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Abstract

In this paper, we investigate the phenomenon of grokking, where models exhibit de-
layed generalization following overfitting on training data. We focus on data-scarce
regimes where the number of training samples falls below the critical threshold,
making grokking unobservable, and on practical scenarios involving distribution
shift. We first show that Knowledge Distillation (KD) from a model that has already
grokked on a distribution (p;) can induce and accelerate grokking on a different
distribution (p3), even when the available data lies below the critical threshold. This
highlights the value of KD for deployed models that must adapt to new distributions
under limited data. We then study training on the joint distribution (p;, p2) and
demonstrate that while standard supervised training fails when either distribution
has insufficient data, distilling from models grokked on the individual distributions
enables generalization. Finally, we examine a continual pretraining setup, where
a grokked model transitions from p; to ps, and find that KD both accelerates
generalization and mitigates catastrophic forgetting, achieving strong performance
even with only 10% of the data. Together, our results provide new insights into the
mechanics of grokking under knowledge transfer and underscore the central role of
KD in enabling generalization in low-data and evolving distribution settings.

1 Introduction

Generalizing across varying data distributions remains a core challenge in machine learning, as
standard training often fails under distribution shifts or data scarcity [33, 7, 30, 29, 15]. The
phenomenon of grokking [26] sheds light on this problem, showing how models can suddenly
generalize after prolonged overfitting [1]. Explanations range from implicit regularization, such as
weight decay [2, 23], to training dynamics that enable generalization even at zero loss [12, 19, 9]. A
common finding is that grokking occurs only when training data exceeds a critical threshold [26, 38].

Building on these findings, we explore grokking in scarce data regimes, under distribution shift.
Specifically, we ask: Can a grokked model be leveraged to frain another model on a different
distribution? To test this, we train a one-layer Transformer [35] on p; as a Teacher (f7) and distill
its knowledge into a Student (fs) on po. We find that fg not only groks on ps but also requires fewer
steps under distillation. This enables faster adaptation when p» has limited data, demonstrating the
practical value of pre-grokked models for distribution shift, continual learning, multi-task learning,
and domain generalization.

We also show that generalization does not depend on smaller weight norms or weight decay. While
prior work linked grokking to a cleanup phase driven by weight decay [23, 17, 34], our experiments
refute this claim. Consistent with recent findings [27], we find that weight decay mainly mitigates
floating-point errors. Grokking occurs even with zero weight decay and increasing weight norms,
ruling out these factors as primary explanations.
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Figure 1: Figure 1a shows that fsgroks below the critical data size when trained via KD from a grokked model
fr, whereas training from scratch fails. In Figure 1b, a larger model fastrained jointly on p; and p2 cannot
generalize when either dataset is below the threshold. Distilling from the smaller grokked models fsand fr,
however, enables fas to grok and generalize effectively even under scarce data.

We further ask: Is grokking possible when training data falls below the critical threshold ? Our
results show that distillation from the Teacher model (f7) not only reduces the steps required for
grokking but also enables it in regimes where data is below the critical size. The critical data size,
as defined in [17, 34, 38], is the minimum amount of data below which generalization does not
occur. Our study further demonstrates that KD helps mitigate forgetting when models adapt to
new domains. Together, these contributions outline a practical framework for building efficient and
adaptable learning systems.

2 Related Work

Grokking was first identified in algorithmic tasks by [26]. Subsequent work has aimed to explain
this phenomenon. [23] reverse-engineered a grokked modular-addition transformer and found it
learns a composition of trigonometric and inverse-trigonometric functions. [21] attributed grokking to
competition between sparse (generalizing) and dense (memorizing) subnetworks. From a theoretical
lens, [28] framed grokking as a first-order phase transition in feature learning, while [14] provided
analytical solutions for loss and accuracy dynamics in linear networks. Studying polynomial regres-
sion, [12] linked grokking to a shift from lazy to rich learning. [19] further suggested that the sharp
test-accuracy jump arises from differing implicit biases in early vs. late training.

Grokking has also been observed in practical settings, e.g., CNNs trained on CIFAR-10 [8, 11].
[8] describe delayed robustness, where models eventually grok adversarial examples long after
interpolation. Early prediction of grokking has been attempted using Fourier spectral signatures [24].
It has been linked to slow formation of useful representations within a “Goldilocks zone” between
memorization and confusion [16], and to gradual amplification of structured weights followed by
removal of memorized components [23]. Other explanations include hidden SGD-driven amplification
of a Fourier gap [2] and the “Slingshot mechanism,” where training cycles between stable and unstable
phases [32].

