ∈ [n], we denote
Z = 0n; if zi = 1 for all i ∈ [n], we denote Z = 1n.
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B Convolutional kernel

Suppose that graph G has M connected components. The m-th component is a subgraph denoted by
Gm = (Vm, Em) for m ∈ [M ]. We present a well-known result characterizing the eigenvalues and the
eigenvectors of Â without giving proof, see, e.g., Proposition 1 in Oono & Suzuki (2019).
Proposition B.1. Suppose that G = (V, E) has M connected components {Gm = (Vm, Em)}M

m=1 and the
eigenvalues of Â are λ1 ≥ λ2 ≥ · · · ≥ λn. Then we have

• λi = 1, for any 1 ≤ i ≤M .

• λi ∈ (−1, 1), for any M + 1 ≤ i ≤ n.

Moreover, the set {v(m) = D̃
1
2 u(m) : m ∈ [M ]} is a basis of the m-dimensional eigenspace of Â corresponding

to the eigenvalue 1, where u(m) = (1{i∈Vm})i∈[n] ∈ Rn×1 is the indicator vector of the m-th connected
component Gm.

Lemma B.2. Given any H ∈ Rn×C and H ̸= 0n×C , we have 0 ≤ Dir(H)/∥H∥2
F ≤ 2.

Proof. Recall that L̂ = I − Â is the normalized Laplacian of graph G. By Proposition B.1, all the eigenvalues
of L̂ belong to [0, 2).

Given any H ∈ Rn×C , we have

Dir(H) = tr(HT L̂H) =
C∑

k=1
HT

:,kL̂H:,k ≤
C∑

k=1
2 ·HT

:,kH:,k = 2∥H∥2
F.

Similarly, we have

Dir(H) = tr(HT L̂H) =
C∑

k=1
HT

:,kL̂H:,k ≥
C∑

k=1
0 ·HT

:,kH:,k = 0.

Therefore, we conclude that
0 ≤ Dir(H)/∥H∥2

F ≤ 2.

25



Under review as submission to TMLR

C Signal propagation theory for vanilla GCN

C.1 NNGP correspondence for vanilla GCN

Proposition C.1 (NNGP correspondence for vanilla GCN). As the network widths d1, d2, . . . , dL−1 se-
quentially go to infinity, the l-th layer’s pre-activation embedding channels {H(l)

:,k}k∈[dl] converge to i.i.d.
n-dimensional Gaussian random variables N(0n, Σ(l)) in distribution for any l ≥ 2. The covariance matrices
are

Σ(1) = σ2
w

d0
ÂXXT Â,

Σ(l+1) = σ2
wÂG(Σ(l))Â,

(3)

where G(Σ) = Eh∼N(0n,Σ)[σ(h)σ(h)T ] for any n× n positive semi-definite matrix Σ.

Proof of Proposition C.1. We will prove that {H(l)
:,k}k∈[dl] are asymptotically i.i.d. n-dimensional random

variables with mean 0n and covariance matrix Σ(l) for any l ≥ 1 under the infinite width limit by mathematical
induction. Proposition C.1, which contains a stronger claim that {H(l)

:,k} are asymptotically Gaussian for any
l ≥ 2, will be shown during the induction steps.

Base case. Since the bias terms are initialized to be zero, when l = 1, the k-th channel of the embedding is

H
(1)
:,k = ÂXW

(1)
:,k + 1n · b(1)

k = ÂXW
(1)
:,k . (4)

Since {W (1)
:,k }k∈[d1] are i.i.d. random variables, so {H(1)

:,k }k∈[d1] are also i.i.d. random variables. Taking the
expectation of (4), we get

E[H(1)
:,k ] = ÂX · E[W (1)

:,k ] = 0n.

Calculating the covariance matrix of (4), we have

Cov[H(1)
:,k , H

(1)
:,k ] = E[H(1)

:,k ·H
(1)T
:,k ] = E[ÂXW

(1)
:,k W

(1)T
:,k XT Â]

= ÂX · E[W (1)
:,k W

(1)T
:,k ] ·XT Â = ÂX ·

(
σ2

w

d0
· Id0

)
·XT Â

= σ2
w

d0
ÂXXT Â.

Thus, if we define Σ(1) = σ2
wÂXXT Â/d0, then {H(1)

:,k }k∈[d1] are exactly i.i.d with mean 0n and covariance
matrix Σ(1).

Induction step. Suppose that {H(l)
:,k}k∈[dl] converge to i.i.d. n-dimensional random variables with mean 0n

and covariance matrix Σ(l) in distribution as d1, . . . , dl−1 sequentially go to infinity, we look at the (l + 1)-th
layer. Recall from the formation of the l-th layer in vanilla GCN, we have

H(l+1) = ÂX(l)W (l+1) + 1n · b(l+1),

X(l) = σ(H(l)),

for any l ≥ 1. We vectorize the first equation and get

vec(H(l+1)) = vec(ÂX(l)W (l+1)) + vec(1n · b(l+1))

=
dl∑

k=1
vec

[ÂX
(l)
:,k ]︸ ︷︷ ︸

n×1

·W (l+1)
k,:︸ ︷︷ ︸

1×dl+1

 ,
(5)

because b(l+1) is initialized to be 0dl+1 . Suppose that Σ(l+1) = σ2
wÂG(Σ(l))Â, we are going to show

that vec(H(l+1)) converges to a Gaussian random variable N(0ndl+1 , Idl+1 ⊗ Σ(l+1)) in distribution as
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d1, d2, . . . , dl−1, dl sequentially go to infinity. If this claim holds, {H(l+1)
:,k } are not only asymptotically i.i.d.,

but also asymptotically Gaussian i.i.d. with N(0n, Σ(l+1)), which corresponds to the statement of this
proposition.

For brevity, we define

ω
(l+1)
kk′ :=

√
dl ·W (l+1)

kk′ , for all k ∈ [dl] and k′ ∈ [dl+1],

and
Z

(l+1)
k := vec

(
[ÂX

(l)
:,k ] · ω(l+1)

k,:

)
, for all k ∈ [dl]. (6)

Then we get that {ω(l+1)
kk′ }k∈[dl],k′∈[dl+1] are i.i.d. from N(0, σ2

w) and

RHS of (5) = 1√
dl

dl∑
k=1

Z
(l+1)
k . (7)

By the induction hypothesis, as d1, d2. . . . , dl−1 sequentially go to infinity, {X(l)
:,k}k∈[dl] = {σ(H(l)

:,k )}k∈[dl]

converge to i.i.d. n-dimensional random vectors in distribution. Because X(l) can be regarded as a function
of {W (l′)}l

l′=1 at initialization, we get that X(l) and W (l+1) are independent. Thus, as d1, d2. . . . , dl−1

sequentially go to infinity, {Z(l+1)
k }k∈[dl] converge to i.i.d. random vectors in distribution. Moreover, in this

limiting case, by taking the expectation of (6), we have

E[Z(l+1)
1 ] = vec

([
ÂE[X(l)

:,k ]
]
· E[ω(l+1)

k,: ]
)

= vec
(
0n×1 · 01×dl+1

)
= 0ndl+1 .

Calculating the covariance matrix of (6), we have

Cov[Z(l+1)
1 , Z

(l+1)
1 ] = E[Z(l+1)

1 · Z(l+1)T
1 ]

= E
[
vec
(

[ÂX
(l)
:,1 ] · ω(l+1)

1,:

)
· vec

(
[ÂX

(l)
:,1 ] · ω(l+1)

1,:

)T
]

= E
[
(ω(l+1)T

1,: ⊗ ÂX
(l)
:,1 ) · (ω(l+1)

1,: ⊗X
(l)T
:,1 Â)

]
= E

[
ω

(l+1)T
1,: ω

(l+1)
1,: ⊗ ÂX

(l)
:,1 X

(l)T
:,1 Â

]
= E

[
ω

(l+1)T
1,: ω

(l+1)
1,:

]
⊗
{

Â · E
[
X

(l)
:,1 X

(l)T
:,1

]
· Â
}

= σ2
wIdl+1 ⊗ ÂG(Σ(l))Â

= Idl+1 ⊗ σ2
wÂG(Σ(l))Â = Idl+1 ⊗ Σ(l+1).

Here X
(l)
:,1 actually stands for the limit of true X

(l)
:,1 as d1, . . . , dl−1 sequentially go to infinity without bringing

any confusion.

By multivariate central limit theorem, 1√
dl

∑dl

k=1 Z
(l+1)
k converges to a Gaussian random variable

N(0ndl+1 , Idl+1 ⊗ Σ(l+1)) in distribution as dl → ∞. Recalling (5) and (7), we conclude that vec(H(l+1))
converges to a Gaussian random variable N(0ndl+1 , Idl+1 ⊗ Σ(l+1)) as d1, . . . , dl sequentially go to infinity.

Conclusion. By the principle of mathematical induction, we have proven this proposition.

C.2 Some discussion w.r.t. G

We claim that the function G is well-defined in Proposition C.1 on the collection of positive semi-definite
matrices

S = {Σ ∈ Rn×n : xT Σx ≥ 0 for all x ∈ Rn×1}. (8)
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Remark C.2. To show that G(Σ) = Eh∼N(0n,Σ)[σ(h)σ(h)T ] is well-defined at any Σ ∈ S, we only need to
show that such Σ is always a feasible covariance matrix of Gaussian distribution. For any Σ ∈ S, there exists
P ∈ Rn×n, such that PP T = Σ. Let ξ ∼ N(0n, In) be an n-dimensional standard normal random variable,
then the random variable Pξ ∼ N(0n, Σ). Thus, all positive semi-definite matrices are feasible covariance
matrices for Gaussian distributions.
Definition C.3. Given any positive semi-definite matrix Σ ∈ S, we define

G1(Σ) := q(Σ)q(Σ)T , (9)

where q(Σ) ∈ Rn×1 is defined by

q(Σ)i :=
√

G(Σ)ii, for all i ∈ [n]. (10)

Lemma C.4. Given any positive semi-definite matrix Σ ∈ S, it holds that

G1(Σ)ij ≥ G(Σ)ij for any i, j ∈ [n]. (11)

Proof. Recalling the formation of function G in Proposition C.1 (NNGP correspondence for vanilla GCN),
for any i, j ∈ [n], we have

G(Σ)ij = Eh∼N(0n,Σ)[σ(hi) · σ(hj)].
Recalling (9) and (10) in Definition C.3, we get

G1(Σ)ij := q(Σ)i · q(Σ)j =
√

G(Σ)ii ·
√

G(Σ)jj

= Eh∼N(0n,Σ)[σ(hi)2] 1
2 · Eh∼N(0n,Σ)[σ(hj)2] 1

2

(12)

From Hölder’s inequality (Hardy et al., 1952), we get

RHS of (12) ≥ Eh∼N(0n,Σ) [|σ(hi) · σ(hj)|]
≥ Eh∼N(0n,Σ) [σ(hi) · σ(hj)] = G(Σ)ij .

Lemma C.5. Given the NNGP covariance matrices {Σ(l)}∞
l=1 defined by (3), it holds that

tr(Σ(l+1)) ≤ σ2
w tr(G(Σ(l))).

Proof. Recalling the NNGP correspondence formula for vanilla GCN (3) in Proposition C.1, we have

tr(Σ(l+1)) = tr(σ2
w(ÂG(Σ(l))Â)) = σ2

w tr(ÂG(Σ(l))Â)). (13)

Since all entries of Â are non-negative, by Lemma C.4, we have

(ÂG(Σ(l))Â)ii ≤ (ÂG1(Σ(l))Â)ii, for any i ∈ [n].

Taking the summation of w.r.t i ∈ [n], we get

tr(ÂG(Σ(l))Â) ≤ tr(ÂG1(Σ(l))Â). (14)

Recalling the definition of function G1 in (9), we get

tr(ÂG1(Σ(l))Â) = tr(Âq(Σ(l))q(Σ(l))T Â) = ∥Âq(Σ(l))∥2. (15)

By Proposition B.1, all the eigenvalues of Â belong to (−1, 1]. Recalling the definition of function q in (10),
we get

∥Âq(Σ(l))∥2 ≤ ∥q(Σ(l))∥2 =
n∑

i=1
q(Σ(l))2

i = tr(G(Σ(l))). (16)

Finally, combining (13), (14), (15), and (16), we complete the proof.
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C.3 Proof of Theorem 3.1 (Signal propagation on ReLU-like-activated vanilla GCN)

We will give a more general signal propagation analysis on vanilla GCN with ReLU-like activation.
Definition C.6 (ReLU-like activation). An activation function σ : R→ R is (α, β)-ReLU if it has the form

σ(x) =
{

αx, x ≥ 0,

βx, x < 0,
(17)

where α, β ∈ R+ and not both of them are 0. We also call such σ a ReLU-like activation function.

Then we extend our analysis from the special (1, 0)-ReLU-activated case to the general (α, β)-ReLU-activated
case.
Theorem C.7 (The generalized version of Theorem 3.1). Under the NNGP correspondence approximation,
when the activation function σ is (α, β)-ReLU in Definition C.6, we have

1. When σ2
w = 2/(α2 + β2), either the graph embedding variation metric

lim
L→∞

M(L)
GEV (σ2

w) = lim
L→∞

EH∼N(0n,Σ(L))
[
Dir(H)/∥H∥2

F
]

= 0,

or the forward propagation metric

lim
L→∞

M(L)
FSP (σ2

w) = lim
L→∞

EH∼N(0n,Σ(L))[∥H∥2
F/∥X∥2

F] = 0.

2. When σ2
w < 2, for any L ≥ 1, the forward propagation metric satisfies

M(L)
FSP (σ2

w) = EH∼N(0n,Σ(L))[∥H∥2
F/∥X∥2

F] ≤ 2C

(α2 + β2)d0
·
(

σ2
w(α2 + β2)

2

)L

.

Lemma C.8. For any x ∈ Rn, it holds that

Dir(Âx) ≤ λ2Dir(x), (18)

where λ is the second largest absolute eigenvalue of Â, i.e.,

λ = max
i∈[n],λi ̸=1

|λi|.

Proof. Since Â is a symmetric real matrix, by Proposition B.1, it can be decomposed as Â = UΛUT , where
Λ = diag(λ1, λ2, . . . , λn) and U ∈ Rn×n is an orthogonal matrix. The i-th column ui of U is the eigenvector
corresponding to λi.

By Proposition B.1, we have λi ∈ (−1, 1] for all i ∈ [n]. Since L̂ = I − Â, we conclude that

Dir(Âx) = (Âx)T L̂Âx = xT ÂL̂Âx = zT UT (UΛU−1)(U(I − Λ)U−1)(UΛU−1)z

= zT Λ(I − Λ)Λz =
n∑

i=1
(1− λi)λ2

i z2
i ≤ λ2

n∑
i=1

(1− λi)z2
i

= λ2zT (I − Λ)z = λ2Dir(x).

Lemma C.9. When the activation function σ is (α, β)-ReLU, it holds that

(σ(x)− σ(y))2 + (σ(−x)− σ(−y))2 ≤ (α2 + β2)(x− y)2, (19)

for any x, y ∈ R. Moreover, the inequality becomes an equality if and only if xy ≥ 0.
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Proof. When x, y ≥ 0, it holds that

LHS of (19) = (αx− αy)2 + (−βx + βy)2 = RHS of (19).

Similarly, the equality holds when x, y ≤ 0. When xy < 0,

LHS of (19) = (αx− βy)2 + (−βx + αy)2

= (α2 + β2)(x2 + y2)− 4αβxy

= (α2 + β2)(x− y)2 + 2(α− β)2xy

< RHS of (19).

Lemma C.10. When the activation function σ is (α, β)-ReLU, it holds that

Dir(σ(h)) + Dir(σ(−h)) ≤ (α2 + β2)Dir(h). (20)

Proof. Since the activation function σ is (α, β)-ReLU, we have

σ(cx) = cσ(x), for any c ∈ R+, x ∈ R.

Then we get

LHS of (20) =
∑

(i,j)∈E

[
σ(hi)√
1 + di

− σ(hj)√
1 + dj

]2

+
[

σ(−hi)√
1 + di

− σ(−hj)√
1 + dj

]2

=
∑

(i,j)∈E

[
σ

(
hi√

1 + di

)
− σ

(
hj√

1 + dj

)]2

+
[

σ

(
−hi√
1 + di

)
− σ

(
−hj√
1 + dj

)]2

.