Relationship to Dataset Size: Circuit-efficiency analysis shows that generalization is slower but
more efficient, implying a critical data size below which models memorize rather than generalize [34].
Training below this threshold yields semi-grokking, and fine-tuning grokked models on such small
data can cause “ungrokking.” Regularization has been proposed to correct training-sample errors [6],
and loss-landscape analysis links grokking to data size, weight decay, and representation learning [17].



Accelerating Grokking: Several methods speed up grokking: gradient decomposition and ampli-
fication [13], lottery-ticket approaches [22], transferring embeddings from a weaker to a stronger
model [36], and replacing softmax with stable-max [27]. In contrast, our method removes the phase
transition without extra data or redundant pretraining, and— to our knowledge— is the first to
accelerate grokking in data-scarce settings under distribution shift.

3 Experimental Setup

We trained a decoder only transformer to perform experiments on algorithmic tasks of the form
((a@b)%P), where Q represents operator for any of the binary operations. In this work, we focus
on addition and subtraction tasks following previous studies [23, 34, 17, 26, 16] which consistently
report grokking on these tasks. The model input is [a, b, @, P], and the output ¢ is read from the final
token P. In our experiments, each arithmetic modulo- P task is denoted as p; for a specific prime
P. A distribution shift is introduced by changing the modulus while keeping the operator fixed. For
example, in addition modulo P, the task (a + b)%P with P = P is referred to as distribution p1,
while (a + b)%P with P = P, # P; is denoted p,. Our results remain consistent regardless of the
choice of P; and Ps.

We begin training with 35% of the dataset to first observe grokking, as demonstrated in prior
work [26, 17]. We then progressively reduce the data fraction to 30%, 25%, and 10%. For algorithmic
addition and subtraction tasks, prior studies define the critical data size to be around 25% of the
dataset [34, 38]. Consistent with this, our observations show that grokking does not occur when
25% or less of the data is available, confirming that 25% marks the critical threshold below which
generalization becomes impossible. We utilize StableMax Cross Entropy [27] since cross entropy
with softmax function causes numerical instability, given as:

Lsicr(6) = E (s ) [~ log StableMax (f2(x;0))] M

where fs(-; ), is the Student Network: parameterized by 6 and StableMax(z) = Softmax(g(z;))
where g(z;) is defined as

log(x + 1) ifz>0

= 2

(@) {—log(—x +1) ifz<0 )

We observe that the usage of StableMax [27] already gives a prior speedup in inducing grokking,

needing around 6000 iterations to grok, which otherwise would have been in order of 1e4 [17, 26, 23]

For knowledge distillation, we use Kullback-Leibler (KL) Divergence Loss:

Lxi(0) = Eonpy [Dxe (g7 (2)]lgs (2 6))] ()
where D1, (pllq) = Zfil p; log (%) This takes softened outputs as gy (z) = softmax (f%(x)) ,
and gg(x;0) = softmax (M) where fr :, represents the Teacher model, and ¢t > 0 is the

Temperature used to soften probabilities.
The total distillation loss is therefore realised as:

L(#) = (1 - a)Lcr(0) + alxw(9) C))
where « controls the proportion of each loss component.

For demonstrating the efficacy of our distillation method and to negate the dependency of weight
norm and weight decay theories, we compare both Adam without weight decay & AdamW (with
weight decay) optimizer [18] with a learning rate v = 1le — 3. For AdamW we set the weight decay
parameter A = 1. We perform 15,000-30,000 epochs of training with a batch size of 2048 on NVIDIA
V100 GPU.

4 Accelerating Grokking through Knowledge Distillation (KD)

KD has been shown to provide multiple benefits in improving training dynamics. [20] provided
a statistical perspective on distillation, that providing the true class-probabilities from the teacher
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Figure 2: Figure 2b shows the effectiveness of KD irrespective of the optimizer choice for both
addition and subtraction modulo task. In Figure 2a typical grokking phenomena on distribution ps
on 30% of training data (denoted as f), without KD. We observe that weight decay is helpful in
showing grokking but its not the only underlying cause. When trained with Adam, grokking is not
observed for both tasks when trained for 15000 iterations. This concurs with [26]. However Figure 2b
demonstrates a Student model trained on a different distribution p, with same fraction, but now with
KD from the Teacher model trained on p; displays accelerated generalization irrespective of the
optimizer choice.
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Figure 3: Dashed lines inFigure 3a and Figure 3b show typical grokking on p2 (P = 107) with different training
fractions (f). Training from scratch below 30% shows no grokking. With KD from a grokked model on p;
(P = 113), grokking is accelerated and occurs with as little as 25% of po. Distillation is applied to probability
outputs from the operator token, enabling generic operator-level representations rather than P-specific ones.