By Lemma C.9, we have

LHS of (20) ≤ (α2 + β2)
∑

(i,j)∈E

[
hi√

1 + di

− hj√
1 + dj

]2

= RHS of (20).

Lemma C.11. When the activation function σ is (α, β)-ReLU, for any feasible covariance matrix Σ ∈ Rn×n,
it holds that

Eh∼N(0n,Σ)[Dir(σ(h))] ≤ α2 + β2

2 · Eh∼N(0n,Σ)[Dir(h)].

Proof. By symmetry, for any n-dimensional random variable h ∼ N(0n, Σ), it holds that −h ∼ N(0n, Σ). By
Lemma C.10, we have

2Eh∼N(0n,Σ)[Dir(σ(h))] = Eh∼N(0n,Σ)[Dir(σ(h)) + Dir(σ(−h))]
≤ (α2 + β2)Eh∼N(0n,Σ)[Dir(h)].

Lemma C.12. Under the NNGP correspondence approximation, suppose that the activation function σ is
(α, β)-ReLU in Definition C.6. If

σ2
w <

2
λ2(α2 + β2) ,

then we have

Eh∼N(0n,Σ(l))[Dir(h)] = O

((
λ2σ2

w(α2 + β2)
2

)l
)

, as l→∞,
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where λ is the second largest non-one absolute eigenvalue of Â, i.e.,

λ = max
i∈[n],λi ̸=1

|λi|.

Proof. For any positive semi-definite matrix Σ ∈ S and any n-dimensional Gaussian random variable
h ∼ N(0n, Σ), we have

Eh∼N(0n,Σ)[Dir(h)] = Eh∼N(0n,Σ)[tr(hT L̂h)] = Eh∼N(0n,Σ)[tr(L̂hhT )] = tr(L̂Σ).

Then according the NNGP correspondence formula (3) in Proposition C.1, for any l ∈ N, we have

Eh∼N(0n,Σ(l+1))[Dir(h)] = tr(L̂Σ(l+1))

= σ2
w tr(L̂ÂG(Σ(l))Â) = σ2

w tr
(

L̂Â · Eh∼N(0n,Σ(l))[σ(h)σ(h)T ] · Â
)

= σ2
wEh∼N(0n,Σ(l))

[
tr
(

L̂Âσ(h)σ(h)T Â
)]

= σ2
wEh∼N(0n,Σ(l))

[
tr
(

σ(h)T ÂL̂Âσ(h)
)]

= σ2
wEh∼N(0n,Σ(l))

[
Dir

(
Âσ(h)

)]
.

(21)

By Lemma C.8 and Lemma C.11, we get

RHS of (21) ≤ λ2σ2
w · Eh∼N(0n,Σ(l))[Dir(σ(h))] ≤ λ2σ2

w(α2 + β2)
2 · Eh∼N(0n,Σ(l))[Dir(h)]. (22)

Thus, combining (21) and (22), by induction, we have

Eh∼N(0n,Σ(l))[Dir(h)] = O

((
λ2σ2

w(α2 + β2)
2

)l
)

, as l→∞.

Proof of Theorem C.7 (the generalized version of Theorem 3.1). First of all, we will prove part 2 of this
theorem. For any positive semi-definite matrix Σ ∈ S, we have

Eh∼N(0n,Σ)[∥h∥2] = Eh∼N(0n,Σ)[tr(hT h)] = Eh∼N(0n,Σ)[tr(hhT )] = tr(Σ).

For this reason, we only need to focus on {tr(Σ(l))}∞
l=1 in the following proof.

We will show that {tr(Σ(l))}∞
l=1 is a decreasing sequence if σw ≤ 2/(α2 + β2). By Lemma C.5, we have

tr(Σ(l+1)) ≤ σ2
w tr(G(Σ(l))). (23)

When the activation function σ is (α, β)-ReLU, for any c ∈ R+, it holds that

EZ∼N(0,1)[σ(cZ)2] = EZ∼N(0,1)[α2c2Z21{Z>0}] + EZ∼N(0,1)[β2c2Z21{Z≤0}]

= α2 + β2

2 · EZ∼N(0,1)[c2Z2].

Accordingly, for any positive semi-definite matrix Σ ∈ S and i ∈ [n], we have

G(Σ)ii = Eh∼N(0n,Σ)[σ(hi)2] = EZ∼N(0,1)

[
σ(
√

ΣiiZ)2
]

= α2 + β2

2 · EZ∼N(0,1)
[
ΣiiZ

2] = α2 + β2

2 · Σii.

(24)

Combining (23) and (24), we get

tr(Σ(l+1)) ≤ σ2
w(α2 + β2)

2 tr(Σ(l)).
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Thus, we have shown that {tr(Σ(l))}∞
l=1 is a decreasing sequence if σw ≤ 2/(α2 + β2). In addition, if

σw < 2/(α2 + β2), we get

tr(Σ(L)) ≤
(

σ2
w(α2 + β2)

2

)L−1

tr(Σ(1)). (25)

By Proposition C.1, we have

tr(Σ(1)) = σ2
w

d0
tr(ÂXXT Â) = σ2

w

d0

d0∑
k=1

tr(ÂX:,kXT
:,kÂ) = σ2

w

d0

d0∑
k=1
∥ÂX:,k∥2 (26)

Since all the eigenvalues of Â belong to (−1, 1] by Propositon B.1, we get

RHS of (26) ≤ σ2
w

d0

d0∑
k=1
∥X:,k∥2 = σ2

w

d0
tr(XXT ). (27)

Combining (25), (26), and (27), we have

tr(Σ(L)) ≤ σ2
w

d0
·
(

σ2
w(α2 + β2)

2

)L−1

tr(XXT ).

Thus, the forward propagation metric at the L-th layer satisfies

EH∼N(0n,Σ(L))

[
∥H∥2

F
∥X∥2

F

]
= C

tr(XXT ) · Eh∼N(0n,Σ(L))[∥h∥2] = C

tr(XXT ) tr(Σ(L))

≤ Cσ2
w

d0
·
(

σ2
w(α2 + β2)

2

)L−1

= 2C

(α2 + β2)d0
·
(

σ2
w(α2 + β2)

2

)L

.

Then we have completed part 2 of this theorem. If σ is ReLU activation function, i.e., (1, 0)-ReLU. If
σ < 2 = 2

12+02 , we have

EH∼N(0n,Σ(L))

[
∥H∥2

F
∥X∥2

F

]
= 2C

(12 + 02)d0
·
(

σ2
w(12 + 02)

2

)L

= 2C

d0
·
(

σ2
w

2

)L

,

which coincides with part 2 in Theorem 3.1.

Next, we will prove part 1 of this theorem. Let’s study the case when σ2
w = 2/(α2 + β2). Suppose that

lim
l→∞

tr(Σ(l)) = δ0.

If δ0 = 0, then we have completed the first part of this theorem by getting

lim
L→∞

EH∼N(0n,Σ(L))[∥H∥2
F/∥X∥2

F] = lim
L→∞

C

∥X∥2
F
· Eh∼N(0n,Σ(L))[∥h∥2]

= C

∥X∥2
F
· lim

L→∞
tr(Σ(L)) = 0.

Now we study the case when δ0 > 0. In order to show part 2 of the theorem, we only need to demonstrate
that

lim
L→∞

EH∼N(0n,Σ(L))

[
Dir(H)
∥H∥2

F

]
= 0.
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Given any fixed ϵ > 0, we have

EH∼N(0n,Σ(L))

[
Dir(H)
∥H∥2

F

]
= EH∼N(0n,Σ(L))

[
Dir(H)
∥H∥2

F
1{∥H∥F≥ϵ}

]
+ EH∼N(0n,Σ(L))

[
Dir(H)
∥H∥2

F
1{∥H∥F≤ϵ}

]
.

(28)

From Lemma B.2, it holds that Dir(H)/∥H∥2
F ≤ 2, so we get

RHS of (28) ≤ 1
ϵ2 · EH∼N(0n,Σ(L))

[
Dir(H)1{∥H∥F≥ϵ}

]
+ 2 · PH∼N(0n,Σ(L)) [∥H∥F ≤ ϵ]

≤ 1
ϵ2 · EH∼N(0n,Σ(L)) [Dir(H)] + 2 · PH∼N(0n,Σ(L)) [∥H∥F ≤ ϵ] .