model can lower the variance of the student objective, and thus improve performance. Further [25]
provides a generalization bound that establishes fast convergence of the expected risk of a distillation-
trained linear classifier. In [4, 3], a theoretical framework is given to analyze model distillation into
decision trees through PAC-learning statistical theory. They show that if teacher model fris perfectly
distillable into a student model fg, then with a probability of at least 1 — §, fsgeneralizes with

training samples no greater than [M—‘ . It can be inferred from these studies [31, 5, 37] that KD

brings the following advantages towards training dynamics,

* Regularization Effect through Label Smoothing: KD smooths the labels, which acts as a
regularizer and prevents overfitting.

* Domain Knowledge Injection: The teacher model imparts class relationships that shape
the geometry of the student’s logit layer.

* Instance-Specific Knowledge: The teacher adjusts the student model’s per-instance gradi-
ents based on the difficulty of each sample, facilitating more effective learning.

We first grok a 1 layer Transformer model with 35% of training data for modular addition and
subtraction tasks ((a £ b)%P) with P = 113 (Choice of P was aritrary). We call this as data
distribution p;. This model will act as the teacher model (f7). Next we train another model on a
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Figure 4: Figure 4a demonstrates that its impossible to observe grokking when the data fraction goes below
a certain critical threshold(20%.), even with 2X iterations (30,000) In such a case, the model does not learn
anything regardless of the optimizer. In Figure 4b, it can be clearly seen that with KD, grokking is observed
for all tasks, even without weight decay. However we notice that weight decay helps in achieving a better
generalisation.

distribution p», by modifying the modulo prime (P = 107), and compare the impact of KD under
different fractions for ps on both these tasks. As seen in Figure 3, KD significantly accelerates the
grokking process for both tasks, even in scenarios where the proportion of training data is below
critical dataset size. This observation is independent of the optimizer used, as shown in Figure 2.
This demonstrates a practical utility of grokked models, illustrating their effectiveness in training
models on varying distributions through KD. It is important to note that distillation occurs on the
probability outputs from the operator token rather than the P token. This approach aims to learn
generic operator-level representations instead of task-specific representations, which would depend
on the choice of P.

Building on these observations, we ask: Can KD enable generalization below the critical data
threshold? To test this, we repeat the experiments with only 20% of the data. Without KD, grokking
does not occur even after 30,000 iterations, regardless of weight decay. In contrast, with KD,
generalization emerges rapidly at this reduced data fraction (Figure 4). Notably, the weight norm
continues to increase (more details on weight norm given in A.1), reinforcing our earlier claim
that neither weight decay nor decreasing weight norms are essential for grokking. These results
underscore the value of a grokked Teacher model (fr) in data-scarce settings. KD not only accelerates
grokking but also makes it possible below the critical threshold, highlighting its practical utility for
efficient training under limited data and shifting distributions.

5 Leveraging Grokked Models for Distillation and Continual Transfer

We extended our study by checkpointing grokked models on fractions (0.35, 0.3, 0.25) of py trained
via distillation (Section 4). The model grokked on p; with 35% data is denoted f,,, and the KD-
trained models on ps as f,,. Our goal was to train a new transformer (f),) that generalizes across
both p; and po. In joint training, f, failed to generalize when p, was below the critical size, showing
that scarcity in any distribution limits learning. In contrast, training fj, solely via KD from f,, and
fp, enabled simultaneous generalization, even when either distribution had limited data (Figure 5)

Remarkably, f, exhibited grokking only when trained via KD, generalizing even when p; or po was
below the critical size. This shows that KD over the joint distribution (p1, p2) provides a stronger
learning signal than ground-truth labels, enabling grokking under limited data. Notably, the effect
persists even when the teacher f,, itself was trained on a small fraction of py, distilled from f,, .

Building on recent work in continual pretraining [10], we evaluated the transition of a grokked
model from p; to po, focusing on the role of knowledge distillation (KD) in mitigating catastrophic
forgetting. A model grokked on p; was further pretrained on p, under two conditions: with and
without KD.