(29)

For any L ≥ 1, there exists i ∈ [n], such that Σ(L)
ii ≥ tr(Σ(L))/n. Then for any n × C random matrix

H ∼ N(0n, Σ(L)), we have Hi,1 ∼ N(0, Σ(L)
ii ). For this reason, we have

PH∼N(0n,Σ(L)) [∥H∥F ≤ ϵ] ≤ PH∼N(0n,Σ(L)) [|Hi,1| ≤ ϵ] = PZ∼N(0,1)

[
|Z| ≤ ϵ√

Σii

]
≤ PZ∼N(0,1)

[
|Z| ≤ ϵ ·

√
n

tr(Σ(L))

]
= 2Φ

(
ϵ ·
√

n

tr(Σ(L))

)
− 1,

(30)

where Φ(x) = PZ∼N(0,1)[Z ≤ x] denotes the cumulative distribution function of the standard normal
distribution N(0, 1).

Combining (28), (29), and (30), we get

EH∼N(0n,Σ(L))

[
Dir(H)
∥H∥2

F

]
≤ 1

ϵ2 · EH∼N(0n,Σ(L)) [Dir(H)] + 4Φ
(

ϵ ·
√

n

tr(Σ(L))

)
− 2,

for any L ≥ 1.

Since
σ2

w = 2
α2 + β2 <

2
λ2(α2 + β2) ,

by Lemma C.12, we have
lim

L→∞
EH∼N(0n,Σ(L))[Dir(H)] = 0.

We let L→∞ in (28) and get

lim sup
L→∞

EH∼N(0n,Σ(L))

[
Dir(H)
∥H∥2

F

]
≤ 1

ϵ2 · lim sup
L→∞

EH∼N(0n,Σ(L)) [Dir(H)] + 4 · lim sup
L→∞

Φ
(

ϵ ·
√

n

tr(Σ(L))

)
− 2

= 1
ϵ2 · 0 + 4Φ

(
ϵ ·
√

n

δ0

)
− 2 = 4Φ

(
ϵ ·
√

n

δ0

)
− 2.

(31)

Notice that the left hand side of (31) is independent of the choice of ϵ. Since Φ is a continuous map, we let
ϵ→ 0+ and get

lim sup
L→∞

EH∼N(0n,Σ(L))

[
Dir(H)
∥H∥2

F

]
≤ 4Φ(0)− 2 = 0.

Therefore, we have

lim
L→∞

EH∼N(0n,Σ(L))

[
Dir(H)
∥H∥2

F

]
= 0.

33



Under review as submission to TMLR

C.4 Proof of Theorem 3.2 (Signal propagation on ReLU-activated vanilla GCN)

Theorem C.13 (The generalized version of Theorem 3.2). Under the NNGP correspondence approximation,
the graph embedding variation metric M(L)

GEV (σ2
w) = EH∼N(0n,Σ(L))[Dir(H)/∥H∥2

F] is independent of the choice
of σ2

w.

Proof of Theorem C.13 (the generalized version of Theorem 3.2). Under the NNGP correspondence approx-
imation, we only need to prove that

Σ(l)(σ2
w)

σ2l
w

= Σ(l)(σ̃2
w)

σ̃2l
w

, for any l ≥ 1 and σ2
w, σ̃2

w > 0. (32)

If (32) holds, then H ∼ N(0n, Σ(L)(σ2
w)) implies σ̃L

wH/σL
w ∼ N(0n, Σ(L)(σ̃2

w)). In this way, we have

EH∼N(0n,Σ(L)(σ2
w))

[
Dir(H)
∥H∥2

F

]
= EH∼N(0n,Σ(L)(σ2

w))

[
Dir(σ̃L

wH/σL
w)

∥σ̃L
wH/σL

w∥2
F

]
= EH∼N(0n,Σ(L)(σ̃2

w))

[
Dir(H)
∥H∥2

F

]
.

Now we prove (32) by mathematical induction. When l = 1, by Proposition C.1, we have

Σ(1)(σ2
w)

σ2
w

= 1
d0

ÂXXT Â = Σ(1)(σ̃2
w)

σ̃2
w

, for any σ2
w, σ̃2

w > 0.

If (32) holds for L, we look at the case for L + 1. Since the activation σ is (α, β)-ReLU, for any c ∈ R+, we
have σ(cx) = cσ(x). Recalling the definition of G in Proposition C.1, for any positive semi-definite matrix
Σ ∈ S, we have

G(c2Σ)ij = Eh∼N(0n,c2Σ)[σ(hi) · σ(hj)] = Eh∼N(0n,Σ)[σ(chi) · σ(chj)]
= c2Eh∼N(0n,Σ)[σ(hi) · σ(hj)] = c2G(Σ)ij ,

for any i, j ∈ [n] and c ∈ R+. Thus, by Proposition C.1, we have(
σ̃2

w

σ2
w

)L+1

· Σ(L+1)(σ2
w) (a)=

(
σ̃2

w

σ2
w

)L+1

· σ2
wÂG

(
Σ(L)(σ2

w)
)

Â

= σ̃2
w ·
(

σ̃2
w

σ2
w

)L

· ÂG
(

Σ(L)(σ2
w)
)

Â

(b)= σ̃2
w · ÂG

(
Σ(L)(σ̃2

w)
)

(c)= Σ(L+1)(σ̃2
w),

where (a) and (c) are due to Proposition C.1 and (b) are from the induction hypothesis.

Therefore, (32) holds for all L ≥ 1 and we have completed the proof.

C.5 Signal propagation on tanh-activated vanilla GCN

Theorem C.14. Under the NNGP correspondence approximation, when the activation function σ is tanh,
we have

1. When σ2
w = 1, we have limL→∞ M(L)

FSP (σ2
w) = limL→∞ EH∼N(0n,Σ(L))[∥H∥2

F/∥X∥2
F] = 0.

2. When σ2
w < 1, we have M(L)

FSP (σ2
w) = EH∼N(0n,Σ(L))[∥H∥2

F/∥X∥2
F] ≤ C

d0
· σ2L

w for any L ≥ 1.
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Lemma C.15. The collection of positive semi-definite matrices S defined by (8) is a closed subset of Rn×n.

Proof. We only need to show that given any convergent sequence {Q(k)}∞
k=1 ⊂ S, its limit also belongs to S.

Suppose that
lim

k→∞
Q(k) = Q∗.

Since all {Q(k)}∞
k=1 are positive semi-definite matrices, so given any x ∈ Rn×1, we have

xT Q(k)x ≥ 0, for all k ∈ N.

Then we get
xT Q∗x = lim

k→∞
xT Q(k)x ≥ 0.

Thus, Q∗ also belongs to S.

Lemma C.16. When the activation function σ is tanh, i.e., σ(x) = (ex − e−x)/(ex + e−x), then we have
|σ(x)| ≤ |x| for any x ∈ R. Moreover, the equality holds if and only if x = 0.

Proof. It is easy to verify that σ(0) = 0. Given any x ≥ 0, we have

σ(−x) = e−x − ex

e−x + ex
= −ex − e−x

e−x + ex
= −σ(x).

For this reason, we only need to prove that |σ(x)| < |x| for any x > 0. In the following part, we will show
that 0 < σ(x) < x when x > 0.

We define f(x) := σ(x)− x for any x ≥ 0. Let’s consider the derivative of f :

f ′(x) = d

dx

(
ex − e−x

ex + e−x
− x

)
= 1

(ex + e−x)2

[
(ex + e−x) · d

dx
(ex − e−x)− (ex − e−x) · d

dx
(ex + e−x)

]
− 1

= (ex + e−x)2 − (ex − e−x)2

(ex + e−x)2 − 1

= −(ex − e−x)2

(ex + e−x)2 .

Then if x > 0, we have f ′(x) < 0; if x = 0, we have f ′(x) = 0. Thus, f(x) = σ(x)− x is a strictly decreasing
function in [0, +∞). Since f(0) = σ(0)− 0 = 0, we have

f(x) = σ(x)− x < 0, for any x > 0.

Since 0 < ex − e−x < ex + e−x for any x > 0, it holds that

σ(x) = (ex − e−x)/(ex + e−x) > 0, for any x > 0.

Therefore, we get that 0 < σ(x) < x for any x > 0 and have completed the proof of this lemma.

Now it is time for Theorem C.14.
Proof of Theorem C.14. First of all, we will prove part 2 of this theorem. For any positive semi-definite
matrix Σ ∈ S, we have

Eh∼N(0n,Σ)[∥h∥2] = Eh∼N(0n,Σ)[tr(hT h)] = Eh∼N(0n,Σ)[tr(hhT )] = tr(Σ).
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For this reason, we only need to focus on {tr(Σ(l))}∞
l=1 in the following proof.

We will show that {tr(Σ(l))}∞
l=1 is a decreasing sequence if σw ≤ 1. By Lemma C.5, we have

tr(Σ(l+1)) ≤ σ2
w tr(G(Σ(l))). (33)

By Lemma C.16, we have |σ(x)| ≤ |x| for any x ∈ R. Moreover, the equality holds if and only if x = 0. For
this reason, given any positive semi-definite matrix Σ ∈ S, we have

tr(G(Σ)) =
n∑

i=1
Eh∼N(0n,Σ)[σ(hi)2] =

n∑
i=1

EZ∼N(0,1)

[
σ(
√

ΣiiZ)2
]

≤
n∑

i=1
EZ∼N(0,1)

[
(
√

ΣiiZ)2
]

=
n∑

i=1
Eh∼N(0n,Σ)[h2

i ] = tr(Σ),
(34)

and the inequality becomes an equality if and only if
√

ΣiiZ = 0 holds P-a.s. for all i ∈ [n]. Since Z ∼ N(0, 1)
follows a standard normal distribution, it is equivalent to Σii = 0 for all i ∈ [n], i.e., tr(Σ) = 0.

Combining (33) and (34), we get
tr(Σ(l+1)) ≤ σ2

w tr(Σ(l)).

Thus, we have shown that {tr(Σ(l))}∞
l=1 is a decreasing sequence if σw ≤ 1. In addition, if σw < 1, we get

tr(Σ(L)) ≤ σ2(L−1)
w tr(Σ(1)). (35)

Analogous to the proof of part 2 in Theorem C.7 for ReLU-activated model, by Proposition C.1 and Proposition
B.1, we have

tr(Σ(1)) = σ2
w

d0
tr(ÂXXT Â) = σ2

w

d0

d0∑
k=1

tr(ÂX:,kXT
:,kÂ)

= σ2
w

d0

d0∑
k=1
∥ÂX:,k∥2 ≤ σ2

w

d0

d0∑
k=1
∥X:,k∥2 = σ2

w

d0
∥X∥2

F.

(36)

Combining (35) and (36), we have

tr(Σ(1)) ≤ σ2L
w

d0
∥X∥2

F.

Then we have completed part 2 of the theorem by getting

EH∼N(0n,Σ(L))

[
∥H∥2

F
∥X∥2

F

]
= C

∥X∥2
F
Eh∼N(0n,Σ(L))[∥h∥2] = C

∥X∥2
F

tr(Σ(L))

≤ C

∥X∥2
F
· σ2L

w

d0
· ∥X∥2

F ≤
C

d0
· σ2L

w .

Next, we will prove part 1 of this theorem. Let’s study the case when σw = 1.

Since Σ(l) is a positive semi-definite matrix for any l ∈ N, we have

|Σ(l)
ij |

2 ≤ Σ(l)
ii Σ(l)

jj ≤ tr(Σ(l))2 ≤ tr(Σ(1))2, for all i, j ∈ [n].

Taking the summation of both sides w.r.t. i and j, we get

∥Σ(l)∥2
F =

n∑
i,j=1

|Σ(l)
ij |

2 ≤ n2 tr(Σ(1))2 <∞.
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Thus, the matrix sequence {Σ(l)}∞
l=1 lies in

S ′ = S ∩ {Σ ∈ Rn×n : ∥Σ∥F ≤ n tr(Σ(1))}.

By Lemma C.15, S ′ is a bounded and closed subset, i.e., a compact subset, of Rn×n. By the
Bolzano–Weierstrass theorem, there exists a subsequence {Σ(lk)}∞

k=1 of {Σ(l)}∞
l=1 and Σ∗ ∈ S ′ such that

lim
k→∞

Σ(lk) = Σ∗.

Recalling (33) and that {tr(Σ(l))}∞
l=1 is a decreasing sequence, we have

tr(Σ(lk+1)) ≤ tr(Σ(lk+1)) ≤ tr(G(Σ(lk))).

Since G is a continuous function, we let k →∞ and get

tr(Σ∗) = lim
k→∞

tr(Σ(lk+1)) ≤ lim
k→∞

tr(G(Σ(lk))) = tr(G(Σ∗)).

According to (34), we have
tr(G(Σ∗)) = tr(Σ∗).

This implies tr(Σ∗) = 0 by (34).

Then, since {tr(Σ(l))}∞
l=1 is a decreasing sequence, we have

lim
l→∞

Eh∼N(0n,Σ(l))[∥h∥2] = lim
l→∞

tr(Σ(l)) = lim
k→∞

tr(Σ(lk)) = tr(Σ∗) = 0.

Consequently, we have

lim
L→∞

EH∼N(0n,Σ(L))

[
∥H∥2

F
∥X∥2

F

]
= C

∥X∥2
F

lim
L→∞

Eh∼N(0n,Σ(L))[∥h∥2] = 0.
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D Signal propagation theory for linear ResGCN

D.1 NNGP correspondence for linear ResGCN

Proposition D.1 (NNGP correspondence for linear ResGCN). As the width of the hidden layers d→∞,
the l-th layer’s pre-activation embedding channels {H(l)

:,k}k∈[d] converge to i.i.d. Gaussian random variables
N(0n, Σ̃(l)) in distribution. The covariance matrices are

Σ̃(1) = σ4
w

d0
ÂXXT Â,

Σ̃(l+1) = α2σ2
wÂΣ̃(l)Â + β2Σ̃(l).

(37)

Moreover, as d→∞, the l-th layer’s post-activation embedding channels {X(l)
:,k}k∈[d] converge to i.i.d. random

variables in distribution. The random variables have mean 0n and their covariance matrices Φ(l), which
satisfy

Φ(0) = σ2
w

d0
XXT ,

Φ(l) = α2σ2
wÂΦ(l−1)Â + β2Φ(l−1).

(38)

Proof of Proposition D.1. For Φ(l), Σ̃(l+1) defined by (38) and (37), it is easy to show that Σ̃(l+1) = σ2
wÂΦ(l)Â.

Similar to the proof of Proposition C.1, We will prove this proposition by mathematical induction.

Base case. When l = 0, the k-th channel of X(0) is

X
(0)
:,k = XW

(0)
:,k + 1n · b(0)

k = XW
(0)
:,k . (39)

According to our initialization, the weights {W (0)
:,k }k∈[d] are i.i.d. random variables, so {X(0)

:,k }k∈[d] are also
i.i.d. random variables. Taking the expectation of (39), we get

E[X(0)
:,k ] = X · E[W (0)

:,k ] = 0n.

Calculating the covariance matrix of (39), we have

Cov[X(0)
:,k ] = E[X(0)

:,k ·X
(0)T
:,k ] = E[XW

(0)
:,k W

(0)T
:,k XT ]

= X · E[W (0)
:,k W

(0)T
:,k ] ·XT = X

(
σ2

w

d0
· Id0

)
XT

= σ2
w

d0
XXT .

Thus, if we let Φ(0) = σ2
wXXT /d0, then we have {X(0)

:,k }k∈[d] are i.i.d. with mean 0n and covariance matrix
Φ(0).

Now we study the pre-activation embedding H(1). Since the bias term b(1) is initialized to be 0d, we have

H(1) = ÂX(0)W (1) + 1n · b(1) = ÂX(0)W (1).

Similar to the proof of Proposition C.1 for vanilla GCN, we vectorize the equation and get

vec(H(1)) =
d∑

k=1
vec

[ÂX
(0)
:,k ]︸ ︷︷ ︸

n×1

·W (1)
k,:︸ ︷︷ ︸

1×d

 .

For brevity, we define
ω

(1)
kk′ :=

√
d ·W (1)

kk′ , for all k, k′ ∈ [d]
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and
Z

(1)
k := vec

(
[ÂX

(0)
:,k ] · w(l+1)

k,:

)
, for all k ∈ [d].