As shown in Figure 6, training without KD led to immediate and severe forgetting of p;, though
the model quickly generalized to ps. With KD, however, the model retained near-perfect accuracy
on p; while also achieving rapid generalization on ps. KD thus prevented delayed generalization
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Figure 5: Performance comparison of training strategies for a larger transformer model fas on distributions
of p1(35%) and different fractions (0.35,0.3,0.25) of p2. In the Joint Training regime (Figure 5a), the model
fails to generalize via cross-entropy when data from either distribution falls below the critical threshold. In
contrast, training solely with distillation enables grokking even with 25% of po (Figure 5b). At this low fraction,
generalization does not reach unity due to the imperfect f,, trained under data scarcity, while for 0.35 and 0.3
fractions, generalization is rapid with no grokking.
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Figure 6: Continual pretraining where a grokked model on py is further trained on p2. Without KD, performance
on p; drops rapidly while generalization on p2 is quick. With KD (Figure 6b), accuracy on the current task
is preserved and forgetting is mitigated. Training from a grokked model enables fast generalization without
delayed grokking, though for data below the critical size we observe a sudden phase transition from ~ 92% to
100% accuracy at around 28 K steps.

and preserved prior knowledge, underscoring its role in balancing retention and adaptation during
continual pretraining.

These findings highlight the utility of KD in enabling generalization when data from multiple
distributions is scarce, a scenario common in practice due to privacy, security, or resource constraints.
Leveraging KD from pre-trained grokked models offers an effective solution in such settings. Finally,
across all experiments we observed increasing weight norms despite successful grokking, challenging
theories that link grokking to weight norm reduction. Instead, our results suggest that mechanisms
like representation transfer via KD play a more central role, opening new directions for understanding
the fundamental drivers of grokking.

6 Conclusions and Future Work

This study advances the understanding of grokking by examining its behavior below the critical data
regime. Unlike prior work centered on single distributions and weight-norm dynamics, we show
that Knowledge Distillation (KD) can induce and accelerate grokking without relying on weight
decay or decreasing norms. Our results demonstrate that KD enables generalization even below the
critical threshold and across varying distributions, offering a practical solution in data-scarce settings
where traditional training fails. Future work may extend these insights to more complex tasks, deepen
our understanding of grokking’s mechanisms, and explore broader uses of pre-grokked models that
generalize reliably and adapt efficiently to dynamic real-world data.
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A Appendix

A.1 Evolution of L2 weight norm

L2 weight norm trained with adam continuously increases for both addition and subtraction tasks
as observed in Figure 7, yet grokking still occurs. These findings challenge the theories proposed
by [23] who suggest that the abrupt transition to perfect test accuracy during grokking occurs in the
cleanup phase (where weight decay removes memorization components), following the establishment
of the generalizing mechanism. Our empirical evidence contradicts these claims by demonstrating
grokking even without weight decay and with increasing weight norms.

Similarly [17] induce grokking by increasing the initial weight norm and conclude that generalizing
solutions lie on smaller norm spheres in parameter space. While we acknowledge that an initially
higher weight norm can facilitate grokking, our results indicate that generalizing solutions do not
necessarily lie on smaller norm spheres. Our modular arithmetic tasks serve as counterexamples,
where the final generalizing solutions exhibit larger parameter weight norms than their initial states,
and grokking occurs without the application of weight decay.

Furthermore [34] claim that the transition from memorizing to generalizing circuits occurs because
the generalizing circuit is more “efficient” than the memorizing circuit, in the sense that it can produce
equivalent loss with a lower parameter norm. In contrast, our studies show that modular arithmetic
tasks can achieve generalizing solutions with higher parameter norms without any weight decay,
disproving the necessity of norm reduction for grokking.

We empirically demonstrate that parameters’ (L2) weight norm trained with adam continuously
increases for both addition and subtraction tasks as observed in Figure 7, yet grokking still occurs.
This challenges the notion that decreasing weight norm is fundamental to grokking. Therefore, we
assert that neither parameter weight decay nor a decreasing weight norm during optimization is
inherently fundamental to observing grokking, contrary to its purported necessity in previous studies
[17, 23, 34] on modular arithmetic tasks.
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Figure 7: Evolution of the L2 weight norm for Student model fg trained with Adam(without weight
decay) and AdamW (with weight decay) on different fractions of po distribution. fg is trained via KD
from a grokked model fr . Notably, training without weight decay the Lo-weight norm increases
continuously, while giving generalised solutions. This rules out the necessity of decreased weight
norm condition for exhibiting grokking given by [17, 34, 23]
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