Then we get that {ω(1)
kk′}k,k′∈[d] are i.i.d. with mean 0 and variance σ2

w, and

vec(H(1)) = 1√
d

d∑
k=1

Z
(1)
k .

Analogous to the proof of Proposition C.1, {Z(1)
k }k∈[d] are i.i.d., E[Z(1)

1 ] = 0nd, and

Cov[Z(1)
1 ] = E

[
ω

(1)T
1,: ω

(1)
1,:

]
⊗
{

Â · E
[
X

(0)
:,1 X

(0)T
:,1

]
· Â
}

= σ2
wId ⊗ ÂΦ(0)Â

= Id ⊗ σ2
wÂΦ(0)Â.

Since Σ̃(1) = σ4
wÂXXT Â/d0 = σ2

wÂΦ(0)Â, applying the central limit theorem, vec(H(1)) converges to a
Gaussian random variable N(0nd, Id ⊗ Σ̃(1)) as d → ∞. Consequently, {H(1)

:,k } converge to i.i.d. Gaussian
random variables N(0n, Σ̃(1)) in distribution.

Induction step. Suppose that {X(l−1)
:,k }k∈[d] converge to i.i.d. random variables with mean 0n and

covariance matrix Φ(l−1) in distribution. Suppose that {H(l)
:,k}k∈[d] converge to i.i.d. Gaussian random

variables N(0n, Σ̃(l)) in distribution. Now we look at X(l) first.

For the linear ResGCN at initialization, the post-activation embeddings satisfy

X(l) = αH(l) + βX(l−1) = αÂX(l−1)W (l) + βX(l−1)

We take any k-th channel X
(l)
:,k of X(l):

X
(l)
:,k = αH

(l)
:,k + βX

(l−1)
:,k

= αÂX(l−1)W
(l)
:,k + βX

(l−1)
:,k

= α
( d∑

k′=1
ÂX

(l−1)
:,k′ W

(l)
k′k

)
+ βX

(l−1)
:,k

= α√
d

( d∑
k′=1

ÂX
(l−1)
:,k′ ω

(l)
k′k

)
︸ ︷︷ ︸

(i)

+ βX
(l−1)
:,k︸ ︷︷ ︸

(ii)

,

where ω
(l)
k′k := W

(l)
k′k/
√

d has mean 0 and variance σ2
w, which does not rely on d. By the induction hypothesis,

X
(l−1)
:,k′ and X

(l−1)
:,k are independent when k′ ̸= k. Then (ii) is independent of the k′-th term αÂX

(l−1)
:,k′ ω

(l)
k′k/
√

d

in (i) when k′ ≠ k. We notice that the correlation between (i)’s k-th term αÂX
(l−1)
:,k ω

(l)
kk/
√

d and βX
(l−1)
:,k

goes to 0 as d→∞. Thus, we get that (i) and (ii) are asymptotically independent, the expectation

E[X(l)
:,k ] = αE[H(l)

:,k ] + βE[X(l−1)
:,k ] = 0n,

and the covariance matrix

Cov[X(l)
:,k ] = α2Cov[H(l)

:,k ] + β2Cov[X(l−1)
:,k ] = α2Σ̃(l) + β2Φ(l−1)

= α2σ2
wÂΦ(l−1)Â + β2Φ(l−1)

= Φ(l).
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By the induction hypothesis, {H(l)
:,k} are i.i.d. and {X(l−1)

:,k } are i.i.d. as d→∞, so {X(l)
:,k} are i.i.d..

Next, we look at the pre-activation embedding H(l+1). We have

H(l+1) = ÂX(l)W (l+1) + 1n · b(l+1) = ÂX(l)W (l+1).

We also vectorize it and get

vec(H(l+1)) =
d∑

k=1
vec
(
[ÂX

(l)
:,k ] ·W (l+1)

k,:
)
.

Analogous to the proof of base case (or the proof of Proposition C.1), we can conclude that {H(l+1)
:,k } converge

i.i.d. to N(0n, σ2
wÂΦ(l)Â), i.e. N(0n, Σ̃(l+1)).

Conclusion. By the principle of mathematical induction, we have proven this proposition.

D.2 Proof of Theorem 3.3 (signal propagation on linear ResGCN)

Theorem D.2. Suppose that there exists an eigenvector u of Â corresponding to the eigenvalue 1, such that
the input feature X ∈ Rn×d0 satisfies XT u ̸= 0d0×1. Under the NNGP correspondence approximation for
linear ResGCN, if α2σ2

w + β2 > 1 and α ̸= 0, then we have

1. limL→∞ M(L)
FSP (σ2

w) = limL→∞ EH(L)∼N(0n,Σ̃(L))[∥H(L)∥2
F/∥X∥2

F] = +∞.

2. limL→∞ M(L)
GEV (σ2

w) = limL→∞ EH(L)∼N(0n,Σ̃(L))[Dir(H(L))/∥H(L)∥2
F] = 0.

Proof of part 1 in Theorem 3.3. For any positive semi-definite matrix Σ ∈ S, we have

Eh∼N(0n,Σ)[∥h∥2] = Eh∼N(0n,Σ)[tr(hT h)] = Eh∼N(0n,Σ)[tr(hhT )] = tr(Σ).

Recalling the NNGP correspondence formula for linear ResGCN (37) in Proposition D.1, we have

Σ̃(1) = σ4
w

d0
ÂXXT Â,

Σ̃(l+1) = σ2
wα2ÂΣ̃(l)Â + β2Σ̃(l).

(40)

By Proposition B.1, we can assume that A = UΛUT , where Λ = diag(λ1, . . . , λn) with 1 = λ1 ≥ · · · ≥ λn > −1
and U ∈ Rn×n is an orthogonal matrix, i.e., UUT = UT U = In. Then from (40), we get

UT Σ̃(l+1)U = σ2
wα2 · UT ÂΣ̃(l)ÂU + β2 · UT Σ̃(l)U

= σ2
wα2 · ΛUT Σ̃(l)UΛ + β2 · UT Σ̃(l)U.

(41)

So for any i ∈ [n] and l ∈ N, we have

(UT Σ̃(l+1)U)ii = σ2
wα2 · λi(UT Σ̃(l)U)iiλi + β2(UT Σ̃(l)U)ii

= (α2λ2
i σ2

w + β2) · (UT Σ̃(l)U)ii.

Thus, for any i ∈ [n] and L ∈ N, we have

(UT Σ̃(L)U)ii = (α2λ2
i σ2

w + β2)L−1 · (UT Σ̃(1)U)ii.

According to the assumption on input feature X, there exists an eigenvector u of Â corresponding to the
eigenvalue 1, such that XT u ̸= 0d0×1. Suppose that u1, u2, . . . , un ∈ Rn×1 are the columns of U , then there
exists i ∈ [n] such that XT ui ̸= 0. Otherwise, suppose that u =

∑n
j=1 cjuj and XT uj = 0 for any j ∈ [n],

then XT u =
∑n

j=1 cjXT uj = 0. Contradiction!
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Without loss of generality, we suppose that Au1 = u1 and XT u1 ̸= 0d0×1. Then we have

(UT Σ̃(1)U)11 = σ4
w

d0
· uT

1 ÂXXT Âu1 = σ4
w

d0
· uT

1 XXT u1 = σ4
w

d0
· ∥XT u1∥2 > 0.

It results in
tr(Σ̃(L)) = tr(UT Σ̃(L)U) ≥ (UT Σ̃(L)U)11 = (α2σ2

w + β2)L−1 · σ4
w

d0
∥XT u1∥2. (42)

Therefore, if α2σ2
w + β2 > 1, we have

lim
L→∞

M(L)
FSP(σ2

w) = lim
L→∞

EH(L)∼N(0n,Σ̃(L))[∥H
(L)∥2

F/∥X∥2
F]

= C

∥X∥2
F

lim
L→∞

Eh∼N(0n,Σ̃(L))[∥h∥
2]

= C

∥X∥2
F

lim
L→∞

tr(Σ̃(L)) = +∞.

Proof of part 2 in Theorem 3.3. For any positive semi-definite matrix Σ ∈ S, we have

Eh∼N(0n,Σ)[Dir(h)] = Eh∼N(0n,Σ)[tr(hT L̂h)] = Eh∼N(0n,Σ)[tr(L̂hhT )] = tr(L̂Σ).

So when we want to study Eh∼N(0n,Σ)[Dir(h)], we only need to look at tr(L̂Σ) in the following of the proof.

Since ÂL̂ = Â(In − Â) = Â− Â2 = (In − Â)Â = L̂Â, we multiply L̂ on both sides of the second equation in
(40) and get

L̂Σ̃(l+1) = σ2
wα2 · L̂ÂΣ̃(l)Â + β2L̂Σ̃(l)

= σ2
wα2 · ÂL̂Σ̃(l)Â + β2L̂Σ̃(l).

Then for any i ∈ [n] and l ∈ N, we have

(UT L̂Σ̃(l+1)U)ii = σ2
wα2 · λi(UT L̂Σ̃(l)U)iiλi + β2 · (UT L̂Σ̃(l)U)ii

= (α2λ2
i σ2

w + β2) · (UT L̂Σ̃(l)U)ii.

Thus, for any i ∈ [n] and L ∈ N, we have

(UT L̂Σ̃(L)U)ii = (α2σ2
wλ2

i + β2)L−1 · (UT L̂Σ̃(1)U)ii (43)

Since UT L̂U = UT (In − Â)U = In − Λ, we get

UT L̂Σ̃(1)U = (In − Λ)UT Σ̃(1)U

We denote
ri = (UT Σ̃(1)U)ii, for any i ∈ [n].

Then by (43), we have
(UT L̂Σ̃(L)U)ii = (α2σ2

wλ2
i + β2)L−1 · (1− λi)ri,

From Proposition B.1, we have

(UT L̂Σ̃(L)U)ii ≤ (α2σ2
wλ2 + β2)L · (1− λi)ri, if λi ∈ (−1, 1);

(UT L̂Σ̃(L)U)ii = 0 = (α2σ2
wλ2 + β2)L · (1− λi)ri, if λi = 1,

where λ = maxλi ̸=1 |λi| ∈ [0, 1). Thus, we get

tr(L̂Σ̃(L)) = tr(UT L̂Σ̃(L)U) ≤ (α2σ2
wλ2 + β2)L−1 ·

n∑
i=1

(1− λi)ri.
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We conclude that

EH(L)∼N(0n,Σ̃(L))[Dir(H(L))] = C · Eh∼N(0n,Σ̃(L))[Dir(h)] = C · tr(L̂Σ̃(L))

≤ C(α2σ2
wλ2 + β2)L−1 ·

n∑
i=1

(1− λi)ri.

Then we have

EH(L)∼N(0n,Σ̃(L))[Dir(H(L))]
(α2σ2

w + β2)L−1 ≤

(
C

n∑
i=1

(1− λi)ri

)
·
(

α2σ2
wλ2 + β2

α2σ2
w + β2

)L−1

.

Since α2σ2
w + β2 > 1 and α ̸= 0 as assumed in the statement of this theorem, we have (α2σ2

wλ2 + β2)/(α2σ2
w +

β2) ∈ [0, 1). So we get that

lim
L→∞

EH(L)∼N(0n,Σ̃(L))[Dir(H(L))]
(α2σ2

w + β2)L
= 0. (44)

Recalling (42) in the proof of part 1 for Theorem 3.3, if we define

δ0 = σ4
w

d0
∥XT u1∥2 and K = α2σ2

w + β2,

then given any L ∈ N, we have
1

KL−1 · tr(Σ̃
(L)) ≥ δ0 > 0. (45)

Similar to the proof of part 2 in Theorem C.7, we have

EH∼N(0n,Σ̃(L))

[
Dir(H)
∥H∥2

F

]
= EH∼N(0n,Σ̃(L))

[
Dir(H)
∥H∥2

F
1{∥H∥2

F>ϵKL−1}

]
+ EH∼N(0n,Σ̃(L))

[
Dir(H)
∥H∥2

F
1{∥H∥2

F≤ϵKL−1}

]
≤

EH∼N(0n,Σ̃(L))[Dir(H)]
ϵKL−1 + 2 · PH∼N(0n,Σ̃(L))[∥H∥

2
F ≤ ϵKL−1].

(46)

For any L ≥ 1, there exists i ∈ [n], such that Σ̃(L)
ii ≥ tr(Σ̃(L))/n. For any n × C random matrix H ∼

N(0n, Σ̃(L)), it holds that Hi,1 ∼ N(0, Σ̃(L)
ii ). By (45), we have

PH∼N(0n,Σ̃(L))
[
∥H∥2

F ≤ ϵKL−1] ≤ PH∼N(0n,Σ̃(L))
[
H2

i,1 ≤ ϵKL−1]
= PZ∼N(0,1)

[
Z2 ≤ ϵKL−1

Σ̃(L)
ii

]
≤ PZ∼N(0,1)

[
Z2 ≤ ϵnKL−1

tr(Σ̃(L))

]
≤ PZ∼N(0,1)

[
Z2 ≤ ϵn

δ0

]
= 2Φ

(√
ϵn

δ0

)
− 1,

(47)

where Φ(x) = PZ∼N(0,1)[Z ≤ x] denotes the cumulative distribution function of the standard normal
distribution N(0, 1).

Combining (46) and (47), we get

EH∼N(0n,Σ̃(L))

[
Dir(H)
∥H∥2

F

]
≤ 1

ϵKL−1 · EH∼N(0n,Σ̃(L))[Dir(H)] + 4Φ
(√

ϵn

δ0

)
− 2.
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By (44) , we let L→∞ and get

lim sup
L→∞

EH∼N(0n,Σ̃(L))

[
Dir(H)
∥H∥2

F

]
≤ 1

ϵKL−1 · lim sup
L→∞

EH∼N(0n,Σ̃(L))[Dir(H)] + 4Φ
(√

ϵn

δ0

)
− 2

= 1
ϵ
· 0 + 4Φ

(√
ϵn

δ0

)
− 2 = 4Φ

(√
ϵn

δ0

)
− 2.

(48)

Notice that the left hand side of (48) is independent of the choice of ϵ. Since Φ is a continuous map, we let
ϵ→ 0+ and get

lim sup
L→∞

EH∼N(0n,Σ̃(L))

[
Dir(H)
∥H∥2

F

]
≤ 4Φ(0)− 2 = 0.

Therefore, we have

lim
L→∞

M(L)
GEV(σ2

w) = lim
L→∞

EH∼N(0n,Σ̃(L))

[
Dir(H)
∥H∥2

F

]
= 0.
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E SPoGInit algorithm details

In Section 4, SPoGInit aims to find a better initialization by minimizing

w1VFSP + w2VBSP − w3M(L)
GEV .

In the implementation of SPoGInit algorithm, we always use one random weight sample to get point estimates
V̂FSP, V̂BSP, M̂(L)

GEV of VFSP, VBSP, M(L)
GEV , respectively. We take deep vanilla GCNs as an example to showcase the

SPoGInit methodology. Given any Xavier-initialized weight {Ŵ (l)}L
l=1, SPoGInit scales the weights layer-wise

by γ = (γ(l))l∈[L] ∈ RL
>0 to yield new initialization θ(γ) = {W (l)}L

l=1 = {γ(l)Ŵ (l)}L
l=1 that achieves proper

signal propagation. To be more specific, SPoGInit algorithm solves the optimization problem

min
γ

F (θ(γ)) := w1V̂FSP(γ) + w2V̂BSP(γ)− w3M̂(L)
GEV(γ), (49)

where

V̂FSP := (M̂(1)
FSP/M̂(L−1)

FSP − 1)2 =
[
∥H(1)(θ(γ))∥F

∥H(L−1)(θ(γ))∥F
− 1
]2

,

V̂BSP := (M̂(2)
BSP/M̂(L−1)

BSP − 1)2 =
[
∥g(2)(θ(γ))∥F

∥g(L−1)(θ(γ))∥F
− 1
]2

,

M̂(L)
GEV := Dir(H(L)(θ(γ))

∥H(L)(θ(γ)∥2
F

,

with g(l)(θ(γ)) := ∂ℓ/∂W (l).

Now we explain SPoGInit (Algorithm 1) in detail.

In lines 2-3, we initialize the weight parameters and weight scales γ(l)(0) = 1. We iteratively update θ(γ) as
follows.

In line 5, we calculate the objective function F (θ(γ(t))) as defined in (49).

In lines 6-10, we update the weight parameters θ(γ(t)) by optimizing the objective function through the
projected gradient descent method to the scales {γ(l)(t)}L

l=1 for each layer. We adopt the projected gradient
descent method to ensure the scales {γ(l)(t)}L

l=1 remain positive.

Algorithm 1 SPoGInit: Searching for weight initialization with better Signal Propagation on Graph
1: normalized adjacency matrix Â, input X(t), label y(t), network depth L, hidden dimension d, learning

rate η, total iterations T , metric weights w1, w2, w3.
2: initialize γ(l)(0) = 1 and sample {Ŵ (l)}L

l=1 by Xavier initialization.
3: initialize θ(γ(0)) ≜ {W (l)(0)}L

l=1 by W (l)(0)← γ(l)(0) · Ŵ (l).
4: for t = 0, 1, · · · , T − 1 do
5: calculate the objective function F (θ(γ(t))) by Â, X(t), y(t) and θ(γ(t)).
6: for layers l = 1, 2, . . . , L do
7: γ(l)(t + 1)← γ(l)(t)− η∇γ(l)F (θ(γ(t))).
8: γ(l)(t + 1)← Proj[10−6,∞)(γ(l)(t + 1)).
9: W (l)(t + 1)← γ(l)(t + 1) · Ŵ (l).

10: θ(γ(t + 1)) ≜ {W (l)(t + 1)}L
l=1.

11: return θ(γ(T )).

In line 7 of Algorithm 1, unless otherwise specified, we employ the random direction finite difference method
(Equation (31) in (Nesterov & Spokoiny, 2017)) to compute the derivative of the objective function with
respect to the scaling factor γ. Specifically, we use

Êµ

{
F (θ(γ(t) + µδ))− F (θ(γ(t)))

δ
µ

}
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to approximate the gradient ∇γF (θ(γ(t))), where δ is a small scalar and µ follows the standard Gaussian
distribution N(0, IL). Here, Êµ denotes the Monte Carlo approximation of the expectation, computed by
averaging over 3 independent and identically distributed (i.i.d.) samples of N(0, IL).

For the GCNs with skip connections, we replace V̂FSP and V̂BSP with (max1≤l<L M̂(l)
FSP/ min1≤l<L M̂(l)

FSP − 1)2

and (max1<l<L M̂(l)
BSP/ min1<l<L M̂(l)

BSP − 1)2, respectively. Also, in these models, we use the same scaling
factor across all layers. We empirically find that these modifications more effectively minimize the objective
function in GCNs with skip connections.
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F Supplemental experiment results

F.1 Experimental settings and hyperpameters

Settings for the experiments on mainstream datasets.

We set w1 = 1, w2 = 10, w3 = 1 for the vanilla GCN and w1 = 1, w2 = 1, w3 = 1 for other architectures
in these experiments. An early stopping criterion is also implemented for SPoGInit: if the metric fails to
decrease over δ consecutive steps, the search is terminated. Unless otherwise specified, SPoGInit is initialized
with Xavier initialization in these experiments. To guarantee that models with the same depth have the same
receptive field, we set the number of hops to 1 in the MixHop layer for the MixHop architecture.

In our experiments on the Cora and PubMed datasets,

• We perform grid searches over learning rates of 1e-3, 1e-4, 5e-5, and 1e-5.

• The training epochs and early stopping patience are listed in Table 6.

• For vanilla GCN and MixHop, we evaluate two configurations: (1) weight decay set to 5e-3 and
dropout rate set to 0.5, and (2) both weight decay and dropout rate set to 0. We report the best
performance achieved between these settings.

• For ResGCN and gatResGCN, we set the dropout rate to 0.5.

• In Table 2, the learning rate for SPoGInit is set to 0.1. The early stopping step δ is set to 20 for
ResGCN and gatResGCN, and to 10 for vanilla GCN and MixHop. In the experiments with ResGCN
and gatResGCN, SPoGInit starts with conventional initialization.

• In Figure 3, we use PyTorch’s autograd functionality to compute the gradient of the scaling factors.
In Figure 4 and 5, the learning rate for SPoGInit is set to 0.05 for ResGCN and MixHop, with the
early stopping step δ set to 10 for ResGCN.

Table 6: Hyperparameter configurations of experiments on Cora and PubMed.

GCN layers training epoch early stop patience
4/8/16 layers 800 200

32 layers 1200 300
64 layers 1500 375

In the experiments on the OGBN-Arxiv and Arxiv-year datasets,

• All models are trained for 1000 epochs.

• The learning rate is set to 5e-3 for ResGCN and gatResGCN, and 5e-4 for MixHop. For the vanilla
GCN, the learning rates are configured as follows: 5e-3 for the 4-layer and 8-layer models, 5e-4 for
the 16-layer and 32-layer models, and 5e-5 for the 64-layer model.

• For ResGCN and gatResGCN, we set the dropout rate to 0.5.

• For SPoGInit, the learning rate is set to 0.2 for ResGCN and gatResGCN, 0.1 for MixHop, 0.07 for
vanilla GCN on the Arxiv-year dataset, and 0.05 for vanilla GCN on the OGBN-Arxiv dataset. The
parameter δ in SPoGInit is set to 10 for ResGCN, gatResGCN, and MixHop, and 20 for vanilla GCN.

Settings for the exploration of starting points in SPoGInit

In these experiments, the settings for SPoGInit are slightly different from the previous ones. To be more
specific,
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• For ResGCN, the learning rate of SPoGInit is set to 0.1 when starting from VirgoFor or VirgoBack
initialization, and 0.2 in all other cases.

• For vanilla GCN, the learning rate of SPoGInit is set to 0.1 when starting from Conventional
initialization and 0.05 in all other cases.

Settings for the missing feature experiments

To enhance the dataset’s dependence on long-range relationships, we reduce the proportion of training split
and set the train/validation/test split as 10%/25%/65%, which is generated through the implementation in
Lim et al. (2021). In this experiment, we set SPoGInit to use Conventional initialization as the starting point
when it is adopted to gatResGCN, while SPoGInit begins with Xavier initialization as the starting point in
other cases.

Settings for MILP experiment

In the MILP experiment, we train the models for 500 epochs. The batch size is set as 40 and the hidden
dimension is set as 64.

F.2 Ablation Study of SPoGInit

In this subsection, we conduct the ablation study of SPoGInit by analyzing various combinations of its SP
metric components. Specifically, we reformulate the optimization problem (2) to include either one or two
of the three SP metrics. Table 7 presents the performance of a 32-layer vanilla GCN with these modified
SPoGInit variants on the Cora dataset. For this experiment, both dropout rate and weight decay are set to 0,
while all other hyperparameters follow the settings for the experiments on mainstream datasets in Appendix
F.1.

The results indicate that incorporating a single SP metric into the optimization problem slightly improves
the performance of vanilla GCNs, with the most notable enhancement observed when SPoGInit includes the
FSP metric. Incorporating two SP metrics leads to a more substantial improvement, although it still falls
short of the performance achieved by SPoGInit using all three SP measures.

These experimental results highlight the importance of combining all three SP metrics to maximize the
performance of SPoGInit.

Table 7: Test accuracies of a 32-layer vanilla GCN with modified SPoGInit variants: A "✓" indicates that a
specific metric is included in the signal propagation optimization of SPoGInit, while a "-" denotes its exclusion.
The results show that incorporating one or two SP metrics improves the performance of the deep vanilla
GCN. However, the best performance is achieved when all three SP metrics are used in SPoGInit.

Variants FSP BSP GEV Test Accuracy
GCN (Xavier) 72.83 ± 0.45
+SPoGInit

✓ - - 73.83 ± 1.72
- ✓ - 73.50 ± 0.36
- - ✓ 73.90 ± 1.56
✓ ✓ - 75.60 ± 0.16
✓ - ✓ 73.60 ± 1.72
- ✓ ✓ 73.77 ± 1.43
✓ ✓ ✓ 75.80 ± 0.16
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G Broader Impact Statement

In this paper, we employ signal propagation theory to analyze the performance degradations in deep GCNs.
Additionally, we propose a solution (SPoGInit) to address signal propagation issues and alleviate this problem.
This paper is a theoretical and algorithmic paper on graph neural nets, and does not seem to pose negative
social impact.
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